

CRC/Transregio 257 RTG 2497

Top quark @ the LHC

Seminarium IFJ PAN, Krakow, Poland, 21 January 2021

CRC/Transregio 257 RTG 2497

(Modelling of) Top quark @ the LHC

Seminarium IFJ PAN, Krakow, Poland, 21 January 2021

Outline

- What's so special about top quark physics ?
- Status of theoretical predictions
 QCD
 - State-of-the-art theoretical predictions

 $pp
ightarrow tar{t} \ \& \ pp
ightarrow tar{t}X \,, \ X=j,\gamma,W^{\pm},Z(
ightarrow
u
u)$

• Concentrate on modeling of top quark production & decays

- Disclaimer
 - Fixed order NNLO & NLO theoretical predictions @ LHC_{13TeV}
 - Top quark with off-shell effects versus NWA

Top Quark

Unlike the other quarks

- Discovered at TeVatron in 1995
- Heaviest observed particle

 $m_t = (173.34 \pm 0.76)\,{
m GeV}$

World Combination '14 ATLAS, CDF, CMS, D0

■ Substantial Yukawa coupling ⇒ Special relation with the SM Higgs boson

$$Y_t = \sqrt{2}\,rac{m_t}{v}pprox 1$$

- Short lifetime $\tau \approx 5 \times 10^{-25}$ s \Rightarrow Decay before bound states can be formed
- Direct handle on top quark properties from decay products

$$b-jets, p_T^{miss}, \ell^\pm \ \& \ light-jets$$

Intrinsic properties:

- Mass
- Charge
- Lifetime
- Width
- ...

Decays:

- Decay channels (SM & new)
- Couplings W, Z, γ & H
- Spin correlations

• ...

- Top quark produced via QCD interaction decay through weak interaction
- Producing W-boson and a down-type quark (down, strange, or bottom)

$$\mathcal{BR}(t \to Wb) = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \approx 0.99$$

SM : $t \to Wb \approx 100\%$

Why top quark is special

- *Infrared structure of* **QCD** ⇒ Precision physics
 - Extract SM parameters as precisely as possible $\Rightarrow \alpha_s \& m_t$
 - Constraining gluon PDFs
 - Verify couplings to other particles $\Rightarrow \gamma, H, Z, W^{\pm}$
 - Cross section ratios
 - More stable against radiative corrections
 - Reduced scale dependence
 Various uncertainties cancel in ratio
 - Enhanced predictive power ⇒ Interesting to probe new physics @ LHC
 - Top quark charge *asymmetry*, *differential top quark charge asymmetries*, ...
 - Lepton charge asymmetry, ...

Why top quark is special

$$b-jets, p_T^{miss}, \ell^{\pm} \& light-jets$$

- Background process to various SM studies ⇒ Higgs boson
- Window to New Physics
 - *Direct searches* ⇒ Main background to many BSM scenarios
 - *Indirect searches* ⇒ Precision tests of top quark production, decays & properties, rare decays, various top quark production modes

DM production and supersymmetric partners of top quarks

LHC as Top Quark Factory

Czakon, Mitov '14

		Collider	σ _{tt} [pb]	L [fb ⁻¹]	N _{event}
IHC Run 1] _ ן	$LHC_{7 TeV}$	180	5.0	$9 \ge 10^5$
		$LHC_{8 TeV}$	256	19.7	$5 \ge 10^{6}$
LHC Run 2] →	LHC _{13 TeV}	835	35.9	$3 \ge 10^{7}$
L					
High Luminosity] →	HL-LHC _{14 TeV}	987	3000	$3 \ge 10^9$
High Energy		HE-LHC _{27 TeV}	3840	15000	$6 \ge 10^{10}$

Top quark pair production @ NNLO QCD with **TOP++** CT14nnlo PDF & $m_t = 173.2 \text{ GeV}$ $\mu_R = \mu_F = \frac{1}{2} m_t$

Theoretical uncertainties: NNLO: **5% - 6%** & *NNLO+NNLL:* **3% - 4%** Setting the stage All that LO, NLO, NNLO & Jets

Cross Section for Hard Scattering Process Initiated by two Hadrons - Factorization Theorem -

"A good jet definition can be applied to experimental measurements, to the output of parton-showering Monte Carlo and to partonic calculations, and the resulting jets provide a common representation of all these different kinds of events"

"Projection to jets should be resilient to QCD effects"

Gavin P. Salam, Towards Jetography '10

State-of-the-art NNLO QCD results for tt @LHC

Top-Quark Pair Production

Stable top quarks

Normalization:

Czakon, Fiedler, Mitov '13

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan '19

Fully differential:

Czakon, Heymes, Mitov '16

Catani, Devoto, Grazzini, Kallweit, Mazzitelli '19

Summary of LHC and Tevatron measurements of tt cross-section compared to NNLO QCD calculation complemented with NNLL resummation - TOP++

Theoretical uncertainties: NNLO: 5% - 6% & NNLO+NNLL: 3% - 4%

Top-Quark Pair Production

Stable top quarks

Full phase-space normalized differential tt cross-section $\rightarrow p_T(t)$

The CMS and ATLAS results are compared to Powheg+Herwig6 and Powheg+Pythia8 MC generators as well as the NLO & NNLO calculations

Top-Quark Pair Production & Decays

Normalized differential tt crosssection ⇒ azimuthal opening angle between two leptons

agreement

Top quarks in NWA di-lepton channel

Behring, Czakon, Mitov, Papanastasiou, Poncelet '19 Czakon, Mitov, Poncelet '20

Inclusive ⇒ does not assume any selection cuts

Fiducial ⇒ based on the ATLAS selection cuts

Proper modeling of topquark production & decay essential

17

Top-Quark Pair Production & Decays

Normalized differential tt cross-section

LHCtopWG

More exclusive final states

What about other processes ?

- NNLO theoretical predictions only for *tt* ⇒ di-lepton channel
- Besides *tt* more exclusive final states can be accessed @ LHC

Stable top

quarks

HELAC-PHEGAS

Cafarella, Papadopoulos, Worek '09

20

What about other processes ?

HELAC-PHEGAS *Cafarella, Papadopoulos, Worek '09*

Combined tty + tWy production

	<i>p</i> 1	$\gamma(\gamma)$	$ \eta $	(γ)	$\Delta R(\gamma$	$(\ell,\ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta \eta $	$(\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	<0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	<0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59
	·								,	

22

State-of-the-art NLO QCD results with off-shell top quarks

NWA & Off-Shell Effects

Complete off-shell effects

- Off-shell top quarks are described by Breit-Wigner propagators
- Double-, single- as well as non-resonant top-quark contributions are included
- All interference effects consistently incorporated at the matrix element level

NWA

• Works in the limit $\Rightarrow \Gamma_t/m_t \to 0$

 $\Gamma_t = 1.35159 \; {
m GeV}, \; m_t = 173.2 \, {
m GeV}, \; \Gamma_t/m_t pprox 0.008$

- Incorporates only double resonant contributions
- Restricts the unstable top quarks (W gauge bosons) to on-shell states

$$pp \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$$

$$\frac{1}{\left(p_t^2 - m_t^2\right)^2 + m_t^2\Gamma_t^2} \xrightarrow{\Gamma_t/m_t \rightarrow 0} \frac{\pi}{m_t\Gamma_t} \delta\left(p_t^2 - m_t^2\right) + \mathcal{O}\left(\frac{\Gamma_t}{m_t}\right)$$

$$d\sigma_{t\bar{t}}^{\text{NWA}} = d\sigma_{t\bar{t}} d\mathcal{B}_{t \rightarrow be^+\nu_e} d\mathcal{B}_{\bar{t} \rightarrow \bar{b}\mu^-\bar{\nu}_\mu}$$

NWA & Off-Shell Effects

- Feynman Diagrams ⇒ 628 @ LO for gg channel versus 38 in NWA
- 8 diagrams with photon in production and 30 in decay stage

two top-quark resonances

one top-quark resonance

no top-quark resonances

- NLO 🖙 4348 real emission & 36032 @ 1-loop for gg channel
- Most complicated ⇒ 90 heptagons & 958 hexagons

 $pp
ightarrow t ar{t} \gamma + X @ \mathcal{O}(lpha_s^3 lpha^5)$

Top-Quark Resonances

- Putting simply $\Gamma_t \neq 0$ violates gauge invariance
- Gauge-invariant treatment ⇒ *Complex Mass Scheme*
- In the amplitude the substitution is performed for top quark

$$(\not\!p-m_t+i\epsilon)^{-1} \longrightarrow (\not\!p-\mu_t+i\epsilon)^{-1}$$
 $\mu_t^2 = m_t^2 - i \, m_t \Gamma_t$

Denner, Dittmaier, Roth, Wackeroth '99 Denner, Dittmaier, Roth, Wieders '05

- All matrix elements evaluated using complex masses
- Another non trivial aspect ⇒ Evaluation of one-loop scalar integrals
- Scalar integrals with complex masses ⇔ Supported e.g. by **ONELOOP**

van Hameren '11

HELAC-NLO

Ossola, Papadopoulos, Pittau '08

Output:

- Theoretical predictions are stored in the form of the Ntuples Files and modified Les Houches & ROOT Files
 Bern, Dixon, Febres Cordero,
- Kinematical cuts can be changed
- New observables can be defined
 - in be defined
- Renormalization or factorization scales & PDF sets can be changed

Hoeche, Ita, Kosower, Maitre '14

How Good Is the NWA ?

- Should be accurate for sufficiently inclusive observables $\mathcal{O}(\Gamma_t/m_t) \approx 0.8\%$
- Off-shell effects for integrated fiducial $\sigma_{tt} \Rightarrow at few \% level @ NLO in QCD$

•	tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Frederix '14 Heinrich, Maier, Nisius, Schlenk, Winter '14 Denner, Pellen '16 (EW+QCD) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
•	ttH (di-lepton)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD)
•	ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
•	ttγ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20
•	$ttZ, Z ightarrow u_l u_l$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '19
•	ttW^{\pm} (di-lepton)	Bevilacqua, Bi, Hartanto, Kraus, Worek '20 Denner, Pelliccioli '20
•	ttbb (di-lepton)	Denner, Lang, Pellen '20

tty production @ LHC

Questions:

- Size of NLO QCD corrections $\Rightarrow \sigma_{t\bar{t}\gamma}, d\sigma_{t\bar{t}\gamma}/dX$
- Reduction of theoretical Uncertainties $\Rightarrow t\bar{t}\gamma/t\bar{t}$
- Applicability of the NWA A Importance of off-shell effects

tty with dynamical scale $\frac{1}{4} H_T$

$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

PDF	p _{T,b}	$\sigma^{ m LO}$ [fb]	δ_{scale}	$\sigma^{ m NLO}$ [fb]	δ_{scale}	$\delta_{ m PDF}$	$\mathcal{K} = \frac{NLO}{LO}$
СТ	25	10.68	+3.54 (33%) -2.49 (23%)	11.19	+0.16 (1%) -0.54 (5%)	+0.32 (3%) -0.35 (3%)	1.05
	30	9.58	+3.18(33%) -2.24(23%)	9.93	+0.14 (1%) -0.54 (5%)	+0.28(3%) -0.31(3%)	1.04
	35	8.44	+2.80 (33%) -1.97 (23%)	8.69	+0.12 (1%) -0.50 (6%)	+0.25 (3%) -0.27 (3%)	1.03
	40	7.32	+2.45 (33%) -1.71 (23%)	7.50	+0.11 (1%) -0.45 (6%)	+0.22 (3%) -0.23 (3%)	1.02
MMHT	25	11.59	+4.22 (36%) -2.88 (25%)	11.29	+0.16 (1%) -0.57 (5%)	+0.24 (2%) -0.22 (2%)	0.97
	30	10.38	+3.78 (36%) -2.58 (25%)	10.02	+0.13 (1%) -0.58 (6%)	+0.22 (2%) -0.19 (2%)	0.97
	35	9.12	+3.33 (36%) -2.26 (25%)	8.77	+0.11 (1%) -0.54 (6%)	+0.19 (2%) -0.17 (2%)	0.96
	40	7.90	+2.89 (37%) -1.96 (25%)	7.57	+0.09 (1%) -0.48 (6%)	+0.16 (2%) -0.15 (2%)	0.96
NNPDF	25	10.78	+3.82 (35%) -2.62 (24%)	11.62	+0.17 (1%) -0.58 (5%)	+0.16 (1%) -0.16 (1%)	1.08
	30	9.65	+3.42 (35%) -2.34 (24%)	10.31	+0.14 (1%) -0.58 (6%)	+0.14 (1%) -0.14 (1%)	1.07
	35	8.48	+3.01 (35%) -2.05 (24%)	9.02	+0.12 (1%) -0.53 (6%)	+0.12 (1%) -0.12 (1%)	1.06
	40	7.34	+2.61 (36%) -1.78 (24%)	7.79	+0.10 (1%) -0.48 (6%)	+0.11 (1%) -0.11 (1%)	1.06

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

Stability w.r.t. $p_{T,b}$ cut

- NLO QCD corrections stable against *p*_{T,b} cut
- CT14 PDF uncertainties similar/smaller than difference between various PDF sets (also at the differential level)
- Similar results for $p_{T,\gamma}$ *cut*

 $H_T = p_{T, e^+} + p_{T, \mu^-} + p_{T, j_b} + p_{T, j_b} + p_T^{miss} + p_{T, \gamma}$

30

$tt\gamma$ with dynamical scale H_T

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

 $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

- NLO Corrections up to 43%
- Theoretical uncertainties up to ± 56%

- NLO Corrections up to + 8%
- Error reduced down to ± 7%

Dynamical scale very effective in stabilizing perturbative convergence ! Provides smaller theoretical error ! 31

tty with dynamical scale H_T

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

- Positive NLO corrections up to 13%
- NLO error bands within LO
- Theoretical error up to ± 8%

Not all differential K-factors are flat even with $\mu_0 = \frac{1}{4} H_T$!

HELAC-NLO

tty/tt

- Fiducial integrated σ_{tty} with dynamical scale \Rightarrow (theoretical error of $\pm 6\%$)
- Fiducial differential $d\sigma_{tty}/dX \Rightarrow$ (theoretical error ± (10% 30%))
- Can we decrease theoretical error even further for *ttγ* without going to NNLO ?
- Answer is yes !

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{NLO}}(\mu_1)}{\sigma_{t\bar{t}}^{\text{NLO}}(\mu_2)} \qquad \qquad \mathcal{R}_X = \left(\frac{d\sigma_{t\bar{t}\gamma}^{\text{NLO}}(\mu_1)}{dX}\right) \left(\frac{d\sigma_{t\bar{t}}^{\text{NLO}}(\mu_2)}{dX}\right)^{-1}$$

- $\sigma_{tty} / \sigma_{tt}$ we have $\pm (1\% 3\%) \Rightarrow$ Differential cross section ratios $\pm (1\% 6\%)$
- High precision comparable to NNLO QCD results for top quark physics !
- Processes need to be correlated ⇒ top quark pair production excellent candidate
- Similar dynamical scale choice need to be implemented for $\mu_1 \mathcal{E} \mu_2$!

tty & tt

HELAC-NLO

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

ttbb & ttjj

HELAC-NLO

- Different jet kinematics makes the *ttbb* and *ttjj* processes uncorrelated in several observables
- Scale uncertainty is not significantly reduced when taking ratio of cross sections

0.2 0.1 0 -2 2 -1 0 1 y_i

tty/tt

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{NLO}}\left(\mu_{1}\right)}{\sigma_{t\bar{t}}^{\text{NLO}}\left(\mu_{2}\right)}$$

$$\mathcal{R}(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}) = (4.56 \pm 0.25) \cdot 10^{-3} (5\%),$$

$$\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}) = (4.62 \pm 0.06) \cdot 10^{-3} (1\%),$$

$$\mathcal{R}(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}) = (1.89 \pm 0.16) \cdot 10^{-3} (8\%),$$

$$\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}) = (1.93 \pm 0.06) \cdot 10^{-3} (3\%).$$

- Uncertainties stable against $p_{T,\gamma}$ cut $\Rightarrow 25$ GeV increased to 50 GeV
- Our best NLO QCD predictions with dynamical scale choice:

 $\mathcal{R} \left(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \,\text{GeV}\right) = (4.62 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3}$ $\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \,\text{GeV}) = (1.93 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3},$

Differential Cross Section Ratio

$e^+ \nu_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

Theoretical uncertainties:

± (1% – 4%) dynamical scale

± (20% – 25%) fixed scale

- Should be compared to uncertainties for absolute differential cross section
 up to ± 10% for μ₀ = H_T/4 & *up to* ± 50% for μ₀ = m_t/2
- When different scales are used in numerator and denominator *up to* ± 60%

Fiducial Cross Section for tty

 $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

Modelling Approach	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]
full off-shell ($\mu_0 = H_T/4$)	$7.32^{+2.45(33\%)}_{-1.71(23\%)}$	$7.50^{+0.11(1\%)}_{-0.45(6\%)}$
NWA $(\mu_0 = m_t/2)$	$8.08^{+2.84(35\%)}_{-1.96(24\%)}$	$7.28^{-0.99(13\%)}_{-0.03(0.4\%)}$
NWA $(\mu_0 = H_T/4)$	$7.18^{+2.39}_{-1.68}{}^{(33\%)}_{(23\%)}$	$7.33_{-0.24(3.3\%)}^{-0.43(5.9\%)}$
$egin{array}{l} { m NWA}_{\gamma-{ m prod}} \ (\mu_0=m_t/2) \ { m NWA}_{\gamma-{ m prod}} \ (\mu_0=H_T/4) \end{array}$	$\begin{array}{c} 4.52^{+1.63(36\%)}_{-1.11(24\%)}\\ 3.85^{+1.29(33\%)}_{-0.90(23\%)}\end{array}$	$\begin{array}{c} 4.13^{-0.53(13\%)}_{-0.05(1.2\%)} \\ 4.15^{-0.12(2.3\%)}_{-0.21(5.1\%)} \end{array}$
$egin{array}{l} { m NWA}_{\gamma-{ m decay}} \; (\mu_0=m_t/2) \ { m NWA}_{\gamma-{ m decay}} \; (\mu_0=H_T/4) \end{array}$	$\begin{array}{c} 3.56^{+1.20(34\%)}_{-0.85(24\%)}\\ 3.33^{+1.10(33\%)}_{-0.77(23\%)}\end{array}$	$3.15_{+0.03(0.9\%)}^{-0.46(15\%)} \\ 3.18_{-0.31(9.7\%)}^{-0.31(9.7\%)} \\ 3.08_{-0.03(0.9\%)}^{-0.09\%}$
$\mathrm{NWA}_{\mathrm{LOdecay}} \; (\mu_0 = m_t/2)$ $\mathrm{NWA}_{\mathrm{LOdecay}} \; (\mu_0 = H_T/4)$		$4.85^{+0.26}_{-0.48}{}^{(5.4\%)}_{(9.9\%)}\\4.63^{+0.44}_{-0.52}{}^{(9.5\%)}_{(11\%)}$

Various approaches for the modelling of top quark production & decays

HELAC-NL

- Off-shell effects 3%
- Consistent with $\Gamma_t / m_t \approx 0.8\%$
- 57% $\Rightarrow \gamma$ emitted in production
- **43%** \Rightarrow γ emitted in decay stage
- For $p_{T,b} > 25 \text{ GeV}$ it is 50%-50%
- NLO QCD corrections to top quark decays are negative and not small
- **17%** $\Rightarrow \mu_0 = \frac{1}{2} m_t$
- 12% $\Rightarrow \mu_0 = \frac{1}{4} H_T$
- Theoretical uncertainties not underestimated for the full NWA
- They increase for NWA_{LOdecay}

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

How Good Is the NWA ?

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

- Dimensionful observables are sensitive to non-factorizable top quark corrections
 Tens of per cent in specific phase-space regions
- *Kinematical thresholds / edges & high p*_T regions

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

How Good Is the NWA?

HELAC-NLO

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

- *Dimensionful* observables are sensitive to non-factorizable top quark corrections \Rightarrow *Tens of per cent* in specific phase-space regions
- *Kinematical edges* \mathcal{E} *high* p_T *regions*

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

Various Phase-space Regions

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- Off-shell effects:
 - High p_T region of various dimensionful observables
 - Vicinity of kinematical edges
 - Contribute up to 50% 60%

Various Phase-space Regions

Observables sensitive to top quark off-shell effects
 Substantial contributions
 from single top quark process

Dimensionless observables rather insensitive to top quark off-shell effects 42

γ in Production & Decays ⇒ Differential Level

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

HELAC-NLO

- Diverse picture
- Photon emission in decays can be reduced
 - $H_T > 400 \; GeV$ •
 - $p_T(\gamma) > 50 \ GeV$ •

5

ttW[±] production @ LHC

- Background process for *ttH* ⇒ Multi-lepton final state
- Higher normalization for *ttW* when compared to SM predictions given by multipurpose MC programs ⇒ 30%-70%
- Problems with modeling of the final states in the phase space regions dominated by *ttW*

ATLAS-CONF-2019-045

ttW with dynamical scale

HELAC-NLO

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

- Top-quark off-shell effects 30% - 70%
- Large discrepancies between full NWA description & NWA_{LOdecay}
- Differences also in regions currently scrutinised by ATLAS & CMS experiments

ttZ production @ LHC

• Irreducible background process for $t\bar{t} + p_T^{miss}$

ttZ ($Z \rightarrow \nu \nu$) with dynamical scale

- Searches of new physics $\Rightarrow t\bar{t} + p_T^{miss}$
- New physics observables $\Rightarrow p_T^{miss}, \cos_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta y_{\ell\ell}, H_T, E_T$

 $e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \bar{b} \, \bar{\nu}_\tau \nu_\tau @ \, \mathrm{LHC}_{13\mathrm{TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

HELAC-NLO

- Uncertainties reduced when going from LO to NLO
- Substantial nonflat K-factors

ttZ ($Z \rightarrow \nu \nu$) with dynamical scale

- Searches of new physics $\Rightarrow t\bar{t} + p_T^{miss}$
- New physics observables $\Rightarrow p_T^{miss}, \cos_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta y_{\ell\ell}, H_T, E_T$

$e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \bar{b} \, \bar{\nu}_\tau \nu_\tau @ \, \mathrm{LHC}_{13\mathrm{TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

HELAC-NLO

 Reducible and irreducible backgrounds

- *tt* production process does not exhibit long enough tails in p_T^{miss}
- Might impact exclusion limits

Theoretical Predictions For ttV

- NLO corrections for stable top quarks 🖙 General idea about size of NLO corrections. Can not provide reliable description of top quark decay products and radiation pattern
 - NLO QCD
 - NLO electroweak
- For more realistic studies decays are needed:
 - *NLO QCD for ttV* + *PS* ⇒ Corrections to production & Top decays in parton shower approximation & omitting even LO *tt* spin correlations
 - *NLO QCD for ttV* + *LO decays* + *PS* ⇒ Top decays @ LO before • matched to parton shower programs & LO *tt* spin correlations
 - *NLO QCD in NWA* ⇒ NLO QCD corrections to top production & decays ٠ & NLO *tt* spin correlations
 - **NLO QCD complete off-shell effects of top quarks** \Rightarrow Additionally to the • previous point B Resonant & non-resonant diagrams & Interference effects & Off-shell top quarks described by Breit-Wigner propagators

Summary

- Proper modeling of top quark production & decay essential already now in presence of inclusive cuts:
- NLO QCD corrections to *ttV*
 - At least full NWA or better yet complete off-shell effects for top quarks
 - 1. Corrections to production & decays \Rightarrow NLO *tt* spin correlations
 - 2. Possibility of using kinematic-dependent $\mu_R \mathcal{E} \mu_F$ scales
 - 3. Complete off-shell effects for top quarks

• Even more important for:

- Exclusive cuts & High luminosity measurements
- New Physics searches & Might impact exclusion limits
- SM parameter extraction
- Top quarks play important role in virtually every LHC analysis ⇒ *SM & BSM*
- Lots of data, sophisticated analyses, precision measurements ⇒ Should be compared to state-of-the-art theoretical predictions
- Our full off-shell results for *tt, ttj, ttγ, ttZ, ttW*[±]
 - Stored \Rightarrow *Ntuples Files* \Rightarrow *Les Houches* & *ROOT Files*
 - *ttγ* ⇒ Used by ATLAS Collaboration ⇒ <u>JHEP 09 (2020) 049</u>

Various Phase-space Regions

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

■ 3 different resonance histories ⇒ Resolved jet at NLO gives 9 in total

(i)	$t = W^+ (ightarrow e^+ u_e) b$	and	$ar{t} = W^- (o \mu^- ar{ u}_\mu) ar{b} ,$
(ii)	$t = W^+ (ightarrow e^+ u_e) b\gamma$	and	$ar{t} = W^- (ightarrow \mu^- ar{ u}_\mu) ar{b} ,$
(iii)	$t = W^+ (ightarrow e^+ u_e) b$	and	$ar{t} = W^- (o \mu^- ar{ u}_\mu) ar{b} \gamma$

• Compute for each history *Q* and pick the one that minimises the *Q* value

$$Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$$

• **Double-resonant (DR):** $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

$$|M(\bar{t}) - m_t| < n \, \Gamma_t$$

• Two single-resonant regions (SR):

$$|M(t) - m_t| < n \Gamma_t$$
, and $|M(t) - m_t| > n \Gamma_t$

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

• Non-resonant region (NR):

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$ 52

Various Phase-space Regions

$$e^+
u_e \mu^- ar{
u}_\mu b ar{b} \gamma \ @ \ {
m LHC_{13TeV}}$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- $n = 15 \implies$ Boundaries outside which effects of Γ_t in BW propagator < 1%
- DR region is set to for $m_t = 173.2 \ GeV$

Contributions at the integrated cross section level for these 3 regions

$$\sigma_{\rm DR}^{\rm NLO} = 6.57~{\rm fb}\,, \qquad \qquad \sigma_{\rm SR}^{\rm NLO} = 0.91~{\rm fb}\,, \qquad \qquad \sigma_{\rm NR}^{\rm NLO} = 0.02~{\rm fb}$$

- DR contribution to full $\sigma_{tty} \Rightarrow 88\% \Rightarrow$ SR comprises 12% \Rightarrow NR only 0.5%
- Should we instead use *n* = 5

$$\sigma_{\rm DR}^{\rm NLO} = 4.82$$
 fb, $\sigma_{\rm SR}^{\rm NLO} = 2.50$ fb and $\sigma_{\rm NR}^{\rm NLO} = 0.18$ fb

Cuts on the transverse momenta and the rapidity of two recombined b-jets, which we assume to be always tagged ⇒ Anti-k_T with R = 0.4

$p_T(b) > 40 \text{ GeV},$	y(b) <2.5,	$\Delta R(bb) > 0.4$	+
----------------------------	------------	----------------------	---

- Isolated hard photon $p_T(\gamma) > 25 \text{ GeV}$ $|y(\gamma)| < 2.5$
- Basic selection cuts for charged leptons to ensure that they are observed inside the detector and well separated from each other

$p_T(\ell) > 30 \mathrm{GeV},$	$\Delta R(\ell\ell) > 0.4,$	$ y(\ell) < 2.5$
--------------------------------	-----------------------------	-------------------

• Charged leptons are well separated from the isolated photon and from b-jets

$\Delta R(\ell b) > 0.4,$	$\Delta R(\ell\gamma) > 0.4,$	$\Delta R(b\gamma) > 0.4$
---------------------------	-------------------------------	---------------------------

Different lepton generations

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

- Interference effects neglected ⇒ *Per-mille level* @ *LO*
- Contribution from b quarks in the initial state neglected ⇒ *Effect* < 0.1% @ LO
- 2 *b*-jets, one photon, two charged leptons & p_T^{miss}
- Photon: $p_T(\gamma) > 25 \text{ GeV}, |y_{\gamma}| < 2.5$
- Isolation condition for photon \Rightarrow Reject event if $R \leq R_{\gamma j}$ with $R_{\gamma j} = 0.4$ Frizione '98 $\sum_{i} E_{T,i} \Theta(R - R_{\gamma i}) \leq E_{T,\gamma} \left(\frac{1 - \cos(R)}{1 - \cos(R_{\gamma j})}\right)$
- For hard photon $\alpha = \alpha(0) = 1/137 \Rightarrow$ **Predictions decreased by 3%**
- Electroweak coupling in the G_{μ} scheme \Rightarrow Account for some electroweak effects
- Kinematics-independent & kinematic-dependent scale: $\mu_0 = m_t/2, H_T/4$

ttW with dynamical & fixed scale

Bevilacqua,	Bi,	Hartanto,	Kraus,	Worek	'20
-------------	-----	-----------	--------	-------	------------

Modelling Approach	$\sigma^{ m LO}~[m ab]$	$\sigma^{ m NLO}~[m ab]$
full off-shell ($\mu_0 = m_t + m_W/2$)	$106.9^{+27.7(26\%)}_{-20.5(19\%)}$	$123.2^{+6.3(5\%)}_{-8.7(7\%)}$
full off-shell $(\mu_0 = H_T/3)$	$115.1^{+30.5(26\%)}_{-22.5(20\%)}$	$124.4^{+4.3(3\%)}_{-7.7(6\%)}$
NWA $(\mu_0 = m_t + m_W/2)$	$106.4^{+27.5(26\%)}_{-20.3(19\%)}$	$123.0^{+6.3(5\%)}_{-8.7(7\%)}$
NWA $(\mu_0 = H_T/3)$	$115.1^{+30.4(26\%)}_{-22.4(19\%)}$	$124.2^{+4.1(3\%)}_{-7.7(6\%)}$
NWA _{LOdecay} $(\mu_0 = m_t + m_W/2)$		$127.0^{+14.2(11\%)}_{-13.3(10\%)}$
$\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=H_T/3)$		$130.7^{+13.6(10\%)}_{-13.2(10\%)}$

Results for various approaches for modelling of top quark production and decays

HELAC-NLO

- Complete top-quark offshell effects ⇒ 0.2%
- NLO QCD corrections to top-quark decays ⇒ 3% for fixed scale ⇒ 5% for dynamical scale
- Theoretical uncertainties are similar for off-shell case and NWA ⇒ 6% - 7%
- For NWA_{LOdecay} ⇒ Rise up to 10% 11%

Top Quark Width

- Finite W width contributions included in matrix elements & in top quark width
- Top width for unstable W bosons, neglecting bottom quark mass @ LO & NLO

$$\Gamma_{\rm t}^{\rm LO} = \frac{G_{\mu} m_{\rm t}^5}{16\sqrt{2}\pi^2 M_{\rm W}^2} \int_0^1 \frac{\mathrm{d}y \,\gamma_{\rm W}}{(1 - y/\bar{y})^2 + \gamma_{\rm W}^2} \,F_0(y)$$

M. Jezabek, J. H. Kühn '89 A. Denner, et al. '12

$$\gamma_{\rm W} = \Gamma_{\rm W}/M_{\rm W}, \ \bar{y} = (M_{\rm W}/m_{\rm t})^2$$
 $F_0(y) = 2(1-y)^2(1+2y)$

$$\Gamma_{\rm t}^{\rm NLO} = \frac{G_{\mu} m_{\rm t}^5}{16\sqrt{2}\pi^2 M_{\rm W}^2} \int_0^1 \frac{\mathrm{d}y \,\gamma_{\rm W}}{(1 - y/\bar{y})^2 + \gamma_{\rm W}^2} \bigg[F_0(y) - \frac{2\alpha_{\rm s}}{3\pi} F_1(y) \bigg]$$

$$F_1(y) = 2(1-y)^2(1+2y) \left[\pi^2 + 2\operatorname{Li}_2(y) - 2\operatorname{Li}_2(1-y)\right] + 4y(1-y-2y^2)\ln(y) + 2(1-y)^2(5+4y)\ln(1-y) - (1-y)(5+9y-6y^2).$$

• In the limit $\gamma_W \longrightarrow 0$ $\qquad \qquad \frac{\gamma_W}{(1-y/\bar{y})^2 + \gamma_W^2} \rightarrow \pi \bar{y} \, \delta(y-\bar{y}).$

Top Quark Width

$m_t \; [{ m GeV}]$	$\Gamma_{\rm t}^{\rm LO} \ [{\rm GeV}]$	$\Gamma_{\rm tW}^{\rm LO} \ [{\rm GeV}]$	$\Gamma_{\rm t}^{\rm NLO} \ [{\rm GeV}]$	$\Gamma_{\rm tW}^{\rm NLO} \ [{\rm GeV}]$
168.2	1.33273	1.35426	1.21823	1.23792
170.7	1.40449	1.4269	1.28389	1.30438
173.2	1.47834	1.50162	1.35146	1.37276
175.7	1.55429	1.57847	1.42097	1.44309
178.2	1.63237	1.65746	1.49243	1.51538

$\Gamma_{\mathbf{t}}$	top quark width with W gauge boson off-shell effects included
$\Gamma_{\rm tW}$	top-quark width with the on-shell W gauge boson