

Cross section ratios as a precision tool for tty

Malgorzata Worek

RADCOR 2019, 9-13 September 2019, Avignon, France

Plan

- **#** Motivation for $tt\gamma$
- **#** Status of theoretical predictions for $tt\gamma$
- **#** NWA vs. off-shell effects \rightarrow *tt* & *ttj*
- **#** Results for $tt\gamma$ in di-lepton channel
- **#** Predictions for *tty/tt*
- ₭ Summary & Outlook

Collaborators:

- G. Bevilacqua (University of Debrecen, Hungary)
- H. B. Hartanto (University of Durham, UK)
- M. Kraus (Florida State University, USA)
- T. Weber (RWTH Aachen University, Germany)

Motivations For tty

Besides *tt & ttj* more exclusive final states can be accessed @ LHC

$tt\gamma$, ttZ, ttH, ttW^{\pm} @ LHC

Motivations For tty

♯ *ttV* cross sections much smaller than *tt(j)*

ℜ Information on couplings → γ , Z, H, W[±]

 $\# \sigma_{tty}$ direct way to measure *top quark charge* @ LHC $\rightarrow \sigma_{tty} \sim Q_t^2$ @ LHC

 $\Re Q_t = +\frac{2}{3}$ with CL ≥ 5 σ @ LHC → Indirectly from $Q_t = Q_W - Q_{b-jet}$ in tt

*Exotic physics scenarios* \rightarrow top-like quarks with $Q_t \neq +\frac{2}{3}$

 $pp \to t\bar{t}\gamma \to \ell^+ \nu_\ell b\bar{b}jj\gamma @ 14 \text{ TeV LHC}$

Melnikov, Schulze, Scharf '11

Motivations For tty

Probe the strength and the structure of ttγ vertex → SM + contributions from dimension-six effective operators → Constrains on anomalous couplings

$$\mathcal{L}_{t\bar{t}\gamma} = -eQ_t\bar{t}\gamma^\mu tA_\mu - e\bar{t}\frac{i\sigma^{\mu\nu}(p_t - p_{\bar{t}})_\nu}{m_t}\left(d_V^\gamma + id_A^\gamma\gamma_5\right)tA_\mu$$

Measure *cross section ratio* (also differential ratios)

Aguilar-Saavedra '09 Schulze, Soreq '16

$$\mathcal{R} = \frac{\sigma_{pp \to t\bar{t}\gamma}}{\sigma_{pp \to t\bar{t}}}$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

- ★ More stable against radiative corrections
- ★ Reduced scale dependence \rightarrow Various uncertainties cancel in ratio
- ★ Enhanced predictive power → Interesting to probe new physics @ LHC

Top quark charge *asymmetry, differential top quark charge asymmetries,* ...

Aguilar-Saavedra, Alvarez, Juste, Rubbo '14

Theoretical Predictions For tty

- - ★ NLO QCD★ NLO electroweak

Duan, Ma, Zhang, Han, Guo, Wang '09 '11 Maltoni, Pagani, Tsinikos '15

Duan, Zhang, Wang, Song, Li '16

- **#** For more realistic studies decays are needed
 - ★ NLO QCD for on-shell top quarks + PS → Top decays in parton shower approximation, omitting photon emission in PS evolution & omitting tt spin correlations
 Kardos, Trocsanyi '14
 - ★ NLO QCD in NWA → NLO QCD corrections to top production & decays, photon emission of top quark and of top quark decay product & tt spin correlations included Melnikov, Schulze, Scharf '11
 - ★ NLO QCD complete off-shell effects of top quarks → resonant & non-resonant diagrams, interferences and off-shell effects of the top quarks

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

tty in NWA @ LHC

Large fraction of isolated photons comes from radiative decay of tops

 $\sigma^{\text{NLO}} = 138 \text{ fb}$ $\sigma^{\text{NLO}}_{\gamma-\text{Prod.}} = 60.9 \text{ fb}$ $\sigma^{\text{NLO}}_{\gamma-\text{Dec.}} = 77.2 \text{ fb}$

How Good Is NWA?

- In NWA tops are restricted to on-shell states
- Approximation is controlled by the ratio $\Gamma_t/m_t \approx 0.8\%$
- Should be accurate for sufficiently inclusive observables
- * Off-shell effects for integrated σ_{tt} @ few % level @ NLO in QCD

tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Denner, Pellen '16 (EW) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
tt (semi-leptonic)	Denner, Pellen '18
ttH (di-lepton)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD)
ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
ttγ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19

Off-shell Tops

✤ Off-shell results vs. results with (spin-correlated) NWA

Off-shell Tops

- * *Tens of per cent* in phase-space regions where *tt* suppressed as signal
- Important as background to Higgs & BSM searches

Denner, Dittmaier, Kallweit, Pozzorini, Schulze '12

Off-shell, NWA

Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos '13

 $pp \to t\bar{t}j \to e^+\nu_e \,\mu^-\bar{\nu}_\mu \,b\bar{b}\,j @ LHC_{13TeV}$

	Theory NLO OCD	out Socout	Arrow and Duch ability		inout				
	I neory, NLO QCD	$m_t^{2} = \sigma m_t^{2}$	Averaged	Probability	$m_t^2 - m_t^2$				
	CT14 PDF	$[{ m GeV}]$	$\chi^2/{\rm d.o.f.}$	p-value	$[\mathrm{GeV}]$				
	31 bins								
	Full, $\mu_0 = H_T/2$	173.09 ± 0.42	1.04	$0.41~(0.8\sigma)$	+0.11				
	Full, $\mu_0 = E_T/2$	172.45 ± 0.39	1.12	$0.30~(1.0\sigma)$	+0.75				
Γ	Full, $\mu_0 = m_t$	173.76 ± 0.40	1.87	$0.003~(3.0\sigma)$	-0.56				
	$NWA, \mu_0 = m_t$	175.65 ± 0.31	2.99	$7 \cdot 10^{-8} (5.4\sigma)$	-2.45				
	$NWA_{Prod.}, \mu_0 = m_t$	169.59 ± 0.30	3.10	$2\cdot 10^{-8}~(5.6\sigma)$	+3.61				
	$5 \ bins$								
	Full, $\mu_0 = H_T/2$	173.08 ± 0.40	0.94	$0.44~(0.8\sigma)$	+0.12				
	Full, $\mu_0 = E_T/2$	172.48 ± 0.38	1.58	$0.18~(1.3\sigma)$	+0.72				
Γ	Full, $\mu_0 = m_t$	173.75 ± 0.40	6.76	$2 \cdot 10^{-5} (4.3\sigma)$	-0.55				
	$NWA, \mu_0 = m_t$	175.49 ± 0.30	5.31	$2\cdot 10^{-4}~(3.7\sigma)$	-2.29				
	$NWA_{Prod.}, \mu_0 = m_t$	169.39 ± 0.47	3.42	$8 \cdot 10^{-3} \ (2.6\sigma)$	+3.81				

Bevilacqua, Hartanto, Kraus, Schulze, Worek '18

25 fb⁻¹

♦ Feynman Diagrams → 628 @ LO for gg channel

- ♦ NLO → 4348 real emission & 36032 @ 1-loop for gg channel
- ◆ Most complicated → 90 heptagons & 958 hexagons

HELAC-NLO

Ossola, Papadopoulos, Pittau '08

Output:

- theoretical predictions are stored in the form of the Ntuples Event Files
- modified Les Houches & ROOT Event Files
- kinematical cuts can be changed
- new observables can be defined
- ✤ renormalization or factorization scales and PDF sets can be changed

Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre '14

Setup for $tt\gamma$

Different lepton generations

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

- **#** Interference effects neglected \rightarrow *Per-mille level @* LO
- **¥** Contribution from b quarks in the initial state neglected \rightarrow *Effect* < 0.1% @ *LO*
- **#** 2 *b*-jets, one photon, two charged leptons & p_T^{miss}
- **#** Photon: $p_T(\gamma) > 25 \text{ GeV}, |y_{\gamma}| < 2.5$
- **#** Isolation condition for photon \rightarrow Reject event if $R \leq R_{\gamma j}$ with $R_{\gamma j} = 0.4$ *Frixione '98* $\sum_{i} E_{T,i} \Theta(R - R_{\gamma i}) \leq E_{T,\gamma} \left(\frac{1 - \cos(R)}{1 - \cos(R_{\gamma j})}\right)$

For hard photon $\alpha = \alpha(0) = 1/137 \rightarrow$ *Predictions decreased by* 3%

- **¥** Electroweak coupling in the G_u scheme → account for some electroweak effects
- **#** Kinematics-independent & kinematic-dependent scale: $\mu_0 = m_t/2, H_T/4$

tty with H_T

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}\gamma @ \text{LHC}_{13\text{TeV}}$$

$$\sigma_{pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}\gamma}^{\text{LO}}(\text{CT14}, \mu_0 = H_T/4) = 7.32 \stackrel{+2.44}{_{-1.71}} \stackrel{(33\%)}{_{-1.71}} \text{fb},$$

$$\sigma_{pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}\gamma}^{\text{NLO}}(\text{CT14}, \mu_0 = H_T/4) = 7.50 \stackrel{+0.10}{_{-0.46}} \stackrel{(1\%)}{_{(6\%)}} \text{fb}.$$

$$H_T = p_{T, e^+} + p_{T, \mu^-} + p_{T, j_b} + p_{T, j_b} + p_T^{miss} + p_{T, \gamma}$$

Positive & small *NLO corrections of 2.5%*

 $\sigma_{pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma}^{\text{NLO}}(\text{CT14}, \mu_0 = m_t/2) = 7.44 \begin{array}{c} +0.07 \, (\begin{array}{c} 1\% \\ -1.03 \, (14\%) \end{array} [\text{scales}] \begin{array}{c} +0.05 \, (1\%) \\ +0.28 \, (4\%) \end{array} [\text{PDF}] \, \text{fb} \, .$

tt γ with H_T

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$							
PDF	$p_{T,b}$	$\sigma^{ m LO}$ [fb]	δ_{scale}	$\sigma^{ m NLO}$ [fb]	δ_{scale}	$\delta_{ m PDF}$	$\mathcal{K} = \frac{NLO}{LO}$
СТ	25	10.68	+3.54 (33%) -2.49 (23%)	11.19	+0.16 (1%) -0.54 (5%)	+0.32 (3%) -0.35 (3%)	1.05
	30	9.58	+3.18 (33%) -2.24 (23%)	9.93	+0.14 (1%) -0.54 (5%)	+0.28 (3%) -0.31 (3%)	1.04
	35	8.44	+2.80 (33%) -1.97 (23%)	8.69	+0.12 (1%) -0.50 (6%)	+0.25 (3%) -0.27 (3%)	1.03
	40	7.32	+2.45 (33%) -1.71 (23%)	7.50	+0.11 (1%) -0.45 (6%)	+0.22 (3%) -0.23 (3%)	1.02
MMHT	25	11.59	+4.22 (36%) -2.88 (25%)	11.29	+0.16 (1%) -0.57 (5%)	+0.24 (2%) -0.22 (2%)	0.97
	30	10.38	+3.78(36%) -2.58(25%)	10.02	+0.13 (1%) -0.58 (6%)	+0.22 (2%) -0.19 (2%)	0.97
	35	9.12	+3.33 (36%) -2.26 (25%)	8.77	+0.11 (1%) -0.54 (6%)	+0.19 (2%) -0.17 (2%)	0.96
	40	7.90	+2.89(37%) -1.96(25%)	7.57	+0.09 (1%) -0.48 (6%)	+0.16 (2%) -0.15 (2%)	0.96
			100 (2010)				
NNPDF	25	10.78	+3.82 (35%) -2.62 (24%)	11.62	+0.17 (1%) -0.58 (5%)	+0.16 (1%) -0.16 (1%)	1.08
	30	9.65	+3.42 (35%) -2.34 (24%)	10.31	+0.14 (1%) -0.58 (6%)	+0.14 (1%) -0.14 (1%)	1.07
	35	8.48	+3.01 (35%) -2.05 (24%)	9.02	+0.12 (1%) -0.53 (6%)	+0.12 (1%) -0.12 (1%)	1.06
	40	7.34	+2.61 (36%) -1.78 (24%)	7.79	+0.10 (1%) -0.48 (6%)	+0.11 (1%) -0.11 (1%)	1.06

Stability w.r.t. $p_{T,b}$ cut

NLO QCD corrections stable against $p_{T,b}$ cut

CT14 PDF uncertainties similar/smaller than difference between various PDF sets

Similar results for $p_{T,\gamma}$ cut

tty with $m_t \mathcal{E} H_T$

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

*Negative NLO corrections up to 18%* **#** Theoretical error up to ± 22%

*Positive NLO corrections up to 13%* **#** NLO error bands within LO **#** Theoretical error up to ± 8%

LHC_{13 TeV}

tty with $m_t \mathcal{E} H_T$

LHC_{13 TeV}

Theoretical uncertainties up to $\pm 56\%$

Error reduced down to $\pm 7\%$

18

Dynamical scale very effective in stabilizing perturbative convergence ! Provides smaller theoretical error !

ttγ/tt

- **#** For fiducial cross section with dynamical scale we have $\pm 6\%$
- **#** For *differential distributions* we have **±** (10% 30%)
- **#** Can we decrease theoretical error even further for tty ?
- **#** Answer is yes ! → with ttγ/tt we have ± (1% 3%) for integrated cross section ratio
- **#** Differential cross section ratios ± (1% 6%)

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\mathrm{NLO}}\left(\mu_{1}\right)}{\sigma_{t\bar{t}}^{\mathrm{NLO}}\left(\mu_{2}\right)}$$

$$\mathcal{R}_{X} = \left(\frac{d\sigma_{t\bar{t}\gamma}^{\text{NLO}}\left(\mu_{1}\right)}{dX}\right) \left(\frac{d\sigma_{t\bar{t}}^{\text{NLO}}\left(\mu_{2}\right)}{dX}\right)^{-1}$$

- **#** High precision comparable to NNLO QCD results for top quark physics !
- **#** *Processes need to be correlated* \rightarrow top quark pair production excellent candidate

$$\left(\frac{\mu_1}{\mu_0}, \frac{\mu_2}{\mu_0}\right) = \{(2, 2), (0.5, 0.5)\}$$

Similar dynamical scale choice need to be implemented for μ_1 and μ_2 !

ttγ&tt

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

$tt\gamma \& tt$

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

ttbb & ttjj

$pp \to t\bar{t}b\bar{b}$ & $t\bar{t}jj$ @ LHC_{8TeV}

- # Different jet kinematics makes the ttbb and ttjj processes uncorrelated in several observables
- Scale uncertainty is not significantly reduced when taking ratio of cross sections

LHC_{8 TeV}

Bevilacqua, Worek '14

$tt\gamma \& tt$

$$\begin{array}{c|c} \text{PDF set, } \mu_R = \mu_F = \mu_0 & \sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}}^{\text{NLO}} \left[\text{fb} \right] & \sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}\gamma}^{\text{NLO}} \left[\text{fb} \right] & \sigma_{e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}\gamma}^{\text{NLO}} \left[\text{fb} \right] \\ p_{T,\gamma} > 25 \text{ GeV} & p_{T,\gamma} > 50 \text{ GeV} \end{array} \\ \hline \\ \text{CT14, } \mu_0 = m_t/2 & 1629.4 \substack{+18.4 (1\%) \\ 1620.5 \substack{+21.6 (1\%) \\ -118.8 (7\%)}} & 7.436 \substack{+0.074 (1\%) \\ -1.034 (14\%)} \\ 1620.5 \substack{+21.6 (1\%) \\ -0.457 (6\%)} & 7.496 \substack{+0.099 (1\%) \\ -0.457 (6\%)} \\ 3.125 \substack{+0.040 (1\%) \\ -0.142 (4\%)} \\ 3.093 \substack{+0.053 (2\%) \\ -0.535 (17\%)} \\ 3.195 \substack{+0.054 (2\%) \\ -0.550 (17\%)} \\ 3.195 \substack{+0.054 (2\%) \\ -0.550 (17\%)} \\ \end{array}$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\mathrm{NLO}}\left(\mu_{1}\right)}{\sigma_{t\bar{t}}^{\mathrm{NLO}}\left(\mu_{2}\right)}$$

$$\mathcal{R} \left(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}\right) = (4.56 \pm 0.25) \cdot 10^{-3} (5\%),$$

$$\mathcal{R} \left(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}\right) = (4.62 \pm 0.06) \cdot 10^{-3} (1\%),$$

$$\mathcal{R} \left(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}\right) = (1.89 \pm 0.16) \cdot 10^{-3} (8\%),$$

$$\mathcal{R} \left(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}\right) = (1.93 \pm 0.06) \cdot 10^{-3} (3\%).$$

Our best NLO QCD predictions with dynamical scale choice:

 $\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \,\text{GeV}) = (4.62 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3}$ $\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \,\text{GeV}) = (1.93 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3},$

Differential Cross Section Ratio

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$ Theoretical uncertainties: + (10% 40%)

± (1% – 4%) *dynamical scale*

± (20% – 25%) fixed scale

Should be compared to uncertainties for absolute differential cross section \therefore up to $\pm 10\%$ for $\mu_0 = H_T/4$ & up to $\pm 50\%$ for $\mu_0 = m_t/2$

When different scales are used in numerator and denominator *up to 60%*

Differential Cross Section Ratio

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma$ @ LHC_{13TeV} Theoretical uncertainties: $\pm (2\% - 3\%)$ *dynamical scale* $\pm (20\% - 30\%)$ *fixed scale*

% Should be compared to uncertainties for absolute differential cross section \therefore up to $\pm 20\%$ for $\mu_0 = H_T/4$ & up to $\pm 50\%$ for $\mu_0 = m_t/2$

When different scales are used in numerator and denominator *up to 60%*

Summary & Outlook

The most precise NLO QCD theoretical predictions for $tt\gamma$ in di-lepton channel

- Complete off-shell effects for top quarks
- Corrections to prodution & decays & tt spin correlations
- Possibility of using kinematic-dependent scales

NLO QCD corrections stable against $p_{T,\gamma} & p_{T,b}$ cut

CT14 PDF uncertainties similar/smaller than difference between various PDF sets

Uncertainties due to scale dependence dominant source of theoretical systematics

*tty* relevant for BSM searches and studies of top quark properties

Cross section ratio(s) increase precision without going to NNLO QCD !

% Next steps:

Comparisons: NWA vs. off-shell effects dedicated studies for *ttγ*

Applications: SM parameter extraction, disentangling and constraining anomalous couplings and more ...