

Theoretical Aspects of Top-Quark Physics

MALGORZATA WOREK

9th Edition of the Large Hadron Collider Physics Conference (LHCP2021) 7-12 June 2021

LHC CONTINUES TO CONFIRM STANDARD MODEL

SM has been extremely successful in describing experimental data accumulated so far ...

NO SIGN OF NEW PHYSICS IN TEV RANGE

01	Model $f_{1}\gamma$ Jets' E ^{mis}	^s ∫∫ dt[fh	-1] Limit	$\int \mathcal{L} dt = (3)$	3.0 – 139) 10 -	$\gamma s = 0, 13 10$
Extra dimensions	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	Mo Mo Ms Mut Grax mass 4,5 T Grax mass 2.3 TeV Kk mass 2.0 TeV gack mass 3.8 TeV KK mass 1.8 TeV	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV eV		2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139 36.1 36.1 139 36.1 139 36.1 139 139 36.1 80	Z' mass 5.1 Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.1 TeV W' mass 4.1 TeV W' mass 3.7 TeV W' mass 3.2 TeV W' mass 3.2 TeV Wr mass 3.2 TeV	TeV / 6.0 TeV / / /	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 ATLAS-CONF-2020-0- 2007.05293 1807.10473 1904.12679
CI	Clapping − 2j − Cl(t/qq) 2e, μ − − Cleebs 2e 1b − Clµµbs 2µ 1b − Cltttt ≥leµ ≥lb≥lj Yes	37.0 139 139 139 36.1	Λ Λ Λ 1.8 TeV Λ 2.0 TeV Λ 2.57 TeV		$\begin{array}{c} \textbf{21.8 TeV} & \eta_{LL}^-\\ \textbf{35.8 TeV} \\ \textbf{g}_{*} = 1\\ \textbf{g}_{*} = 1\\ \textbf{ C_{4t} } = 4\pi \end{array} \qquad \eta_{LL}^-$	1703.09127 2006.12946 ATLAS-CONF-2021-0 ATLAS-CONF-2021-0 1811.02305
MQ	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	139 139 139 139 36.1	mmmd 2.1 TeV mmmd 376 GeV 3.1 TeV mmmd 520 GeV 3.1 TeV mmpd 520 GeV 3.4 TeV		$\begin{array}{l} g_{q} = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_{q} = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 10 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-00 ATLAS-CONF-2021-00 1812.09743
ΓØ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	139 139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ* mass 1.2 TeV UQ* mass 1.2 TeV LQ* mass 1.2 TeV LQ* mass 1.2 TeV LQ* mass 1.2 TeV LQ* mass 1.24 TeV LQ* mass 1.43 TeV LQ* mass 1.26 TeV		$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{u}\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{u}\rightarrow t\nu)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow b\nu)=1 \end{array}$	2006.05872 2006.05872 ATLAS-CONF-2021-00 2004.14060 2101.11582 2101.12527
Heavy quarks	$ \begin{array}{lll} VLQ\; TT \to Ht/Zt/Wb + X & \mbox{multi-channel} \\ VLQ\; BB \to Wt/Zb + X & \mbox{multi-channel} \\ VLQ\; T_{5 3}T_{5 3}T_{5 3} \to Wt + X & 2(S) \!$	36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{Sp} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ singlet, $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-02 1509.04261
Excited fermions	$ \begin{array}{ccccc} \text{Excited quark } q^* \rightarrow qg & - & 2 \ j & - \\ \text{Excited quark } q^+ \rightarrow q\gamma & 1\gamma & 1 \ j & - \\ \text{Excited quark } b^+ \rightarrow bg & - & 1b, 1 \ j & - \\ \text{Excited lepton } \ell^* & 3 \ e, \mu & - & - \\ \text{Excited lepton } \nu^* & 3 \ e, \mu, \tau & - & - \end{array} $	139 36.7 36.1 20.3 20.3	q' mass q' mass b' mass b' mass c.6 TeV (' mass c. 3.0 TeV	6.7 TeV 3 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	139 36.1 36.1 20.3 36.1 34.4	N ⁶ mass 790 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV		$\begin{array}{l} \hline m(W_R)=4.1 \ \text{TeV}, g_L=g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau)=1 \\ \text{DY production}, q =5e \\ \text{DY production}, g =1g_D, \text{spin } 1/2 \end{array}$	20008.07949 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

ATL-PHYS-PUB-2021-009

†Small-radius (large-radius) jets are denoted by the letter j (J).

- Significant number of open questions remains
- Search for new phenomena key aspect of physics programme of LHC

INSTEAD OF INTRODUCTION

- SM ⇒ Extremely fun & exciting & enjoyable time for people working on QCD + EW
- BSM DIRECT SEARCHES
 - Many proposals for New Physics
 - No model of New Physics really stands out \Rightarrow No obvious Candidates to look for @ LHC
- BSM INDIRECT SEARCHES
 - New Physics can be seen as small corrections to SM reactions
 - PRECISION SM MEASUREMENTS @ LHC
 BSM PHYSICS
 HIGH LUMINOSITY LHC
 - Fully exploit experimental program ⇒ HIGH PRECISION THEORETICAL PREDICTIONS ⇒ TOP QUARK

CERN webpage: LHC/HL-LHC Plan (last update January 2021)

UNLIKE OTHER QUARKS

- *Top Quark* ⇒ Discovered at TeVatron in 1995
- Heaviest observed particle

 $m_t = (173.34 \pm 0.76)\,{
m GeV}$

World Combination '14 ATLAS, CDF, CMS, D0

■ Substantial Yukawa coupling 🖙 Special relation with SM Higgs boson

$$Y_t = \sqrt{2}\,rac{m_t}{v}pprox 1$$

- Short lifetime ⇒ Decay before bound states can be formed
- Direct handle on top-quark properties from its decay products

 $b-jets, p_T^{miss}, \ell^{\pm} \& light-jets$

Production

Intrinsic properties

WHY TOP QUARK IS SPECIAL

- PRECISION TOP-QUARK PHYSICS
 - Infrared structure of **QCD**
 - Electroweak sector of SM

Perturbative calculations

- PRECISION TOP-QUARK PHYSICS & BSM DIRECT SEARCHES
 - *tt* & *tt* + *jets* & *tt* + *V* \Rightarrow Main backgrounds to many BSM scenarios
- PRECISION TOP-QUARK PHYSICS & BSM INDIRECT SEARCHES
 - Various production modes & decay channels & properties & rare decays & ...
 - Extract SM parameters
 - Constraining PDFs
 - Verify Higgs boson couplings to top quark & top quark to gauge bosons
 - Study specific infra-red safe observables
 - Cross section ratios
 - Various asymmetries
- DISCREPANCIES BETWEEN PRECISE MEASUREMENTS & PRECISE THEORY
 - Find hints of new physics in LHC data

LHC AS TOP QUARK FACTORY

Top quark pair production @ NNLO **QCD** with **TOP++** CT14nnlo PDF & $m_t = 173.2 \text{ GeV}$

 $\mu_R = \mu_F = \frac{1}{2} m_t$

Theoretical uncertainties: NNLO **QCD**: **5% - 6%** NNLO **QCD** + NNLL: **3% - 4%**

Czakon, Mitov arXiv:1112.5675 [hep-ph]

DISCLAIMER

- Many new & interesting results
- (Biased) Selection ⇒ Only latest 2020 & 2021 results
- Only state-of-the-art results
- Only fixed order NNLO & NLO results
- Only **QCD**
- Only Standard Model

GOAL

 Identify which effects are important & should be taken into account ⇒ Few examples ⇒ Important for Higgs boson studies in *ttH*

TOP-QUARK PAIR PRODUCTION @ NNLO + NNLL

- *LHC & Tevatron* measurements of σ_{tt} as function of \sqrt{s}
- Compared to NNLO <u>QCD</u> calculation complemented with NNLL resummation (top++2.0)
- Theory band represents uncertainties due to $\mu_R \& \mu_F \&$ *PDF*
- Measurements and theory calculation for $m_t=172.5 \ GeV$

TOP-QUARK PAIR PRODUCTION & DECAY @ NNLO

Di-lepton

$\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{LO}} + \alpha_s \mathrm{d}\sigma^{\mathrm{NLO}} + \alpha_s^2 \mathrm{d}\sigma^{\mathrm{NNLO}}$

Predictions in NWA

$$\begin{split} \mathrm{d}\sigma^{\mathrm{LO}} &= \sigma^{\mathrm{LOxLO}} \,, \\ \mathrm{d}\sigma^{\mathrm{NLO}} &= \mathrm{d}\sigma^{\mathrm{NLOxLO}} + \mathrm{d}\sigma^{\mathrm{LOxNLO}} - \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} \mathrm{d}\sigma^{\mathrm{LO}} \,, \\ \mathrm{d}\sigma^{\mathrm{NNLO}} &= \mathrm{d}\sigma^{\mathrm{NNLOxLO}} + \mathrm{d}\sigma^{\mathrm{NLOxNLO}} + \mathrm{d}\sigma^{\mathrm{LOxNNLO}} \\ &- \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} \mathrm{d}\sigma^{\mathrm{NLO}} + \left(\frac{3\Gamma_t^{(1)2}}{\Gamma_t^{(0)2}} - \frac{2\Gamma_t^{(0)}\Gamma_t^{(2)}}{\Gamma_t^{(0)2}}\right) \mathrm{d}\sigma^{\mathrm{LO}} \,. \end{split}$$

Czakon, Mitov, Poncelet arXiv:2008.11133 [hep-ph]

 $pp \to t\bar{t} + X \to W^+W^-b\bar{b} + X \to \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b} + X$

TOP-QUARK PAIR PRODUCTION & DECAY @ NNLO

- ATLAS & CMS data
- Compared to Powheg-Box+Pythia8
- Also to calculations @ NNLO QCD

- ATLAS & CMS data
- Compared to MC Simulation
- Ratio to Powheg-Box+Pythia8

11

TOP-QUARK PAIR PRODUCTION & DECAY @ NNLO

Di-lepton

Czakon, Mitov, Poncelet arXiv:2008.11133 [hep-ph]

 $pp \rightarrow t\bar{t} + X \rightarrow W^+W^-b\bar{b} + X \rightarrow \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b} + X$

- *NNLO QCD* theoretical predictions only for *tt*
 - di-lepton channel
- More exclusive final states produced @ LHC

Stable top quarks

Cafarella, Papadopoulos, Worek arXiv:0710.2427 [hep-ph]

- *NNLO QCD* theoretical predictions only for *tt*
 - di-lepton channel
- More exclusive final states produced @ LHC

Stable top quarks

Cafarella, Papadopoulos, Worek arXiv:0710.2427 [hep-ph]

 χ^2 /ndf and *p*-values between measured normalised cross-sections & MC simulation & NLO *QCD* calculation

		$\gamma(\gamma)$	$ \eta angle$	(y)	$\Delta R(\gamma$	$(\ell,\ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta\eta $	$(\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	$ \chi^2/\text{ndf}$	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	<0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	<0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

- NNLO *QCD* theoretical predictions only for *tt*
 - di-lepton channel
- More exclusive final states produced @ LHC

MOTIVATION ⇒ *ttW production* @ *LHC*

- Background for *ttH* ⇒ 2*lSS* & 3*l*
 - Higher normalization for *ttW* compared to SM predictions from multipurpose MC generators 30%-70%
 - Problems with modeling of final states in phase space regions dominated by *ttW*

ATLAS-CONF-2019-045

- Improved description of *ttW* background needed to reach greater precision in future
- First calculations for off-shell *ttW* confirmed by second group ⇒ *di-lepton channel*

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph] Denner, Pelliccioli arXiv:2007.12089 [hep-ph]

Stable top quarks

$t\bar{t}\gamma, t\bar{t}Z, t\bar{t}H, t\bar{t}W^+, t\bar{t}W^- @LHC$

Cafarella, Papadopoulos, Worek arXiv:0710.2427 [hep-ph]

Di-lepton

• COMPLETE OFF-SHELL EFFECTS:

- Off-shell top quarks described by Breit-Wigner propagators
- Double-, single- & non-resonant top-quark contributions included
- All interference effects incorporated at matrix element level

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$ $pp
ightarrow e^- ar{
u}_e \, \mu^+ \,
u_\mu \, e^- ar{
u}_e \, bar{b} + X$

• NWA:

• Works in the limit $\Rightarrow \Gamma_t/m_t \to 0$

 $\Gamma_t = 1.35159 \; {
m GeV}, \; m_t = 173.2 \, {
m GeV}, \; \Gamma_t/m_t pprox 0.008$

- Incorporates only double resonant contributions
- Restricts unstable top quarks & W gauge bosons to on-shell states

 $pp
ightarrow t ar{t} W^+ + X
ightarrow W^+ W^- b ar{b} + X
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, e^+
u_e \, b ar{b}$

$H_T^{vis} = p_T(\mu^-) + p_T(\ell_1) + p_T(\ell_2) + p_T(j_{b_1}) + p_T(j_{b_2})$ 10-3 10^{-3} $\mu_0 = H_T / 3$ $\mu_0 = m_t + m_W / 2$ LO LO NLO NLO 10-4 10^{-4} **Di-lepton** $d\sigma/H_{T,vis}$ [fb/GeV] $d\sigma/H_{T,vis}$ [fb/GeV] 10-5 10-5 10-6 10⁻⁶ 10-7 10-7 10⁻⁸ 10^{-8} 1.5 1.5 NL0/L0 NL0/L0 1.0 1.0 0.5 0.5 1400 200 400 600 800 1200 0 200 400 600 800 1000 1200 0 1000 1400 $H_{T.vis}$ [GeV] $H_{T vis}$ [GeV]

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

Off-shell ttW⁺

- *Fixed scale choice* \Rightarrow Leads to perturbative instabilities in TeV region of differential cross & Large distortions
- *Dynamical scale choice* \Rightarrow Stabilises tails & keeps NLO uncertainties bands within LO ones

Off-shell & NWA & NWA_{LOdecay}

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

$$pp
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, e^+
u_e \, bar{b} + X$$

DIFFERENTIAL LEVEL:

- Off-shell up to **60% 70%**
- NLO **QCD 10% 20%**
- PDF up to **10%**
- Scales **10% 20%**
- For central value of scale substantial differences
 between NWA & NWA_{LOdecav}

INTEGRATED LEVEL:

- Complete top-quark off-shell effects 0.2%
- NLO *QCD* around 10% & Theoretical uncertenties: Scales 6%-7% ⇒ PDF 2%
- NLO *QCD* corrections to decays **3%-5%**

• Similar effects for ttW-

TTW⁺ / TTW⁻ @ NLO

 $p_{T, \, b} > 30 \,\, {
m GeV} \,\, \left| 113.1 \, {}^{+5.4 \, (5\%) \,\, +1.9 \, (2\%)}_{-7.8 \, (7\%) \,\, -1.9 \, (2\%)}
ight|$

 $p_{T, b} > 35 \text{ GeV} \left[102.6^{+4.7}_{-6.8} (5\%)^{+1.7}_{(2\%)} \right]$

 $p_{T, b} > 40 \text{ GeV} \left| 92.0^{+4.0}_{-6.1} \left(\frac{4\%}{7\%} \right)^{+1.6} \left(\frac{2\%}{2\%} \right) \right|$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

	Seurching for more p	recise observables	
$\mu_0=m_t+m_W/2$	$\sigma^{ m NLO}_{tar{t}W^+}\pm\delta_{ m scale}\pm\delta_{ m PDF}$	$\sigma^{ m NLO}_{tar{t}W^-}\pm\delta_{ m scale}\pm\delta_{ m PDF}$	$\sigma^{ m NLO}_{tar{t}W^+}/\sigma^{ m NLO}_{tar{t}W^-}$
NNPDF3.0	[ab]	[ab]	${\cal R}$
$p_{T, b} > 25 \text{ GeV}$	$123.2^{+6.3}_{-8.7}(5\%)$ +2.1 (2%)	$68.0^{+4.8}_{-5.5}(7\%)^{+1.2}(2\%)_{-1.2}(2\%)$	$1.81 \pm 0.03 (2\%)$

Sampling for more marine champables

Off-shell ttW[±]

Di-lepton

NLO QCD integrated fiducial cross sections & cross section ratios

- $ttW^+ & ttW^-$ similar from NLO QCD point of view \Rightarrow Integrated & differential level
- Scale uncertainties can be taken correlated
- Cross section ratios stable with respect to $p_T(b)$
- Insensitive to details of modelling of top quark production & decays \Rightarrow Off-shell/NWA/NWA_{LOdecay}

 $62.3^{\,+4.2\,(7\%)\,+1.1\,(2\%)}_{\,-4.9\,(8\%)\,-1.1\,(2\%)}$

 $56.3^{\,+3.7\,(7\%)\,+1.0\,(2\%)}_{\,-4.4\,(8\%)\,-1.0\,(2\%)}$

 $50.3^{+3.3}_{-3.9}{}^{(6\%)}_{(8\%)}{}^{+0.9}_{-0.9}{}^{(2\%)}_{(2\%)}$

 $1.81 \pm 0.03 (2\%)$

 $1.82 \pm 0.03 (2\%)$

 $1.83 \pm 0.04 \, (2\%)$

Insensitive to scale choice $\Rightarrow \mu_0 = m_t + m_W/2$ versus $\mu_0 = H_T/3$

TOP QUARK CHARGE ASYMMETRY @ NLO

 μ_0

Searching for more precise observables

$$A_c^t = \frac{\sigma_{\rm bin}^+ - \sigma_{\rm bin}^-}{\sigma_{\rm bin}^+ + \sigma_{\rm bin}^-}, \qquad \qquad \sigma_{\rm bin}^\pm = \int \theta(\pm \Delta |y|) \,\theta_{\rm bin} \, d\sigma$$

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

• A_c^t charge asymmetry @ NLO for $pp \rightarrow ttW^+$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

- Asymmetry larger than for $pp \rightarrow tt$
- Top quark momenta must be reconstructed
- Scales no important
- Modelling important

	$t\bar{t}W^+$	Off-shell	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
	$\mu_0 = H_T/3$			
	$A_{c,y}^t$ [%]	$2.36(8)^{+1.19(50\%)}_{-0.77(33\%)}$	$1.93(5)^{+1.23(64\%)}_{-0.72(37\%)}$	$1.11(3)^{+0.55(49\%)}_{-0.53(48\%)}$
	$A_{c,exp,y}^t$ [%]	$2.66(10)^{+0.38(14\%)}_{-0.34(13\%)}$	$2.20(5)^{+0.45(20\%)}_{-0.31(14\%)}$	$2.08(5)^{+0.24(11\%)}_{-0.40(19\%)}$
	$t\bar{t}W^+$	OFF-SHELL	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
=	$m_t + m_W/2$			
	$A_{c,y}^t \; [\%]$	$2.09(8)^{+1.06(51\%)}_{-0.70(33\%)}$	$1.68(4)^{+1.00(60\%)}_{-0.67(40\%)}$	$0.86(3)^{+0.66(77\%)}_{-0.43(50\%)}$
	$A^t_{c,exp,y} \ [\%]$	$2.62(10)^{+0.39(15\%)}_{-0.34(13\%)}$	$2.19(4)^{+0.38(17\%)}_{-0.34(16\%)}$	$1.94(5)^{+0.46(24\%)}_{-0.32(16\%)}$

LEPTON CHARGE ASYMMETRY @ NLO

Off-shell ttW[±]

- A_c^l charge asymmetry @ NLO for $pp \rightarrow ttW^+$
- Directly measurable ⇒ Top quark reconstruction not needed

22

MOTIVATION ⇒ *ttbb production* @ *LHC*

- Irreducible background for Higgs boson studied
- $ttH \Rightarrow H \rightarrow bb$
- Top-Yukawa coupling $Y_t \Rightarrow$ Probed directly
- ATLAS & CMS reported measurements for $ttH(H \rightarrow bb)$ decay channel of Higgs boson

EXPERIMENTAL CHALLENGES

- Identification of candidates for Higgs decay
- Combinatorial background
- Misidentification of light jets with *b*-jets
- *b*-jet tagging
- SM backgrounds

$pp ightarrow t ar{t} H ightarrow t ar{t} b ar{b} ightarrow W^+ W^- b ar{b} b ar{b}$

THEORY CHALLENGES

- Two very different & distinctive scales
- $m_t \Rightarrow tt$ production & top-quark decays
- $p_T(b) \Rightarrow$ Describes *b*-jets from $g \rightarrow bb$ splitting
- Second calculation for off-shell *ttbb* in *dilepton* channel ⇒ Agreement with first calculations

 $pp
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, bar{b} \, bar{b} + X$

Denner, Lang, Pellen arXiv:2008.00918 [hep-ph] Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

Off-shell ttbb

OFF-SHELL TTBB @ NLO

Integrated fiducial cross sections for ttbb

$p_T(b)$	$\sigma^{\rm LO}$ [fb]	$\delta_{ m scale}$	$\sigma^{ m NLO}$ [fb]	$\delta_{ m scale}$	$\delta_{ m PDF}$	$\mathcal{K} = \sigma^{\mathrm{NLO}} / \sigma^{\mathrm{LO}}$
			$\mu_R = \mu_F$ =	$=\mu_0=m_t$		
25	6.998	$+4.525 (65\%) \\ -2.569 (37\%)$	13.24	$+2.33 (18\%) \\ -2.89 (22\%)$	$+0.19 (1\%) \\ -0.19 (1\%)$	1.89
30	5.113	$+3.343~(65\%)\ -1.889~(37\%)$	9.25	$+1.32~(14\%) \ -1.93~(21\%)$	$+0.14(2\%)\ -0.14(2\%)$	1.81
35	3.775	$+2.498~(66\%)\ -1.401~(37\%)$	6.57	$egin{array}{c} +0.79 & (12\%) \ -1.32 & (20\%) \end{array}$	$+0.10(2\%)\ -0.10(2\%)$	1.74
40	2.805	$+1.867 (67\%) \\ -1.051 (37\%)$	4.70	$+0.46~(10\%)\ -0.91~(19\%)$	$+0.08(2\%)\ -0.08(2\%)$	1.68

$\mu_R = \mu_F = \mu_0 = H_T/3$

25	6.813	+4.338(64%) -2.481(36%)	13.22	$+2.66 (20\%) \\ -2.95 (22\%)$	$+0.19 (1\%) \\ -0.19 (1\%)$	1.94
30	4.809	$+3.062 (64\%) \\ -1.756 (37\%)$	9.09	$+1.66~(18\%) \\ -1.98~(22\%)$	$+0.16(2\%)\ -0.16(2\%)$	1.89
35	3.431	$+2.191 (64\%) \\ -1.256 (37\%)$	6.37	$^{+1.07}$ (17%) $^{-1.36}$ (21%)	$+0.11(2\%)\ -0.11(2\%)$	1.86
40	2.464	$+1.582 (64\%) \\ -0.901 (37\%)$	4.51	$+0.72 (16\%) \\ -0.95 (21\%)$	$+0.09(2\%)\ -0.09(2\%)$	1.83

- Results for NNPDF3.1 LO & NLO with $\alpha_s(m_Z) = 0.118$
- LO NNPDF3.1 PDF set with $\alpha_s(m_Z) = 0.130 \implies K = 1.45$
- Other PDF sets give K-factor ∈ (1.81 & 1.37 & 1.23)
- With jet veto of 50 GeV *K* = 1.11 & *K* = 1.23

Off-shell ttbb

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

- Large but rather stable NLO corrections @ differential level
- Dynamical scales important
- PDF uncertainties small

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

Theoretical predictions	$\sigma_{e\mu+4b}$ [fb]
Sherpa+OpenLoops (4FS)	17.2 ± 4.2
Powheg-Box+Pythia 8 (4FS)	16.5
PowHel+Pythia 8 (5FS)	18.7
PowHel+Pythia 8 (4FS)	18.2
Helac-Nlo (5FS)	19.4 ± 4.2

$$\sigma_{e\mu+4b}^{\text{ATLAS}} = (25 \pm 6.5) \text{ fb}$$
$$\sigma_{e\mu+4b}^{\text{Helac-Nlo}} = (20.0 \pm 4.3) \text{ fb}$$

- Higher with leptonic *t* decays into *l*
- For similar scale choice HELAC-NLO result is even higher ~ 21 fb

ATLAS arXiv:1811.12113 [hep-ex]

- Comparison to ATLAS results
- eµ channel @ 13 TeV
- Agreements within theoretical uncertainties

INITIAL STATE BOTTOM

- Charge aware and charge blind schemes for *b*-jet tagging
- @ LO initial state *b*-quark contributions $\Rightarrow 0.1\% 0.2\%$
- **@NLO** \Rightarrow **1%** & up to **1.5%** with $p_T(b)$ scan & up to **2%** for jet veto of **50** *GeV* \Rightarrow Negligible contribution

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

27

TAKE-HOME MESSAGE

- *Standard: tt+X* @ *NLO* with stable tops or LO decays in NWA matched to PS ⇒ *all channels*
- State-of-the-art:
 - tt @ NNLO QCD ⇒ di-lepton
 - $ttX, X = H \& Z (\rightarrow \nu\nu) \& W \& \gamma \& bb @ NLO QCD$ with full off-shell effects $\Rightarrow di$ -lepton
- Proper modelling of production & decay essential already now in presence of inclusive cuts
 - Corrections to production & decays ⇒ *At least full NWA*
 - NNLO or NLO *tt* spin correlations
 - Possibility of using kinematic-dependent $\mu_R \& \mu_F$ scales
 - Complete off-shell effects for *top quarks & W/Z* gauge bosons
- Even more important for:
 - Exclusive cuts & High luminosity measurements
 - New Physics searches & Might impact exclusion limits
 - SM parameter extraction
- Top quarks play important role in virtually every LHC analysis 🖨 *SM & BSM*
- Lots of data, sophisticated analyses, precision measurements ⇒ Should be compared to state-of-the-art theoretical predictions

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, b ar{b} + X$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$ $pp
ightarrow e^- ar{
u}_e \, \mu^+ \,
u_\mu \, e^- ar{
u}_e \, bar{b} + X$

31

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

full off-shell ($\mu_0 = m_t + m_W/2$) $106.9^{+27.7}_{-20.5}(19\%)$ $123.2^{+6.3}_{-8.7}(7\%)$ full full off-shell ($\mu_0 = H_T/3$) $115.1^{+30.5}_{-22.5}(26\%)$ $124.4^{+4.3}_{-7.7}(6\%)$ full	full off-shell $(\mu_0 = m_t + m_W/2)$	$57.2^{+14.9(26\%)}_{-11.0(19\%)}$	$68.0^{+4.8}(7\%)$
	full off-shell $(\mu_0 = H_T/3)$	$62.4^{+16.7(27\%)}_{-12.3(20\%)}$	$68.6 {+3.5}_{-4.8} {(5\%)}_{-4.8} {(7\%)}$
NWA $(\mu_0 = m_t + m_W/2)$ $106.4^{+27.5}_{-20.3} (19\%)$ $123.0^{+6.3}_{-8.7} (7\%)$ NWNWA $(\mu_0 = H_T/3)$ $115.1^{+30.4}_{-20.4} (10\%)$ $124.2^{+4.1}_{-7.7} (3\%)$ NV	NWA $(\mu_0 = m_t + m_W/2)$ NWA $(\mu_0 = H_T/3)$	$57.2^{+14.9}_{-11.0}$ (26%) $62.6^{+16.7}_{-12.2}$ (20%)	$68.0^{+4.9}_{-5.4}_{(8\%)}$ $68.7^{+3.5}_{-4.9}_{-5\%}_{(7\%)}$
$NWA_{LOdecay} (\mu_0 = m_t + m_W/2) \qquad 127.0^{+14.2(11\%)}_{-13.3(10\%)} NV$	NWA _{LOdecay} ($\mu_0 = m_t + m_W/2$)	-12.3 (20%)	$69.8^{+8.8}_{-7.8}(13\%)_{-7.8}(11\%)_{+8.2}(11\%)$

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$

 $pp
ightarrow e^- \bar{
u}_e \, \mu^+ \,
u_\mu \, e^- \bar{
u}_e \, b \bar{b} + X$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$

ΤΤγ

Bevilacqua, Hartanto, Kraus, Weber, Worek arXiv:1912.09999 [hep-ph]

ΤΤγ

Bevilacqua, Hartanto, Kraus, Weber, Worek arXiv:1912.09999 [hep-ph]

 $pp
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, b ar{b} \, \gamma \, + X$

ΤΤγ

 $pp
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, b ar{b} \, \gamma \, + X$

3@LO&9@NLO DIFFERENT POSSIBILITIES

(i) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}$, (ii) $t = W^+(\to e^+\nu_e) b\gamma$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}$, (iii) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}\gamma$

DOUBLE-RESONANT (DR) REGION

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

SINGLE-RESONANT (SR) REGIONS

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$ or

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

$$Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$$

NON-RESONANT (NR) REGION

$$|M(t) - m_t| > n \Gamma_t$$
, and $|M(\bar{t}) - m_t| > n \Gamma_t$

BOUNDARY PARAMETER

- n = 5, 10, 15
- For n = 15

 $M(t) \in (152.9, 193.5)$ GeV