Damit folgt für die Gesamtspannung

\[ U = \sum_{i=1}^{n} U_i \]  
\[ = U_1 + U_2 + \ldots + U_n \]  
\[ = \frac{Q}{C_1} + \frac{Q}{C_2} + \ldots + \frac{Q}{C_n} \]  
\[ = Q \sum_{i=1}^{n} \frac{1}{C_i} \]

Für die Gesamtkapazität folgt dann bei der

Reihenschaltung \[ \frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i} \]

Bei der Reihenschaltung von Kapazitäten (s. Abb. 2.10, entnommen aus [9]) ist der reziproke Wert der resultierenden Kapazität gleich der Summe der Kehrwerte der Einzelkapazitäten. Damit ist die Gesamtkapazität stets kleiner als die kleinste Einzelkapazität, womit sich diese Anordnung zur Herstellung kleiner Kapazitäten eignet, wenn nur große vorhanden sind. Aus \( U_i = Q/C_i \) folgt weiterhin, dass an dem Kondensator mit der größten Kapazität die kleinste Spannung anliegt. Die Reihenschaltung von Kondensatoren kann damit also zur Spannungsteilung verwendet werden.

**Versuch 2.3**

Nun schalten wir die beiden Plattenkondensatoren in Reihe und messen wieder die Gesamtkapazität. Wir beobachten, dass die Gesamtkapazität der Kehrwert der Summe der Einzelkapazitäten ist.

**2.7 Energie des elektrischen Feldes**

Wir gehen von zwei parallelen neutralen Metallplatten aus und bringen von einer der Platten z.B. negative Ladung auf die andere, so dass positive Ladung zurückbleibt. Bei diesem Vorgang baut sich eine Spannung (Potenzial) auf, die bei jedem weiteren Ladungstransport überwunden werden muss. Die dabei aufzubringende Energie ist

\[ dW_{12} = U \, dQ = U \, C \, dU = \varphi \, C \, d\varphi. \]  
\[ W_{12} = \int_{\varphi_1=0}^{\varphi_2=U} dW_{12} = \int_{0}^{U} \varphi \, C \, d\varphi = \frac{1}{2} C \, U^2. \]

Die gesamte, zum Laden des Kondensators benötigte Energie beträgt dann

\[ W_{12} = \int_{\varphi_1=0}^{\varphi_2=U} dW_{12} = \int_{0}^{U} \varphi \, C \, d\varphi = \frac{1}{2} C \, U^2. \]
Mit Hilfe der Relation \( Q = C U \) lässt sich Gleichung 2.53 weiter umschreiben.

Energie eines Kondensators

\[
W_{12} = \frac{1}{2} C U^2 = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q U
\]  

(2.54)

Betrachten wir nun als Beispiel den Plattenkondensator etwas genauer. Es war \( E = U/d \)
und \( C = \varepsilon_0 A/d \) für \( d^2 \ll A \). Das Feld nimmt das Volumen \( V = A d \) ein. Es ist dann:

\[
W = \frac{1}{2} C U^2 = \frac{1}{2} \varepsilon_0 \frac{A}{d} E^2 d^2 = \frac{1}{2} \varepsilon_0 E^2 A d = \frac{1}{2} \varepsilon_0 E^2 V
\]  

(2.55)

Der letzte Teil der Gleichung enthält keine Besonderheiten des Plattenkondensators mehr.
Dies bedeutet, dass sie allgemein in jedem beliebigen elektrischen Feld gilt.

Energie eines beliebigen elektrischen Feldes

\[
W = \frac{1}{2} \varepsilon_0 E^2 V
\]  

(2.56)

Führt man nun noch die Energiedichte \( w \) ein, so erhält man:

Energiedichte eines beliebigen elektrischen Feldes

\[
w = \frac{W}{V} = \frac{1}{2} \varepsilon_0 E^2
\]  

(2.57)