

Off-shell Top Quarks with One Jet at the LHC

Malgorzata Worek

Phys. Rev. Lett. 116 (2016) 052003 & JHEP 1611 (2016) 098

Seminar for Theory of Elementary Interactions, University of Warsaw, 13 March 2017

Plan

- 1. Motivation for Top Quark Physics
- 2. Top-quark off-shell effects
- 3. Status of theoretical predictions for ttj
- 4. Top-quark off-shell effects for ttj with **HELAC-NLO**
- 5. Results in dilepton channel @ LHC Run 2
- 6. Summary & Outlook

TOP QUARK

LIGHT HEAVY

Collaborators:

G. Bevilacqua (University of Debrecen) H. B. Hartanto (University of Durham) M. Kraus (Humboldt-Universität zu Berlin)

Top-Quark Physics

- Huge progress on the theoretical side:
 - **Ο** NNLO+NNLL for **σ** (tt) with on-shell top-quarks
 - \Box NNLO for differential cross sections $d\sigma$ (tt) /dX

M. Czakon, P. Fiedler, A. Mitov '13 M. Czakon, D. Heymes, A. Mitov '16

- Why the top quark is interesting ?
 - Infrared structure of QCD
 - * Extract parameters of the SM: $\alpha_s \& m_t$
 - Constraints on the large-x gluon PDF

M. Czakon, M. L. Mangano, A. Mitov, J. Rojo '13 M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera, J. Rojo '16

✤ Background process to various SM & BSM physics

LHC Top-Quark Factory

	LHC	σ (tt) [pb]	L [fb ⁻¹]	N _{event}
	7 TeV	172.676	5	$8.6 \ge 10^5$
	8 TeV	246.652	19.7	$4.8 \ge 10^{6}$
LHC Run 2	13 TeV	807.296	2.3	$1.8 \ge 10^{6}$

	LHC	σ(tt) [pb]	L [fb ⁻¹]	N _{event}
IHC Rup 2	13 TeV	807.296	100	8.1 x 10 ⁷
	13 TeV	807.296	300	2.4×10^8

 $m_t = 173.2 \text{ GeV}$

TOP++ with CT14 NNLO PDF set

M. Czakon, A. Mitov '14

- The only known way the top quark can decay is through the weak interaction
- Producing W-boson and a down-type quark (down, strange, or bottom)

$$\mathcal{BR}(t \to Wb) = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \approx 0.99$$

 $SM: t \to Wb \approx 100\%$

Top-quark di-lepton candidate Observed in pp collisions @ LHC @ 7 TeV

Inclusive cross section

LHC and Tevatron measurements as a function of the centre-of-mass energy versus the NNLO QCD calculation complemented with NNLL resummation (Top++)

- @ LHC tops are produced with large energies & high transverse momenta
- Increase probability for additional (hard) radiation of gluons \rightarrow ttj final state
- How big is the contribution of ttj in the inclusive tt sample ?
- NLO on-shell tt & ttj productions for m_t = 173.2 GeV @ LHC_{13 TeV} with CT14

σ (tt) = 715.58 pb

Jet p _T cut [GeV]	σ(ttj) [pb]	σ (ttj)/ σ (tt) [%]
40	296.97 ± 0.29	41
60	207.88 ± 0.19	29
80	152.89 ± 0.13	21
100	115.60 ± 0.14	16
120	89.05 ± 0.10	12

- Background to SM Higgs production in VBF: $qq \rightarrow Hqq \rightarrow W^+W^-qq$
- 2 tagging jets: $\Delta y_{j_1 j_2} = |y_{j_1} y_{j_2}| > 4 \& y_{j_1} \times y_{j_2} < 0$
- It background: tt → WWbb & ↑ ttj background: ttj → WWbbj

- Background to supersymmetric particle production
 - ★ *ttj signature* → light and bottom jets, charged lepton(s) & p_T^{miss} from invisible neutrinos
 - ★ *Typical signals* → jets, charged lepton(s) & p_T^{miss} due to escaping lightest supersymmetric particle (neutralino)

- Background to production of top flavor violating resonances $pp \to M \tilde{t} \to t \bar{t} j$

 $\tilde{t} = t$ for $M = W', Z'_H$ and $\tilde{t} = \bar{t}$ when $M = \phi^a$ (color triplet or sextet)

- W' signal: $\mathbf{W}' \rightarrow \mathbf{\overline{t}q}$
- Production processes: $\mathbf{p}\mathbf{p}
 ightarrow \mathbf{W}' \mathbf{t}
 ightarrow \mathbf{t} \mathbf{ar{t}} \mathbf{j}$

 $m_{W'} \in \{200, \dots, 600\} \,\, {
m GeV} \ \sigma_{7{
m TeV}} \in \{40, \dots, 4\} \,\, {
m pb}$

$$\begin{split} \mathcal{L}_{\mathbf{W}'} &= \frac{1}{\sqrt{2}} \bar{d} \gamma^{\mu} g_R P_R t W'_{\mu} + \text{H.c.,} \\ \mathcal{L}_{Z'_{H}} &= \frac{1}{\sqrt{2}} \bar{u} \gamma^{\mu} g_R P_R t Z'_{H\mu} + \text{H.c.,} \\ \mathcal{L}_{\phi} &= \bar{t}^c T^a_r (g_L P_L + g_R P_R) u \phi^a + \text{H.c.,} \end{split}$$

• ATLAS: $m_{W'} > 430 \text{ GeV}$ ATLAS Collaboration, CERN-PH-EP-2012-219

- NWA → Tops are restricted to on-shell states
- Approximation is controlled by the ratio: $\Gamma_t/m_t \approx 10^{-2}$
- Contributions from diagrams involving two top-quark resonances

- Should be accurate for sufficiently inclusive observables
- Indeed \rightarrow top-quark off-shell effects for $\sigma @ 1\% 2\%$ level

∻	$pp \rightarrow tt$	A. Denner et al. '11, G. Bevilacqua et al. '11, A. Denner et al. '12 R. Frederix '14, F. Cascioli et al. '14, G. Heinrich et al '14, A. Denner et al. '16
∻	$pp \rightarrow ttH$	A. Denner, R. Feger '15, A. Denner, J. Lang, M. Pellen, S. Uccirati '17
∻	pp → ttj	G. Bevilacaua, H. B. Hartanto, M. Kraus, M. Worek '16

- Single-resonant and non-resonant contributions
- Interferences between double-, single-, and non-resonant diagrams

 ${f pp}
ightarrow {f tar t}$

Diagrams in NWA versus Full calculation with on-shell and off-shell W for the *gg initial state:* ▲ LO: 2 → 21 → 70

 $\diamond LO: 3 \rightarrow 31 \rightarrow 79$

♦ Real Emission: 28 → 208 → 508

■ **gg channel** comprises **3554 one-loop diagrams** → according to **QGRAF**

P. Nogueira '93

- The most complicated ones: **213 pentagons & 20 hexagons**
- Tensor integrals up to rank five

Intermediate Top Resonances

- Putting simply $\Gamma_t \neq 0$ violates gauge invariance
- Gauge-invariant treatment → complex-mass scheme
- $\Gamma_t \rightarrow$ incorporated into top mass via:

$$\mu_t^2 = m_t^2 - i\,m_t\Gamma_t$$

A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '99 A. Denner, S. Dittmaier, M. Roth, L. H. Wieders '05

- All matrix elements evaluated using complex masses
- $\mu_t^2 \rightarrow$ identified with the position of pole of top-quark propagator
- Top-mass counter-term $\delta \mu_t$ related to top-quark self-energy at: $p_t^2 = \mu_t^2$
- Another non trivial aspect: evaluation of one-loop scalar integrals !
- Scalar integrals with complex masses → supported e.g. by **ONELOOP**

A. van Hameren '11

Top Quark Width

- Finite W width contributions included in matrix elements & in top quark width
- Top width for unstable W bosons, neglecting bottom quark mass @ LO & NLO

$$\Gamma_{\rm t}^{\rm LO} = \frac{G_{\mu} m_{\rm t}^5}{16\sqrt{2}\pi^2 M_{\rm W}^2} \int_0^1 \frac{\mathrm{d}y \,\gamma_{\rm W}}{(1 - y/\bar{y})^2 + \gamma_{\rm W}^2} F_0(y)$$

M. Jezabek, J. H. Kühn '89 A. Denner, et al. '12

$$\gamma_{\rm W} = \Gamma_{\rm W}/M_{\rm W}, \ \bar{y} = (M_{\rm W}/m_{\rm t})^2$$
 $F_0(y) = 2(1-y)^2(1+2y)$

$$\Gamma_{\rm t}^{\rm NLO} = \frac{G_{\mu} m_{\rm t}^5}{16\sqrt{2}\pi^2 M_{\rm W}^2} \int_0^1 \frac{\mathrm{d}y \,\gamma_{\rm W}}{(1 - y/\bar{y})^2 + \gamma_{\rm W}^2} \bigg[F_0(y) - \frac{2\alpha_{\rm s}}{3\pi} F_1(y) \bigg]$$

$$F_1(y) = 2(1-y)^2(1+2y) \left[\pi^2 + 2\operatorname{Li}_2(y) - 2\operatorname{Li}_2(1-y)\right] + 4y(1-y-2y^2)\ln(y) + 2(1-y)^2(5+4y)\ln(1-y) - (1-y)(5+9y-6y^2).$$

• In the limit $\gamma_W \longrightarrow 0$ $\frac{\gamma_W}{(1-y/\bar{y})^2 + \gamma_W^2} \rightarrow \pi \bar{y} \, \delta(y-\bar{y}).$

Top Quark Width

$m_t \; [{\rm GeV}]$	$\Gamma_{\rm t}^{\rm LO} \ [{\rm GeV}]$	$\Gamma_{\rm tW}^{\rm LO} \ [{\rm GeV}]$	$\Gamma_{\rm t}^{\rm NLO} \ [{\rm GeV}]$	$\Gamma_{\rm tW}^{\rm NLO} \ [{\rm GeV}]$
168.2	1.33273	1.35426	1.21823	1.23792
170.7	1.40449	1.4269	1.28389	1.30438
173.2	1.47834	1.50162	1.35146	1.37276
175.7	1.55429	1.57847	1.42097	1.44309
178.2	1.63237	1.65746	1.49243	1.51538

$\Gamma_{\mathbf{t}}$	top quark width with W gauge boson off-shell effects included
$\Gamma_{\rm tW}$	top-quark width with the on-shell W gauge boson

- NWA not accurate for differential cross sections even for inclusive setup
- Full NWA (tt) versus full calculation (WWbb) for p_T(bb)

A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, M. Schulze '12

- NWA not accurate for differential cross sections even for inclusive setup
- Full NWA (tt) versus full calculation (WWbb) for p_T(b)

A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, M. Schulze '12

- NWA not accurate for differential cross sections even for inclusive setup
- Full NWA (tt) versus full calculation (WWbb) for M_{e+b}

If top and W decay on-shell @ LO
 → end-point given by sharp cut

 $M_{e^+b} = \sqrt{m_t^2 - m_W^2} pprox 152~{
m GeV}$

 Additional radiation & off-shell effects introduce smearing

A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, M. Schulze '12

Theoretical Predictions For ttj

NLO QCD corrections to on-shell ttj production

S. Dittmaier, P. Uwer, S. Weinzierl '07 '09

NLO QCD correction to on-shell ttj production with LO decays

K. Melnikov, M. Schulze '10

- NLO QCD corrections to ttj in NWA (with jet radiation in top-quark decays) K. Melnikov, M. Schulze '12
- NLO QCD corrections to ttj with full top-quark and W off-shell effects

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

NLO QCD correction to on-shell ttj production + PS

♦ POWHEG + PYTHIA → no spin correlations A. Kardos, C. G. Papadopoulosa, Z. Trocsanyi '11

♦ POWHEG + PYTHIA/HERWIG → with spin-correlations @ LO S. Alioli, S.Moch, P. Uwer '12

♦ MC@NLO + DEDUCTOR → without top-quark decays
M. Czakon, H. B. Hartanto, M. Kraus, M. Worek '15

Theoretical Predictions For ttj

NLO QCD corrections to on-shell ttj production

S. Dittmaier, P. Uwer, S. Weinzierl '07 '09

NLO QCD correction to on-shell ttj production with LO decays

K. Melnikov, M. Schulze '10

- NLO QCD corrections to ttj in NWA (with jet radiation in top-quark decays) K. Melnikov, M. Schulze '12
- NLO QCD corrections to ttj with full top-quark and W off-shell effects

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

NLO QCD correction to on-shell ttj production + PS

♦ POWHEG + PYTHIA → no spin correlations A. Kardos, C. G. Papadopoulosa, Z. Trocsanyi '11

♦ POWHEG + PYTHIA/HERWIG → with spin-correlations @ LO S. Alioli, S.Moch, P. Uwer '12

♦ MC@NLO + DEDUCTOR → without top-quark decays

M. Czakon, H. B. Hartanto, M. Kraus, M. Worek '15

Off-Shell Effects For ttj

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$

- ttj with leptonic decays at $\mathcal{O}(\alpha_s^4 \alpha^4)$
- 2 \rightarrow 5 process from the QCD point of view (WWbbj)
- Diagrams with complete off-shell effects for top quarks & W gauge boson for gg initial state:

 LO: 508

 Real emission: 4447

Off-Shell Effects For ttj

■ **gg channel comprises 39 180 one-loop diagrams** → according to **QGRAF**

P. Nogueira '93

- The most complicated ones are 1155 hexagons & 120 heptagons
- Tensor integrals up to rank six

HELAC-NLO

G. Ossola, C. G. Papadopoulos, R. Pittau '08

M. Czakon, C. G. Papadopoulos, M. Worek '09 G. Bevilacqua, M. Czakon, M. Kubocz, M. Worek '13

A. van Hameren '10

$pp ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} j + X$

- HELAC-1LOOP → Virtual corrections in 't Hooft-Veltman version of dimensional regularization
- **CUTTOOLS** → Ossola-Papadopoulos-Pittau (OPP) reduction technique
- ONELOOP → Evaluation of scalar integrals with complex masses
- HELAC-DIPOLES → The singularities from soft or collinear parton emissions isolated via subtraction methods for NLO QCD:
 - ♦ Catani-Seymour dipole subtraction
 - ♦ Nagy-Soper subtraction scheme
 - \diamond Both for massive and massless cases
 - ↔ Restriction on the phase space of the subtraction → $α_{max}$
- Reweighting & unweighting techniques, helicity, and color sampling methods for optimization
- **KALEU** → Phase-space integration
 - ♦ Multi-channel Monte Carlo techniques
 - ♦ Adaptive weight optimization
 - ♦ Dedicated additional channels for each subtraction term for both subtractions

https://helac-phegas.web.cern.ch/helac-phegas/

Setup

• Different lepton generations: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$

 $\gamma^* \rightarrow \ell^{\pm} \ell^{\mp}$ interference effects neglected \rightarrow per-mille level @ LO

- ♦ Feynman Diagrams for gg initial state @ LO: $508 \text{ for } e^+\nu_e \,\mu^-\bar{\nu}_\mu \,b\bar{b} \,j \longrightarrow 1240 \text{ for } e^+\nu_e \,e^-\bar{\nu}_e \,b\bar{b} \,j$
- Top width for unstable W bosons, neglecting bottom quark mass
- All light quarks including **b-quarks** and leptons **are massless**
- Contribution from b quarks in the initial state neglected → effect < 1% @ LO
- Jets: Final-state quarks and gluons with pseudo-rapidity |y| < 5 recombined into jets using anti-k_T jet algorithm with R = 0.5
- Requirement: exactly 2 b-jets, at least one light-jet, 2 charged leptons, and missing p_T → fairly inclusive cuts

Inclusive Selection Cuts

$p_{T,\ell} > 30 \mathrm{GeV},$	$p_{T,j} > 40 \mathrm{GeV},$
$p_T > 40 {\rm GeV} , \qquad$	$\Delta R_{jj} > 0.5$,
$\Delta R_{\ell\ell} > 0.4 ,$	$\Delta R_{\ell j} > 0.4 ,$
$ y_\ell < 2.5,$	$ y_j < 2.5 ,$

$$p_{T,i} = \sqrt{p_{x,i}^2 + p_{y,i}^2},$$
$$y_i = \frac{1}{2} \ln \left(\frac{E_i + p_{z,i}}{E_i - p_{z,i}}\right),$$
$$\Delta R_{ik} = \sqrt{\Delta \phi_{ik}^2 + \Delta y_{ik}^2}.$$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

SM Parameters & Widths

$$\begin{split} G_{\mu} &= 1.16637 \cdot 10^{-5} \text{ GeV}^{-2}, \\ m_{W} &= 80.399 \text{ GeV}, \\ m_{Z} &= 91.1876 \text{ GeV}, \end{split} \qquad \begin{aligned} & \Gamma_{W} &= 2.09875 \text{ GeV}, \\ & \Gamma_{Z} &= 2.50848 \text{ GeV}. \end{aligned}$$

Scale Dependence

- Total cross section @ LHC 13 TeV
- Scales:

 $\mu_R = \mu_F = \mu_0 = m_t, \, E_T/2, \, H_T/2$

$$H_T = \sum_i p_{T,\,i} + p_T^{
m miss}$$
 $E_T = m_{T,\,t} + m_{T,\,ar t}$

• LO contributions: $gg: 72\%, \ gq: 18\%, \ g\bar{q}: 6\%, \ q\bar{q}: 4\%$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Scale Dependence

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Scale & PDF Uncertainties

$$\frac{1}{2} \mu_0 \le \mu_R, \mu_F \le 2 \mu_0, \qquad \qquad \frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2 \mu_0,$$
$$\left(\frac{\mu_R}{\mu_0}, \frac{\mu_F}{\mu_0}\right) = \left\{ (2,1), (0.5,1), (1,2), (1,1), (1,0.5), (2,2), (0.5,0.5) \right\}$$

$$\begin{split} &\sigma^{\rm LO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=m_t)=608.09^{+303.52}_{-188.85} \stackrel{(+50\%)}{(-31\%)} [{\rm scales}] ~{\rm fb}\,,\\ &\sigma^{\rm NLO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=m_t)=537.24^{+10.12}_{-190.35} \stackrel{(+2\%)}{(-35\%)} [{\rm scales}] \stackrel{(+17.32)}{_{-18.34}} \stackrel{(+3\%)}{(-3\%)} [{\rm PDF}] ~{\rm fb}\,,\\ &\sigma^{\rm LO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=E_T/2)=493.54^{+230.40}_{-147.02} \stackrel{(+47\%)}{(-30\%)} [{\rm scales}] ~{\rm fb}\,,\\ &\sigma^{\rm NLO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=E_T/2)=544.64^{-12.95}_{-117.47} \stackrel{(+2.95)}{(-22\%)} [{\rm scales}] \stackrel{(+18.10)}{_{-18.92}} \stackrel{(+3\%)}{(-3\%)} [{\rm PDF}] ~{\rm fb}\,,\\ &\sigma^{\rm LO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=H_T/2)=479.38^{+221.91}_{-142.05} \stackrel{(+46\%)}{(-30\%)} [{\rm scales}] ~{\rm fb}\,,\\ &\sigma^{\rm NLO}_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}({\rm CT14},\mu_0=H_T/2)=549.65^{+10.25}_{-53.42} \stackrel{(+2\%)}{(-10\%)} [{\rm scales}] \stackrel{+18.00}{_{-19.15}} \stackrel{(+3\%)}{(-3\%)} [{\rm PDF}] ~{\rm fb}\,, \end{split}$$

Theoretical Uncertainties

Size of NLO corrections for CT14 NLO

$$egin{aligned} \mu_0 &= m_t & \mathcal{K} = 0.88 & -12\% \ \mu_0 &= E_T/2 & \mathcal{K} = 1.10 & +10\% \ \mu_0 &= H_T/2 & \mathcal{K} = 1.12 & +12\% \end{aligned}$$

$$egin{aligned} 1/2\mu_0 &\leq \mu_R, \, \mu_F \leq 2\mu_0 \ 1/2 &\leq \mu_R/\mu_F \leq 2 \end{aligned}$$

- PDFs: CT14, MMHT14, NNPDF3.0
- Total cross sections for $\mu_0 = H_T/2$

$$\sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}^{\text{NLO}}(\text{CT14},\mu_0 = H_T/2) = 549.65^{+10.25}_{-53.42} \begin{pmatrix} +2\% \\ -10\% \end{pmatrix} \text{ [scales]} \begin{pmatrix} +18.00 \\ -19.15 \end{pmatrix} \begin{pmatrix} +3\% \\ -3\% \end{pmatrix} \text{ [PDF]} \text{ fb}$$

$$\sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}^{\text{NLO}}(\text{MMHT14},\mu_0 = H_T/2) = 554.61^{+10.85}_{-54.51} \begin{pmatrix} +2\% \\ -10\% \end{pmatrix} \text{ [scales]} \begin{pmatrix} +12.06 \\ -12.22 \end{pmatrix} \begin{pmatrix} +2\% \\ -2\% \end{pmatrix} \text{ [PDF]} \text{ fb}$$

$$\sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j}^{\text{NLO}}(\text{NNPDF3.0},\mu_0 = H_T/2) = 572.18^{+11.14}_{-56.23} \begin{pmatrix} +2\% \\ -10\% \end{pmatrix} \text{ [scales]} \begin{pmatrix} +11.31 \\ -11.31 \end{pmatrix} \begin{pmatrix} +2\% \\ -2\% \end{pmatrix} \text{ [PDF]} \text{ fb}$$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

68% C.L.

$p_{T}(b-Jet)$

- 16 differential cross sections have been examined, here are just two examples...
- Dimensionful observable: p_T(b) with µ₀= m_t

 $pp
ightarrow e^+
u_e \mu^- ar{
u}_\mu b ar{b} j + X$

- NLO do not rescale shape of LO
- NLO corrections up to -55%
- Properly described only via NLO
- Negative NLO in p_T tails
- LO higher than NLO in p_T tails
- The dynamic scale should depend on p_T of hardest jet and/or top decay products
- Asymptotic freedom $\rightarrow \alpha_{s} \Psi$ in tails
- Dependence on α_s° and α_s° LO >> @ NLO
- Would drive positive NLO/LO ratio in this region

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

p_T(b-Jet)

- Dimensionful observable: p_T(b) with all 3 scales
- Positive corrections below 20% when $E_T/2$ or $H_T/2$ has been used instead

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

p_T(b-Jet)

Central values & ratios to the fixed scale @ LO & @ NLO

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

b-Jet Rapidity

Dimensionless observable: y_b with µ₀ = m_t

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$

- Negative, moderate 10% → but quite stable NLO corrections
- Receives contributions from various scales → also from these sensitive to threshold for tt production
- For µ₀ = m_t effects of phase-space regions close to ttj threshold dominate

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

b-Jet Rapidity

- Dimensionless observable: y_b
- Replaced by positive moderate NLO corrections for dynamical scales

b-Jet Rapidity

Central values & ratios to the fixed scale @ LO & @ NLO

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

 $E_T \& H_T$

$$H_T = \sum_i p_{T,\,i} + p_T^{
m miss}$$
 $E_T = m_{T,\,t} + m_{T,\,ar t}$

• E_T and $H_T @ LO \& @ NLO$ as well as E_T / H_T ratio for $\mu_0 = m_t$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Uncertainties

Upper panel

♦ NLO prediction for three different PDF sets at $\mu_0 = \mu_F = \mu_R$

- Middle panel
 - ♦ NLO scale-dependence band normalized to the central CT14 NLO
- Lower panel
 - ♦ PDF uncertainties obtained for each PDF set separately, normalized to the central NLO prediction with the CT14 PDF set

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Uncertainties

- Transverse momentum distribution of the bottom-jet → For H_T scale uncertainties have reached almost 10% → PDF uncertainties stayed below 6%
- Rapidity distribution of the bottom-jet → For H_T scale uncertainties are below 8%
 → PDF uncertainties are in the range 3% 5%

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Applications

- Alternative method for m_t
- m_t from normalized differential cross section for ttj
- *R* has been calculated using ttj
 @ NLO + POWHEG matched with PYTHIA
 @ Theoretical uncertainties &
- Theoretical uncertainties & PDF uncertainties affect m_t extraction < 1 GeV

• Worth looking at ...

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1-jet}} \frac{d\sigma_{t\bar{t}+1-jet}}{d\rho_s} (m_t^{\text{pole}}, \rho_s)$$

$$\rho_s = \frac{2m_0}{\sqrt{S_{t\bar{t}j}}}.$$

$$\rho_s = \frac{2m_0}{\sqrt{S_{t\bar{t}j}}}.$$

$$\rho_s = \frac{1}{\sqrt{S_{t\bar{t}j}}}.$$

$$\rho_s = \frac{1}{\sqrt{S_{t\bar{t}j}}}.$$

44 Ps

S. Alioli, et al. '13

Top Quark Mass

Top Quark Mass

ATLAS+CMS Preliminary	LHC <i>top</i> WG	m _{top} summa	ry, f s = 7-8 TeV	Aug 2016
World Comb. Mar 2014 stat total uncertainty	, [7]	total	stat ₹	
$m_{top} = 173.34 \pm 0.76$ (0	.36 ± 0.67) GeV	${\sf m}_{\sf top}\pm{\sf to}$	tal (stat \pm syst)	s Ref.
ATLAS, I+jets (*)		172.31	± 1.55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)		173.09	± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	┝╌╁╼┼╌┨	173.49	± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton		172.50	± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets		173.49	± 1.41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013)		173.29	\pm 0.95 (0.35 \pm 0.88)	7 TeV [6]
World comb. (Mar 2014)		173.34	± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets		172.33	± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton		173.79	± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	-	175.1±	1.8 (1.4 ± 1.2)	7 TeV [9]
ATLAS, single top		172.2 ±	: 2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	┝┼╺╪┥	172.99	± 0.85 (0.41± 0.74)	8 TeV [11]
ATLAS, all jets		173.80	± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (June 2016)	 ▼ I ÎI	172.84	\pm 0.70 (0.34 \pm 0.61)	7+8 TeV [11]
CiviS, i+jets	i i i i i i i i i i i i i i i i i i i	172.35	± 0.51 (0.16 ± 0.48)	8 IeV [13]
CMS, dilepton	┝──┼●┼──┤	172.82	± 1.23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	⊢++ +	172.32	± 0.64 (0.25 ± 0.59)	8 TeV [13]
CMS, single top		172.60	± 1.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	⊢₩-I i	172.44	\pm 0.48 (0.13 \pm 0.47)	7+8 TeV [13]
	[1] ATL	AS-CONF-2013-046	[6] ATLAS-CONF-2013-102	[11] arXiv:1606.02179 [12] ATLAS-CONE-2016-064
(*) Superseded by results shown below the line	[3] JHE [4] Eur	P 12 (2012) 105 Phys.J.C72 (2012) 2202	[8] Eur.Phys.J.C75 (2015) 330 [9] Eur.Phys.J.C75 (2015) 158 [10] ATLAS CONE 2015 158	[13] Phys.Rev.D93 (2016) 072004 [14] CMS-PAS-TOP-15-001
	[5] Eur.	- nya.u.074 (2014) 2756	[10] #1E#0-CONF-2014-000	
105 170	17	5	100	185

46

Summary

- Complete description for ttj process with HELAC-NLO

 "resonant" and "non-resonant" contributions at NLO QCD
- Various scales: m_t & E_T / 2 & H_T / 2
- $H_T/2$ "better" than $E_T/2 \rightarrow$ both stabilizes tails but $H_T/2$ gives smaller error
- Scale and PDF uncertainties for σ & various $d\sigma/dX$
- Further studies are needed:

♦ Bottom-mass effects → comparisons between Five- & Four-Flavour schemes
♦ Off-shell versus NWA effects for differential distributions

- Phenomenological applications \rightarrow Alternative method for m_t extraction
 - \diamond Shape-based m_t measurement (e.g. the end point of M_{e^+b} and/or $\rho_s)$
 - Relies on precise modeling of top-quark decays
 - \diamond Goal: m_t extraction < 1 GeV
 - For many predictions should go beyond simple approximation of factorizing top quark production & decays

Backup Slides

Ntuple

Number of events, number of files, averaged number of events per file & total size per contribution for the different Ntuple samples

 $pp
ightarrow e^+
u_e \mu^- ar{
u}_\mu b ar{b} j + X$

Contribution	Nr. of Events	NR. OF FILES	(AVG) EVENTS/FILE	SIZE
$egin{array}{l} \operatorname{Born}\ &\operatorname{Born}\ &\operatorname{Born}\ &\operatorname{Virtual}\ &\operatorname{Integrated}\ &\operatorname{dipoles}\ &\operatorname{Real}\ +\ &\operatorname{Sub}\ &\operatorname{Real}\ \end{array}$	$21 imes 10^{6} \ 33 imes 10^{6} \ 80 imes 10^{6} \ 626 imes 10^{6}$	$\begin{array}{c} 60 \\ 380 \\ 450 \\ 18000 \end{array}$	$350 imes 10^{3}$ $87 imes 10^{3}$ $178 imes 10^{3}$ $35 imes 10^{3}$	38 GB 72 GB 160 GB 1250 GB
Total:	760×10^6	18890	40×10^3	1520 GB

Top Quark

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Hardest Light Jet

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Lepton

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Lepton b-Jet System

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16

Status of α_s determination (PDG 2015)

Determined by comparing 6 experimental observables to pQCD NNLO, N³LO predictions, plus performing a global average of their propagated values at the Z pole scale:

(6) α_s from top-pair p-p cross sections

Total top-antitop cross section (known at NNLO+NNLL) is the 1st p-p collider observable to constrain α_s at NNLO accuracy:

Moriond-QCD 50th, March 2016

PDF

1.2 Baseline 1.15 top-quark differential Gluon- Gluon Luminosity 0.92 1 0.92 0 0.9 0.85 0.8^I $M_{X} (GeV)^{10^{3}}$ 10² NNLO, global fits, LHC 13 TeV 1.15 Baseline 1.1 Quark- Antiquark Luminosity 66 1 50 57 top-quark differential 0.9 0.85 10² 10^{3} M_x (GeV)

NNLO, global fits, LHC 13 TeV

- Pinning down the large-x gluon with NNLO top-quark pair differential distributions
- The gluon-gluon and quarkantiquark NNLO luminosities as a function of the invariant mass M_X of the produced final state at the LHC with $\sqrt{s} = 13$ TeV
- Global baseline fit is compared with the fit including the optimal combination of LHC top-quark pair differential data

M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera and J. Rojo '16