Skript zur Vorlesung

Experimentalphysik II

(Elektromagnetismus)

Für Physiker und Lehramtskandidaten

Gehalten von
Prof. Dr. G. Flügge
im SS 2001
Inhaltsverzeichnis

1 Elektrische Ladungen und Felder ........................................... 1
   1.1 Elektrische Ladungen .................................................. 1
       1.1.1 Positive und negative Ladungen ................................ 1
       1.1.2 Ladungstrennung .................................................. 3
       1.1.3 Leiter und Isolatoren .......................................... 4
       1.1.4 Ladungsmessung .................................................. 5
       1.1.5 Ladungsverteilung in elektrischen Leitern ..................... 6
       1.1.6 Die Influenz ..................................................... 8
       1.1.7 Halbieren von Ladungsmengen .................................. 8
       1.1.8 Ladungserhaltung ............................................... 9
       1.1.9 Elementarladung ................................................ 11
       1.1.10 Erzeugung hoher Ladungsmengen .............................. 13
   1.2 Das COULOMB'sche Gesetz ............................................ 14
       1.2.1 Die $1/r^2$- Abhängigkeit .................................... 14
       1.2.2 Experimentelle Überprüfung des COULOMB'schen Gesetzes .. 16
       1.2.3 Dimension der Ladung ......................................... 17
       1.2.4 Vektorielle Schreibweise und Superposition .................. 19
       1.2.5 Vergleich von COULOMB- und Gravitationskraft ............... 21
   1.3 Das elektrische Feld .................................................. 22
       1.3.1 Das elektrische Feld .......................................... 22
       1.3.2 Beschreibung des elektrischen Feldes .......................... 24
       1.3.3 Das homogene Feld ........................................... 28
       1.3.4 Beliebiges elektrisches Feld ................................ 30
   1.4 Potenzielle Energie, elektrostatisches Potenzial und Spannung .. 31
       1.4.1 Potenzial und Spannung ....................................... 31
       1.4.2 Potenzial einer Punktladung .................................. 35
       1.4.3 Homogenes Feld eines Plattenkondensators .................. 38
   1.5 Potenzial einer beliebigen Ladungsverteilung ....................... 40
       1.5.1 Der elektrische Dipol ......................................... 40
       1.5.2 Kontinuierliche Ladungsverteilung ............................. 41
   1.6 Berechnung der Feldstärke aus dem Potenzial ...................... 43
1.7 Anwendung homogener elektrischer Felder .................................. 45  
1.7.1 Der Dipol im homogenen Feld ............................................. 45  
1.7.2 Der Versuch von MILLIKAN zur Bestimmung der Elementarladung 48  
1.7.3 Die BRAUNSche Röhre ..................................................... 50  
1.8 Der elektrische Fluss und der Satz von GAUSS ............................. 51  
1.8.1 Elektrischer Kraftfluss einer Punktladung ............................. 52  
1.8.2 Kraftfluss durch eine beliebige geschlossene Fläche ................ 53  
1.8.3 Was folgt für elektrische Leiter aus dem GAUSSschen Satz? .... 59  
1.8.4 Beweisskizze für den mathematischen Satz von GAUSS .......... 61  

2 Elektrostatik mit Leitern und Isolatoren ................................... 65  
2.1 Leiter und Isolatoren .......................................................... 65  
2.2 Leiter im elektrischen Feld und Influenz ................................ 65  
2.2.1 Feld an einer Leiteroberfläche ........................................... 66  
2.3 Allgemeines elektrostatisches Problem ................................... 68  
2.4 Elektrisches Feld einer geladenen Kugel ................................ 70  
2.5 Definition der Kapazität ....................................................... 71  
2.6 Kondensatoren ................................................................... 72  
2.6.1 Der Plattenkondensator .................................................... 72  
2.6.2 Der Kugelkondensator ...................................................... 74  
2.6.3 Der Zylinderkondensator ................................................... 75  
2.6.4 Schaltung von Kondensatoren ............................................ 76  
2.7 Energie des elektrischen Feldes ............................................. 78  
2.8 Isolatoren im elektrischen Feld ............................................. 80  
2.8.1 Zusammenhang von \( \vec{E} \) und \( \vec{D} \) ............................. 84  
2.8.2 Polarisationseffekte .......................................................... 85  
2.8.3 Energiedichte im Dielektrikum .......................................... 89  

3 Elektrische Stromstärke ............................................................. 91  
3.1 Der elektrische Strom ............................................................ 91  
3.2 Mechanismen der Stromleitung ............................................. 92  
3.3 Allgemeine Form des Ladungstransportes ................................ 94  
3.4 Widerstand ................................................................... 95  
3.4.1 Widerstand eines Metalldrahtes ....................................... 96  
3.5 Temperaturabhängigkeit von \( R \) .......................................... 98  
3.5.1 Zusammenhang zwischen elektrischer Leitfähigkeit und Wärmeleit-  

fähigkeit ........................................................................... 99  
3.5.2 Supraleitung ................................................................. 100  
3.5.3 Technische Widerstände ................................................... 102  
3.6 Stromkreise ................................................................. 103  
3.6.1 Die KIRCHHOFFschen Gesetze ....................................... 103  

iv
3.6.2 Innenwiderstand ........................................ 108
3.6.3 Strommessung ........................................ 109
3.6.4 SpannungsMESSung .................................. 109
3.6.5 Vorwiderstand und PotenzioMeterschaltung ............ 111
3.6.6 WiderstandMessung .................................. 112
3.7 Beispiel für einen nicht stationären Vorgang: der RC- Kreis ........................................ 113
  3.7.1 Der Ladevorgang .................................... 113
  3.7.2 Der Entladevorgang ................................ 114
3.8 Leitung in Flüssigkeiten ................................ 115
  3.8.1 Elektrolytische Leitfähigkeit ....................... 115
  3.8.2 GALVAnische Elemente ............................ 120
3.9 Leitung in Metallen ..................................... 123
3.10 Leitung in Halbleitern .................................. 125
  3.10.1 p,n- Halbleiter .................................. 125
  3.10.2 Der pn- Übergang ................................ 128
  3.10.3 Die Halbleiterdiode ............................... 129
  3.10.4 Der Transistor ...................................... 130
3.11 Ladungstransport im Hochvakuum ......................... 133
  3.11.1 Glühemission ...................................... 135
  3.11.2 Photoemission .................................... 137
  3.11.3 Sekundärelektronenemission ....................... 137
3.12 Leitung in Gasen ....................................... 138
  3.12.1 Die Gasentladung ................................. 138
  3.12.2 Plasmaströme ...................................... 143
4 Magnetostatik ........................................ 145
  4.1 Einleitung ........................................... 145
    4.1.1 Geschichte des Magnetismus ....................... 145
    4.1.2 Ähnlichkeiten und Unterschiede zwischen Magnetismus und Elektrizität ....................... 147
  4.2 LORENTZ-Kraft ....................................... 149
    4.2.1 Magnetische Flasche .............................. 153
  4.3 Kräfte auf Strom durchflossene Leiter ................ 156
    4.3.1 Feldkonstanten und Maßsysteme ................ 158
  4.4 Magnetisches Feld eines Strom durchflossenen Leiters .. 158
    4.4.1 Experimentelle Überprüfung ...................... 160
    4.4.2 Allgemeiner Zusammenhang zwischen \( \mathbf{B} \) und \( \mathbf{\Gamma} \) .................. 162
    4.4.3 Magnetfeld einer Spule (schematisch) ........... 163
    4.4.4 Das BIOT-SAVARTSche Gesetz ................. 164
    4.4.5 Permanentmagnete ............................... 168
    4.4.6 Zusammenfassung ................................ 168
5 Magnetische Induktion 181
5.1 Experimentelle Tatsachen und deren Deutung 181
  5.1.1 Quantitative Herleitung des Induktionsgesetzes 185
  5.1.2 Leistungsbilanz der Induktion 187
5.2 Allgemeine Formulierung des Induktionsgesetzes 188
5.3 Differenzielle Schreibweise 190
  5.3.1 Die Rotation 191
  5.3.2 Satz von STOKES 192
5.4 Gegen- und Selbstinduktion 194
  5.4.1 Gegeninduktion 194
  5.4.2 Selbstdinduktion 196
  5.4.3 Ersatzschaltbild 197
  5.4.4 Der Transformator 198
5.5 Ein- und Abschaltvorgänge 201
5.6 Wechselstrom 204
  5.6.1 Erzeugung von Wechselspannung 205
  5.6.2 Wechselstromwiderstände 205
5.7 Kräfte auf Strom durchflossene Leiterschleifen 209
  5.7.1 Potenzielle Energie des magnetischen Momentes 211
  5.7.2 Der magnetische Dipol im inhomogenen Magnetfeld 211
  5.7.3 Drehspulinstrumente 213

6 Materie im Magnetfeld 215
6.1 Experimentelle Beobachtungen 215
6.2 Diamagnetismus und Paramagnetismus 217
  6.2.1 Mikroskopische Erklärung 220
  6.2.2 Gesamtfeld einer Spule mit Kern 228
  6.2.3 $\mathbf{B}$- und $\mathbf{H}$-Feld eines Permanentmagneten 231
  6.2.4 Vergleich zwischen Magnetismus und Elektrizität in Materie 232
6.3 Ferromagnetismus 233
  6.3.1 Magnetisierungskurve (Hysteresis) 236
6.4 Temperaturabhängigkeit 237
6.5 Induktivität einer Spule mit Kern 239
6.6 Energie des magnetischen Feldes 239

7 Die MAXWELLSCHEN Gleichungen 241