Suche nach Supersymmetrie mit Myonen am CMS

von

Andreas Leurs

Bachelorarbeit der Physik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen

im September 2011

angefertigt im

Institut 3a

bei

Prof. Dr. Thomas Hebbeker
Übersicht

1 Theoretische Grundlagen

1.1 Das Standardmodell der Teilchenphysik

<table>
<thead>
<tr>
<th>Wechselwirkung</th>
<th>rel. Stärke</th>
<th>Reichweite</th>
<th>Austauschteilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>starke Kernkraft</td>
<td>1</td>
<td>$10^{-13} m$</td>
<td>8 Gluonen (g)</td>
</tr>
<tr>
<td>elektromagnetische Kraft</td>
<td>10^{-2}</td>
<td>∞</td>
<td>Photon (γ)</td>
</tr>
<tr>
<td>schwache Kernkraft</td>
<td>10^{-1}</td>
<td>$10^{-14} m$</td>
<td>W^\pm, Z^0-Boson</td>
</tr>
</tbody>
</table>

Tabelle 1: Wechselwirkungen des Standardmodells der Teilchenphysik mit relativer Stärke bezogen auf die starke Kernkraft, ihrer Reichweite und den zugehörigen Austauschteilchen.

Im Standardmodell unterscheidet man zwischen Materieteilchen, den sogenannten Fermionen mit halbzahligem Spin und den Austauschteilchen, die Bosonen genannt werden und ganzzahlige Spins besitzen. Eine Zusammenstellung der wichtigsten Fermionen und Bosonen mit ihren Eigenschaften befindet sich in Tab. 2 und Tab. 3.[1]

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Generation I</th>
<th>Generation II</th>
<th>Generation III</th>
<th>Ladung</th>
</tr>
</thead>
<tbody>
<tr>
<td>up (u)</td>
<td>charm (c)</td>
<td>top (t)</td>
<td>+2/3 e</td>
<td></td>
</tr>
<tr>
<td>down (d)</td>
<td>strange (s)</td>
<td>bottom (b)</td>
<td>−1/3 e</td>
<td></td>
</tr>
<tr>
<td>Leptonen</td>
<td>Elektron (e)</td>
<td>Myon (μ)</td>
<td>Tau (τ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elektron-Neutrino (ν_e)</td>
<td>Myon-Neutrino (ν_μ)</td>
<td>Tau-Neutrino (ν_τ)</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 2: Verschiedene Generationen der Fermionen im Standardmodell der Teilchenphysik.

<table>
<thead>
<tr>
<th>Teilchen</th>
<th>Wechselwirkung</th>
<th>Masse in GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+</td>
<td>schwach</td>
<td>80.399 ± 0.023 [2]</td>
</tr>
<tr>
<td>Z</td>
<td>stark</td>
<td>91.1876 ± 0.0021[2]</td>
</tr>
<tr>
<td>g</td>
<td>stark</td>
<td>0</td>
</tr>
<tr>
<td>γ</td>
<td>elektromagnetisch</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 3: Bosonen im Standardmodell der Teilchenphysik.

Weiterhin werden die Fermionen in Quarks und Leptonen unterteilt. Jedes einander zugeordnete Quarkpaar hat Ladung $+2/3 e$ bzw. $-1/3 e$ (bzw. $-2/3 e$ und $+1/3 e$ für deren Antiteilchen). $e = 1.602 \times 10^{-19}$ C ist hierbei die Elementarladung. Quarks nehmen an allen fundamentalen Wechselwirkungen teil. Sie tragen eine Farbladung (grün, rot, blau oder die dazu entsprechende Antifarbe). Quarks tauchen nie isoliert auf, sondern immer in Gruppen von Quarks, die als Farbquanten "weiß" ergeben, was als Konfinement bezeichnet wird. Dies ist nur erreichbar durch drei Quarks unterschiedlicher (Anti-)Farbe (qqq oder $\bar{q}\bar{q}\bar{q}$) oder zwei Quarks mit einer Farbe und einer Antifarbe ($q\bar{q}$).

aufgrund ihrer elektrischen Ladung auch an der elektromagnetischen Wechselwirkung teilnehmen. Die Quarks sowie die Leptonen lassen sich in drei Generationen unterteilen. Diese sind in Abb. 1 dargestellt.

Die starke Wechselwirkung wird durch die Quantenchromodynamik (QCD) beschrieben und erklärt das koppeln der Gluonen an Teilchen mit Farbladung. Gluonen besitzen ebenfalls Farbladungen und sind daher in der Lage mit sich selbst zu koppeln. Die zugehörige Symmetriegruppe ist die $SU(3)$.

Eine Frage, die die bisher erwähnten Austauschteilchen nicht erklären können ist, woher die Masse der Materieteilchen und der Austauschteilchen der schwachen Wechselwirkung kommt. Dieses soll durch das im Higgsmechanismus postulierte Higgs-Teilchen gelöst werden. Eines der Hauptaufgaben des LHC am CERN ist es die Existenz dieses Teilchens zu bestätigen oder zu widerlegen.

1.2 Supersymmetrie

Auch wenn das Standardmodell der Teilchenphysik durch eine Vielzahl von Experimenten bestätigt wurde, kann sie manche beobachteten Effekte nicht erklären. Dazu gehört zum Beispiel die “Dunkle Materie” aus astronomischen Messungen oder das Hierarchyproblem. Dieses besagt, dass bei sehr hohen Energien im Bereich der Planck-Skala von 10^{19} GeV die Gravitation so stark wird, dass diese anders als beim Standardmodell nicht mehr vernachlässigbar ist.
Eine Theorie zur Lösung dieses Problems ist die Supersymmetrie. In dieser wird ein Operator Q eingeführt, der Fermionen und Bosonen ineinander umwandeln kann und umgekehrt:

$$Q|\text{Fermion}\rangle = |\text{Boson}\rangle, \quad Q|\text{Boson}\rangle = |\text{Fermion}\rangle.$$

Es wird jedem Fermion/Boson ein entsprechender Superpartner zugeordnet. Supersymmetrische Materieteilchen erhalten dann zur Bezeichnung je eine “s” als Präfix (z.B. Elektron → Selektron) und Austauschteilchen ein “ino” als Suffix (z.B. Photon → Photino). Wäre die Supersymmetrie exakt sollten die Superpartner die gleiche Masse wie ihr entsprechendes Partnerteilchen aus dem Standardmodell besitzen. Da allerdings noch kein Superpartner gefunden wurde, geht man davon aus, dass die Symmetrie gebrochen ist. Nun stellt sich die Frage wie stark die Symmetrie gebrochen ist. Nach der SUSY-Brechung gilt:

$$\sum_{\text{Bosonen}} m^2 - \sum_{\text{Fermionen}} m^2 = M^2_{\text{SUSY}}.$$

Die Korrektur der Higgsmasse ist nicht größer als sie selbst:

$$M_H \sim \delta M_H \sim \lambda M_{\text{SUSY}}.$$

Dabei ist $M_H \sim 10^2 \text{GeV}$ und $\lambda \sim 10^{-1}$ die Kopplungskonstante. Daraus folgt, dass supersymmetrische Teilchen im Bereich bis zu $M_{\text{SUSY}} \sim 10^3 \text{GeV} = 1 \text{TeV}$ gefunden werden sollten. Dieser Energiebereich wird von LHC voll abgedeckt. Für weiterführende Literatur siehe [1, 8, 9, 10].

1.2.1 Minimales supersymmetrisches Modell

Das minimale supersymmetrische Modell (MSSM) stellt die kleinmögliche Erweiterung des Standardmodells dar. Die Teilchen, die es beinhaltet sind in Tab. 1 im direkten Vergleich zu ihren Partnern im Standardmodell aufgeführt.

1.2.2 R-Paritäts-Verletzung

Um Teilchen des Standardmodells von supersymmetrischen Teilchen trennen zu können wurde die sogenannte R-Parität eingeführt. Sie ist folgendermaßen definiert:

$$R_p = (-1)^{3(B-L)+2S}.$$

Dabei ist B die Baryonenzahl, L die Leptonenzahl und S der Spin. Für alle Teilchen des Standardmodells gilt $R_p = 1$, für alle supersymmetrischen Teilchen $R_p = -1$. Damit die R-Parität erhalten ist müssen supersymmetrische Teilchen immer paarweise erzeugt werden. In der Reaktion, die ich in
meiner Arbeit untersuche annihilieren ein down-Quark und ein Anti-down-Quark zu einem supersymmetrischen Tau-Sneutrino, welches dann wieder in ein Elektron und ein Anti-Myon bzw. ein Positron und ein Myon zerfällt (siehe Abb. 2). Betrachtet man dies beispielhaft für den zweiten Vertex so folgt dort für das $\tilde{\nu}_\tau$ mit $B = 0$, $L = 1$ und $S = 1/2$, dass $R_p = -1$. Betrachtet man die beiden auslaufenden Leptonen mit $B = 0$, $L = 1$, $S = 1/2$ folgt $R_p = 1$, was dann multiplikativ eine 1 bleibt. So ist an diesem Vertex die R-Parität verletzt.

Abbildung 2: Quark-Anti-Quark-Annihilation in ein Tau-Sneutrino was wieder in ein Elektron und ein Myon zerfällt.

Die Stärke der Kopplungskonstanten wird mit dem Superpotential W_{R_p} beschrieben:

$$W_{R_p} = \mu_i H u_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \chi_{ijk} U_i^c D_j^c D_k^c.$$

Hierbei beschreiben λ' die Kopplungskonstanten mit Leptonzahlverletzung und χ' die Kopplungskonstanten mit Baryonenzahlverletzung. Die aktuellen Werte für die λ-Kopplungen, welche auch für die Erstellung des Signals verwendet wurden, befinden sich in [11].
2 Teilchen-Detektoren am LHC

Der LHC (Large Hadron Collider) ist der momentan leistungsstärkste Teilchenbeschleuniger der Welt. Er befindet sich am CERN (Conseil Européen pour la Recherche Nucléaire) bei Genf in 45-170 Metern Tiefe und hat einen Umfang von 267 km. Er wird derzeit bei einer Schwerpunktsenergie von $\sqrt{s} = 7\,\text{TeV}$ und einer instantanen Luminosität von $L = 3156\times10^{30}\,\text{cm}^{-2}\,\text{s}^{-1}$ betrieben [12]. Nach dem Grunddesign ist noch eine Steigerung auf eine Schwerpunktsenergie von $\sqrt{s} = 14\,\text{TeV}$ und eine Luminosität von $L = 10^{34}\,\text{cm}^{-2}\,\text{s}^{-1}$ möglich.

2.1 Aufbau des CMS-Detektors

Abbildung 3: Querschnitt des CMS-Detektors mit den Flugbahnen und Zerfallsorten charakteristischer Teilchen [19].
Abbildung 4: Querschnitt des CMS-Detektors parallel zur Flugrichtung des Proton-Strahls.

Der Detektor besteht aus vielen verschiedenen Einzeldetektoren mit je unterschiedlichen Funktionen. Diese werde ich im folgenden erläutern:

2.1.1 Pixeldetektor

Im Kern des CMS-Detektors befinden sich drei Lagen von Pixeldetektoren mit einer Gesamtanzahl von 66 Mio. Pixeln. Diese Schichten haben mit Abständen von 4,4 cm, 7,3 cm und 11,2 cm den geringsten Abstand zum Kollisionspunkt. Daher müssen diese im Vergleich zu den anderen Detektorarten die grösste Menge an Teilchen im CMS vermessen und speichern. Dies wird in 10 cm Abstand vom Strahlverlauf auf ca. \(10^7\) pro \(cm^2\) and \(s\) geschätzt. Jeder "Pixel" im Pixeldetektor misst 100 \(\mu\)m \(\times\) 150 \(\mu\)m. Fliegt ein geladenes Teilchen durch ihn hindurch erzeugt es ein Elektron-Loch-Paar, welches als elektrischer Strom gemessen werden kann. Durch die große Anzahl von Pixeldetektoren müssen diese zusätzlich gekühlt werden, damit diese nicht überhitzen, wenn die erwartete Anzahl von Teilchen pro Kollision durch sie hindurchfliegen. Denn durch die hohe Teilchenrate, welche geschätzt eine Stromleistung von 50mW pro Teilchen im Pixeldetektor erzeugt, kann dies bei der oben genannten Teilchenzahl zu einer starken Überhitzung des Detektors führen. In Abb. 6 ist ein Ausschnitt des Pixeldetektors gezeigt. Der Pixeldetektor zusammen mit dem Silizium-Streifen-Detektor ist in Abb. 5 angebildet. Der Aufbau des Pixeldetektors befindet sich in Abb. 7.

2.1.2 Silizium-Streifen-Detektor

Auf den Pixeldetektor folgt der Silizium-Streifen-Detektor. Dieser besteht aus 10 Lagen von Silizium-Streifen-Detektoren und erreicht einen Radius von 130 cm. Er beinhaltet 15.400 hoch sensible Module mit insgesamt 10 Mio. Detektoren-Streifen, die von 80.000 mikroelektronischen Chips ausgelesen werden. Jedes Modul besteht aus drei Elementen: einer bestimmten Anzahl von Sensoren, einer mechanischen Struktur zur Gewährleistung von Stabilität und Ausleseelektronik. Der Detektor unterteilt sich in vier innere Barrel-Schichten (TIB für Tracker Inner Barrel), die einen Bereich von \(|z| < 65\)cm abdecken. Diese haben eine Ortsauflösung von 23 – 24 \(\mu\)m in \(r - \phi\)-Richtung und 230 \(\mu\)m in \(z\)-Richtung. Sie sind zudem mit zwei inneren Endcap-Schichten verknüpfte, die je aus drei kleinen Scheiben bestehen. Diese decken einen Bereich von 120 cm \(<\) \(|z| \<\) 280 cm ab. Um den TIB sind noch sechs äussere Barrel-Schichten (TOB für Tracker Outer Barrel) angeordnet mit auch zwei Endcap-Schichten. Dieser deckt einen Bereich von \(|z| < 110\)cm ab und hat eine Ortsauflösung von 35 – 52 \(\mu\)m in \(r - \phi\)-Richtung und 530 \(\mu\)m in \(z\)-Richtung. Jede dieser Silizium-Module ist unterschiedlich gestaltet je nach Position im Detektor und Art der Teilchen, die er vermessen soll. Auch dieser Teil des Detektors wird durch
Abbildung 5: 3D-Ansicht des Pixeldetektors. Zu sehen sind die drei Barrel-Bereiche (grün) und die zwei abschließenden Endcap-Ringe an beiden Seiten des Detektors (rosa) [21].

Der gesamte Tracker hat eine Transversalimpulsauflösung von:

\[
\left(\frac{\sigma(p_T)}{p_T} \right)^2 = (a \cdot p_T/\text{GeV})^2 + (0.5\%)^2.
\]

Der lineare Term \(a = 0.15 \) [22] ergibt sich durch die geringere Bahnkrümmung der Teilchen bei höherem \(p_T \) und der konstante Term resultiert aus Mehrfachstreuung [23].

2.1.3 Elektromagnetischer Kalorimeter (ECAL)

können und sehr nah beieinander liegen voneinander trennen zu können. Der Endcap-Detektor deckt einen Bereich von $1,479 < |\eta| < 3,0$ ab. Ein schematischer Aufbau des ECAL-Detektors befindet sich in Abb. 8.

Auch die im ECAL gemessene Energie hat eine begrenzte Auflösung. Die Unsicherheiten in den Messungen kommen durch Kalibrationsfehler, intrinisches elektronisches Rauschen, Rauschen aus Pile-Up-Events und der Wahrscheinlichkeit einer Protonabsorption. Der relative Fehler auf die Energiemessung ergibt sich zu:

$$\left(\frac{\sigma_E}{E} \right)^2 = \left(\frac{S}{\sqrt{E}} \right)^2 + \left(\frac{N}{E} \right)^2 + C^2.$$

Hierbei ist S der stochastische Term, N das Rauschen und C ein konstanter Term.

2.1.4 Hadronischer Kalorimeter (HCAL)

Auch der HCAL ist in einen inneren Barrelbereich (HB), einen äußeren Barrelbereich (HO) und einen Endcapbereich (HE) unterteilt. Diese decken jeweils folgende Pseudorapität ab: $|\eta| < 1,4$ für HB, $|\eta| < 1,26$ für HO und $1,3 < |\eta| < 3,0$ für HE.

Die erwartete Energieauflösung der einzelnen HCAL-Detektorbereiche beträgt

$$\left(\frac{\sigma_E}{E} \right)^2 = \left(\frac{a}{\sqrt{E/\text{GeV}}} \right)^2 + b^2.$$

Wie groß die Werte a und b für die verschiedenen Bereich des HCALs sind, ist in Tab. 5 aufgeführt.

Zusammen mit dem ECAL erreicht die Energieauflösung der Kalorimeter des CMS im Energiebereich von $30 \text{ GeV} < E < 1 \text{ TeV}$.
Abbildung 7: Querschnitt durch den inneren Tracker des CMS-Detektors. Zu sehen sind die inneren 3 Pixeldetektorschichten und die 10 Silizium-Streifen-Detektor-Schichten\cite{19}.

\[
\left(\frac{\sigma_E}{E} \right)^2 \approx \left(\frac{100\%}{E/\text{GeV}} \right)^2 + (4.5\%)^2.
\]

2.1.5 Supraleitender Magnet

<table>
<thead>
<tr>
<th>HCAL</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>85%</td>
<td>5%</td>
</tr>
<tr>
<td>HO</td>
<td>90%</td>
<td>5%</td>
</tr>
<tr>
<td>HE</td>
<td>150%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Tabelle 5: Energieauflösungskoeffizienten für verschiedene Bereiche des HCAL-Detektors.
2.1.6 Myon-System

Abgeschlossen wird der Aufbau des CMS durch die Myonkammern. Myonen sind durch ihre minimal ionisierende Eigenschaft die einzigen Teilchen, die es bis in die Myonkammern schaffen, wodurch diese auch ihren Namen bekommen haben. Besonders wichtig sind sie für den Nachweis des Higgs-Teilchens welches in vier Myonen zerfällt. Insgesamt besteht das Myon-System aus 1400 Myonkammern, davon 250 “Drift Tubes” (DTs), 540 Kathoden-Streifen-Kammern (CSCs), welche die Position des Teilchens bestimmen und einem Trigger zugeordnet werden. 610 “Resistive Plate Chambers” (RPCs) bilden ein redundantes Triggersystem, welches frühzeitig entscheidet, ob die gemessenen Myondaten gespeichert oder verworfen werden sollen. Durch seine vielen Schichten mit unterschiedlichen Eigenschaften ist der Teil des CMS-Detektors sehr robust und filtert Hintergrundrauschen sehr gut aus den Daten heraus. DTs und RPCs sind in konzentrischen Zylindern um den Strahl platziert (Barrel), während die CSCs und RPCs am Rand den Detektor abschließen (Endcap).

- Drift Tubes/Chambers (DT):
 Jede Drift Chamber, die je eine durchschnittliche Fläche von 2m × 2,5m besitzen, besteht aus 12 Aluminium-Schichten. Jede davon besteht aus 3 Gruppen von 4 Schichten (siehe Abb. 9). Die mittleren messen die Koordinaten parallel zum Strahlengang, die beiden äußeren jeweils die senkrechte Koordinate. Die Drift Tubes (DTs) messen die Myonenposition in den Barrel-Bereichen des Detektors. Jeder DT beinhaltet ein Gasgemisch aus 40% Argon, 50% Kohlenstoffdioxid und 10% Tetrafluormethan (CF4) und ist 4 cm breit. Durchfließt es ein geladenes Teilchen, wie z.B. ein Myon so stößt es Elektronen aus den Gasmolekülen, welche sich zu den positiv geladenen Drähten in den DTs bewegen an denen dann ein Strom gemessen wird. Die DT können zwei Koordinaten für die Myonen messen: zum einen wo das aus dem Gas geschlagene Elektron den Draht trifft und den Abstand des Myons zum Draht, indem es die Zeit, die das Elektron zum Draht braucht mit dessen Geschwindigkeit multipliziert.

- Kathoden-Streifen-Kammern (CSC):

- Resistive Plate chambers (RPC):
Abbildung 9: Ausschnitt mehrere Drift Tubes. Der Draht geht dabei in rot gezeichnet aus der Blattebene heraus[19].

Abbildung 10: Querschnitt der Kathoden-Sreifen-Kammern[21].

Die RPCs bestehen aus einer Gaskammer, abgeschlossen durch eine positiv geladene Anode und eine negativ geladene Kathode, die beide aus einem Plastikmaterial mit hohem elektrischen Widerstand bestehen (siehe Abb. [11]). Aufgrund ihres besonderen Materials haben sie eine besonders gute Orts- und Zeitauflösung. Die Zeitauflösung beträgt nur 1ns.

Ein Querschnitt mit allen wichtigen Bereichen des Myons-Systems ist in Abb. [12].
Weitergehende Informationen über den CMS-Detektor findet man in [21].

2.1.7 Besondere Größen

Da der Detektor zylindersymmetrisch aufgebaut ist wird die Position eines Teilchens durch die Azimuthal- und Polarwinkel θ und ϕ angegeben. Die z-Achse entspricht der Strahlachse. Der Ursprung des Koordinatensystems wird in die Mitte des Detektors gelegt, wo die Teilchen zusammenstoßen sollen. Für die Angabe des Winkels θ, den die Flugrichtung eines Teilchens aus der Kollision mit dem Strahlengang einschließt, wurde eine neue Größe eingeführt: die Pseudorapidität η. Sie ist folgendermaßen definiert:

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right).$$

Diese Größe hat den Vorteil, dass Winkeldifferenzen $\Delta\eta$ zwischen relativistischen Teilchen lorentz-invariant sind und sich somit deren Impulse besser vergleichen lassen.
Eine weitere Größe ist ΔR. Sie ist über die Winkeldifferenzen $\Delta \eta = \eta_i - \eta_j$ und $\Delta \phi = \phi_i - \phi_j$ definiert:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}.$$

Sie beschreibt also einen Kegel im Detektor dessen Spitze im Kollisionspunkt des Strahls liegt. Dieser Kegel wird um die Bahn des gemessenen Teilchens gelegt und für deren Isolation von z.B. Jets benötigt. Da ΔR aus den lorentzvarianten Größen η und ϕ bestimmt wird, ist diese Größe selbst auch lorentzvariant.
Abbildung 12: Querschnitt durch die den CMS-Detektor mit Beschriftung des Myon-Systems[21].
3 Analyse

Ziel der Analyse ist es aus den Monte-Carlo-Simulationen und den Daten Ereignisse mit Myonen und Elektronen, die bestimmte Bedingungen erfüllen (z.B. ausreichend großes p_T), zu selektieren. Dabei wird das Analyseprogramm SusyAna der Arbeitsgruppe für Supersymmetrie am Institut 3a der RWTH Aachen verwendet. Aus dem jeweils höchstenergetischen Myon und Elektron aus einem Event wird dann die invariante Masse bestimmt. Für z.B. den Drell-Yan-Zerfall sollte diese laut PDG bei ca 90 GeV sein, was die Graphen auch zeigen. Die invarian ten Massen des supersymmetrischen $\tilde{\nu}_r$ sollten dann bei 600, 800 bzw. 900 GeV liegen, was die Graphen auch zeigen werden.

3.1 Benützte Datensätze

3.1.1 Monte-Carlo-Simulationen und Daten

Diese Studie beschäftigt sich mit der Suche nach dem supersymmetrischen $\tilde{\nu}_r$-Teilchen, welches in ein Elektron und ein Myon zerfällt. Die für die Untergründe verwendeten Monte-Carlo-Simulationen aus dem Sommer 2011 (Summer11) sind in Tabelle 6 aufgelistet.

<table>
<thead>
<tr>
<th>Prozess</th>
<th>Zeitraum</th>
<th>Generator</th>
<th>Events</th>
<th>Wirkungsquerschnitt (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW to Anything</td>
<td>Summer11</td>
<td>Pythia6</td>
<td>210.667</td>
<td>43</td>
</tr>
<tr>
<td>Drell-Yan</td>
<td></td>
<td>Madgraph</td>
<td>9.042.544</td>
<td>4.998</td>
</tr>
<tr>
<td>TT+ Jets</td>
<td></td>
<td>Madgraph</td>
<td>3.701.947</td>
<td>157.5</td>
</tr>
</tbody>
</table>

Diese wurden alle mit einer Schwerpunktsenergie von \(\sqrt{s} = 7 \text{ TeV} \) simuliert. Im Folgenden ist mit Luminosität immer die integrierte Luminosität gemeint. Damit die Monte-Carlo-Sätze in der Analyse mit den Daten übereinstimmen, müssen sie noch auf die Luminosität der Daten normiert werden. Für sie gilt folgende Formel:

\[
\mathcal{L}_{\text{Daten}} = \frac{N_{\text{Daten}}}{\sigma}. \tag{1}
\]

Hierbei ist \(\mathcal{L}_{\text{Daten}} \) die Luminosität der Daten, \(N_{\text{Daten}} \) die Anzahl der Events in den Daten und \(\sigma \) der Wirkungsquerschnitt. Analoges gilt für die Luminosität der Monte-Carlo-Simulationen:

\[
\mathcal{L}_{\text{MC}} = \frac{N_{\text{MC}}}{\sigma}. \tag{2}
\]

Hier sind \(\mathcal{L}_{\text{MC}} \) und \(N_{\text{MC}} \) die Luminosität und Anzahl der Events der Monte-Carlo-Simulation. Löst man nun Gleichung (1) nach \(\sigma \) auf und setzt sie in Gleichung (2) ein, so erhält man:

\[
\mathcal{L}_{\text{MC}} = c \cdot \mathcal{L}_{\text{Daten}}, c = \frac{N_{\text{Daten}}}{N_{\text{MC}}}. \]

Auf diese Weise können die Luminositäten der Monte-Carlo-Simulationen mit Hilfe der Konstanten \(c \) auf die der Daten normiert werden.

3.1.2 Signale

Masse (GeV) & Generator & Events & Wirkungsquerschnitt (pb) \\
600 & Herwig6 & 21493 & 0.8 \\
800 & Herwig6 & 55733 & 0.736 \\
900 & Herwig6 & 31000 & 0.717 \\

Tabelle 7: Verwendete Signale mit Generator, Eventszahl und Wirkungsquerschnitt

\[
\begin{array}{|c|c|c|c|}
\hline
m_0 & m_{1/2} & A_0 & tan(\beta) & sign(\mu) \\
250 & 290 & -550 & 12 & +1 \\
\hline
\end{array}
\]

Tabelle 8: SUSY-Parameter der generierten Signal-Samples

Die Signale wurden bei folgenden SUSY-Parametern generiert (siehe Tab. 8).
Hierbei ist m_0 die universelle skalare Masse, $m_{1/2}$ die universelle Gauginomasse, A_0 die universelle trilineare Kopplungskonstante, $tan(\beta)$ entspricht dem Verhältnis der Valuumerwartungswerte der beiden Higgs-Bosonen und $sign(\mu)$ ist das Vorzeichen des Higgs-Massenparameters [20].

3.2 Pile-Up-Korrekturen

Abbildung 13: Verteilung zur Pile-Up-Korrektur.

Wendet man nun diese Gewichtung auf jeden Bin einzeln an so wird die Vertex-Verteilung um einiges besser (siehe Abb. [14]).
Abbildung 14: Vergleich der Vertex-Verteilungen nach allen Schnitten ohne Pile-Up-Korrektur (links) und mit Pile-Up-Korrektur (rechts).

3.3 Ereignis-Selektion

3.3.1 Myon-Schnitte

In der untersuchten Reaktion wird mindestens einem guten Myon pro Event gesucht. Wird dieses gefunden wird es im Code weggeschrieben für die spätere Berechnung der invarianten Masse. Die einzelnen Schnitte sind in Tab. 9 zusammengefasst. Im folgenden werden die einzelnen Schnitte erläutert:

- Mit einem p_T-Schnitt werden nur Myonen für die Selektion benutzt, die mindestens einen Transversalimpuls von $p_T = 30$ GeV besitzen. Der Transversalimpuls wird durch $p_T = p \cdot \sin(\theta)$ berechnet. Der Winkel θ wird im inneren Tracker bestimmt.

- Mit einem Schnitt auf die Pseudorapidität $|\eta| < 2,1$ werden nur Myonen in dem Bereich des Detektors zugelassen, der vom Myontrigger abgedeckt wird.

- Zudem müssen die Myonen die IDs “Tracker Myon” und “Global Myon” erfüllen. Die ID “Tracker Myon” ist nur true, wenn das Myon im kompletten Tracker gemessen wurde, also nicht im Tracker zerfallen ist. Die ID “Global Myon” ist aktiv, wenn das Myon sowohl im Tracker als auch im Myonsystem detektiert wurde.

Mit dem Impact Parameter d_{xy} werden die Teilchen, die aus der kosmischen Höhenstrahlung durch den Detektor fliegen, von denen aus dem Strahl des LHC getrennt. So darf die rekonstruierte Spur des Myons im Detektor maximal 0,2 cm vom Kollisionspunkt entfernt liegen.

Durch den Schnitt auf die relative Track Isolation $\sum p_T / p_T$ werden Myonen unterdrückt, die aus hadronischen Jets entstehen.

Um zu gewährleisten, dass die Spur wirklich nur die Spur eines Teilchens darstellt und nicht mehrere kombiniert muss diese ein $\chi^2 / n_{dof} < 10$ besitzen.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cut-Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T</td>
<td>$> 30 \text{ GeV}$</td>
<td>Schnitt auf Transversalimpuls</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>< 2.1$</td>
</tr>
<tr>
<td>Tracker Myon</td>
<td>true</td>
<td>Tracker-Spur im Silizium-Streifen-Detektor mit zusätzlich gefundenem Myon im Myon-System</td>
</tr>
<tr>
<td>Global Myon</td>
<td>true</td>
<td>standalone Myon aus Spur im Myon-System und Tracker bestimmt</td>
</tr>
<tr>
<td>Tracker Hits</td>
<td>> 10</td>
<td></td>
</tr>
<tr>
<td>Pixel Hits</td>
<td>> 0</td>
<td>Qualitätsbedingung der Spur des Myons</td>
</tr>
<tr>
<td>Myon System Hits</td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>Matched Stations</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>$< 0.2 \text{ cm}$</td>
<td>Impact Parameter</td>
</tr>
<tr>
<td>Rel. Track Isolation</td>
<td>< 0.1</td>
<td>Isolationskriterium</td>
</tr>
<tr>
<td>χ^2 / N_{dof} (global Myon)</td>
<td>< 10</td>
<td>Qualitätsbedingung für globalen Fit</td>
</tr>
</tbody>
</table>

Tabelle 9: Selektionskriterien für Myonen.

3.3.2 Elektronen-Schnitte

- Durch den $|\eta_{SC}|$-Schnitt werden in allen darauf folgenden Schnitten zwischen Elektronen im Barrel- und Endcap-Bereich unterschieden. Elektronen im Barrel werden durch Schnitte auf den Bereich $|\eta_{SC}| < 1.442$ selektiert, Elektronen im Endcap durch Schnitte auf $1.56 < |\eta_{SC}| < 2.5$. Der Index SC steht hier für Supercluster. Der Winkel η wird hier also in Einheiten von Superclustern gerechnet.

- Es wird zudem vorausgesetzt, dass das Elektron im ECAL zerschauert, da die Energieauflösung des inneren Trackers bei hohen Energien deutlich schlechter ist als die des ECALs.
Das Verhältnis von hadronischer zu elektromagnetischer Energie muss sehr klein sein \((H/E) < 0,15\). Es wird berechnet indem man die Energie im hadronischen Kalorimeter, die am nächsten zur Elektronposition deponiert wurde durch die des Superclusters des Elektrons teilt.

\[\Delta \eta_{in} = |\eta_{SC} - \eta_{in}^{extrap}|, \eta_{SC} \text{ ist dabei die in } \eta \text{ gewichtete Energie des Superclusters und } \eta_{in}^{extrap} \text{ die Extrapolation der Spur im inneren Silizium-Streifen-Detektor in den ECAL hinein. Dieser muss für den Barrel } \Delta \eta_{in} < 0,005 \text{ und den Endcap } \Delta \eta_{in} < 0,007 \text{ erfüllen [29].} \]

\[\Delta \phi_{in} = |\phi_{SC} - \phi_{in}^{extrap}|, \phi_{SC} \text{ und } \phi_{in}^{extrap} \text{ sind analog zu } \eta_{SC} \text{ und } \eta_{in}^{extrap} \text{ zu verstehen. Hierbei wird für Barrel sowie Endcap der selektive Schnitt angewandt: } \Delta \phi_{in} < 0,09. \]

\[\frac{E^{2 \times 5}}{E^{5 \times 5}} \text{ bzw. } \frac{E^{1 \times 5}}{E^{5 \times 5}} \text{ ist das Verhältnis der Energie, die in einem } X \times 5 \text{ großen } \eta \text{- } \phi \text{- Block des ECALs deponiert wurde. Im Fall des } 2 \times 5 \text{-Blockes werden die beiden Blöcke mit der höchsten Energie gewählt. Wenn man die in einem } 5 \times 5 \text{-Block deponierte Energie misst müssen sich bei diesem Schnitt mind. } 94\% \text{ dieser Energie in einem } 2 \times 5 \text{-Block innerhalb des } 5 \times 5 \text{-Blocks befinden und mind. } 83\% \text{ in einem } 1 \times 5 \text{-Block. Der um die Spur gebildete } 5 \times 5 \text{-Block wird als Supercluster bezeichnet.} \]

\[\sigma_{\text{isol}} \text{ ist der gewichtete Mittelwert der Energie deponiert im Cluster in } \eta \text{-Richtung dividiert durch die Energie im gesamten } 5 \times 5 \text{-Cluster-Bereich. Sie wird in Einheiten von Kristallen gerechnet.} \]

Die letzten 3 Variablen sind Isolationskriterien, um Elektronen, die im ECAL bzw. HCAL einen Schauer erzeugen von den darin entstandenen Sekundärteilchen zu isolieren. So isoliert der erste Schnitt Elektronen, die im ECAL und im vorderen Bereich des HCAL einen Schauer erzeugt haben, indem die Energie, die sich in einem Kegel mit Radius \(\Delta R < 0,3\) um das Teilchen befindet bestimmt wird. Diese muss für den Barrel-Bereich kleiner als \(2 + 0,03 \times E_T\) sein. Dabei ist \(E_T\) die transversale Energie des Elektrons, welches sich in dem Schauer befindet. Für den Endcap-Bereich muss für Elektronen mit einer Energie bis 50 GeV ein anderer Schnitt angewandt werden wie für Elektronen mit mehr als 50 GeV transversaler Energie. Dies liegt an der unterschiedlichen Beschaffenheit der Detektoren im Barrel und im Endcap.

Der Schnitt auf Elektronen im HCAL Depth 2, welcher sich im Endcap-Bereich des Detektors befindet (siehe Abb. 4) beträgt 0,5 GeV. Er erfolgt analog zu dem vorher genannten.

Der letzte Schnitt ist die Summe der \(p_T\)-Werte aller Spuren, die in einem Kegelbereich mit Radius 0,015 < \(\Delta R < 0,2\) liegen. Hierbei ist der Schnitt auf Elektronen im Endcap doppelt so groß, da sich dieser näher am Strahlengang befindet und dorthin deutlich mehr und höherenergetische Elektronen gestreut werden.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_T)</td>
<td>> 30 GeV</td>
<td>> 30 GeV</td>
</tr>
<tr>
<td>(</td>
<td>\eta_{SC}</td>
<td>)</td>
</tr>
<tr>
<td>seed</td>
<td>ECAL seeded</td>
<td>ECAL seeded</td>
</tr>
<tr>
<td>(\Delta \eta_{in})</td>
<td>< 0.005</td>
<td>< 0.007</td>
</tr>
<tr>
<td>(\Delta \phi_{in})</td>
<td>< 0.09</td>
<td>< 0.09</td>
</tr>
<tr>
<td>(H/E)</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>(E^{2 \times 5}/E^{5 \times 5})</td>
<td>> 0.94 oder (E^{1 \times 5}/E^{5 \times 5}) > 0.83</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma_{\text{isol}})</td>
<td>-</td>
<td>< 0.03</td>
</tr>
<tr>
<td>isol Em + Had Depth 1</td>
<td>(< 2 + 0,03 \times E_T) GeV</td>
<td>(< 2.5) GeV für (E_T < 50) GeV</td>
</tr>
<tr>
<td>isol Had Depth 2</td>
<td>(< 0.03 \times (E_T - 50)) GeV für (E_T > 50) GeV</td>
<td>(< 0.5) GeV</td>
</tr>
<tr>
<td>isol Pt Tracks</td>
<td>(< 7.5) GeV</td>
<td>(< 15) GeV</td>
</tr>
</tbody>
</table>

Tabelle 10: Schnitt-Kriterien für Elektronen: Im ersten Bereich befinden sich die kinematischen, geometrischen und “seedling” Schritte, im zweiten sind die ID-Schnitte und im dritten Bereich sind die Isolations-Schnitte angegeben.
3.4 Cutflows

In Cutflows kann man sehen wie viele Events man pro Schnitt verliert. Im Idealfall möchte man möglichst viel des Untergrundes durch geeignete Schnitte herausselektieren, wohingegen das Signal nahezu unverändert bleiben sollte. Vergleicht man nun die Cutflows für Elektronen, die im Barrel nachgewiesen wurden mit denen, die im Endcap nachgewiesen wurden, sieht man, dass das Signal im Endcap komplett weggeschnitten wurde, während im Barrel noch ein paar Events alle Schnitte überlebt haben. Tabellen mit der Anzahl von Events, die die Schnitte für Myonen und Elektronen im Barrel bzw. Endcap überleben mit Fehlern befinden sich im Anhang.

Abbildung 15: Cutflow der Elektronschnitte im Barrel unter der Voraussetzung, dass ein Myon in dem Event nachgewiesen wurde, welches alle Schnittkriterien des Myonpapers erfüllt.
Abbildung 16: Cutflow der Elektronschnitte im Endcap unter der Bedingung, dass ein Myon in dem Event nachgewiesen wurde, welches alle Schnittkriterien des Myonpapers erfüllt.

Abbildung 17: Cutflow der Myonschnitte unter der Bedingung, dass ein Elektron im Barrel oder Endcap gefunden wurde, welches alle Schnittkriterien des Elektronpapers erfüllt.
3.5 Invariantes Massenspektrum

Für die Bestimmung der invarianten Masse wird jeweils das Myon und das Elektron mit dem höchsten Transversalimpuls benutzt. Es wird pro Event immer nur das höchstenergetische Myon und Elektron zur Berechnung verwendet.

Aus dem gemessenen Impuls des Elektrons und des Myons lässt sich mit folgender Formel die invariante Masse des Teilchens aus denen das Elektron und das Myon entstanden ist bestimmen:

\[M_{\text{inv}} = \sqrt{2 \cdot |p_e| \cdot |p_\mu| (1 - \cos(\theta))} = \sqrt{2 \cdot |p_e| \cdot |p_\mu| (1 - \cos(2 \cdot \arctan(e^{-\eta})))}. \]

\(p_e, p_\mu\) und \(\eta\) sind dabei die vom Detektor gemessenen Variablen, die zur Berechnung der invarianten Masse beitragen. Trägt man nun alle aus den Monte-Carlo-Simulationen und den Daten bestimmten invarianten Massen in ein Histogramm auf erhält man folgende Verteilung (Abb. 20). Die entsprechenden \(p_T\)-Verteilungen der Elektronen und Myonen aus denen die invariante Masse bestimmt wurde sind in Abb. 18 und Abb. 19 zu sehen. Man kann sehen, dass stets ein leichter Monte-Carlo-Überschuss vorhanden ist.

Abbildung 18: \(p_T\)-Verteilung der Elektronen für die Events, in denen mindestens ein gutes Elektron und mindestens ein gutes Myon vorkommt mit Pile-Up-Korrektur
Abbildung 19: p_T-Verteilung der Myonen für die Events, in denen mindestens ein gutes Elektron und mindestens ein gutes Myon vorkommt mit Pile-Up-Korrektur.

Abbildung 20: Invariantes Massenspektrum bestimmt aus dem höchstenergetischen Elektron und dem höchstenergetischen Myon, welches jeweils alle Schnittkriterien erfüllt.
3.6 Die Cl95-Methode

Das Programm geht dabei folgendermaßen vor. Für die Berechnung der oberen Grenze benutzt das Programm eine Poisson-Verteilung [31]:

\[
P(n|\mu(\sigma, L, \epsilon, \mu_{bg}, \nu_{sg})) = \frac{\mu^n e^{-\mu}}{n!},
\]

\[
\mu(\sigma, L, \epsilon, \mu_{bg}, \nu_{sg}) = \sigma \cdot L \cdot \epsilon \cdot \nu_{sg} + \mu_{bg}.
\]

Hierbei ist \(L \) die integrierte Luminosität, \(\epsilon \) das Produkt aus Effizienz und Akzeptanz, \(\mu_{bg} \) die Anzahl der Untergrundereignisse, \(\nu_{sg} \) ein Störmparameter um systematische Unsicherheiten zu simulieren, \(n \) die Zahl der beobachteten Ereignisse in den Daten und \(\sigma \) der gesuchte Wirkungsquerschnitt. Dieser wird über folgendes Integral bestimmt:

\[
\sigma_{max} \int_0^{\sigma_{max}} P(n|\mu) d\sigma = 0.95.
\]

\(\sigma_{max} \) ist dann die obere Grenze des beobachteten Wirkungsquerschnitts.

Für die erwartete Grenze mit Fehlerbändern wird zunächst der erwartete Untergrund erzeugt und daraus dann mit Pseudoexperimenten Daten dazu erzeugt. Aus diesen wird dann wie zuvor auch eine obere Grenze bestimmt. Aus der Verteilung dieser oberen Grenzen wird dann der Median gebildet, welcher der erwarteten Grenze entspricht. Da diese wieder poisson-verteilte ist kann wie bei der beobachteten Grenze die Fehler auf die erwartete Grenze berechnen. Für die untere 1\(\sigma \)-Grenze wird folgendes Integral gelöst:

\[
\int_0^{\sigma_{min}} P(n|\mu) d\sigma = 1 - \frac{1}{2}.p
\]

Hier ist \(p = 68\% \). Für die obere 1\(\sigma \)-Grenze bestimmt man dann entsprechend:

\[
1 - \int_0^{\sigma_{max}} P(n|\mu) d\sigma = 1 - \frac{1}{2}.p
\]

Die Bestimmung der 2\(\sigma \)-Werte erfolgt analog. Dafür wird der Wert \(p \) lediglich auf 95\% gesetzt.

Um eine möglichst gute Signaltrennung vom Untergrund zu erreichen, wurden nur Events aus dem invarianten Massenplot mit einer invarian ten Masse von mind. 500 GeV zur Berechnung der Grenzen benutzt, da ab dieser Masse kaum noch Standardmodellteilchen erwartet werden. Die Plots für die Schnitte bei anderen Massen befinden sich im Anhang.

Zudem befinden sich in den Signalen nicht nur die gesuchte Reaktion \(\bar{\nu}_\tau \to e\mu \), sondern auch Zerfälle, die nicht zu einem Elektron und einem Myon führen. So muss noch der Anteil der Reaktionen mit Myon und Elektron als Endprodukt bestimmt und dieser mit dem Wirkungsquerschnitt multipliziert werden. Diese Faktoren sind in Tab. 11 aufgeführt.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Anteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rp v600</td>
<td>11,4</td>
</tr>
<tr>
<td>rp v800</td>
<td>5,12</td>
</tr>
<tr>
<td>rp v900</td>
<td>3,29</td>
</tr>
</tbody>
</table>

Tabelle 11: Prozentualer Anteil von $e\mu$-Events in den Signalen

<table>
<thead>
<tr>
<th>Signal</th>
<th>rp v600</th>
<th>rp v800</th>
<th>rp v900</th>
</tr>
</thead>
<tbody>
<tr>
<td>observed limit (pb)</td>
<td>0.02678</td>
<td>0.02681</td>
<td>0.02687</td>
</tr>
<tr>
<td>expected limit (pb)</td>
<td>0.03881</td>
<td>0.03886</td>
<td>0.03894</td>
</tr>
<tr>
<td>expected limit 1σ up (pb)</td>
<td>0.05761</td>
<td>0.05768</td>
<td>0.05781</td>
</tr>
<tr>
<td>expected limit 2σ up (pb)</td>
<td>0.06092</td>
<td>0.06100</td>
<td>0.06113</td>
</tr>
<tr>
<td>expected limit 1σ down (pb)</td>
<td>0.02223</td>
<td>0.02226</td>
<td>0.02230</td>
</tr>
<tr>
<td>expected limit 2σ down (pb)</td>
<td>0.01918</td>
<td>0.01921</td>
<td>0.01925</td>
</tr>
</tbody>
</table>

Tabelle 12: Beobachtete und erwartete Grenzen bestimmt mit Roostats cl95 und clm

4 Zusammenfassung

Das gesuchte supersymmetrische \(\tilde{\nu} \) konnte allerdings in den Daten, die bei einer integrierten Luminosität von \(182 \text{pb}^{-1} \) aufgezeichnet wurden, nicht nachgewiesen werden. So konnten die Teilchen mit einer simulierten Masse von 600 und 800 GeV ausgeschlossen werden. Für das Teilchen bei 900 GeV war die Statistik zu gering um Aussagen über die Ausschlussmöglichkeit zu geben. Um auch definitive Aussagen über dieses Teilchen treffen zu können muss der LHC mit einer höheren Schwerpunktsenergie oder höherer Luminosität arbeiten.
5 Anhang

<table>
<thead>
<tr>
<th>Cut</th>
<th>Barrel</th>
<th>Events</th>
<th>rpv600</th>
<th>rpv800</th>
<th>rpv900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events mit mind. einem guten Myon</td>
<td>116,92 ± 0,89</td>
<td>106,93 ± 0,51</td>
<td>103,78 ± 0,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events mit mind. einem Elektron</td>
<td>30,46 ± 0,45</td>
<td>20,38 ± 0,22</td>
<td>17,65 ± 0,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta SC</td>
<td>$</td>
<td>22,51 ± 0,39</td>
<td>14,47 ± 0,19</td>
<td>12,16 ± 0,23</td>
</tr>
<tr>
<td>E_T</td>
<td>15,03 ± 0,32</td>
<td>6,80 ± 0,13</td>
<td>4,63 ± 0,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \eta_{in}$</td>
<td>14,52 ± 0,31</td>
<td>6,36 ± 0,12</td>
<td>4,14 ± 0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi_{in}$</td>
<td>14,44 ± 0,31</td>
<td>6,28 ± 0,12</td>
<td>4,09 ± 0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H/E</td>
<td>14,08 ± 0,31</td>
<td>6,07 ± 0,12</td>
<td>3,91 ± 0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\eta_{in}}$</td>
<td>13,85 ± 0,31</td>
<td>5,93 ± 0,12</td>
<td>3,78 ± 0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$isolEm + HadDepth1$</td>
<td>13,80 ± 0,31</td>
<td>5,92 ± 0,12</td>
<td>3,78 ± 0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$isol PtTracks$</td>
<td>13,72 ± 0,30</td>
<td>5,86 ± 0,12</td>
<td>3,72 ± 0,13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 15: Anzahl der Events der Signale, die die Elektronschnitte im Barrel überlebt haben mit statistischem Fehler.

<table>
<thead>
<tr>
<th>Cut</th>
<th>Endcap</th>
<th>Events</th>
<th>rpv600</th>
<th>rpv800</th>
<th>rpv900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events mit mind. einem guten Myon</td>
<td>116,92 ± 0,89</td>
<td>106,93 ± 0,51</td>
<td>103,78 ± 0,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events mit mind. einem Elektron</td>
<td>30,46 ± 0,45</td>
<td>20,38 ± 0,22</td>
<td>17,65 ± 0,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta SC</td>
<td>$</td>
<td>8,75 ± 0,24</td>
<td>6,38 ± 0,12</td>
<td>5,99 ± 0,16</td>
</tr>
<tr>
<td>E_T</td>
<td>5,39 ± 0,19</td>
<td>5,04 ± 0,11</td>
<td>5,14 ± 0,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \eta_{in}$</td>
<td>0,02 ± 0,01</td>
<td>0,02 ± 0,01</td>
<td>0,02 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi_{in}$</td>
<td>0,01 ± 0,01</td>
<td>0,01 ± 0,01</td>
<td>0,01 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H/E</td>
<td>0,01 ± 0,01</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\eta_{in}}$</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$isolEm + HadDepth1$</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$isol HadDepth2$</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$isol PtTracks$</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 16: Anzahl der Events der Signale, die die Elektronschnitte im Endcap überlebt haben mit statistischem Fehler.
| Cut | Events mit mind. einem guten Myon | Events mit mind. einem Elektron | $|\eta_{SC}|$ | E_T | $\Delta\eta_{hn}$ | $\Delta\phi_{hn}$ | H/E | $E^2/5/E^5/5$ | $E^1/5/E^5/5$ | $isolE_m + HadDepth1$ | $isol\;PtTracks$ |
|---------------------------------|-------------------------------------|---------------------------------|-------------|------|-----------------|-----------------|-------|----------------|-----------------|---------------------|-------------------|
| | 2298,13 ± 11,55 | 3603,93 ± 6,60 | 21471,72 ± 29,31 | 57563,45 ± 47,00 |
| | 1072,43 ± 7,89 | 2412,57 ± 5,40 | 21471,72 ± 29,31 | 47841,98 ± 42,80 |
| | 746,67 ± 6,59 | 2066,06 ± 5,00 | 13356,14 ± 23,12 | 17567,77 ± 25,65 |
| | 398,41 ± 4,81 | 544,05 ± 2,57 | 907,89 ± 6,06 | 3036,53 ± 10,64 |
| | 378,33 ± 4,69 | 372,52 ± 2,12 | 411,29 ± 4,07 | 2282,86 ± 9,35 |
| | 374,51 ± 4,66 | 353,37 ± 2,07 | 355,40 ± 3,78 | 2196,47 ± 9,19 |
| | 365,25 ± 4,60 | 272,90 ± 1,82 | 192,87 ± 2,78 | 1939,43 ± 8,73 |
| | 354,60 ± 4,54 | 239,72 ± 1,70 | 130,33 ± 2,29 | 1829,34 ± 8,52 |
| | 352,77 ± 4,52 | 227,27 ± 1,66 | 124,20 ± 2,23 | 1794,53 ± 8,46 |
| | 351,80 ± 4,52 | 217,04 ± 1,62 | 113,14 ± 2,13 | 1772,19 ± 8,42 |

Tabelle 13: Anzahl der Events der Monte-Carlo-Simulationen, die die Elektronschnitte im Barrel überlebt haben mit statistischem Fehler.
<table>
<thead>
<tr>
<th>Cut</th>
<th>WW→anything</th>
<th>tt+Jets</th>
<th>DY→ll</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events mit mind. einem guten Myonen</td>
<td>2298, 13 ± 11, 55</td>
<td>3604, 93 ± 6, 60</td>
<td>21471, 72 ± 29, 31</td>
<td>83938, 23 ± 56, 97</td>
</tr>
<tr>
<td>Events mit mind. einem Elektron</td>
<td>1072, 43 ± 7, 89</td>
<td>2412, 57 ± 5, 40</td>
<td>21471, 72 ± 29, 31</td>
<td>72798, 70 ± 52, 75</td>
</tr>
<tr>
<td></td>
<td>346, 63 ± 4, 47</td>
<td>626, 50 ± 2, 75</td>
<td>8269, 77 ± 18, 17</td>
<td>26810, 68 ± 31, 87</td>
</tr>
<tr>
<td></td>
<td>164, 75 ± 3, 08</td>
<td>511, 32 ± 2, 48</td>
<td>7789, 18 ± 17, 62</td>
<td>11501, 78 ± 20, 96</td>
</tr>
<tr>
<td></td>
<td>0, 90 ± 0, 22</td>
<td>4, 13 ± 0, 22</td>
<td>2, 22 ± 0, 30</td>
<td>2290, 10 ± 9, 36</td>
</tr>
<tr>
<td></td>
<td>0, 70 ± 0, 19</td>
<td>3, 74 ± 0, 21</td>
<td>1, 93 ± 0, 28</td>
<td>2202, 85 ± 9, 20</td>
</tr>
<tr>
<td></td>
<td>0, 66 ± 0, 19</td>
<td>2, 09 ± 0, 16</td>
<td>1, 26 ± 0, 23</td>
<td>1943, 44 ± 8, 74</td>
</tr>
<tr>
<td></td>
<td>0, 66 ± 0, 19</td>
<td>1, 63 ± 0, 14</td>
<td>1, 02 ± 0, 20</td>
<td>1832, 65 ± 8, 52</td>
</tr>
<tr>
<td></td>
<td>isol Em + HadDepth1</td>
<td>0, 65 ± 0, 19</td>
<td>1, 49 ± 0, 14</td>
<td>0, 97 ± 0, 20</td>
</tr>
<tr>
<td></td>
<td>isol Had Depth 2</td>
<td>0, 64 ± 0, 19</td>
<td>1, 42 ± 0, 13</td>
<td>0, 92 ± 0, 19</td>
</tr>
<tr>
<td></td>
<td>isol PtTracks</td>
<td>0, 64 ± 0, 19</td>
<td>1, 40 ± 0, 13</td>
<td>0, 91 ± 0, 19</td>
</tr>
</tbody>
</table>

Tabelle 14: Anzahl der Events der Monte-Carlo-Simulationen, die die Elektronschnitte im Endcap überlebt haben mit statistischem Fehler.
Barrel

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events mit mind. einem guten Myon</td>
<td>32678,00 ± 180,77</td>
</tr>
<tr>
<td>Events mit mind. einem Elektron</td>
<td>22668,00 ± 150,56</td>
</tr>
<tr>
<td>$</td>
<td>\eta_{SC}</td>
</tr>
<tr>
<td>E_T</td>
<td>3387,00 ± 58,20</td>
</tr>
<tr>
<td>$\Delta\eta_{in}$</td>
<td>1574,00 ± 39,67</td>
</tr>
<tr>
<td>$\Delta\phi_{in}$</td>
<td>1366,00 ± 36,96</td>
</tr>
<tr>
<td>H/E</td>
<td>883,00 ± 29,72</td>
</tr>
<tr>
<td>$\sigma_{\eta\eta}$</td>
<td>631,00 ± 25,12</td>
</tr>
<tr>
<td>$isolEm + HadDepth1$</td>
<td>588,00 ± 24,25</td>
</tr>
<tr>
<td>$isolPtTracks$</td>
<td>518,00 ± 22,76</td>
</tr>
</tbody>
</table>

Tabelle 17: Anzahl der Events der Daten, die die Elektronenschnitte im Barrel überlebt haben mit statistischem Fehler.

Endcap

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events mit mind. einem guten Myon</td>
<td>32678,00 ± 180,77</td>
</tr>
<tr>
<td>Events mit mind. einem Elektron</td>
<td>22668,00 ± 150,56</td>
</tr>
<tr>
<td>$</td>
<td>\eta_{SC}</td>
</tr>
<tr>
<td>E_T</td>
<td>5809,00 ± 76,22</td>
</tr>
<tr>
<td>$\Delta\eta_{in}$</td>
<td>17,00 ± 4,12</td>
</tr>
<tr>
<td>$\Delta\phi_{in}$</td>
<td>15,00 ± 3,87</td>
</tr>
<tr>
<td>H/E</td>
<td>10,00 ± 3,16</td>
</tr>
<tr>
<td>$\sigma_{\eta\eta}$</td>
<td>6,00 ± 2,45</td>
</tr>
<tr>
<td>$isolEm + HadDepth1$</td>
<td>6,00 ± 2,45</td>
</tr>
<tr>
<td>$isolHadDepth2$</td>
<td>6,00 ± 2,45</td>
</tr>
<tr>
<td>$isolPtTracks$</td>
<td>6,00 ± 2,45</td>
</tr>
</tbody>
</table>

Tabelle 18: Anzahl der Events der Daten, die die Elektronenschnitte im Endcap überlebt haben mit statistischem Fehler.
Abbildung 22: η-Verteilung der Myonen (links) und Elektronen (rechts) nach allen Schnitten. Im Plot der Elektronen sieht man deutlich den Bereich zwischen Barrel und Endcap zwischen 1,442 < η_{SC} < 1,56, der herausgeschnitten wurde.

Abbildung 23: ϕ-Verteilung der Myonen (links) und Elektronen (rechts) nach allen Schnitten.
Literatur

Abbildungsverzeichnis

2. Quark-Anti-Quark-Antimission in ein Tau-Sneutrino was wieder in ein Elektron und ein Myon zerfällt. 4
3. Querschnitt des CMS-Detektors mit den Flugbahnen und Zerfallsorten charakteristischer Teilchen [19] 5
5. 3D-Ansicht des Pixeldetektors. Zu sehen sind die drei Barrel-Bereiche (grün) und die zwei abschließenden Endcap-Ringe an beiden Seiten des Detektors (rosa) [21] ... 7
6. Aufbau des Pixeldetektors [19] .. 8
11. Aufbau einer Resistive Plate Chamber [19] ... 12
13. Verteilung zur Pile-Up-Korrektur ... 16
14. Vergleich der Vertex-Verteilungen nach allen Schnitten ohne Pile-Up-Korrektur (links) und mit Pile-Up-Korrektur (rechts) 17
15. Cutflow der Elektronschnitte im Barrel unter der Voraussetzung, dass ein Myon in dem Event nachgewiesen wurde, welches alle Schnittkriterien des Myonpapers erfüllt. 20
16. Cutflow der Elektronschnitte im Endcap unter der Bedingung, dass ein Myon in dem Event nachgewiesen wurde, welches alle Schnittkriterien des Myonpapers erfüllt. 21
17. Cutflow der Myonschnitte unter der Bedingung, dass ein Elektron im Barrel oder Endcap gefunden wurde, welches alle Schnittkriterien des Elektronpapers erfüllt. 21
18. p_T-Verteilung der Elektronen für die Events, in denen mindestens ein gutes Elektron und mindestens ein gutes Myon vorkommt mit Pile-Up-Korrektur ... 22
19. p_T-Verteilung der Myonen für die Events, in denen mindestens ein gutes Elektron und mindestens ein gutes Myon vorkommt mit Pile-Up-Korrektur ... 23
20.Invariantes Massenspektrum bestimmt aus dem höchstenenergetischen Elektron und dem höchstenenergetischen Myon, welches jeweils alle Schnittkriterien erfüllt. .. 23
22. η-Verteilung der Myonen (links) und Elektronen (rechts) nach allen Schnitten. Im Plot der Elektronen sieht man deutlich den Bereich zwischen Barrel und Endcap zwischen $1.442 < \eta_{SC} < 1.56$, der herausgeschnitten wurde. 32
23. ϕ-Verteilung der Myonen (links) und Elektronen (rechts) nach allen Schnitten. 32
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Eintrag</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wechselwirkungen des Standardmodells der Teilchenphysik mit relativer Stärke bezogen auf die starke Kernkraft, ihrer Reichweite und den zugehörigen Austauschteilchen</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Verschiedene Generationen der Fermionen im Standardmodell der Teilchenphysik</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Bosonen im Standardmodell der Teilchenphysik</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Teilchen des Standardmodells und zugehörige Superpartner im MSSM</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Energieauflösungskoeffizienten für verschiedene Bereiche des HCAL-Detektors</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Liste der verwendeten Monte-Carlo-Simulationen für die Untergründe mit Eventanzahl- und Wirkungsquerschnitt. Die Wirkungsquerschnitte stammen von der offiziellen CMS-Seite</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Verwendete Signale mit Generator, Eventanzahl und Wirkungsquerschnitt</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>SUSY-Parameter der generierten Signal-Samples</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Selektionskriterien für Myonen</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Schnitt-Kriterien für Elektronen: Im ersten Bereich befinden sich die kinematischen, geometrischen und "seeding" Schnitte, im zweiten sind die ID-Schnitte und im dritten Bereich sind die Isolations-Schnitte angegeben</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Prozentualer Anteil von $e \mu$-Events in den Signalen</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Beobachtete und erwartete Grenzen bestimmt mit RooStats cl95 und clm</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>Anzahl der Events der Signale, die die Elektronenschnitte im Barrel überlebt haben mit statistischem Fehler</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>Anzahl der Events der Signale, die die Elektronenschnitte im Endcap überlebt haben mit statistischem Fehler</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>Anzahl der Events der Monte-Carlo-Simulationen, die die Elektronenschnitte im Barrel überlebt haben mit statistischem Fehler</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>Anzahl der Events der Monte-Carlo-Simulationen, die die Elektronenschnitte im Endcap überlebt haben mit statistischem Fehler</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>Anzahl der Events der Daten, die die Elektronenschnitte im Barrel überlebt haben mit statistischem Fehler</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Anzahl der Events der Daten, die die Elektronenschnitte im Endcap überlebt haben mit statistischem Fehler</td>
<td>31</td>
</tr>
</tbody>
</table>
Danksagungen

Zum Abschluss bedanke ich mich bei allen, die mir diese Arbeit ermöglicht haben. Hierbei gilt mein erster Dank Prof. Dr. Thomas Hebbeker, der es mir ermöglicht hat, diese interessante Arbeit am III. Physikalischen Institut durchzuführen.

Besonderer Dank gilt auch meinen Bürokollegen Matthias Endres und Deborah Duchardt, die nicht nur eine sehr angenehme Arbeitsatmosphäre geschaffen haben, sondern mir auch bei vielen kleinen Problemen mit ROOT oder Supersymmetrie weiterhelfen konnten.

Zuletzt danke ich noch meinen Eltern, die mich mein ganzes Studium moralisch wie finanziell unterstützt haben. Vielen Dank dafür.
Selbstständigkeitserklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.
Aachen, den 23. September 2011