Kathode: \(\text{PbSO}_4 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Pb} + \text{H}_2\text{SO}_4 \)
Anode: \(\text{PbSO}_4 + 2\text{OH}^- \rightarrow \text{PbO}_2 + \text{H}_2\text{SO}_4 + 2\text{e}^- \)

Nach dem Aufladen liefert der Bleiakku eine Spannung von 2 V. Bei der Stromentnahme läuft der Prozess umgekehrt, bis der Anfangszustand fast wieder hergestellt ist. Man erhält etwa 70-80 % der investierten Energie zurück. Eine typische Autobatterie mit 12 V bei 55 Ah (Amperestunde) kann eine Energie von

\[
W = Q \cdot U = 12 \text{ V} \cdot 55 \text{ Ah} \cdot \frac{3600 \text{ s}}{1 \text{ h}} = 2,4 \cdot 10^6 \text{VA} \cdot \text{s} = 2,4 \cdot 10^6 \text{J}
\]

speichern.

3.9 Leitung in Metallen

Wir wollen uns an dieser Stelle noch einmal etwas genauer mit den Leitungsmechanismen in Metallen beschäftigen. Für eine exakte Beschreibung ist allerdings die Kenntnis des atomaren Aufbaus und der Gitterstruktur im Festkörper, sowie der Quantentheorie, nötig, welche erst in den folgenden Semestern gelehrt werden. Deshalb wollen wir uns hier auf einige wesentliche Erkenntnisse beschränken, die unter der Bezeichnung Bändermodell zusammengefasst sind. Das Bändermodell ermöglicht eine einheitliche Deutung der unterschiedlichen elektrischen Leitfähigkeit von Metallen, Halbleitern und Isolatoren.

Bei einer Besetzung des oberen Bandes von 10 - 90 % liegt ein metallischer Leiter vor. Legt man hier nun eine elektrische Spannung an, so bildet sich im Inneren ein elektrisches Feld E aus, und auf die Elektronen wirkt eine beschleunigende Kraft $F = -e \cdot E$. Dadurch erhalten die Elektronen mehr Bewegungsenergie und werden auf höhere Energiezustände angehoben. Ist das obere Band nur teilweise gefüllt, können die Elektronen leicht in einen höheren Energiezustand gelangen, da hier genügend freie Zustände zur Verfügung stehen. Da alle in dem obersten Band befindlichen Elektronen im Feld zusätzlich Energie aufnehmen und zur Leitung beitragen, nennt man dieses Band das Leitungsband und die Elektronen Leitungselektronen. Das darunter liegende Band heißt Valenzband. Wenn das obere Band ganz gefüllt ist, können die Elektronen nicht mehr durch das

Besteht zwischen dem obersten vollbesetzten Band und dem darüberliegenden nächsten leeren Band ein relativ geringer Abstand, dann ist der Stoff zwar bei niedrigen Temperaturen ein Isolator, aber bei Zimmertemperatur kann er jedoch eine wesentlich höhere elektrische Leitfähigkeit besitzen. Man spricht dann von einem Halbleiter. Seine Leitfähigkeit wird durch die thermische Anregung von Elektronen aus dem Valenzband in das darüberliegende Band verursacht. Die Wahrscheinlichkeit einer solchen Anregung nimmt exponentiell mit dem Bandabstand \(E_B \) ab und mit der Temperatur \(T \) zu. Halbleitende Eigenschaften zeigen sich erfahrungsgemäß bis zur Energielücke (gap) von etwa \(E_B = 2.5 \text{eV} \), während bei Isolatoren größere Werte zu finden sind. Beim Halbleiter tragen sowohl die in das Leitungsband gehobenen Elektronen als auch die im Valenzband zurückbleibenden Löcher zur Leitfähigkeit bei (Eigenleitung reiner Halbleiter). Eine Darstellung der beschriebenen Modelle findet man in Abb. 3.29.

3.10 Leitung in Halbleitern

3.10.1 p,n- Halbleiter

Legt man an einen Halbleiterkristall eine Spannung an, so wandern die freien Elektronen