

Federal Ministry of Education

and Research

QCD @ *LHC* - *Precision for Discoveries*

MALGORZATA WOREK

86. Annual Meeting of DPG and DPG Spring Meeting of the Matter and Cosmos Section (SMuK), 20-24 March 2023 Dresden

Instead of Introduction

- Latest NLO & NNLO QCD results for $2 \rightarrow 3 \& 2 \rightarrow 5, 6 \dots$ processes in SM
 - Not only are they impressive, but there are plenty of them
- Tell story, hopefully interesting one about precision in top-quark physics
 - A few results for SM top-quark associated processes

✓ $pp \rightarrow tt + \gamma$ ✓ $pp \rightarrow tt + Z (Z \rightarrow \nu\nu)$ ✓ $pp \rightarrow tt + H$

• Top-quark results in the context of BSM physics $\checkmark pp \rightarrow tt + Dark Matter$

✓ $pp \rightarrow tt + H \implies CP$ structure of top-quark Yukawa interaction

- MY GOAL:
 - Identify which effects are important & should be taken into account
 - Top-quark production and decays with complete off-shell effects included @ NLO QCD
 - HELAC-NLO & Fixed order calculations @ LHC 13 TeV

Instead of Introduction

- SM ⇒ Extremely fun, exciting, enjoyable time for people working on SM ⇒ QCD + EW
- BSM ⇒ Significant number of open questions remains Search for new phenomena key aspect of LHC
- BSM DIRECT SEARCHES
 - Many proposals for New Physics
 - No model of New Physics really stands out
 - No obvious candidates to look for @ LHC
 - *tt, tt* + *jets, tt* + *V* \Rightarrow Important backgrounds for BSM
- BSM INDIRECT SEARCHES
 - New Physics as small corrections to SM reactions
 - Precision SM measurements @ LHC
 - ✓ Run 3 & High Luminosity LHC, ...
 - High Precision Theoretical Predictions for SM Processes
 ✓ Top Quark

Large Hadron Collider restarts

Beams of protons are again circulating around the collider's 27-kilometre ring, marking the end of a multiple-year hiatus for upgrade work

22 APRIL, 2022

The LHC tunnel at point 1 (Image: CERN)

CERN: LHC/ HL-LHC Plan (last update February 2022)

Why Top Quark is so Special

HEAVIEST OBSERVED PARTICLE

 $m_t = (173.34 \pm 0.76) \; GeV$

World Combination '14 ATLAS, CDF, CMS, D0

Substantial Yukawa coupling

 $\mathbf{Y}_t = \sqrt{2} \ m_t \, / \, v \approx 1$

- Special relation with SM Higgs boson
- Short lifetime ⇒ Decay before bound states can be formed
- Direct handle on top-quark properties from its decay products

b-jets, light jets, l^{\pm}, p_T^{miss}

ATLAS+CMS Preliminary m_{top} summary,√s = 7-13 TeV Oct 2022 LHC*top*WG World comb. (Mar 2014) [2] total stat eta total uncertainty √s Ref. mton ± total (stat ± syst) LHC comb. (Sep 2013) LHCtopWG $173.29 \pm 0.95 \ (0.35 \pm 0.88)$ 7 TeV [1] World comb. (Mar 2014) 173.34 ± 0.76 (0.36 ± 0.67) 1.96-7 TeV [2] ATLAS, I+jets $172.33 \pm 1.27 (0.75 \pm 1.02)$ 7 TeV [3] ATLAS, dilepton $173.79 \pm 1.41 (0.54 \pm 1.30)$ 7 TeV [3] ATLAS, all jets 175.1± 1.8 (1.4± 1.2) 7 TeV [4] ATLAS, single top 172.2 ± 2.1 (0.7 ± 2.0) 8 TeV [5] ATLAS, dilepton 172.99 ± 0.85 (0.41± 0.74) 8 TeV [6] ATLAS, all jets $173.72 \pm 1.15 (0.55 \pm 1.01)$ 8 TeV [7] ATLAS, I+jets 172.08 ± 0.91 (0.39 ± 0.82) 8 TeV [8] ATLAS comb. (Oct 2018) 172.69 ± 0.48 (0.25 ± 0.41) 7+8 TeV [8] ATLAS, leptonic invariant mass $174.41 \pm 0.81 (0.39 \pm 0.66 \pm 0.25)$ 13 TeV [9] $172.63 \pm 0.79 (0.20 \pm 0.67 \pm 0.37)$ ATLAS, dilepton (*) 13 TeV [10] $173.49 \pm 1.06 (0.43 \pm 0.97)$ CMS, I+jets 7 TeV [11] CMS, dilepton $172.50 \pm 1.52 (0.43 \pm 1.46)$ 7 TeV [12] CMS, all jets $173.49 \pm 1.41 (0.69 \pm 1.23)$ 7 TeV [13] CMS. I+iets $172.35 \pm 0.51 (0.16 \pm 0.48)$ 8 TeV [14] CMS, dilepton 172.82 ± 1.23 (0.19 ± 1.22) 8 TeV [14] CMS, all jets $172.32 \pm 0.64 (0.25 \pm 0.59)$ 8 TeV [14] CMS. single top $172.95 \pm 1.22 (0.77 \pm 0.95)$ 8 TeV [15] CMS comb. (Sep 2015) $172.44 \pm 0.48 (0.13 \pm 0.47)$ 7+8 TeV [14] CMS, I+jets $172.25 \pm 0.63 (0.08 \pm 0.62)$ 13 TeV [16] CMS, dilepton $172.33 \pm 0.70 (0.14 \pm 0.69)$ 13 TeV [17] CMS, all jets $172.34 \pm 0.73 (0.20 \pm 0.70)$ 13 TeV [18] CMS. single top $172.13 \pm 0.77 (0.32 \pm 0.70)$ 13 TeV [19] CMS, I+jets (*) 171.77 ± 0.38 13 TeV [20] CMS, boosted (*) 172.76 ± 0.81 (0.22 ± 0.78) 13 TeV [21] [15] EPJC 77 (2017) 3 [6] EPJC 78 (2018) 891 [7] EPJC 79 (2019) 368 * Preliminary 1 EPJC 75 (2015) 158 [18] EPJC 79 (2019) 313 ATLAS-CONF-2014-05 2] EPJC 72 (2012) 2 [19] arXiv:2108.10407 [20] CMS-PAS-TOP-20-008 [21] CMS-PAS-TOP-21-012 [6] PLB 761 (2016) 350 [7] JHEP 09 (2017) 118

FINAL STATES THAT ARE PRESENT IN ALMOST ALL BSM SCENARIOS

 $m_t = (171.77 \pm 0.38) \; GeV$

175

m_{top} [GeV]

180

CMS Collaboration '22

165

170

185

5

Full Off-Shell Effects

- Off-shell top quarks & W described by Breit-Wigner propagators
- Double-, single- & non-resonant top-quark & W contributions included
- All interference effects incorporated at matrix element level

- NLO QCD corrections to *ttγ* production & top-quark decays
- Nonfactorizable NLO QCD corrections included
- Cross-talk between production & both top-quark decays
- Photon emission in production & top-quark decays
- NLO spin correlations

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20

Narrow Width Approximation

• Full NWA \Rightarrow NWA_{Full}

- Works in the limit $\Rightarrow \Gamma/m \rightarrow 0$
- Incorporates only double resonant contributions
- *Restricts unstable tops & W to on-shell states*
- NLO QCD correction separately to $tt\gamma$ production & separately to both top-quark decays
- NLO QCD nonfactorizable corrections missing
- No cross-talk between production & both top-quark decays
- NLO spin correlations

7

Narrow Width Approximation

• Full NWA \Rightarrow NWA_{Full}

- Works in the limit $\Rightarrow \Gamma/m \rightarrow 0$
- *Incorporates only double resonant contributions*
- *Restricts unstable tops & W to on-shell states*
- NLO QCD correction separately to $tt\gamma$ production & both top-quark decays
- NLO QCD nonfactorizable corrections missing
- No cross-talk between production & both top-quark decays
- NLO spin correlations

- NWA with LO Decays \Rightarrow NWA_{LOdec}
 - *Without NLO QCD corrections to top-quark decays*
 - *Photons only in production*
 - LO spin correlations

 $pp \to t\bar{t}\gamma \to W^+W^- b\bar{b}\gamma \to e^+\nu_e\,\mu^-\,\bar{\nu}_\mu\,b\bar{b}\gamma + X$

 $\Gamma_t = 1.35159 \text{ GeV}, \ m_t = 173.2 \text{ GeV}, \ \Gamma_t / m_t \approx 0.008$

$\frac{\Gamma_W}{m_W}$	>	$rac{\Gamma_t}{m_t}$	\gg	$rac{\Gamma_H}{m_H},$
2.6%	>	0.8%	\gg	0.003% .

How Good is NWA

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

Dimensionful observables

- Sensitive to non-factorizable top quark corrections 50% - 60%
- Sensitive phase-space regions
 - *Kinematical edges*
 - High p_T regions
- NLO QCD corrections to top-quark decays 12% - 17%

Normalisation & shape differences due to not adequate renormalisation & factorisation scale setting

Various Phase-Space Regions

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20

Normalisation & shape differences due to large single top-quark contributions and interreference effects

Not due to new physics effects

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

Dimensionful observables

- Sensitive to non-factorizable top quark corrections
- Effects up to 50% 60%
- Sensitive phase-space regions
 - Kinematical edges
 - *High* p_T *regions*

10

γ in Top-Quark Production & Decays

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20

Normalisation & shape differences due to large γ emission contributions in top-quark decays

Not due to new physics effects

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

• For $p_{T,b} > 40 \, GeV$

- 57% $\Rightarrow \gamma$ in production
- 43% $\Rightarrow \gamma$ in top-quark decays
- For $p_{T,b} > 25 \, GeV$
 - γ in top-quark decays increases up to almost 50%
- Photon radiation is distributed evenly between *ttγ* production & top-quark decays

γ in Top-Quark Production & Decays

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

Normalisation \mathcal{E} *shape differences due to* γ *emission contributions in top-quark decays*

Not due to new physics effects

Associated tt + Dark Matter Production

• $tt + DM \Rightarrow$ Top-quark backgrounds: tt & ttZ

Haisch, Pani, Polesello '17

 $pp \rightarrow t\bar{t} + Y_{S/PS} \rightarrow W^+W^-b\bar{b} + Y_{S/PS} \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + \chi\chi$

- SIMPLIFIED SPIN-O S-CHANNEL MEDIATOR MODEL \Rightarrow Fermionic DM particle $\chi \mathcal{E}$ mediator Υ that can either be a scalar Υ_S or pseudoscalar Υ_{PS}
- FINAL STATES \Rightarrow 2*l*[±], 2*b*-jets, large p_T^{miss}
- OBSERVABLE $\Rightarrow M_{T2,W} \& M_{T2,t} \& p_T^{miss} \Rightarrow$ Observables with kinematical edges & high p_T regions

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \, \nu_\tau \bar{\nu}_\tau + X$

Hermann, Worek '21

Comparison of differential distributions for *ttZ* background process for different modelling approaches

tt & tt + Z Production After Exclusive Cuts

Hermann, Worek '21

Process	Order	Scale	$\sigma_{\rm uncut}$ [fb]	$\sigma_{\rm cut}$ [fb]	$\sigma_{\rm cut}/\sigma_{\rm uncut}$ (%)	Events for $L = 300 \text{ fb}^{-1}$
tī NWA	LO	$H_T/4$	1061	0	0.0	0
	LO	$E_T/4$	984	0	0.0	0
	LO	m_t	854	0	0.0	0
	NLO	$H_T/4$	1097	0	0.0	0
	NLO, LO dec	$H_T/4$	1271	0	0.0	0
$t\bar{t}Z$ NWA	LO	$H_T/3$	0.1223	0.0130	11	47
	LO	$E_T/3$	0.1052	0.0116	11	42
	LO	$m_t + m_Z/2$	0.1094	0.0134	12	48
	NLO	$H_T/3$	0.1226	0.0130	11	47
	NLO, LO dec	$H_T/3$	0.1364	0.0140	10	50
$t\bar{t}$ Off-shell	LO	$H_T/4$	1067	0.0144	0.0013	17
	LO	$E_T/4$	989	0.0131	0.0013	16
	LO	m_t	861	0.0150	0.0017	18
	NLO	$H_T/4$	1101	0.0156	0.0014	19
$t\bar{t}Z$ Off-shell	LO	$H_T/3$	0.1262	0.0135	11	49
	LO	$E_T/3$	0.1042	0.0115	11	41
	LO	$m_t + m_Z/2$	0.1135	0.0140	12	50
	NLO	$H_T/3$	0.1269	0.0134	11	48

Comparison of LO and NLO integrated cross sections for two background processes in NWA and including full off-shell effects before and after applying additional cuts

Lepton flavour factors are included: 4 for tt & 12 for ttZ

tt & ttZ

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} + X$
$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \nu_\tau \bar{\nu}_\tau + X$

Before & after applying additional cuts

- After cuts 25% of events come from *tt*
- NLO smaller uncertainties w.r.t LO, NLO + LO decays

17.7.7.7.7.7.7.7.7.7.7.7.

--- $t\bar{t}_{Off-shell}^{LO} + t\bar{t}Z_{Off-shell}^{LO}$

 $\cdots t\bar{t}_{Off-shell}^{NLO} + t\bar{t}Z_{Off-shell}^{LO}$

 $-\cdots t\bar{t}_{NWA}^{NLO} + t\bar{t}Z_{NWA}^{NLO}$

5<u>0</u>0

 $m_{\rm Y}$ [GeV]

600

700

-... $t\bar{t}_{NMA}^{NLO_{LOdec}} + t\bar{t}Z_{NMA}^{NLO_{LOdec}}$

800

900

1000

16

tt
 ^{NLO}
 _{Off - shell} + tt
 ^{ZNLO}
 _{Off - shell}

BSM Exclusion Limits

- Allows for direct probe of Yukawa interaction and it's *CP* nature at tree level ⇒ In SM Higgs is *CP* even
- Higgs *CP* studies in *ttH* are ongoing
- ATLAS

ATLAS Collaboration arXiv:2004.04545 [hep-ex]

- Purely *CP*-odd hypothesis excluded **3.9**σ
- *CP*-mixing angle $|\alpha_{CP}| > 43^{\circ}$ excluded at 95% CL
- CMS

CMS Collaboration arXiv:2208.02686 [hep-ex]

- Purely *CP*-odd hypothesis $| f^{Htt}_{CP} | = 1$ excluded 3.7 σ
- *CP*-mixing angle $|f^{Htt}_{CP}| < 0.55$ at 68 % CL
- Weak constrains exist on possible admixture between
 CP-even & *CP*-odd component
- DEVIATION FROM SM VALUE WOULD INDICATE NEW PHYSICS EFFECTS

SM Higgs boson production cross section at 13 TeV

 $pp \rightarrow ttH$ only 1% of total $pp \rightarrow H + X$

Report of the LHC Higgs Cross Section Working Group arXiv:1610.07922 [hep-ph]

• *CP*-even, *CP*-odd & *CP*-mixed Higgs boson in Higgs characterisation framework

$$\mathcal{L}_{t\bar{t}H} = -\bar{\psi}_t \frac{Y_t}{\sqrt{2}} \left(\kappa_{Ht\bar{t}} \cos(\alpha_{\rm CP}) + i\kappa_{At\bar{t}} \sin(\alpha_{\rm CP})\gamma_5 \right) \psi_t H$$

$$\mathcal{CP}\text{-even} \qquad \mathcal{CP}\text{-odd}$$

$$\mathcal{L}_{HVV} = \kappa_{HVV} \left(\frac{1}{2} g_{HZZ} Z_\mu Z^\mu + g_{HWW} W^+_\mu W^{-\mu} \right) H$$

Artoisenet, Aquino, Demartin, Frederix, Frixione, Maltoni, Mandal, Mathews, Mawatari, Ravindran, Seth, Torrielli, Zaro '13 Maltoni, Mawatari, Zaro '14 Demartin, Maltoni, Mawatari, Page, Zaro '14 Demartin, Maltoni, Mawatari, Zaro '15 Demartin, Maier, Maltoni, Mawatari, Zaro '17

- Extended Higgs sector: $\kappa_{At\bar{t}} = 1$ $\kappa_{HVV} = \cos(\alpha_{CP})$
 - Same coupling for scalar and pseudoscalar Higgs
 - Relevant for SM extensions like 2HDM

Scenario	α
Purely <i>CP</i> -even	0° or 180°
Purely CP-odd	90°
Mixed	$ eq 0^{\circ}, eq 90^{\circ}, eq 180^{\circ} end{tabular} $

Recover SM results for any value of α_{CP} & ensure consistency with bounds from GF and VBF

$$\kappa_{At\bar{t}} = 2/3 \text{ and } \kappa_{Ht\bar{t}} = 1$$

 $\kappa_{HVV} = 1$

Associated tt + H Production

Integrated fiducial cross-section dependence on α_{CP}

• Full result is only symmetric for $\kappa_{HVV} = \cos{(\alpha_{\rm CP})}$

Hermann, Stremmer, Worek '22

	$lpha_{ m CP}$		Off-shell	NWA	Off-shell effects
		$\sigma_{ m LO}~[{ m fb}]$	$2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}$	$2.0388(2)^{+0.6290(31\%)}_{-0.4483(22\%)}$	-0.37%
<i>CP</i> -even	0 (SM)	$\sigma_{ m NLO}~[{ m fb}]$	$2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}$	$2.475(1)^{+0.027(1.1\%)}_{-0.113(4.6\%)}$	-0.36%
		$\sigma_{ m NLO_{LOdec}} ~[{ m fb}]$	_	$2.592(1)^{+0.161(6.2\%)}_{-0.242(9.3\%)}$	
		$\mathcal{K} = \sigma_{ m NLO} / \sigma_{ m LO}$	1.21	1.21 (LOdec: 1.27)	
		$\sigma_{ m LO}~[{ m fb}]$	$1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}$	$1.1851(1)^{+0.3707(31\%)}_{-0.2633(22\%)}$	0.66%
CP-mixed	$\pi/4$	$\sigma_{ m NLO}~[{ m fb}]$	$1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}$	$1.452(1)^{+0.015(1.0\%)}_{-0.069(4.8\%)}$	0.89%
		$\sigma_{ m NLO_{LOdec}} ~[{ m fb}]$	—	$1.517(1)^{+0.097(6.4\%)}_{-0.144(9.5\%)}$	
		$\mathcal{K} = \sigma_{ m NLO} / \sigma_{ m LO}$	1.23	1.23 (LOdec: 1.28)	
		$\sigma_{ m LO}~[{ m fb}]$	$0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)}$	$0.33148(3)^{+0.11240(34\%)}_{-0.07835(24\%)}$	13.4%
CP-odd	$\pi/2$	$\sigma_{ m NLO}~[{ m fb}]$	$0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)}$	$0.4301(2)^{+0.0035(0.8\%)}_{-0.0264(6.1\%)}$	14.3%
		$\sigma_{ m NLO_{LOdec}} ~[{ m fb}]$	—	$0.4433(2)^{+0.0323(7.3\%)}_{-0.0470(11\%)}$	
		$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

NLO *ttH*

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} H + X$

NLO CORRECTIONS:

- 21% 31% corrections
- Increase with mixing angle
- Reduced scale uncertainties
- NLO with LO decays overestimates NLO results by few percent

OFF-SHELL EFFECTS:

- Small for *CP*-even and *CP*-mixed Higgs boson
- Large effects for *CP*-odd Higgs boson

Comparison of LO and NLO QCD integrated fiducial cross-sections as calculated in NWA, NWA with LO top-quark decays and full off-shell approach

Hermann, Stremmer, Worek '22

 10^{-2} $\alpha_{CP} = 0$ $\alpha_{CP} = \pi/4$ [fb/GeV] $\alpha_{CP} = \pi/2$ 10 d*o*/dp_{T,H} 10^{-4} Normalised 3 Ratio 1.4 NWA/ 0ff-shell 0.8 0.6^{L}_{0} 100 200 500 600 300 400 $p_{T,H}$ [GeV]

NLO ttH

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} H + X$$

SHAPE COMPARISON:

- *CP*-even and *CP*-mixed similar, small difference in tails
- Tails much more pronounced in *CP*-odd case even up to 200%

OFF-SHELL EFFECTS:

- Large effects on size and shape for *CP*-odd Higgs boson
- Up to 35% effects driven by single-resonant top-quark contributions
- Only **a few** % effects for *CP*-even and *CP*-mixed

Off-shell Results: Solid line NWA Results: Dashed line

Hermann, Stremmer, Worek '22

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} H + X$$

SHAPE COMPARISON:

- *CP*-even and *CP*-mixed rather similar for small values
- Large difference above kinematic edges $M_{T2,t} > m_t$
- Can reach factor of **10**
- - For *CP*-odd case cross-section is actually the largest

OFF-SHELL EFFECTS:

- Large effects 70% 99% for all *CP*-states for $M_{T2,t} > m_t$
- Driven by single-resonant top-quark contributions
- Largest effects for *CP*-odd Higgs boson

Off-shell Results: Solid line NWA Results: Dashed line

NLO *ttH*

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} H + X$

SR contributions $pp \rightarrow tWH(b)$ lead to larger off-shell effects in *CP*-odd case

23

Summary

- PROPER MODELING OF TOP-QUARK PRODUCTION & DECAY ESSENTIAL FOR $pp \rightarrow t\bar{t} + X, X = \gamma, Z, W^{\pm}, H$
 - Already now & already in presence of inclusive cuts
- IMPORTANT
 - Corrections to production & decays important ⇒ NLO *tt* spin correlations
 - Photon emission in production and decays
 - Possibility of using kinematic-dependent $\mu_R \otimes \mu_F$ scale settings important
 - Complete off-shell effects important \Rightarrow Single top-quark contributions and interference effects
 - ✓ *Kinematical edges* & *high* p_T *regions*
 - ✓ *Phase space regions that are relevant for BSM physics*
- EVEN MORE IMPORTANT FOR
 - Exclusive cuts & High luminosity measurements
 - New Physics searches & Exclusion limits
 - SM parameter extraction
- Top quarks play important role in virtually every LHC analysis ⇔ SM & BSM
- Lots of data, sophisticated analyses, precision measurements ⇒ Should be compared to precise theoretical predictions

Outlook

- What can be done with such state-of-the-art fixed order calculations ?
- Compare directly to LHC data in fiducial phase space regions
 - Have been done @ NNLO in QCD in NWA for $pp \rightarrow t\bar{t}$ predictions

Czakon, Mitov, Poncelet '21 CMS-PAS-TOP-20-006

- Have been done @ NLO in QCD for $pp \rightarrow t\bar{t}\gamma pp \rightarrow tW\gamma$ predictions with full off-shell effects included ATLAS '20cern-ep-2020-100
- On the way for other processes
- Provide correction to $pp \rightarrow t\bar{t}V$ predictions matched to parton showers where
 - Approximately incorporate full off-shell effects in NLO computation of on-shell $pp \rightarrow t\bar{t}V$ process
 - Have been done @ NLO in QCD for $pp \rightarrow t\bar{t}W^{\pm}$ predictions with full off-shell effects included

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22

- Matching to parton shower programs using methods that allow for consistent treatment of resonances
 - Have been done @ NLO in QCD only for $pp \rightarrow t\bar{t}$ predictions with full off-shell effects included

LONG TERM COLLABORATORS

- *Giuseppe Bevilacqua* (NCSR "Demokritos", Athens)
- Huan-Yu Bi (Peking University)
- Heribertus Bayu Hartanto (Cambridge University)
- Manfred Kraus (National Autonomous University of Mexico)
- Jasmina Nasufi (Lund University)

MY TEAM IN AACHEN

Michele Lupattelli

Jonathan Hermann

Daniel Stremmer

Minos Reinartz

Nikolaos Dimitrakopoulos

BACKUP

Associated $tt\gamma + tW\gamma$ Production

$pp \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, \gamma + X$

- NLO QCD full off-shell predictions for *ttγ*
 - NLO in production & decays
 - NLO spin correlations

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20 ATLAS Collaboration JHEP 09 (2020) 049

	<i>p</i> 1	$\gamma(\gamma)$	$ \eta$	(y)	$\Delta R(\gamma$	$(\ell,\ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta\eta $	$[\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	<0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	<0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

 χ^2 /ndf and *p*-values between measured normalised cross-sections and various predictions from MC simulations and NLO calculation

3

 $\Delta \phi(I,I)$

Results with Full Off-Shell Effects @ LHC

•	tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Frederix '14 Heinrich, Maier, Nisius, Schlenk, Winter '14 Denner, Pellen '16 (EW+QCD) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
•	tt (lepton+jets)	Denner, Pellen '18
•	ttH (di-lepton) ttH ($H \rightarrow bb$, $\tau^+\tau^-$, $\gamma\gamma$ & $e^+e^-e^+e^-$)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD) Hermann,Stremmer, Worek '22 Stremmer, Worek '22
•	ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '16 Bevilacqua, Hartanto, Kraus, Worek Schulze '18
•	$tt\gamma$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20
•	$ttZ \ \mathcal{E} \ Z ightarrow \mathcal{V}_l \mathcal{V}_l$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '19 Hermann, Worek '21
•	$ttZ \ \mathcal{E} \ Z ightarrow ll$ (tetra-lepton)	Bevilacqua, Hartanto, Kraus, Nasufi, Worek '22
•	ttW (three-lepton)	Bevilacqua, Bi, Hartanto, Kraus, Worek '20 Denner, Pelliccioli '20 Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek '21 Denner, Pelliccioli '21 (EW+QCD) Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22
٠	ttbb (di-lepton)	Denner, Lang, Pellen '21 Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek '21 '22

Various Phase Space Regions

■ 3 different resonance histories ⇒ Resolved jet at NLO gives 9 in total

(i) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}$, (ii) $t = W^+(\to e^+\nu_e) b\gamma$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}$, (iii) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}\gamma$

- Compute for each history *Q* and pick one that minimises *Q*
- DOUBLE-RESONANT (DR)

 $|M(t) - m_t| < n \, \Gamma_t \,, \qquad ext{ and } \qquad |M(\, ar t\,) - m_t| < n \, \Gamma_t$

Two single-resonant regions (SR)

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

NON-RESONANT REGION (NR)

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

$$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

 $Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$

BOUNDARY PARAMETER

- Determines size of resonant region for each reconstructed top quark
- *n* = 5, 10, 15
- For n = 15

 $M(t) \in (152.9, 193.5)$ GeV

Photon in Top-Quark Production & Decays

NLO *ttγ*

Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20

 $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$

- For $p_{T,b} > 40 \, GeV$
 - 57% $\Rightarrow \gamma$ emitted in production
 - 43% $\Rightarrow \gamma$ emitted in decay stage
- NLO QCD corrections to top-quark decays

• 12% - 17%

Modelling Approach	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]
full off-shell ($\mu_0 = H_T/4$)	$7.32^{+2.45(33\%)}_{-1.71(23\%)}$	$7.50^{+0.11(1\%)}_{-0.45(6\%)}$
NWA $(\mu_0 = m_t/2)$ NWA $(\mu_0 = H_T/4)$	$\begin{array}{c} 8.08^{+2.84(35\%)}_{-1.96(24\%)} \\ 7.18^{+2.39(33\%)}_{-1.68(23\%)} \end{array}$	$\begin{matrix}7.28^{-0.99(13\%)}_{-0.03(0.4\%)}\\7.33^{-0.43(5.9\%)}_{-0.24(3.3\%)}\end{matrix}$
$egin{array}{l} { m NWA}_{\gamma-{ m prod}} \ (\mu_0=m_t/2) \ { m NWA}_{\gamma-{ m prod}} \ (\mu_0=H_T/4) \end{array}$	$\begin{array}{c} 4.52^{+1.63(36\%)}_{-1.11(24\%)}\\ 3.85^{+1.29(33\%)}_{-0.90(23\%)}\end{array}$	$\begin{array}{c} 4.13_{-0.53(13\%)}^{-0.53(13\%)}\\ 4.13_{-0.05(1.2\%)}^{-0.12(2.3\%)}\\ 4.15_{-0.21(5.1\%)}^{-0.12(2.3\%)}\end{array}$
$egin{array}{l} { m NWA}_{\gamma-{ m decay}} \; (\mu_0=m_t/2) \ { m NWA}_{\gamma-{ m decay}} \; (\mu_0=H_T/4) \end{array}$	$3.56^{+1.20(34\%)}_{-0.85(24\%)}\\3.33^{+1.10(33\%)}_{-0.77(23\%)}$	$3.15^{+0.46(15\%)}_{+0.03(0.9\%)}\\3.18^{-0.31(9.7\%)}_{-0.03(0.9\%)}$
$\mathrm{NWA}_{\mathrm{LOdecay}} \; (\mu_0 = m_t/2)$ $\mathrm{NWA}_{\mathrm{LOdecay}} \; (\mu_0 = H_T/4)$		$4.85^{+0.26}_{-0.48}{}^{+0.26}_{(9.9\%)}_{(9.5\%)}_{4.63}{}^{+0.44}_{-0.52}{}^{(9.5\%)}_{(11\%)}$

ttW& Parton Shower

$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,e^+ \nu_e \,b\bar{b} + X$

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22

ttW & Parton Shower

$pp \to e^+ \nu_e \, \mu^- \, \bar{\nu}_\mu \, e^+ \nu_e \, b\bar{b} + X$

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22

COMBINED

NLO *ttW*

$pp \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,e^+ \nu_e \,b\bar{b} + X$

Type	QCD ~[fb]	EW [fb]	QCD+EW [fb]	(QCD+EW)/QCD
full off-shell	$1.58^{+0.05}_{-0.10}~^{(3\%)}_{(6\%)}$	$0.206^{+0.045~(22\%)}_{-0.034~(16\%)}$	$1.79^{+0.10\ (6\%)}_{-0.13\ (7\%)}$	1.13
NLOPS	$1.40^{+0.16~(11\%)}_{-0.15~(11\%)}$	$0.133^{+0.028~(21\%)}_{-0.021~(16\%)}$	$1.53^{+0.19~(12\%)}_{-0.17~(11\%)}$	1.10
NLOPS+ $\Delta \sigma$	$1.41^{+0.16}_{-0.16}\ {}^{(11\%)}_{(11\%)}$	$0.149^{+0.028~(19\%)}_{-0.028~(19\%)}$	$1.56^{+0.21~(13\%)}_{-0.21~(13\%)}$	1.11
$rac{d\sigma^{ m th}}{dX} =$	$=rac{d\sigma^{ m NLO+PS}}{dX}+rac{d\Delta}{dX}$	$rac{\Delta \sigma_{ ext{off-shell}}}{dX} \ , ext{with}$	$\frac{d\Delta\sigma_{\rm off-shell}}{dX} = \frac{d\sigma_{\rm off}^{\rm NI}}{dZ}$	$rac{ m LO}{ m f-shell} X - rac{d\sigma_{ m NWA}^{ m NLO}}{dX}$
	$\delta^{ m th}= \epsilon$	$\sqrt{ig(\delta_{ m scale}^{ m NLO+PS}ig)^2 + ig(\delta_{ m m}^{ m N}ig)}$	$\left(b_{ m hatching}^{ m NLO+PS} ight)^2 + \left(\delta_{ m scale}^{\Delta\sigma} ight)^2$	

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X$

Bevilacqua, Hartanto, Kraus, Worek '16

Number of events, number of files & averaged number of events per file as well as total size per contribution for different NTUPLE samples

Contribution	Nr. of Events	NR. OF FILES	(AVG) EVENTS/FILE	Size
Born Born + Virtual Integrated dipoles Real + Sub. Real	$21 imes 10^{6} \ 33 imes 10^{6} \ 80 imes 10^{6} \ 626 imes 10^{6}$	$60 \\ 380 \\ 450 \\ 18000$	$350 imes 10^{3} \ 87 imes 10^{3} \ 178 imes 10^{3} \ 35 imes 10^{3}$	38 GB 72 GB 160 GB 1250 GB
Total:	$760 imes 10^6$	18890	40×10^3	1520 GB

Demartin, Maier, Maltoni, Mawatari, Zaro '17

• *DS* (diagram subtraction):

 $|\mathcal{A}_{tWb}|_{\mathrm{DS}}^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2 - \mathcal{C}_{2t},$

- Local subtraction term C_{2t} by definition must
- cancel exactly the resonant matrix element $|A_{2t}|^2$ when the kinematics is exactly on top of the resonant pole
- Be gauge invariant
- Decrease quickly away from the resonant region

- Squared matrix element for producing $tW^{-}\overline{b}$ $|\mathcal{A}_{tWb}|^{2} = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^{2}$ $= |\mathcal{A}_{1t}|^{2} + 2\operatorname{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^{*}) + |\mathcal{A}_{2t}|^{2},$
- DR1 (without interference):

$$|\mathcal{A}_{tWb}|_{\mathrm{DR1}}^2 = |\mathcal{A}_{1t}|^2.$$

• *DR2* (*with interference*):

 $|\mathcal{A}_{tWb}|_{\mathrm{DR2}}^2 = |\mathcal{A}_{1t}|^2 + 2\mathrm{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^*).$

- DR schemes based on removing contributions all over the phase space
- They are not gauge invariant

tt & tWb

$pp \to t \overline{t} \to W^+ W^- b \overline{b} \to \ell^+ \nu_\ell \ell^- \overline{\nu}_\ell b \overline{b}$

- Normalized differential $t\bar{t}$ cross section @ NLO QCD + PS
- Full off-shell versus $t\overline{t} + tWb \Rightarrow$ Di-lepton channel
- Regions sensitive to interference between doubly & singly resonant top-quark pair production
- Full off-shell prediction $\ell^+ v_{\ell} \ell^- \overline{v}_{\ell} b \overline{b}$ models well all regions
- Beyond top-quark mass traditional models of interference diverge

Model	All bins	$m_{b\ell}^{\text{minimax}} > 160 \text{ GeV}$
Powheg-Box $t\bar{t} + tW$ (DR)	0.71	0.40
POWHEG-BOX $t\bar{t} + tW$ (DS)	0.77	0.56
MG5_aMC $t\bar{t} + tW$ (DR)	0.14	0.17
MG5_aMC $t\bar{t} + tW$ (DR2)	0.02	0.08
Powheg-Box $\ell^+ \nu \ell^- \nu b b$	0.92	0.95

p values comparing data & various MC predictions

tt & tWb

ATLAS '18 ATL-PHYS-PUB-2021-042

Important for proper modelling & tuning

 $m_{b\ell}^{\min\max} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$