

Collaborative Research Centre - TRR 257 Research Training Group - RTG 2497

and Research

SPONSORED BY THE

Production & decay of a (heavy) boson in association with top quarks

MALGORZATA WOREK

Loops and Legs in Quantum Field Theory, 25–30 April 2022, Ettal

INSTEAD OF INTRODUCTION

- Simply list, page-by-page, latest theoretical results
 - Not only are they impressive, but there are plenty of them
- Tell story, hopefully interesting one
 - Based on many years of work & development of HELAC-NLO
 - Instead of partial results \Rightarrow Full processes \Rightarrow Phenomenological applications \Rightarrow Compared to LHC data
 - Various results for $pp \rightarrow tt + X$ where $X = H, \gamma, W, Z, j, bb$
 - NLO QCD
 - \circ 2 → 5 *processes* \Rightarrow *pp* → *WWbbX* where *X* = *H*, *γ*, *W*, *Z*, *j*
 - $\circ \ 2 \to 6 \ process \ \Rightarrow \ pp \to WWbbbb$

MY GOAL

- Identify which effects are important & should be taken into account
- Give a few examples for NLO QCD $pp \rightarrow tt + X$ results
- Vital for SM top quark-physics studies & BSM searches & SM Higgs boson measurements $\Rightarrow pp \rightarrow ttH$
- (*Biased*) Selection \Rightarrow Only NLO QCD with off-shell effects \Rightarrow Only latest results 2020-2022 \Rightarrow ONLY LHC

INSTEAD OF INTRODUCTION

- SM ⇒ Extremely fun & exciting & enjoyable time for people working on QCD + EW
- **BSM** ⇒ Significant number of open questions remains & Search for new phenomena key aspect of LHC
- BSM DIRECT SEARCHES
 - Many proposals for New Physics
 - No model of New Physics really stands out
 - No obvious candidates to look for @ LHC
 - *tt, tt* + *jets, tt* + $V \Rightarrow$ Important backgrounds for BSM
- BSM INDIRECT SEARCHES
 - New Physics as small corrections to SM reactions
 - Precision SM measurements @ LHC
 - BSM Physics ⇔ High Luminosity LHC
 - Fully exploit experimental program
 - *High Precision Theoretical Predictions* ⇒ *Top Quark*

Large Hadron Collider restarts

Beams of protons are again circulating around the collider's 27-kilometre ring, marking the end of a multiple-year hiatus for upgrade work

The LHC tunnel at point 1 (Image: CERI

CERN: LHC/ HL-LHC Plan (last update February 2022)

WHY TOP QUARK IS SO SPECIAL

- **TOP QUARK** ⇒ Discovered at TeVatron in 1995
- Heaviest observed particle

 $m_t = (173.34 \pm 0.76) \,\mathrm{GeV}$

World Combination '14 ATLAS, CDF, CMS, D0

Substantial Yukawa coupling

$$Y_t = \sqrt{2} \, \frac{m_t}{v} \approx 1$$

- Special relation with SM Higgs boson
- Short lifetime ⇒ Decay before bound states can be formed
- Direct handle on top-quark properties from its decay products

 $b - jets, p_T^{miss}, \ell^{\pm} \& light - jets$

LHCtopWG	m_{top} summary, $\gamma s = 7-13$ TeV	warch 2022
World comb. (Mar 2014) [2]		
stat	total stat	
total uncertainty	m + total (stat + syst)	Ref
I HC comb (Sep 2013) LHCtopWG	173 29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]
World comb (Mar 2014)		1 96-7 TeV [2]
ATLAS I+iets	$172.33 \pm 1.27 (0.75 \pm 1.02)$	7 TeV [3]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]
ATLAS all jets	175.1+1.8 (1.4 + 1.2)	7 TeV [4]
ATLAS, single top	$172.2 \pm 2.1 (0.7 \pm 2.0)$	8 TeV [5]
ATLAS dilepton	172.99 ± 0.85 (0.41± 0.74)	8 TeV [6]
ATLAS, all iets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+iets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]
ATLAS comb. (Oct 2018)	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]
CMS, I+jets	$172.35 \pm 0.51 \; (0.16 \pm 0.48)$	8 TeV [13]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [13]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]
CMS, I+jets	$172.25 \pm 0.63 \; (0.08 \pm 0.62)$	13 TeV [15]
CMS, dilepton	$172.33 \pm 0.70 \; (0.14 \pm 0.69)$	13 TeV [16]
CMS, all jets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [17]
CMS, single top	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [18]
CMS, boosted jet mass	172.6 ± 2.5 (0.4 ± 2.4)	13 TeV [19]
* Preliminary	[1] ATLAS-CONF-2013-102 [8] EPJC 79 (2019) 290 [2] arXiv:1403.4427 [9] ATLAS-CONF-2019-046 [3] EPJC 75 (2015) 330 [10] JHEP 12 (2012) 105 [4] EPJC 75 (2015) 108 [11] EPJC 73 (2012) 2022	[15] EPJC 78 (2018) 891 [16] EPJC 79 (2019) 368 [17] EPJC 79 (2019) 313
	[9] ATLAS-CONF-2014-055 [11] EPG/0 72 (2012) 2202 [6] ATLAS-CONF-2014-055 [12] EPG/0 74 (2014) 2758 [6] PLB 761 (2016) 350 [13] PRD 93 (2016) 072004 [7] JHEP 09 (2017) 118 [14] EPJ/C 77 (2017) 354	[18] JHEP 12 (2021) 161 [19] PRL 124 (2020) 202001
165 170	175 180	185

- PRECISION TOP-QUARK PHYSICS
 - Extracting SM parameters
 - Constraining PDFs
 - Examining (anomalous) couplings
 - Studying various IR safe observables

TOP QUARK PAIR PRODUCTION

• NNLO + NNLL predictions for *tt*

 $pp \to t\bar{t} + X \to W^+W^-b\bar{b} + X \to \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b} + X$

ASSOCIATED TT PRODUCTION

MORE EXCLUSIVE FINAL STATES ARE PRODUCED @ LHC

 $pp \to t\bar{t} + X, X = \gamma, W^{\pm}, Z$

	$ p_{\mathrm{T}}$	(γ)	$ \eta $	(γ)	$\Delta R(\gamma$	$(\ell,\ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta \eta $	$[\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	<0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	< 0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

 χ^2 /ndf and *p*-values between measured normalised cross-sections and various predictions from MC simulations and NLO calculation

$pp \to e^+ \nu_e \,\mu^- \bar{\nu}_\mu \,b\bar{b}\,\gamma + X$

- NLO QCD full off-shell predictions for *ttγ*
 - Di-lepton channel

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20 ATLAS '20

FULL OFF-SHELL EFFECTS

Off-shell top quarks & W described by Breit-Wigner propagators

All interference effects incorporated at matrix element level

Double-, single- & non-resonant top-quark & W contributions included

NLO *ttW*

$$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,e^+ \nu_e \,b\bar{b} + X$$
$$pp \to e^- \bar{\nu}_e \,\mu^+ \,\nu_\mu \,e^- \bar{\nu}_e \,b\bar{b} + X$$

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

- NLO QCD corrections to production & decays
- Nonfactorizable NLO QCD corrections included ⇔ Cross-talk between production & decays
- NLO spin correlations

- Simply putting $\Gamma \neq 0$ violates gauge invariance
- Complex Mass Scheme ⇒ Gaugeinvariant scheme for calculation of higher-order corrections with unstable particles

Denner, Dittmaier, Roth, Wackeroth '99 Denner, Dittmaier, Roth, Wieders '05

• Scalar integrals with complex masses ⇒ ONELOOP

COMPLEXITY FOR TTBB

Examples of octagon-, heptagon- & hexagon-type of one-loop diagrams

One-loop correction type	Number of Feynman diagrams
Self-energy	93452
Vertex	88164
Box-type	49000
Pentagon-type	25876
Hexagon-type	11372
Heptagon-type	3328
Octagon-type	336
Total number	271528

$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,b\bar{b} + X$

Partonic Subprocess	Number of Feynman diagrams	Number of CS Dipoles	Number of NS Subtractions
$gg ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} b ar{b} g$	41364	90	18
$q \bar{q} ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} b ar{b} g$	9576	50	10
$gq ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} b ar{b} q$	9576	50	10
$g\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} b\bar{b} \bar{q}$	9576	50	10

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek '21 '22

 $gg \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,b\bar{b}$

NLO *ttbb*

NARROW WIDTH APPROXIMATION

■ FULL NWA B NWA_{FULL}

- Works in the limit $\Rightarrow \Gamma/m \rightarrow 0$
- Incorporates only double resonant contributions
- *Restricts unstable tops & W to on-shell states*
- NLO QCD correction separately to production & separately to top-quark decays
- NLO QCD nonfactorizable corrections missing ⇒ No cross-talk between production & decays
- NLO spin correlations

- NWA WITH LO DECAYS ⇒ NWA_{LODEC}
 - Without NLO QCD corrections to top-quark decays
 - LO spin correlations

 $pp \to t\bar{t}W^+ \to W^+W^- b\bar{b}W^+ \to e^+\nu_e \,\mu^- \,\bar{\nu}_\mu \,e^+\nu_e \,b\bar{b} + X$

 $\Gamma_t = 1.35159 \text{ GeV}, \ m_t = 173.2 \text{ GeV}, \ \Gamma_t/m_t \approx 0.008$

$$\frac{\Gamma_W}{m_W} > \frac{\Gamma_t}{m_t} \gg \frac{\Gamma_H}{m_H},$$
$$2.6\% > 0.8\% \gg 0.003\%.$$

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

- Theoretical predictions are stored ⇒ *Ntuples Files &* modified *Les Houches & ROOT Files*
- Each "event" provided with supplementary matrix element & PDF information
- Results for different scale settings & PDF choices by can be obtained by reweighting
- Different observables and/or binning can be provided + more exclusive cuts ⇒ With caveat

RESULTS WITH FULL OFF-SHELL EFFECTS

•	tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Frederix '14 Heinrich, Maier, Nisius, Schlenk, Winter '14 Denner, Pellen '16 (EW+QCD) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
•	tt (lepton+jets)	Denner, Pellen '18
•	ttH (di-lepton) ttH ($H \rightarrow bb, \tau^+\tau^-, \gamma\gamma$ & $e^+e^-e^+e^-$)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD) Stremmer, Worek '22
•	ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
•	$tt\gamma$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20
•	$ttZ \ \mathcal{E} \ Z ightarrow \mathcal{V}_l \mathcal{V}_l$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '19 Hermann, Worek '21
•	$ttZ \ \& Z \rightarrow ll$ (tetra-lepton)	Bevilacqua, Hartanto, Kraus, Nasufi, Worek '22
•	ttW (three-lepton)	Bevilacqua, Bi, Hartanto, Kraus, Worek '20 Denner, Pelliccioli '20 Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '21 Denner, Pelliccioli '21 (EW+QCD) Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22
•	ttbb (di-lepton)	Denner, Lang, Pellen '21 Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek '21 '22

NLO QCD CORRECTIONS & SCALE SETTING NLO ttH

Stremmer, Worek '22

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,H + X$

FIXED SCALE CHOICE

- Perturbative instabilities in ~ TeV regions
- LO & NLO uncertainties band do not overlap
- Scale uncertainties at NLO larger than for LO
- For some scale choices NLO results negative

DYNAMICAL SCALE CHOICE

- Stabilises tails
- NLO uncertainties bands within LO ones

$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$
$$\mu_{dyn} = (m_{T,t} m_{T,\bar{t}} m_{T,H})^{\frac{1}{3}} \qquad m_T = \sqrt{m^2 + p_T^2}.$$
$$\mu_{fix} = m_t + \frac{m_H}{2} = 236 \text{ GeV}$$

NLO QCD CORRECTIONS & HIGGS DECAYS

1000

1.0

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,H(H \to b\bar{b}) + X$ 10-LO LO NLO_{LOdecH} NLO_{LOdecH} da/dp_{T,b1} [fb/GeV] [fb/GeV] NLO NLO $^{^{2}q^{^{1}q}}Mp/op$ 10⁻⁵ 10-.E 2.0 ±1.6 Ratio 10 NLO_{Lodec} Ratio NLO_{Lodec} ₽ 0.4 0.4 200 100 200 300 400 500 600 400 600 800 p_{T, b1} [GeV] $M_{b_1b_2}$ [GeV] LO 0.6 LO 0.8 NLO_{LOdecH} $\frac{d\sigma/d\cos\left(\theta_{\mu_{1}^{\mu_{1}\mu_{1}}}\right)}{0.6} \begin{bmatrix} fb \end{bmatrix}$ NLO_{LOdecH} dσ/dΔR_{b1b2} [fb] NLO NLO 0.1 0.0 1.6 1.3 0 1.0 0 1.0 0 0 0 0 0 0 -0.50.5 0.0 $\Delta R_{b_1b_2}$ $\cos\left(\theta_{b_{1}^{H}b_{2}^{H}}\right)$

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,H + X$

- Full off-shell effects for *t* & *W*
- Higgs boson decays in NWA

	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO} \ [m fb]$	ĸ	
Stable Higgs	$2.2130(2)^{+30.1\%}_{-21.6\%}$	$2.728(2)^{+1.1\%}_{-4.7\%}$	1.23	
$H ightarrow b ar{b}$	$0.8304(2)^{+44.4\%}_{-28.7\%}$	$0.9456(8)^{+2.5\%}_{-9.5\%}$	1.14	
$H \to \tau^+ \tau^-$	$0.11426(2)^{+30.0\%}_{-21.6\%}$	$0.1418(1)^{+1.2\%}_{-4.8\%}$	1.24	
$H ightarrow \gamma \gamma$	$0.0037754(8)^{+30.0\%}_{-21.6\%}$	$0.004552(4)^{+0.9\%}_{-4.1\%}$	1.21	
$H \rightarrow e^+ e^- e^+ e^-$	$1.0083(7)\cdot 10^{-5+30.2\%}_{}$	$1.313(4)\cdot 10^{-5+1.8\%}_{6.2\%}$	1.30	

• $H \rightarrow bb \implies \sigma_{\text{NLO}_{\text{LOdec}_H}} = 0.8956(8)^{+13.8\%}_{-14.2\%} \text{ fb.} \implies 5\%$

• 4 *b*-jets
$$\Rightarrow$$
 $Q_{i,j} = |M_{b_ib_j} - m_H|$

NLO *ttH*

PDF UNCERTAINTIES

NLO *tt*Z

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,\tau^+ \tau^- + X$

DIFFERENTIAL LEVEL

- PDF uncertainties for CT18 & MMHT14 similar
- Factor of 2 larger than PDF uncertainties for NNPDF3.1
- *PDF uncertainties smaller than scale variation*

How Good is NWA

NLO *ttW*

Bevilacqua, Bi, Hartanto, Kraus, Worek '20

Modelling Approach	$\sigma^{ m LO}$ [ab]	$\sigma^{ m NLO}$ [ab]
full off-shell ($\mu_0 = m_t + m_W/2$)	$106.9^{+27.7(26\%)}_{-20.5(19\%)}$	$123.2^{+6.3(5\%)}_{-8.7(7\%)}$
full off-shell ($\mu_0 = H_T/3$)	$115.1^{+30.5(26\%)}_{-22.5(20\%)}$	$124.4^{+4.3(3\%)}_{-7.7(6\%)}$
NWA $(\mu_0=m_t+m_W/2)$	$106.4^{+27.5(26\%)}_{-20.3(19\%)}$	$123.0^{+6.3(5\%)}_{-8.7(7\%)}$
NWA $(\mu_0 = H_T/3)$	$115.1^{+30.4(26\%)}_{-22.4(19\%)}$	$124.2^{+4.1(3\%)}_{-7.7(6\%)}$
$\mathrm{NWA}_{\mathrm{LOdecay}}~(\mu_0=m_t+m_W/2)$	ſ	$127.0^{+14.2(11\%)}_{-13.3(10\%)}$
NWA _{LOdecay} ($\mu_0 = H_T/3$)		$130.7^{+13.6(10\%)}_{-13.2(10\%)}$

INTEGRATED LEVEL

- Full off-shell effects 0.2%
- NLO QCD corrections to decays 3%-5%

 $pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,e^+ \nu_e \,b\bar{b} + X$

DIFFERENTIAL LEVEL

- Off-shell effects up to 60% 70%
- Substantial differences between NWA & NWA_{LODECAY}

How Good is NWA

NLO $tt\gamma$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

DIMENSIONFUL OBSERVABLES

- Sensitive to non-factorizable top quark corrections
- Effects up to 50% 60%
- Specific phase-space regions
 - Kinematical edges
 - *High* p_T *regions*

VARIOUS PHASE-SPACE REGIONS

NLO $tt\gamma$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$$

DIMENSIONFUL OBSERVABLES

- Sensitive to non-factorizable top quark corrections
- Effects up to 50% 60%
- Specific phase-space regions
 - Kinematical edges
 - *High* p_T *regions*

NLO *ttW*

APPLICATION I: TOP CHARGE ASYMMETRY

 μ_0

Searching for more precise observables

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

• A_c^t charge asymmetry @ NLO for $pp \rightarrow ttW^+$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '21

- Asymmetry larger than for $pp \rightarrow tt$
- Top quark momenta must be reconstructed
- Scale setting not important ⇒ Fixed & dynamical scale choice gives similar results
- Top-quark modelling important

	$t\bar{t}W^+$	Off-shell	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
	$\mu_0 = H_T/3$			
	$A_{c,y}^t \; [\%]$	$2.36(8)^{+1.19(50\%)}_{-0.77(33\%)}$	$1.93(5)^{+1.23(64\%)}_{-0.72(37\%)}$	$1.11(3)^{+0.55(49\%)}_{-0.53(48\%)}$
	$A^t_{c,exp,y}$ [%]	$2.66(10)^{+0.38(14\%)}_{-0.34(13\%)}$	$2.20(5)^{+0.45(20\%)}_{-0.31(14\%)}$	$2.08(5)^{+0.24(11\%)}_{-0.40(19\%)}$
	$t \bar{t} W^+$	OFF-SHELL	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
=	$m_t + m_W/2$			
	$A_{c,y}^t$ [%]	$2.09(8)^{+1.06(51\%)}_{-0.70(33\%)}$	$1.68(4)^{+1.00(60\%)}_{-0.67(40\%)}$	$0.86(3)^{+0.66(77\%)}_{-0.43(50\%)}$
	$A^t_{c,exp,y} \ [\%]$	$2.62(10)^{+0.39(15\%)}_{-0.34(13\%)}$	$2.19(4)^{+0.38(17\%)}_{-0.34(16\%)}$	$1.94(5)^{+0.46(24\%)}_{-0.32(16\%)}$

APPLICATION I: TOP CHARGE ASYMMETRY

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '21

- A_c^l charge asymmetry @ NLO for $pp \rightarrow ttW^+$
- Directly measurable ⇒ No need for top-quark reconstruction

Differential & Cumulative A¹_c

19

NLO *ttW*

APPLICATION II: BSM EXCLUSION LIMITS

9 0000

 Y_S/Y_{PS}

- **BSM** \Rightarrow Kinematical edges & high p_T regions
- $tt + DM \Rightarrow$ Top-quark backgrounds: tt & ttZ
- **OBSERVABLE** \Rightarrow $M_{T2,W} \& M_{T2,t} \& p_{Tmiss}$

Before & after applying additional cuts

Process	Order	Scale	$\sigma_{ m uncut}$ [fb]	$\sigma_{ m cut}~[{ m fb}]$	$\sigma_{ m cut}/\sigma_{ m uncut}$	Events for $L = 300 \text{ fb}^{-1}$
	LO	$H_T/4$	1061	0	0.0%	0
	LO	$E_T/4$	984	0	0.0%	0
$t\bar{t}$ NWA	LO	m_t	854	0	0.0%	0
	NLO	$H_T/4$	1097	0	0.0%	0
	NLO, LO dec	$H_T/4$	1271	0	0.0%	0
	LO	$H_T/3$	0.1223	0.0130	11%	47
	LO	$E_T/3$	0.1052	0.0116	11%	42
$t\bar{t}Z$ NWA	LO	$m_t + m_Z/2$	0.1094	0.0134	12%	48
	NLO	$H_T/3$	0.1226	0.0130	11%	47
	NLO, LO dec	$H_T/3$	0.1364	0.0140	10%	50
	LO	$H_T/4$	1067	0.0144	0.0013%	17
t Off shall	LO	$E_T/4$	989	0.0131	0.0013%	16
tt On-shell	LO	m_t	861	0.0150	0.0017%	18
	NLO	$H_T/4$	1101	0.0156	0.0014%	19
	LO	$H_T/3$	0.1262	0.0135	11%	49
tTZ Off aball	LO	$E_T/3$	0.1042	0.0115	11%	41
ttZ Off-shell	LO	$m_t + m_Z/2$	0.1135	0.0140	12%	50
	NLO	$H_T/3$	0.1269	0.0134	11%	48

- After cuts 25% of events come from *tt*
- NLO smaller uncertainties w.r.t LO, NLO + LO decays

 $pp \to t\bar{t} + Y_{S/PS} \to W^+W^-b\bar{b} + Y_{S/PS} \to e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + \chi\chi$

NLO *tt*Z

APPLICATION II: BSM EXCLUSION LIMITS

 $M_T^2\left(\mathbf{p}_T^{(lb)_i}, \mathbf{p}_T^{
u_i}
ight) = M_{(lb)_i}^2 + 2\left(E_T^{(lb)_i}E_T^{
u_i} - \mathbf{p}_T^{(lb)_i} \cdot \mathbf{p}_T^{
u_i}
ight)$

Hermann, Worek '21

NLO *tt*Z

SUMMARY

- *Proper modeling of top quark production & decay essential already now in presence of inclusive cuts:*
- NLO QCD corrections to tt + X where $X = H (+ H \text{ decays in NWA}), \gamma, W, Z (Z \rightarrow \nu\nu \& Z \rightarrow ll), j, bb$
 - 1. Corrections to production & decays important \Rightarrow NLO *tt* spin correlations
 - 2. Possibility of using kinematic-dependent $\mu_R \otimes \mu_F$ scales important
 - 3. Complete off-shell effects important \Rightarrow *kinematical edges* & *high* p_T *regions*
- Even more important for:
 - Exclusive cuts & High luminosity measurements
 - New Physics searches & Exclusion limits
 - SM parameter extraction
- Top quarks play important role in virtually every LHC analysis ⇔ SM & BSM
- Lots of data, sophisticated analyses, precision measurements ⇔ Should be compared to precise theoretical predictions
- Full off-shell results & NWA & NWA_{LODEC}
- HELAC NLO ⇒ Stored Events ⇒ Ntuples Files ⇒ Les Houches & ROOT Files
- Our goal is to provide state-of-the-art NLO QCD + EW results \Rightarrow *tt* + *X* where *X* = $\gamma\gamma$, *jj*, *tt*, ...
- Compare to LHC data

BACKUP

VARIOUS PHASE - SPACE REGIONS

and

 $\bar{t} = W^- (\rightarrow \mu^- \bar{\nu}_\mu) \, \bar{b} \, ,$

and $\bar{t} = W^-(\to \mu^- \bar{\nu}_\mu) \bar{b}$,

and $\bar{t} = W^-(\rightarrow \mu^- \bar{\nu}_\mu) \bar{b}\gamma$

■ 3 different resonance histories ⇔ Resolved jet at NLO gives 9 in total

Compute for each history *Q* and pick one that minimises *Q*

DOUBLE-RESONANT (DR)

(i)

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

Two single-resonant regions (SR)

 $t = W^+(\to e^+\nu_e) b$

(ii) $t = W^+(\rightarrow e^+\nu_e) b\gamma$

(iii) $t = W^+ (\rightarrow e^+ \nu_e) b$

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

NON-RESONANT REGION (NR)

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

$$Q=|M(t)-m_t|+|M(\,\bar{t}\,)-m_t|$$

PHOTON IN TOP-QUARK DECAYS

NLO *ttγ*

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

Modelling Approach	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]
full off-shell ($\mu_0 = H_T/4$)	$7.32^{+2.45(33\%)}_{-1.71(23\%)}$	$7.50^{+0.11(1\%)}_{-0.45(6\%)}$
		0.00(18%)
NWA $(\mu_0 = m_t/2)$	$8.08^{+2.84(35\%)}_{-1.96(24\%)}$	$7.28^{-0.99(13\%)}_{-0.03(0.4\%)}$
NWA $(\mu_0 = H_T/4)$	$7.18^{+2.39(33\%)}_{-1.68(23\%)}$	$7.33^{+0.43(5.9\%)}_{-0.24(3.3\%)}$
$\mathrm{NWA}_{\gamma-\mathrm{prod}}~(\mu_0=m_t/2)$	$4.52^{+1.63(36\%)}_{-1.11(24\%)}$	$4.13^{-0.53(13\%)}_{-0.05(1.2\%)}$
$\mathrm{NWA}_{\gamma-\mathrm{prod}}\;(\mu_0=H_T/4)$	$3.85^{+1.29(33\%)}_{-0.90(23\%)}$	$4.15_{-0.21(5.1\%)}^{-0.12(2.3\%)}$
$\mathrm{NWA}_{\gamma-\mathrm{decay}}~(\mu_0=m_t/2)$	$3.56^{+1.20(34\%)}_{-0.85(24\%)}$	$3.15^{+0.46(15\%)}_{+0.03(0.9\%)}$
$\mathrm{NWA}_{\gamma-\mathrm{decay}}\;(\mu_0=H_T/4)$	$3.33^{+1.10(33\%)}_{-0.77(23\%)}$	$3.18^{-0.31(9.7\%)}_{-0.03(0.9\%)}$
$\mathrm{NWA}_{\mathrm{LOdecay}}\;(\mu_0=m_t/2)$		$4.85^{+0.26(5.4\%)}_{-0.48(9.9\%)}$
NWA _{LOdecay} ($\mu_0 = H_T/4$)		$4.63^{+0.44(9.5\%)}_{-0.52(11\%)}$

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

- For $p_{T,b} > 40 \, GeV$
 - 57% $\Rightarrow \gamma$ emitted in production
 - 43% $\Rightarrow \gamma$ emitted in decay stage
- NLO QCD corrections to top-quark decays

• 12% - 17%

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X$

Bevilacqua, Hartanto, Kraus, Worek '16

Number of events, number of files & averaged number of events per file as well as total size per contribution for different NTUPLE samples

Contribution	Nr. of Events	NR. OF FILES	(AVG) EVENTS/FILE	Size
Born Born + Virtual Integrated dipoles Real + Sub. Real	$21 imes 10^6 \ 33 imes 10^6 \ 80 imes 10^6 \ 626 imes 10^6$	$\begin{array}{c} 60 \\ 380 \\ 450 \\ 18000 \end{array}$	$350 imes 10^3 \ 87 imes 10^3 \ 178 imes 10^3 \ 35 imes 10^3$	38 GB 72 GB 160 GB 1250 GB
Total:	$760 imes 10^6$	18890	$40 imes 10^3$	1520 GB

COMPLEXITY FOR TTJ

Partonic	Number Of	Number Of	Number Of
Subprocess	Feynman Diagrams	CS DIPOLES	NS SUBTRACTIONS
+ 17		50	
$gg ightarrow e^+ u_e \mu^- ar{ u}_\mu$ bbgg	4447	56	14
$gg ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} q ar{q}$	1952	40	10
$gq ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} g q$	1952	40	10
$g ar q ightarrow e^+ u_e \mu^- ar u_\mu b ar b g ar q$	1952	40	10
$q\bar{q} ightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} g g$	1952	40	10
$qq \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} q q$	930	20	5
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} q \bar{q}$	930	16	4
$\bar{q}\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \bar{q} \bar{q}$	930	20	5
$qq' ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b} q q'$	501	12	3
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}q'\bar{q}'$	501	8	2
$q\bar{q}' \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} q\bar{q}'$	501	12	3
$\bar{q}\bar{q}' \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \bar{q} \bar{q}'$	501	12	3
$qQ ightarrow e^+ u_e \mu^- \bar{ u}_\mu b \bar{b} q Q$	465	12	3
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}Q\overline{Q}$	465	8	2
$q\overline{Q} ightarrow e^+ u_e \mu^- \overline{ u}_\mu b \overline{b} q \overline{Q}$	465	12	3
$\bar{q}\overline{Q} ightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \bar{q} \overline{Q}$	465	12	3
$qQ \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} q' Q'$	36	4	1
$q\overline{Q} \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} q' \overline{Q}'$	36	4	1
$q\bar{q}' \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} Q \overline{Q}'$	36	4	1
$\bar{q}\overline{Q} \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \bar{q}' \overline{Q}'$	36	4	1
$gg ightarrow e^+ u_e \mu^- \bar{ u}_\mu b \bar{b} b \bar{b}$	3904	48	12
$q\bar{q} ightarrow e^+ u_e \mu^- \bar{ u}_\mu b\bar{b} b\bar{b}$	930	16	4

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X$

- *gg* channel *39180* one-loop diagrams
- 120 Heptagons
- 1155 Hexagons
- Tensor integrals up to rank six

NLO *ttj*