

Project B1b: Top-Quark Physics

PIs: Malgorzata Worek & Michal Czakon

Kick-off Meeting of the Collaborative Research Centre/Transregio 257 P³H – Particle Physics Phenomenology after the Higgs Discovery

Plan

- ✤ Introduction
- ✤ Setting the stage...
- State-of-the-art NLO & NNLO results for top quark physics @ LHC

 $pp
ightarrow tar{t} \hspace{0.2cm} \left| \hspace{0.2cm} pp
ightarrow tar{t} + X \,, X = j, \gamma, Z, W^{\pm}, H, bar{b}, jj, tar{t}
ight.$

✤ Future projects within the CRC/TRR

Top-Quark Physics

Why is it interesting ?

- ✤ Infrared structure of QCD
- ***** Extract SM parameters: $\alpha_s \& m_t$
- Constraints on gluon PDFs
- Background process to various
 SM & BSM scenarios
- Window to New Physics

Basic Facts about Top...

- Discovered at TeVatron in 1995
- ✤ Heaviest observed particle

 m_t = 173. 34 ± 0.76 GeV

✤ Yukawa coupling

World Combination '14 ATLAS, CDF, CMS, D0

 $Y_t = \sqrt{2}\,rac{m_t}{v}pprox 1$

- Short lifetime → Decay before bound states can be formed
- ★ Can be measured directly via its decay products → *b-jets*, p_T^{miss} , *l*[±] & *jets*

LHC Top-Quark Factory

		Collider	σ (tt) [pb]	L [fb ⁻¹]	N _{event}
I HC Rup 1	ובו	LHC _{7 TeV}	180	5	$9 \ge 10^5$
	L	LHC _{8 TeV}	256	20	$5 \ge 10^{6}$
LHC Run 2		LHC _{13 TeV}	835	36	3×10^{7}
		LHC _{14 TeV}	987	100	$1 \ge 10^{8}$
High Luminosity	 →	HL-LHC _{14 TeV}	987	3000	3 x 10 ⁹
High Energy	→	HE-LHC _{27 TeV}	3840	15000	$6 \ge 10^{10}$

Top quark pair production @ NNLO with TOP++ CT14 PDF, $m_t = 173.2 \text{ GeV}$

Czakon, Mitov '14

Top Pair Branching Fractions

- Top quark produced via QCD interaction decay through weak interaction
- Producing W-boson and a down-type quark (down, strange, or bottom)

$$\mathcal{BR}(t \to Wb) = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \approx 0.99$$

SM: $t \to Wb \approx 100\%$

Top-Quark Pair Production

On-shell Tops

Summary of LHC and Tevatron measurements of tt cross-section compared to NNLO QCD calculation complemented with NNLL resummation - TOP++

Top-Quark Pair Production

On-shell Tops

Full phase-space normalized differential tt cross-section as a function of $p_T(t)$

The CMS and ATLAS results are compared to Powheg+Herwig6 & Powheg+Pythia8 MC generators.

The CMS and ATLAS results are compared to the NLO & NNLO calculations.

Czakon, Heymes, Mitov '17

Top-Quark Production & Decays

Normalized differential tt cross-section as a function of azimuthal opening angle between two leptons

ATLAS-CONF-2018-027

Comparison to Powheg, Mad-Graph5_aMC@NLO & Sherpa

Behring, Czakon, Mitov, Papanastasiou, Poncelet '19

Comparison to NNLO QCD predictions in NWA

tt & tt+X @ LHC

***** *Proper modeling of top decays essential already in presence of inclusive cuts:*

- \diamond Higher order QCD corrections \rightarrow Corrections to production & decays
- \diamond Full NWA or complete off-shell effects for top quarks
- ♦ *tt* spin correlations

 \diamond Possibility of using kinematic-dependent $\mu_R \& \mu_F$ scales

***** Even more important for:

- ♦ High luminosity & Exclusive cuts
- \diamond New Physics searches & SM parameter extraction

tt & tt +X status:

 \diamond NNLO QCD predictions for $pp \rightarrow tt$ in NWA (di-lepton)

♦ NLO QCD with off-shell effects: $pp \rightarrow tt$, $pp \rightarrow tt\gamma$, $pp \rightarrow ttj$, $pp \rightarrow ttH$

♦ NLO QCD in NWA: $pp \rightarrow ttZ \& pp \rightarrow ttW^{\pm}$

Röntsch, Schulze '14 Campbell, Ellis '12

♦ NLO QCD with on-shell tops: $pp \rightarrow ttbb, pp \rightarrow ttjj, pp \rightarrow tttt$

We plan to improve predictions for all these processes ! Bredenstein, Denner, Dittmaier, Pozzorini '09 Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09 Bevilacqua, Czakon, Papadopoulos, Worek '10 '11 Bevilacqua, Worek '12

tt & tt+X @ LHC

On-shell Tops

tt, ttj, ttγ, ttZ, ttH, ttW⁺*, ttW*⁻ @ *LHC*

How Good Is NWA?

- In NWA tops are restricted to on-shell states
- Approximation is controlled by the ratio $\Gamma_t / m_t \approx 0.8\%$
- Should be accurate for sufficiently inclusive observables
- * Off-shell effects for integrated σ_{tt} at few % level @ NLO in QCD

tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Denner, Pellen '16 (EW) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
tt (semi-leptonic)	Denner, Pellen '18
ttH (di-lepton)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD)
ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
ttγ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19

Off-shell Tops

✤ Off-shell results vs. results with (spin-correlated) NWA

Off-shell Tops

- * *Tens of per cent* in phase-space regions where *tt* suppressed as signal
- Important as background to Higgs & BSM searches

Denner, Dittmaier, Kallweit, Pozzorini, Schulze '12

✤ Observables used for a recent top quark mass determination

Off-shell, NWA, PS

Heinrich, Maier, Nisius, Schlenk, Schulze, Scyboz, Winter '18

Observable used for a recent top quark mass determination

Off-shell, NWA

Bevilacqua, Hartanto, Kraus, Schulze, Worek '18

2.5 fb⁻¹

$pp ightarrow t ar{t} j ightarrow e^{-}$	$^+ u_e\mu^-$	$^- ar{ u}_\mu b ar{b} j$ (@ 13	TeV	LHC
--	---------------	-------------------------------	-------------	-----	-----

	Theory, NLO QCD	$m_{t}^{\mathrm{out}} + \delta m_{t}^{\mathrm{out}}$	Averaged	Probability	$m_{t}^{\mathrm{in}} - m_{t}^{\mathrm{out}}$	
	CT14 PDF	IGeV	$\chi^2/d.o.f.$	p-value	[GeV]	
	$\frac{31 \text{ bins}}{31 \text{ bins}}$					
	Full, $\mu_0 = H_T/2$	173.38 ± 1.34	1.04	$0.40 \ (0.8\sigma)$	-0.18	
	Full, $\mu_0 = E_T/2$	172.84 ± 1.33	1.05	$0.39~(0.9\sigma)$	+0.36	
	Full, $\mu_0 = m_t$	174.11 ± 1.39	1.07	$0.37~(0.9\sigma)$	-0.91	
	$NWA, \mu_0 = m_t$	175.70 ± 0.96	1.17	$0.24~(1.2\sigma)$	-2.50	
	$NWA_{\text{Prod.}}, \mu_0 = m_t$	169.93 ± 0.98	1.20	$0.20~(1.3\sigma)$	+3.27	
$5 \ bins$						
	Full, $\mu_0 = H_T/2$	173.15 ± 1.32	0.93	$0.44~(0.8\sigma)$	+0.05	
	Full, $\mu_0 = E_T/2$	172.55 ± 1.18	1.07	$0.37~(0.9\sigma)$	+0.65	
	Full, $\mu_0 = m_t$	173.92 ± 1.38	1.48	$0.20~(1.3\sigma)$	-0.72	
	$NWA, \mu_0 = m_t$	175.54 ± 0.97	1.38	$0.24~(1.2\sigma)$	-2.34	
	$NWA_{\mathrm{Prod.}}, \mu_0 = m_t$	169.37 ± 1.43	1.16	$0.33~(1.0\sigma)$	+3.83	

Bevilacqua, Hartanto, Kraus, Schulze, Worek '18

$pp ightarrow t ar{t} j ightarrow e^+ u_e \, \mu^- ar{ u}_\mu \, b ar{b} \, j @ 13 ~ { m TeV} ~ { m LHC}$

Theory, NLO QCD	$m_t^{\rm out}\pm\delta m_t^{\rm out}$	Averaged	Probability	$m_t^{\rm in} - m_t^{\rm out}$		
CT14 PDF	[GeV]	$\chi^2/d.o.f.$	p-value	[GeV]		
$31 \ bins$						
Full, $\mu_0 = H_T/2$	173.09 ± 0.42	1.04	$0.41~(0.8\sigma)$	+0.11		
Full, $\mu_0 = E_T/2$	172.45 ± 0.39	1.12	$0.30~(1.0\sigma)$	+0.75		
Full, $\mu_0 = m_t$	173.76 ± 0.40	1.87	$0.003~(3.0\sigma)$	-0.56		
$NWA, \mu_0 = m_t$	175.65 ± 0.31	2.99	$7 \cdot 10^{-8} (5.4\sigma)$	-2.45		
$NWA_{Prod.}, \mu_0 = m_t$	169.59 ± 0.30	3.10	$2 \cdot 10^{-8} (5.6\sigma)$	+3.61		
5 bins						
Full, $\mu_0 = H_T/2$	173.08 ± 0.40	0.94	$0.44~(0.8\sigma)$	+0.12		
Full, $\mu_0 = E_T/2$	172.48 ± 0.38	1.58	$0.18~(1.3\sigma)$	+0.72		
Full, $\mu_0 = m_t$	173.75 ± 0.40	6.76	$2\cdot 10^{-5}~(4.3\sigma)$	-0.55		
$NWA, \mu_0 = m_t$	175.49 ± 0.30	5.31	$2 \cdot 10^{-4} \ (3.7\sigma)$	-2.29		
$NWA_{Prod.}, \mu_0 = m_t$	169.39 ± 0.47	3.42	$8 \cdot 10^{-3} \ (2.6 \sigma)$	+3.81		
	Theory, NLO QCD CT14 PDF Full, $\mu_0 = H_T/2$ Full, $\mu_0 = E_T/2$ Full, $\mu_0 = m_t$ NWA, $\mu_0 = m_t$ NWA _{Prod.} , $\mu_0 = m_t$ Full, $\mu_0 = E_T/2$ Full, $\mu_0 = E_T/2$ Full, $\mu_0 = m_t$ NWA, $\mu_0 = m_t$ NWA, $\mu_0 = m_t$ NWA, $\mu_0 = m_t$	Theory, NLO QCD $m_t^{out} \pm \delta m_t^{out}$ CT14 PDF[GeV] S Full, $\mu_0 = H_T/2$ 173.09 \pm 0.42Full, $\mu_0 = E_T/2$ 172.45 \pm 0.39Full, $\mu_0 = m_t$ 173.76 \pm 0.40NWA, $\mu_0 = m_t$ 175.65 \pm 0.31NWAProd., $\mu_0 = m_t$ 169.59 \pm 0.30Full, $\mu_0 = H_T/2$ 173.08 \pm 0.40Full, $\mu_0 = E_T/2$ 172.48 \pm 0.38Full, $\mu_0 = m_t$ 173.75 \pm 0.40NWA, $\mu_0 = m_t$ 175.49 \pm 0.30NWA, $\mu_0 = m_t$ 175.49 \pm 0.30NWAProd., $\mu_0 = m_t$ 169.39 \pm 0.47	Theory, NLO QCD $m_t^{\text{out}} \pm \delta m_t^{\text{out}}$ AveragedCT14 PDF[GeV] χ^2 /d.o.f. 31 binsFull, $\mu_0 = H_T/2$ 173.09 \pm 0.421.04Full, $\mu_0 = E_T/2$ 172.45 \pm 0.391.12Full, $\mu_0 = m_t$ 173.76 \pm 0.401.87NWA, $\mu_0 = m_t$ 175.65 \pm 0.312.99NWA_{Prod.}, $\mu_0 = m_t$ 169.59 \pm 0.303.10Full, $\mu_0 = H_T/2$ 173.08 \pm 0.400.94Full, $\mu_0 = E_T/2$ 172.48 \pm 0.381.58Full, $\mu_0 = m_t$ 173.75 \pm 0.406.76NWA, $\mu_0 = m_t$ 175.49 \pm 0.305.31NWA_{Prod.}, $\mu_0 = m_t$ 169.39 \pm 0.473.42	Theory, NLO QCD $m_t^{out} \pm \delta m_t^{out}$ AveragedProbabilityCT14 PDF[GeV] χ^2 /d.o.f. p -value31 bins 31 bins 104 $0.41 (0.8\sigma)$ Full, $\mu_0 = H_T/2$ 173.09 ± 0.42 1.04 $0.41 (0.8\sigma)$ Full, $\mu_0 = E_T/2$ 172.45 ± 0.39 1.12 $0.30 (1.0\sigma)$ Full, $\mu_0 = m_t$ 173.76 ± 0.40 1.87 $0.003 (3.0\sigma)$ NWA, $\mu_0 = m_t$ 175.65 ± 0.31 2.99 $7 \cdot 10^{-8} (5.4\sigma)$ NWA_{Prod.}, $\mu_0 = m_t$ 169.59 ± 0.30 3.10 $2 \cdot 10^{-8} (5.6\sigma)$ Full, $\mu_0 = H_T/2$ 173.08 ± 0.40 0.94 $0.44 (0.8\sigma)$ Full, $\mu_0 = E_T/2$ 172.48 ± 0.38 1.58 $0.18 (1.3\sigma)$ Full, $\mu_0 = m_t$ 173.75 ± 0.40 6.76 $2 \cdot 10^{-5} (4.3\sigma)$ NWA, $\mu_0 = m_t$ 175.49 ± 0.30 5.31 $2 \cdot 10^{-4} (3.7\sigma)$ NWA_{Prod.}, $\mu_0 = m_t$ 169.39 ± 0.47 3.42 $8 \cdot 10^{-3} (2.6\sigma)$		

Bevilacqua, Hartanto, Kraus, Schulze, Worek '18

25 fb⁻¹

♦ Feynman Diagrams → 628 @ LO for gg channel

 $t\bar{t}\gamma + X @ \mathcal{O}(\alpha_s^2 \alpha^5)$

- ♦ NLO \rightarrow 4348 real emission & 36032 @ 1-loop for gg channel
- ♦ Most complicated \rightarrow 90 heptagons & 958 hexagons

 $t\bar{t}\gamma + X @ \mathcal{O}(\alpha_s^3 \alpha^5)$

Top-Quark Resonances

- Putting simply $\Gamma_t \neq 0$ violates gauge invariance
- ♦ Gauge-invariant treatment → Complex Mass Scheme
- In the amplitude the substitution is performed for top quark

$$(\not\!p-m_t+i\epsilon)^{-1} \longrightarrow (\not\!p-\mu_t+i\epsilon)^{-1}$$
 $\mu_t^2=m_t^2-i\,m_t\Gamma_t$

Denner, Dittmaier, Roth, Wackeroth '99 Denner, Dittmaier, Roth, Wieders '05

- ✤ All matrix elements evaluated using complex masses
- ✤ Another non trivial aspect → Evaluation of one-loop scalar integrals
- ✤ Scalar integrals with complex masses → Supported e.g. by ONELOOP

van Hameren '11

HELAC-NLO

Ossola, Papadopoulos, Pittau '08

Cross Section Ratios: tty/tt

- ✤ 1% −3% precision for *Integrated Cross Section Ratios*
- ✤ Differential Ratios with 1% -6% precision:
- Such high precision has only been reserved till now for NNLO !

Off-shell Tops

 $M_{bar{b}}, M_{\ell\ell}, \Delta\phi_{\ell\ell}, p_{T,\ell_1}$

NNLO & Open Questions

♦ NNLO QCD to on-shell $pp → tt \gamma$ ♦ 2-loop virtual amplitude

- ♦ Double-real radiation @ NNLO: sector-improved residue subtraction scheme with STRIPPER ☑ Czakon '10 '11 & Czakon, Heymes '14
- ✤ Phenomenological applications for *tty & tty/tt*
 - ♦ Measuring top quark charge, various asymmetries
 - ♦ Constraining exotic physics scenarios
 - \diamond Probing strength & structure of *tty* vertex, ...

Long term goal → NNLO QCD to *tty & ttH* in NWA - *di-lepton* channel
 ♦ Polarized 2-loop virtual amplitudes for *tty & ttH*

NLO & Open Questions

★ Top off-shell effects @ NLO QCD $pp \rightarrow tt \& pp \rightarrow tt + X$ for *lepton+jets* channel

♦ HELAC-DIPOLES → Dipole subtraction method for both QCD \square & QED \square

 \rightarrow Soft or collinear photon emission *Dittmaier '00*

↔ HELAC-1LOOP \rightarrow W, Z, γ in 1-loop diagrams, rational parts, ... ⊠

One-loop Feynman diagrams contributing to $gg \rightarrow \mu^- \bar{\nu}_{\mu} \, b\bar{b} \, jj @ \mathcal{O}(\alpha_s^3 \alpha^4)$ Denner, Pellen '18

★ Long term goal → EW + QCD for tt, ttγ, ttH, ttj, ttZ, ttW[±]

NNLO-NLO & Open Questions

- ★ Merging off-shell top quark effects @ NLO in QCD with NNLO QCD top quark predictions for $pp \rightarrow tt$ in *di-lepton* channel
- ♦ Determination of the top quark mass from leptonic observables → Fiducial σ_{tt} $p_T^{\ell^+}, p_T^{\ell\ell}, M_{\ell\ell}, (E^{\ell^+} + E^{\ell^-}), (p_T^{\ell^+} + p_T^{\ell^-}), \eta^{\ell^+}, \eta^{\ell\ell}, \Delta\phi_{\ell\ell}$

 $m_t = 172.2 \, \pm \, 0.9 \, ({
m stat.}) \, \pm \, 0.8 \, ({
m syst.}) \pm 1.2 \, ({
m th.}) \, {
m GeV}$

CERN-EP-2017-200 TOP2018 Workshop

- Various tt NLO generators interfaced to PS used
- * $d\sigma_{tt}/dX$ modeled poorly by NLO+PS
- The most precise result obtained from fixed-order NLO predictions
- Measurements limited by theory uncertainties stemming from modeling of top quark decays !

NLO & Open Questions

✤ Effects of New Physics at high scale ∧ described by effective Lagrangian

$$\mathcal{L}_{ ext{SM}}^{ ext{eff}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2}\sum_i C_i^{(6)}\mathcal{O}_i^{(6)} + \dots$$

 O_i – effective operators C_i – Wilson coefficients

 $\bigstar \text{ Minimal set of top anomalous couplings } \rightarrow Aguilar-Saavedra '09$

***** *tty* vertex with contributions from dim-6 effective operators parameterized as

$${\cal L}_{tar t\gamma}=-eQ_tar t\gamma^\mu tA_\mu-ear t\,rac{i\sigma^{\mu
u}(p_t-p_{ar t})_
u}{m_t}\,(d_V^\gamma+id_A^\gamma\gamma_5)\,tA_\mu$$

- **♦** HELAC-NLO → Top anomalous couplings Wtb, Ztt, ttγ, ttH & gtt II
 ♦ HELAC-NLO → NWA II
- ✤ How meaningful is this approach when top off-shell effects are included ?

Summary

♦ Irreducible SM background: $pp \rightarrow ttZ \rightarrow ttv_lv_l \rightarrow tt p_T^{miss}$