R&D on Novel Powering Schemes at RWTH Aachen University - Plans and Status

Tracker Upgrade Power WG Meeting
May 6th, 2008

Lutz Feld, Rüdiger Jussen, Waclaw Karpinski, Katja Klein, Jennifer Merz, Jan Sammet

1. Physikalisches Institut B, RWTH Aachen University
Our Working Group

- **Lutz Feld**: team leader
- **Waclaw Karpinski**: electronics engineer
 - plus electronics workshop team
- **Katja Klein**: HGF Fellow (4 years)
- Three diploma students:
 - **Jan Sammet**: *System test measurements with DC-DC converters*
 - **Rüdiger Jussen**: *Development and test of radiation hard magnetic field tolerant DC-DC buck converter* (in collaboration with CERN PH-ESE group, see later)
 - **Jennifer Merz**: *Simulation of material budget of various powering schemes*
• Contribute to the development & characterization of magnetic field tolerant and radiation hard DC-DC buck converters, in coll. with CERN PH-ESE group - *started*

• Investigation of system aspects of novel powering schemes
 – DC-DC conversion - *started*
 – Serial powering - *not started yet*

• Noise susceptibility measurements - *not started yet*
 – Noise injection into silicon strip modules
 – Noise injection into DC-DC converters

• Simulation of material budget of powering schemes - *started*

• R&D proposal submitted and approved (December)

• Funding via BMBF and special seed fund of RWTH Aachen university

→ In the following I go through above points and explain our plans and the current status
Development & Test of Buck Converter

• Collaboration with CERN PH-ESE group (Federico Faccio et al.)
• CERN group develops technology and converter chip - submitted
• Aachen develops and produces the converter PCB - started
• Aachen will contribute to the characterization of this custom converter
 – Test of magnetic field tolerance at up to 4 Tesla - set-up for 1.2T operational
 – Irradiation tests
 – EMI tests - set-up under preparation
• Test set-ups are also very useful to characterize commercial converters that we currently use for system tests (see later)
Test of Magnetic Field Tolerance

- Set-up with electro magnet of in-house solid state institute is **ready**
 - $B < 1.2T$ is enough for many applications
- Example: commercial converter EN5312QI (more details later)
 - MEMS technology: spiral inductor between magnetic plates
- Decrease of efficiency in magnetic field
- Total breakdown for fields below 1T (no surprise)
- Lower magnetic field tolerance for higher duty cycles $D = \frac{T_{on}}{T} = \frac{V_{out}}{V_{in}}$

Katja Klein

R&D on Novel Powering Schemes at RWTH Aachen University
EMI Tests

- Standardized EMI test setup at CERN
- Standalone test of converter noise (common & differential mode) independent of power supply noise and load
- Different converters and PCB designs can be compared
- Example measurement of commercial converter EN5312QI → low noise
- Very useful → duplication of setup in Aachen is ongoing!
• Preparation of system test set-up with current strip tracker substructures (petals)
 – Set-up with 4 modules sufficient for many measurements - running
 – Upgrade to full petal set-up desirable - not yet done due to lack of time

• Operation of current (and future) strip tracker substructures with custom rad-hard & magnetic field tolerant DC-DC converters
 – Custom converters are being developed by CERN PH-ESE;
 expect converter chips to be available for system test not before Autumn

• Operation of current strip tracker substructures with of-the-shelf DC-DC converters
 – Market study of commercial devices - done
 – Integration into tracker structures using a custom adapter PCB - done
 – Investigation of noise behaviour, cross talk etc. - ongoing
 – Study combination of DC-DC converter with LDO regulator - ongoing
 – Study effect of external air-core coil - ongoing
 – …
• Market survey (W. Karpinski) with main criteria:
 – high switching frequency → small size of passive components
 – high conversion factor
 – sufficient current (~ 1A) and suitable output voltages (1.25V and 2.5V)

• Two devices identified and purchased:
 – Enpirion EN5312QI with 4 MHz switching frequency
 – Micrel MIC3385 with 8 MHz switching frequency

• All measurements shown are based on EN5312QI
 – since results with MIC3385 are still too fresh
Enpirion EN5312QI

- Small footprint: 5mm x 4mm x 1.1mm
- $f_s \approx 4$ MHz
- $V_{\text{in}} = 2.4V – 5.5V$ (rec.) / 7.0V (max.)
- $I_{\text{out}} = 1A$
- Integrated planar inductor with iron-manganese-zinc core

From data sheet

Inductor in MEMS technology

Katja Klein
R&D on Novel Powering Schemes at RWTH Aachen University
Integration into CMS End Cap System

- 4-layer adapter PCB
- Plugged between Tracker End Cap (TEC) motherboard and FE-hybrid
- 2 converters provide 1.25V and 2.5V for FE-hybrid
- Input and output filter capacitors on-board
- Input power external or via TEC motherboard
Integration into CMS End Cap System

L-type:
Larger flat PCB, 1 piece

S-type:
Smaller inclined PCB, 2 pieces

Front-end hybrid

TEC motherboard (InterConnect Board, ICB)
Standalone Tests with Oscilloscope – L Type

Without load:

- $V_{in} = 6V$
- $V_{2.50}$
- $V_{1.25}$

With load ($I = 0.7A$):

- $V_{in} = 6V$
- $V_{2.50}$
- $V_{1.25}$

- High frequency ringing
- Ripple with switching frequency

$\Rightarrow 100mVpp$ high frequency ringing on input
$\Rightarrow 10mVpp$ ripple with switching frequency on output
System Test Setup

- TEC petal with InterConnect Board
- Four ring-6 modules powered & read out
- Petal housed in grounded metall box
- Optical readout
- Optical control communication
- Thermally stabilized at +15°C
- Final components (spares)
- Official DAQ software
• Since this meeting focuses on plans I will show only few results to indicate current status and lines of investigation
• This is work in progress – many aspects not yet fully understood
• A more comprehensive status report will be presented in the next meeting!
Effect of Converter (Position 6.4)

- No converter
- L type
- S type
Powered via ICB

⇒ Raw noise increases by 5-10%
⇒ Design of PCB has significant impact
⇒ Further optimization seems possible
Effect of Converter (Position 6.4)

Pos. 6.4

- No converter
- L type
- S type

Powered via ICB

⇒ Broader common mode distribution
⇒ Huge increase of noise at module edges, APV edges and “bad“ strips

Katja Klein
R&D on Novel Powering Schemes at RWTH Aachen University
Edge strip noise increased only if sensor is present
Capacitive coupling seems to be crucial
Further investigations are needed
Cross Talk

Effect of cross talk - position 6.4

- No converter
- Converter on all positions
- Converter on 6.4 only

L Type

\[\Rightarrow \text{Performance with converter does not depend on \# of modules operated with converter} \]

\[\Rightarrow \text{A converter on position 6.4 does not spoil the performance of modules without converter (e.g. 6.3)} \]

Katja Klein
R&D on Novel Powering Schemes at RWTH Aachen University
Effect of Low DropOut Regulator

Linear technology VLDO regulator LTC3026 after DC-DC converter

Katja Klein

R&D on Novel Powering Schemes at RWTH Aachen University
Effect of Low DropOut Regulator

- No converter
- L type without LDO
- L type with LDO, dropout = 50mV
- L type with LDO, dropout = 100mV

⇒ LDO reduces voltage ripple and thus noise significantly
⇒ Indicates that noise is differential mode
⇒ Can efficiency penalty be accepted?
Enpirion **EN5382D** (similar to EN5312QI) operated with external inductor:

- Air-core inductor Coilcraft 132-20SMJLB; L = 538nH
- Ferrite-core inductor Murata LQH32CN1R0M23; L = 1μH
Effect of External Air-Core Inductor

Effect of different inductors on position 6.4

- No converter
- Internal inductor
- External ferrite inductor
- External air-core inductor

$$\Rightarrow$$ Huge noise induced by air-core inductor
$$\Rightarrow$$ Radiated noise leads to cross talk between modules

Pos. 6.4

Pos. 6.3
(Converter is on 6.4)
• Integration of serial powering scheme into (current) petal structure
 – Much more complicated than for DC-DC converters
 – Needs development of new InterConnect Board - not started
 – Generic chip (SPI) developed at Fermilab (Marcel Trimpl);
 can probably be used for CMS tracker but integration not completely trivial;
 Marcel has agreed to provide us with these chips - available not before autumn?

• System test measurements

⇒ Activity has not yet started since priority is on DC-DC converters
⇒ Significant engineering man power needed
⇒ Help of other groups is very welcome!
• Noise injection tests have been performed in the past
 – On level of APV – Mark Raymond
 – On level of petal – Fernando Arteche together with Aachen group
 – …

• We want to inject noise into a single module to measure noise susceptibility vs. frequency
 – Interesting to know critical frequency range for future DC-DC converter development
 – Set-up needs same components as EMI set-up (e.g. current probes)
 – Can use converter PCB for injection

• We want to inject noise into input of DC-DC converters
 – Check sensitivity to power supply noise and pick-up noise in cables

⇒ Not yet started - awaiting components!
Simulation Study of Material Budget

- **Simulation of material budget for various powering schemes**
 - Based on current CMSSW tracker geometry
 - Relative comparison only
 - Aim to understand in a more quantitative way what we can gain

- **Activity has started, but we are still in the learning phase**
• We will investigate DC-DC converters and serial powering schemes with emphasis on system aspects
• We have started with system test measurements based on commercial buck converters
• Noise increases by 5-10%
• Noise on edge and bad strips increases drastically
• Conductive noise can be controlled with LDO regulator
• External air-core coil radiates noise

• We will continue these tests with custom converters, when available
• In the longer term, we have to answer some basic questions:
 – Can radiative noise of air-core inductor be controlled?
 – How many conversion steps do we want?
 – CMOS or/and discrete implementation?
 – How close to the silicon modules do we want/need to place those converters?
Back-up
Output Voltage (e.g. 2.5V)

DCU read out 1000 times per converter (caveat: sensitivity to low frequ. variations only)
⇒ Some variation between converters, but RMS of each single converter is small
⇒ No significant difference between L and S
⇒ No correlation between mean or RMS of voltage and mean module noise
Influence of PCB Design

No converter

L type

S type

⇒ Some variation within types, but L and S are clearly different

Mean = 1.92548
σ = 0.0314997

Mean = 2.08891
σ = 0.0340944

⇒ Indication that difference comes from inductance of “bridge“ connector
Common Mode Subtraction

- Raw noise without converter
- Raw noise with converter
- CM calculated per APV (128 strips)
- CM calculated for 32 strips
- Linear CM subtraction

L Type
Powered externally

\[\Rightarrow \] Additional noise completely subtractable with proper common mode algorithm
\[\Rightarrow \] Noise increase due to higher common mode

Katja Klein
R&D on Novel Powering Schemes at RWTH Aachen University
Mean noise increases with input voltage or conversion ratio $g \ (g = V_{\text{in}}/V_{\text{out}})$.
Different Methods of Powering

Different Methods of Powering

--- No converter
--- L/S type powered externally
--- L/S type powered via ICB; many filter capacitors

⇒ Sensitivity to input voltage ripple to be studied, but sensitivity seems to be small
Effect of Output Filter Capacitance

Different output filter capacitances

Pos. 6.4
L type

No converter
L3: standard output filter capacitors
L1*: add. 22 μF
L2*: add. 100 μF

Pos. 6.4
S type

No converter
S2: standard output filter capacitors
S1*: add. 100 μF

⇒ Noise can be reduced further by larger output filter capacitances

---- No converter
---- Standard output filter capacitors
---- Additional 22 μF capacitor
---- Additional 100 μF capacitor

Powered externally
Study correlations between pairs of strips i, j (R = raw data):
\[\text{Corr}_{ij} = \frac{\langle R_i R_j \rangle - \langle R_i \rangle \langle R_j \rangle}{\sigma_i \sigma_j} \]

⇒ No cross-talk between neighbouring modules observed
⇒ High correlations only within single modules (common mode)