Search for
SUSY and Extra Dimensions at LEP

Katja Klein (OPAL)
1. Physikalisches Institut B, RWTH Aachen

On behalf of the LEP collaborations

July 29th, 2006
ICHEP 2006, Moscow
Four abstracts submitted:

Supersymmetry

Extra dimensions

- Search for one large extra dimension with the DELPHI detector at LEP2 (DELPHI; 2006-002 CONF 748, June 22nd, 2006)

All limits are at 95% C.L.!
GMSB: Motivation

- No SUSY particles discovered yet → Supersymmetry (SUSY) is a broken symmetry
- Two most popular mechanisms for spontaneous SUSY breaking:
 - Gravity Mediated (SUGRA) and Gauge Mediated SUSY Breaking (GMSB)

SUGRA

\[M \sim M_p \]

Hidden sector; breaks SUSY

gravitational interaction

SUSY breaking scale \(\sqrt{F} \sim 10^{11}\) GeV

GMSB

\[M \sim M_p \]

gravitational interaction

100 TeV < \(\sqrt{F} \) < 2000 TeV

gauge interactions

Messenger sector

Mass scale \(M \)

Visible sector:

SM and SUSY particles

Mass scale \(\Lambda \)

\[M_\tilde{G} \sim F / M_p \Rightarrow \tilde{G} \text{ heavy} \]

\[\tilde{G} \text{ light} \]
6 parameters in minimal GMSB model:

- \(M \) messenger mass scale
- \(N \) number of generations of messenger particles
- \(\sqrt{F} \) SUSY breaking scale
- \(\Lambda \) SUSY particles mass scale
- \(\tan \beta \) ratio of VEVs of Higgs doublets
- \(\text{sign} \mu \) sign of Higgs sector mixing parameter

\(M_\tilde{G} \sim \text{eV} - \text{GeV} \Rightarrow \text{gravitino is the Lightest SUSY Particle (LSP)} \)

Three possibilities for the Next-to LSP (NLSP) and its decay:

- stau NLSP scenario: \(\tilde{\tau}_1 \rightarrow \tau \tilde{G} \)
- slepton co-NLSP scenario: \(\tilde{l} \rightarrow l \tilde{G} ; \tilde{l} = \tilde{\epsilon}_R, \tilde{\mu}_R, \tilde{\tau}_1 \)
- neutralino NLSP scenario: \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \)

NLSP lifetime is arbitrary:

\[
L_{NLSP} \sim \left(\frac{100 \text{GeV}}{m_{NLSP}} \right)^5 \left(\frac{\sqrt{F}/k}{100 \text{TeV}} \right)^4 \sqrt{\frac{E_{NLSP}^2}{m_{NLSP}^2}} - 1 \times 10^{-2} \text{ cm}
\]

(k = model dep. parameter of SUSY breaking)
GMSB (OPAL): Slepton NLSP Topologies

Topology in detector depends on slepton lifetime:
- prompt decay: 2, 4 or 6 leptons + \not{E}
- decay in detector: tracks with large impact parameters or kinks + \not{E} (+ 2 or 4 leptons)
- decay outside detector: tracks with anomalous dE/dx + \not{E} (+ 2 or 4 leptons)
• **Zero lifetime (l.t.): acoplanar leptons**
 - Irreducible BG from WW production

• **Short l.t.: tracks with large impact parameters**

• **Medium l.t.: tracks with kinks**
 - refit of kink vertex

BG for short & medium l.t.:
 - cosmics and beam gas/wall events
 - two-photon ($\sigma = O(10\text{nb})$)

• **Long l.t.: tracks with anomalous dE/dx**
 - basically BG free topology
• No significant excesses observed \rightarrow limits on production cross sections, sparticle masses and model parameters

• Theoretical framework based on Dimopoulos, Thomas, Wells; Nucl. Phys. B488 (1997) 39

• $m_G = 2 \text{ eV} \leftrightarrow \text{BR}(\text{NNLSP} \rightarrow \tilde{G} X) \approx 0$

• \sqrt{F} is eliminated by lifetime independence of experimental cross section limits

• Parameter scan:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scan points</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td>5 – 150 TeV</td>
<td>1 TeV</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>1 – 50</td>
<td>0.2</td>
</tr>
<tr>
<td>M</td>
<td>1.01 $\cdot \Lambda$, 250 TeV, 10^6 TeV</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>sign(μ)</td>
<td>+1, -1</td>
<td></td>
</tr>
</tbody>
</table>

• Minimal expected $\sigma \cdot \text{BR}^2$ calculated for each slepton and neutralino mass: $(\sigma \cdot \text{BR}^2)_{\text{min}}$
• SUSY MC produced with SUSYGEN or DFGT in mass-lifetime grid

• Combination of analyses for different lifetimes taking overlaps into account

• $\sqrt{s} = 189 - 209$ GeV, $\int L \approx 600$ pb$^{-1}$ Combination of \sqrt{s} bins with $(\sigma \cdot BR^2)_{\text{min}}$

• Statistical treatment according to Junk; Nucl. Instrum. Meth. A434 (1999) 435

• Statistical and systematic errors included

• Similar limits $O(0.1\text{pb})$ in slepton co-NLSP scenario
Comparison of σ_{95} with $(\sigma \cdot BR^2)_{\text{min}}$ ⇒ slepton mass limits

- $m_{\tilde{\tau}_1} > 87.4 (88.2) \text{ GeV}$
- $m_{\tilde{\mu}_R} > 93.7 (93.6) \text{ GeV}$

Slepton co-NLSP scenario: sleptons degenerate within τ mass ⇒

$m_{\tilde{\mu} - \tau} \rightarrow m_{\tilde{l}} > 91.9 \text{ GeV}$
GMSB (OPAL): Neutralino NLSP Topologies

Topology in detector depends on neutralino lifetime:
- prompt decay: photons + E_T (+ leptons/jets)
- decay in detector: non-pointing photons + E_T (+ leptons/jets)
- decay outside detector: E_T (+ leptons/jets)
Chargino & slepton pair-production:

- Short lifetime:

- **Long lifetime:** photons not visible, higher E_T

- Combination of \sqrt{s} bins:
 - Chargino pair-production: $\sigma \sim \beta/s$
 - Slepton pair-production: $\sigma \sim \beta^3/s$

- Minimization in neutralino lifetime
 ⇒ *lifetime-independent cross section limits*
GMSB (OPAL): Interpretation

Lifetime-independent exclusions in GMSB parameter space:

- LEPI search region
- not allowed by theory
- $\tilde{\tau}_1, \tilde{\mu}_R, \tilde{e}_R$ (neutralino NLSP)
- $\tilde{\chi}_1^0$ (neutralino NLSP)
- $\tilde{\tau}_1, \tilde{\mu}_R, \tilde{e}_R$ (neutralino NLSP)
- $\tilde{\chi}_1^0$ (neutralino NLSP)
- $\tilde{\tau}_1, \tilde{\mu}_R, \tilde{e}_R$ (neutralino NLSP)

Lifetime-independent limits on Λ:

$\Lambda > 40, 27, 21, 17, 15$ TeV
for $N = 1, 2, 3, 4, 5$
($N =$ number of messenger generations)

Sign(μ) > 0

$N = 3, M = 250$ TeV/c^2

$m_h > 114.4 \pm 3$ (theo) ± 5 (m_t) GeV
Hierarchy between electroweak scale M_{EW} and Planck scale M_p explained by two popular models: the **ADD model** (Arkani-Hamed, Dimopoulos, Dvali) and the **Randall Sundrum model**

ADD model

- **n large** compact extra spatial dimensions
- we live in 4 dimensions ("on the brane"), gravity can propagate in the 4+n dim. bulk
- gravitational mass scale M_D in $D = 4+n$ dimensions is of the order of the weak scale
- effective M_p in 4 dim. is large only due to the hidden volume R^n of the extra dimensions:
 \[M_p^2 \approx M_D^{2+n} R^n \]
- for $n=1$, $R \sim 10^{13}\text{cm} \approx$ distance between earth and sun \Rightarrow astronomically excluded
- for $n=2$, $R \sim 100\mu\text{m} \Rightarrow$ not excluded yet

Phenomenological consequence of EDs:

- massive excitation states of the graviton: "**Kaluza Klein** (KK) tower"
- in ADD framework: large multiplicity of states, gravitiational interaction with SM particles, invisible
• Single Graviton production at LEP:

\[\frac{d^2 \sigma}{dx_y d \cos \theta_y} = \frac{\alpha}{32 s} \frac{\pi^{n/2}}{\Gamma(n/2)} \left(\frac{\sqrt{s}}{M_D} \right)^{n+2} f(x_y, \cos \theta_y) \]

\[\theta = \text{polar angle}, \quad x_y = \frac{E_y}{E_{\text{beam}}}, \quad \alpha = \text{fine-structure constant} \]

(Guidice, Rattazzi, Wells; Nucl. Phys. B544 (1999) 3)

• Background from \(e^+ e^- \to \nu \bar{\nu} \gamma(y) \) and \(e^+ e^- \to e^+ e^- \gamma(y) \)
• Photon candidates must have $E_\gamma > 1\text{GeV}$

• Two event topologies are studied:

 • **High energy single-photons**: $p_T > 0.02 \sqrt{s}$
 - purity for $e^+ e^- \to \nu \bar{\nu} \gamma(\gamma) = 99.1\%$
 $\Rightarrow N_{\text{obs}} / N_{\text{exp}} = 1898 / 1905.1$

 • **Low energy single-photons**: $0.008 \sqrt{s} < p_T < 0.02 \sqrt{s}$
 - one photon candidate in the barrel (single-γ trigger)
 $\Rightarrow N_{\text{obs}} / N_{\text{exp}} = 566 / 577.8$

• Theoretical differential cross section
 \Rightarrow number of exp. signal events as function of $(1/M_D)^{n+2}$
 \Rightarrow **limits on** M_D from fit to x_γ vs. $\cos \theta_\gamma$ distribution

Katja Klein Search for SUSY and Extra Dimensions at LEP 15/22
• LEP combination including ADL: LEP Exotica WG 2004-03
• For each n, the log likelihood functions are added and limits calculated using Bayesian likelihood method
Search for one large ED (Delphi)

- ADD limits from single-photon signature for \(n > 1 \) only
- But \(n = 1 \) allowed for a slightly warped geometry: based on RS1 type model, but no light KK modes (Guidice, Plehn, Strumia; Nucl. Phys. B706 (2005) 455)
- Photon energy spectrum depends strongly on \(n \rightarrow \) new analysis necessary

\[
\sigma\cdot d\sigma/\left(e^+ e^- \right) \rightarrow \gamma G/\gamma \gamma,
\]

\[
\begin{align*}
\delta = 1 & \quad \text{\(\delta = 6 \)} \\
\delta = 2 & \quad \text{\(\delta = 3 \)} \\
\end{align*}
\]

\[
\begin{align*}
\gamma & \quad = 1.25 \text{ TeV} \\
\gamma & \quad = 1 \text{ TeV}
\end{align*}
\]

- Expected number of single-photon events in DELPHI electromagn. calorimeter
- Corrected for cal. efficiency & resolution
• Pre-selection of single-photon events using tracker and ECAL
\((\sqrt{s}=183\text{-}209\ \text{GeV}, \int L=650\ \text{pb}^{-1})\)
- High density Projection Chamber (HPC)
 - \(x_\gamma > 0.06\)
- Forward ElectroMagnetic Cal. (FEMC)
 - \(x_\gamma > 0.10\)
- Small angle Tile Calorimeter (STIC)
 (BG dominated \(\rightarrow\) not used for final analysis)

• Final event selection with likelihood-ratio based on \(E_\gamma\)

\[
\begin{array}{|c|c|c|}
\hline
& N_{\text{obs}} & N_{e^+e^- \rightarrow \nu\bar{\nu}(\gamma)} & N_{\text{other SM BG}} \\
\hline
\text{FEMC} & 705 & 623 \pm 3 & 49.1 \\
\text{HPC} & 498 & 540 \pm 4 & 0.6 \\
\hline
\end{array}
\]

\[\Rightarrow M_D \geq 1.69 \ (1.71) \quad \text{TeV} \pm 3\% \text{ for } n = 1\]
Search for Branons (L3)

- ADD type geometries: brane oscillations corresponding to a brane tension $\tau = f^4$
 \Rightarrow New scalar fields = Goldstone bosons corresponding to the SSB of the translational invariance produced by presence of the brane: "branons" $\tilde{\pi}$

- Translational invariance is not exact \rightarrow branons are massive

- For tension scale $f \ll M_D$, Gravitons decouple from SM particles
 (e.g. Cembranos, Dobado, Maroto, Phys. Rev. Lett. 90 (2003) 241301)
Search for Branons (L3)

- $\gamma + \not{E}$ and $Z \rightarrow q \bar{q} + \not{E}$ covered, but low sensitivity in Z channel due to phase space
- Two different analysis for $\gamma + \not{E}$, depending on p_T:

High p_T:
- $0.04 \ E_{\text{beam}} < p_T < 0.6 \ E_{\text{beam}}$
- purity for $e^+ e^- \rightarrow \nu \bar{\nu} \gamma (\gamma) = 99\%$

$\Rightarrow N_{\text{obs}} / N_{\text{exp}} = 838 / 811.2$
(N$_s = 351.4$ for $M = 0$ and $f = 150 \text{GeV}$)

Low p_T:
- $0.016 \ E_{\text{beam}} < p_T < 0.04 \ E_{\text{beam}}$
- barrel only (photon trigger!)
- BG mainly from $e^+ e^- \rightarrow e^+ e^- \gamma (\gamma)$

$\Rightarrow N_{\text{obs}} / N_{\text{exp}} = 543 / 554$
(N$_s = 95.3$ for $M = 0$, $f = 150 \text{GeV}$)

$\sqrt{s} = 189-209 \text{ GeV}, \int L \approx 630 \text{ pb}^{-1}$
Search for Branons (L3)

- One light branon with mass M assumed
- Efficiency for branons from SM MCs for $e^+ e^- \rightarrow \nu \bar{\nu} Z \rightarrow \nu \bar{\nu} q \bar{q}$ and $e^+ e^- \rightarrow \nu \bar{\nu} \gamma (\gamma)$, reweighted with diff. cross section from Alcaraz et al. (Phys. Rev. D67 (2003) 075010)
- Bin-wise comparison of observed and expected number of events for x vs. $\cos \theta$ distribution, assuming Poisson probability distribution
Summary

- No evidence for new physics observed in searches for GMSB signatures and extra dimensions
 ⇒ Limits on slepton and neutralino masses as well as on the SUSY mass scale Λ within the GMSB scenario:

$$\Lambda > 40, 27, 21, 17, 15 \text{ TeV for } N = 1, 2, 3, 4, 5$$

⇒ Limits on gravitational mass scale M_D in extra dimensions:

$$M_D > 1.69, 1.60, 0.66 \text{ TeV for } n = 1, 2, 6$$

- LHC startup very soon – discoveries might be just around the corner!