Search for SUSY at the Tevatron

~ 30 papers or notes

ICHEP06 Moscow
2006-07-28/29
parallel session `Beyond the SM'

Thomas Hebbeker
Aachen University

DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm
SUSY Models and Signatures

- `usual` mSUGRA
 - m_0, $m_{1/2}$, A_0
 - $\tan \beta$, $\text{sign}(\mu)$
 - Generic squarks and gluinos
 - sbottom and stop
 - Gauginos \rightarrow leptons

- Split SUSY
 - Gluino metastable
 - Stopping gluinos

- mSUGRA RPV
 - R-parity violated
 - Lepton-lepton couplings
 - Lepton-quark couplings

- GMSB
 - LSP = light gravitino
 - Photons + missing energy

- AMSB
 - Mass degeneracies
 - Long lived heavy charged particles

Limits 95%
`usual` mSUGRA

- generic squarks and gluinos
- sbottom and stop
- gauginos → leptons

R conserved

$LSP = \chi_1^0$

missing energy

Note:

m_0
$m_{1/2}$
A_0
tan β
$\text{sign}(\mu)$

stop or sbottom might be light
Squarks and gluinos: jets and missing energy

\[\tilde{g} \rightarrow q\tilde{\chi}_1^0 \]

\[\tilde{q} \rightarrow \bar{q}\tilde{\chi}_1^0 \]

\(\sigma \) large!

CDF Run II Preliminary

3 jets

\[\tan \beta = 5 \]

\[\mu < 0 \]

\[H_T > 280 \text{ GeV} \]

\[\tilde{g} > 241 \text{ GeV} \]

\(\tilde{g}, \tilde{q} > 387 \text{ GeV} \)

for equal masses

Tevatron Run II:

- DØ observed
- DØ expected
- CDF observed
- CDF expected
- mSUGRA solution

no mSUGRA solution

\[\tan \beta = 5(3) \]

\[A_0 = 0 \quad \mu < 0 \]

\[\sigma \text{ direct} \]

310/pb

371/pb

prel.
sbottom can be relatively light if large $\beta \tan$.
$\tilde{t} \rightarrow b l \nu \tilde{\chi}_1^0 \quad l = e, \mu$

$\tilde{t} \rightarrow t \nu \chi^0$

$\chi^- \rightarrow l^- l^+ \nu$

μ = 225 GeV

$\tan \beta = 20$

$MSSM$

D0 Preliminary

D0 Run II: (e, \mu) 350 pb$^{-1}$

D0 Run I: (e, \mu) 108 pb$^{-1}$

Stop
Charginos/Neutralinos → Leptons

e.g.:

- **Electroweak cross section small**
- **Gauginos light**

Signatures:
- $ee+l$ + $\mu^+\mu^-$
- $e/\mu+\tau+l$ + ...

Search for $\chi^0_2\chi^+_1 \rightarrow ee+l+X$

$$\int L \ dt = 346 \text{ pb}^{-1}$$

- After lepton selection

CDF Run II Preliminary

<table>
<thead>
<tr>
<th>Events (8.0 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^0</td>
</tr>
</tbody>
</table>

- mSugra point
- Drell-Yan
- WW, WZ, Zjj, Zll
- Fake Leptons
- Data

DØ Run II Preliminary, 0.3-1.1 fb

- $M(\chi^+_1)=M(\chi^0_2)=2M(\chi^0_1)$; $M(\tilde{t})>M(\chi^0_2)$
- $\tan\beta=3$, $\mu>0$, no slepton mixing

Heavy squarks

31-max SUSY

LEP

Large-m$_0$ DØ limit
Split SUSY

- Gluino metastable
- Stopping gluinos

Split mass scales:
- Heavy sfermions
- Light gauginos

Gluinos \tilde{g} long lived form `R hadrons`
Split SUSY: stopping gluinos

charged R stops in detector isotr. decay $\rightarrow jet + \chi^0_0$ $\tau > 10 \mu s$ = many bunch crossings!

DO monojet event

cross section limits
$\sim 0.5-1.5$ pb for gluinos 200-550 GeV
$\tilde{g} > 270$ GeV

m(gluino)=400GeV m(LSP)=90GeV

Run 164170 Evt 62966279 Sat Feb 4 15:06:30 2006

Triggers:

- 1 MET
- EM
- ICD
- HAD
- CH

DΦ Preliminary (L=350pb$^{-1}$)

- Background
- Signal (m$_g$=400GeV, xs=0.62pb)
- Data

if LSP light
mSUGRA with R-parity violation

\[W_{R_P} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k \]

- **mSUGRA RPV**
 - R-parity violated

- lepton-lepton couplings (LLE)
- lepton-quark couplings (LQD)

- family indices
- lepton number violation
- difficult for hadron colliders

- \(R = (-1)^{3(B-L)+2s} \)

- LSP unstable!
 - ? dark matter?

- assume: only one RPV coupling \(\lambda \neq 0 \)
R-Parity Violation: LLE couplings λ_{ijk}

- **production** of SUSY particles in $p \overline{p}$:
 - R conserving, two SUSY particles, e.g. $\chi^\pm_1 \chi^0_2$

- **decay**: R violating, e.g.

 a) $\lambda_{ijk} > O(10^{-2})$

 decay prompt, phenomenology independent of coupling

 b) $\lambda_{ijk} < O(10^{-2})$

 long lived particle, decay inside detector
Large LLE couplings: prompt decays

\[\lambda_{121} \rightarrow e e + (e, \mu) \]
\[\lambda_{122} \rightarrow \mu \mu + (\mu, e) \]
\[\lambda_{133} \rightarrow \tau \tau + (\tau, e) \]

\[\geq 4 \text{ charged leptons (require 3)} \]
+ missing energy

<table>
<thead>
<tr>
<th></th>
<th>D0 data</th>
<th>SM backgr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eel</td>
<td>0</td>
<td>0.9 ± 0.4</td>
</tr>
<tr>
<td>\mu \mu \mu</td>
<td>0</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>\tau \tau \tau</td>
<td>0</td>
<td>1.3 ± 1.8</td>
</tr>
</tbody>
</table>
Small LLE couplings: long lived (MSSM)

NuTeV: \(pp \) 38 GeV
3 dimuon events
(0.07 expected)

\(\tilde{\chi}_1^0 \) = 5 GeV
MSSM

NuTeV 99% Exclusion
NuTeV 99% Preferred Region

\(\chi_1^0 \) = 5 GeV

\(\sigma(pp \rightarrow N_1^0 N_1^0 \rightarrow \mu^+ \mu^- + X) \) (Pb)

DØ simulation

\(E_T \) scale = 3 GeV

muons

Decay vertex

missing \(E_T \)

\(\tilde{\chi}_1^0 \) \(\tilde{q} \)

\(\tilde{\chi}_1^0 \) \(l^\pm \)

\(l^\pm \) \(\nu \)

\(\nu \) \(l'^{\mp} \)

\(\tilde{q} \)

\(q \)

TRANSLATED TO 1.96 TeV
R-Parity Violation: LQD couplings λ'_{ijk} (prompt)

A) stop pairs

λ'_{333}

CDF Run II Preliminary (322 pb$^{-1}$)

- Observed
- Expected ($\pm\sigma$)

95% C.L. upper limit:

- $\sigma_{\text{NLO}} (pp \rightarrow \tilde{t}_1 \tilde{t}_1) \pm \sqrt{\sigma_{\text{PDF}}^2 + \sigma_{\text{scale}}^2}$
- $\text{Br}(\tilde{t}_1 \rightarrow b\tau) = 100\%$
- $m > 155 \text{ GeV/c}^2$
R-Parity Violation: LQD couplings λ'_{ijk} (prompt)

B) resonant slepton production

- **Graphical Representation**:
 - Diagram showing the process λ'_{211}.
 - Production of two muons (2μ) and two jets (2jets).

- **Absolute slepton mass limits**:
 - $(\tilde{\mu}, \tilde{\nu}_\mu)$ mass limits.

Table of Excluded slepton mass range and Coupling strength

<table>
<thead>
<tr>
<th>Excluded slepton mass range</th>
<th>Coupling strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\tilde{l}) \leq 210$ GeV</td>
<td>for $\lambda'_{211} \geq 0.04$</td>
</tr>
<tr>
<td>$m(\tilde{l}) \leq 340$ GeV</td>
<td>for $\lambda'_{211} \geq 0.06$</td>
</tr>
<tr>
<td>$m(\tilde{l}) \leq 363$ GeV</td>
<td>for $\lambda'_{211} \geq 0.10$</td>
</tr>
</tbody>
</table>

Notes:
- $d\bar{u}$ and $\bar{d}u$ indicate the relevant quark states.
- χ^0_1 represents the Lightest Supersymmetric Particle (LSP).
- $A_0 = 0$ indicates a specific point on the exclusion contour graph for λ'_{211}.
- $\text{D}0$, 0.38 fb$^{-1}$ refers to a specific experiment and data point.
Gauge Mediated SUSY Breaking

$LSP = \tilde{G}$

missing energy

here:

$NLSP = \chi_1^0 \rightarrow \gamma \tilde{G}$

GMSB

LSP = light gravitino

photons + missing energy

M_m

Λ

N_m

tan β

sign(μ)

c$_{grav}$
GMSB: 2 photons + MET (prompt)

\[NLSP = \chi_1^0 \]

e.g.: quark-antiquark pair

\[\tilde{\chi}_1^+ \]
\[\tilde{\chi}_1^- \]
\[Z' \] or \(\gamma' \)

\[\chi_1^0 \]
\[\chi_1^+ \]
\[\chi_1^- \]

\[W^+ \]
\[W^- \]

\[\tilde{\chi}_1^0 \]
\[\tilde{\chi}_1^+ \]
\[\tilde{\chi}_1^- \]

\[\gamma \]
\[\tilde{\gamma} \]

\[m(\chi_1^0) > 120 \text{ GeV} \]
\[m(\chi_1^+) > 220 \text{ GeV} \]

Snowmass "Slope" SPS 8
\[M_m = 2 \Lambda \]
\[N_m = 1 \]
\[\tan \beta = 15 \]
\[\mu > 0 \]

\[\chi_1^0 \]
\[\chi_1^0 \]

\[4 \text{ events} \]
\[2.1 \pm 0.7 \text{ bkg} \]
Anomaly Mediated SUSY Breaking

- hidden sector
- messenger
- visible sector

susy masses through loops

- long lived heavy charged particles

AMS B:
mass degeneracies
Long lived staus or charginos

\textbf{GMSB:} decay $\tilde{\tau} \rightarrow \tau \tilde{G}$ suppressed

\textbf{AMSB:} mass difference $\chi_1^\pm - \chi_1^0$ small

heavy charged particle traversing slowly D0 detector

measured with scintillators in muon system

$$\frac{1 - \text{speed}}{\sigma_{\text{speed}}}$$

charged pair production
Summary and outlook

- Multitude of SUSY corners and signatures explored
- Stringent limits were set
- Significant improvements compared to Tevatron Run I (signal types analyzed and signal sensitivity)
- Tevatron limits often exceed LEP/Hera bounds or are complementary
- 0.2 - 1.1 fb analyzed, much more to come!
SPARE TRANSPARENCIES
Sbottom

A) direct production

B) via gluino decays

CDF Run 2

LEP

D0 310/pb

CDF 295/pb

Gluino → \tilde{b}, b, 95% C.L. Exclusion Limit, 156pb⁻¹
Stop pair production

\[\tilde{t} \rightarrow c \tilde{\chi}_1^0 \quad \text{(FCNC)} \]

\[\tilde{t} \rightarrow b l \nu \tilde{\chi}_1^0 \quad l = e, \mu \]

CDF Run II Preliminary (295 pb^{-1})

\[M(t_1) \quad \text{(GeV/c}^2) \]

D0 Preliminary

\[M(\tilde{\nu}) = M(\tilde{\chi}_1^0) \]

\[\tan \beta = 20 \quad \mu = 225 \text{GeV} \]
Muon system
Toroid
Solenoid
PDT's
Liquid Argon Calorimeter
Silicon and
Scintillating Fiber Tracker

D0
Cross Sections at Hadron Colliders
Squark gluino limits
CDF tau sneutrino (RPV)

2 couplings!

CDF Run 2 Preliminary, 344 pb$^{-1}$

λ'_{311} λ_{132}
CDF long lived neutralino, GMSB decay
CDF di-photon event
Charginos/Neutralinos \rightarrow Leptons

e.g.:

``golden'' trilepton + missing energy signature

electroweak cross section small

gauginos light

signatures:
$ee +e/\mu \quad \mu \mu +e/\mu \quad e^+e^+ / e^-e^-$

CDF Run II Preliminary: $L=310$-750 pb$^{-1}$

MSSM: $\tan\beta=3$, $\mu>0$, $M(\tilde{\chi}^0_2)-M(\tilde{\chi}_1^0)-2M(\tilde{\tau}_1)$

M(\tilde{e})=M($\tilde{\mu}$)=M($\tilde{\tau}$)

Search for $\chi_{2}\chi_1 \rightarrow ee + l + X$

CDF Run II Preliminary

$\int L \, dt = 346 \text{ pb}^{-1}$ after lepton selection

Expected Limit $\pm 1\sigma$

95% CL Upper Limit: observed

95% CL Upper Limit: expected

mSugra point

Drell-Yan

WW, WWZ, WWZ^*

Fake Leptons

Data

$\sigma_{\text{NLO} \times \text{BR}}$ (3 leptons) (pb)

$\sigma_{\text{NLO} \times \text{BR Uncertainty}}$

Excluded by LEP
Charginos/Neutralinos \rightarrow Leptons

Signatures:
- $ee+l$
- $\mu^-\mu^- / \mu^+\mu^+$
- $e / \mu + \tau + l$ + ...

Diagram showing the decay process:
- W^* decays to $q\chi_1^\pm$
- χ_1^0 -> $l\nu$
- χ_2^0 -> $\tau\nu$

Graph showing $ee+l$ events with MET and p_T^Z as variables.
Chiral supermultiplets

<table>
<thead>
<tr>
<th>Gauge multiplet</th>
<th>Chiral multiplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>J = 1</td>
<td>J = 1/2</td>
</tr>
<tr>
<td>g</td>
<td>\tilde{g}</td>
</tr>
<tr>
<td>W^\pm, W^0</td>
<td>$\tilde{W}^\pm, \tilde{W}^0$</td>
</tr>
<tr>
<td>B^0</td>
<td>\tilde{B}^0</td>
</tr>
<tr>
<td>Q_L, U_L^C, D_L^C</td>
<td>$\tilde{Q}_L, \tilde{U}_L^C, \tilde{D}_L^C$</td>
</tr>
<tr>
<td>L_L, E_L^C</td>
<td>$\tilde{L}_L, \tilde{E}_L^C$</td>
</tr>
</tbody>
</table>

from Luc Pape

<table>
<thead>
<tr>
<th>Charge</th>
<th>Scalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>$Q = (\tilde{u}_L, \tilde{d}_L)$</td>
</tr>
<tr>
<td>U_L^C</td>
<td>$U_L^C = \tilde{u}_L^c$</td>
</tr>
<tr>
<td>D_L^C</td>
<td>$D_L^C = \tilde{d}_L^c$</td>
</tr>
<tr>
<td>L</td>
<td>$L = (\tilde{v}_L, \tilde{e}_L)$</td>
</tr>
<tr>
<td>E_L^C</td>
<td>$E_L^C = \tilde{e}_L^c$</td>
</tr>
<tr>
<td>H_d</td>
<td>$H_d = (H_d^0, H_d^-)$</td>
</tr>
<tr>
<td>H_u</td>
<td>$H_u = (H_u^+, H_u^0)$</td>
</tr>
</tbody>
</table>