

PROJECT REPORTS:

Collider Phenomenology

B1a, B1b, B1c & Heavy particles @ the LHC

MALGORZATA WOREK

Annual Meeting of the CRC TRR 257, 26-28 May 2021

PROJECT REPORTS:

High Precision SM Collider Phenomenology

B1a, B1b, B1c & Heavy particles @ the LHC

MALGORZATA WOREK

Annual Meeting of the CRC TRR 257, 26-28 May 2021

LHC CONTINUES TO CONFIRM STANDARD MODEL

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

NO SIGN OF NEW PHYSICS IN TEV RANGE

A	TLAS Exotics	Search	es* -	95%	6 CL	Upper Exclus	sion Limits			ATLA	S Preliminary
St	atus: March 2021							1	$\mathcal{L} dt = (3$	3.6 − 139) fb ^{−1}	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹]	Limit	5			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\gamma qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ multi-chann \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ -\\ 2 \ j \\ \geq 3 \ j \\ -\\ el \\ 2 \ j/1 \ J \\ \geq 1 \ b, \geq 1 J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes – – – Yes J/2j Yes 5 j Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	Мо Ms Mah Gak mass Gak mass Gak mass gak mass KK mass		4.5 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV	$ \begin{array}{l} \textbf{V} n=2 \\ n=3 \text{ HLZ NLO} \\ n=6, M_D=3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ \Gamma/m=15\% \\ \text{ Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to tt \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm SSM} \ W' \to t\nu \\ {\rm HVT} \ W' \to WZ \to \ell\nu qq \ {\rm mod} \\ {\rm HVT} \ Z' \to ZH \ {\rm model} \ {\rm B} \\ {\rm HVT} \ W' \to WH \ {\rm model} \ {\rm B} \\ {\rm LRSM} \ W_R \to tb \\ {\rm LRSM} \ W_R \to t\mu \\ {\rm MR} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ 2 \ e, \mu \\ 0 \ 2 \ e, \mu \\ 0 \ e, \mu \\ 0 \ ulti-chann \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 \\ - \\ 2 j / 1 J \\ 1 - 2 b \\ \geq 1 b, \geq 2 \\ el \\ 1 J \end{array}$	– J Yes Yes Yes Yes J	139 36.1 36.1 139 36.1 139 36.1 139 139 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass Z' mass W mass W mass W _R mass W _R mass		5.1 TeV 2.42 TeV 4.1 TeV 6.0 Ti 3.7 TeV 3.2 TeV 3.2 TeV 3.25 TeV 5.0 TeV	eV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 2005.05138 1906.05609 1801.06992 2004.14636 ATLAS-COM-5202-043 2007.05293 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1	– – – j Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^{-1} 35.8 TeV η_{LL}^{-1} $g_* = 1$ $g_* = 1$ $ G_{4t} = 4\pi$	1703.09127 2006.12946 ATLAS-CONF-2021-012 ATLAS-CONF-2021-012 1811.02305
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DI Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ M) & 0 \ e, \mu, \tau, \gamma \\ DM) & 0 \ e, \mu \\ 0 \ e, \mu \\ DM) & 0 \ -1 \ e, \mu \end{array}$	1 - 4 j 1 - 4 j 2 b 2 b 1 b, 0-1 c	Yes Yes Yes Yes J Yes	139 139 139 139 36.1	m _{med} 3 m _{med} 3 m _{med} m _{med}	76 GeV 520 GeV	2.1 TeV 3.1 TeV 3.4 TeV		$\begin{array}{l} g_q = 0.25, \ g_k = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan}\beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 10 \ {\rm GeV} \\ {\rm tan}\beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \\ {\rm y} = 0.4, \ A = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-006 ATLAS-CONF-2021-006 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$ \begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 \end{array} $	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ p \\ \geq 2 \ j, \geq 2 \\ \tau \geq 1 \ j, \geq 1 \\ r \ 0 - 2 \ j, p \\ \end{array} $	Yes Yes b Yes b Yes b - b Yes	139 139 139 139 139 139 139	LQ mass LQ mass LQ ^u mass LQ ^u mass LQ ³ mass LQ ³ mass	1.2 Tr 1.24 T 1.43 1.43 1.43	1.8 TeV 1.7 TeV eV eV 3 TeV 5 TeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(LQ_3^{\vee} \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_3^{\vee} \rightarrow t\nu) = 1 \\ \mathcal{B}(LQ_3^{\vee} \rightarrow t\nu) = 1 \\ \mathcal{B}(LQ_3^{\vee} \rightarrow b\nu) = 1 \end{array}$	2006.05872 2006.05872 ATLAS-CONF-2021-008 2004.14060 2101.11582 2101.12527
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3} T_{5/3} \rightarrow Wt + . \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;B \rightarrow Hb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-chann multi-chann X $2(SS)/\geq 3 e$ 1 e, μ 0 e, μ 1 e, μ	el el $\mu \ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 2 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	j Yes Lj Yes Lj Yes Yes	36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 1.34 1 1 1.21 Tr 690 GeV	TEV TEV .64 TEV 1.85 TEV eV		$\begin{array}{l} \text{SU(2) doublet} \\ \text{SU(2) doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ \text{singlet}, \ \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass ℓ* mass ν* mass		6.7 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$1 e, \mu 2 \mu 2,3,4 e, \mu (S 3 e, \mu, \tau $	$ \sum_{j=1}^{2} 2j = 2j = 0 $ S) - - - - - - - - - - - - - -	Yes - - - 3 TeV	139 36.1 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass 10 ⁻¹	790 GeV 870 GeV 400 GeV 1.22 T	3.2 TeV eV 2.37 TeV	<u> </u>	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{++} \to \ell \tau) = 1 \\ \text{DY production}, g = 5 \\ \text{DY production}, g = 1 \\ g_D, \text{spin } 1/2 \end{split}$	20008.07949 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
		partia auta	Tull C	ιαια		10				´ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

INSTEAD OF INTRODUCTION

- BSM DIRECT SEARCHES
 - Many proposals for New Physics
 - No model of New Physics really stands out ⇒ No obvious Candidates to look for BSM @ LHC
- BSM INDIRECT SEARCHES
 - New Physics can be seen as small corrections to SM reactions
 - PRECISION SM MEASUREMENTS @ LHC
 BSM PHYSICS
 HIGH LUMINOSITY LHC
 - Fully exploit experimental program ⇒ HIGH PRECISION THEORETICAL PREDICTIONS

CERN webpage: LHC/ HL-LHC Plan (last update January 2021)

INSTEAD OF INTRODUCTION

- PRECISION PHYSICS
 - Infrared structure of *QCD*
 - Electroweak sector of SM
 - Perturbative calculations
- PRECISION PHYSICS & BSM DIRECT SEARCHES
 - SM processes main backgrounds to many BSM scenarios
- PRECISION PHYSICS & BSM INDIRECT SEARCHES
 - Various production modes & decay channels & properties & rare decays & ...
 - Extract SM parameters
 - Constraining PDFs
 - Verify Higgs boson couplings to other particles
 - Study specific infra-red safe observables
 - Cross section ratios
 - Various asymmetries
- DISCREPANCIES BETWEEN PRECISE MEASUREMENTS & PRECISE THEORY

PROJECTS

• B1a - Production of colour-singlet final states through N³LO QCD

Michal Czakon & Kirill Melnikov

• B1b - Precision top-quark physics at the LHC

Michal Czakon & Malgorzata Worek

• B1c - Central Jets in Vector-Boson Scattering

Dieter Zeppenfeld

• *Heavy particles* @ *LHC*

PROJECTS

- Not all projects have produced results yet
- Some projects take longer than others
- Many results in other projects
- Selection needed ⇒ Latest & state-of-the-art results
- Three Parts
 - Top Quark Physics
 - W & Z Boson Physics
 - *γ & Jet* Physics
- Only SM & without Higgs boson

W&Z Physics

Photon & Jet Physics

LHC AS TOP QUARK FACTORY

arXiv:1112.5675 [hep-ph] Collider $L [fb^{-1}]$ Nevent σ_{tt} [pb] 9×10^5 $LHC_{7 TeV}$ 180 5.0 LHC Run 1 LHC_{8 TeV} 5×10^{6} 19.7 256 LHC_{13 TeV} $1 \ge 10^8$ 835 139 LHC Run 2 HL-LHC_{14 TeV} High Luminosity 987 3000 3×10^9 High Energy $6 \ge 10^{10}$ HE-LHC_{27 TeV} 3840 15000

ATLAS & CMS

Czakon, Mitov

Top quark pair production @ NNLO **QCD** with **TOP++** CT14nnlo PDF & $m_t = 173.2 \ GeV$ $\mu_R = \mu_F = \frac{1}{2} m_t$

Theoretical uncertainties: NNLO <u>QCD</u>: 5% - 6% & NNLO <u>QCD</u> + NNLL: 3% - 4%

TOP QUARK

TOP-QUARK PAIR PRODUCTION & DECAY @ NNLO

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{LO}} + \alpha_s \mathrm{d}\sigma^{\mathrm{NLO}} + \alpha_s^2 \mathrm{d}\sigma^{\mathrm{NNLO}}$$

Predictions in NWA

$$\begin{split} \mathrm{d}\sigma^{\mathrm{LO}} &= \sigma^{\mathrm{LOxLO}} \,, \\ \mathrm{d}\sigma^{\mathrm{NLO}} &= \mathrm{d}\sigma^{\mathrm{NLOxLO}} + \mathrm{d}\sigma^{\mathrm{LOxNLO}} - \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} \mathrm{d}\sigma^{\mathrm{LO}} \,, \\ \mathrm{d}\sigma^{\mathrm{NNLO}} &= \mathrm{d}\sigma^{\mathrm{NNLOxLO}} + \mathrm{d}\sigma^{\mathrm{NLOxNLO}} + \mathrm{d}\sigma^{\mathrm{LOxNNLO}} \\ &- \frac{2\Gamma_t^{(1)}}{\Gamma_t^{(0)}} \mathrm{d}\sigma^{\mathrm{NLO}} + \left(\frac{3\Gamma_t^{(1)2}}{\Gamma_t^{(0)2}} - \frac{2\Gamma_t^{(0)}\Gamma_t^{(2)}}{\Gamma_t^{(0)2}}\right) \mathrm{d}\sigma^{\mathrm{LO}} \,. \end{split}$$

Czakon, Mitov, Poncelet arXiv:2008.11133 [hep-ph]

 $pp \rightarrow t\bar{t} + X \rightarrow W^+W^-b\bar{b} + X \rightarrow \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b} + X$

TOP-QUARK PAIR PRODUCTION & DECAY @ NNLO

Czakon, Mitov, Poncelet arXiv:2008.11133 [hep-ph]

 $pp \rightarrow t\bar{t} + X \rightarrow W^+W^-b\bar{b} + X \rightarrow \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b} + X$

- NNLO *QCD* theoretical predictions only for *tt*
 - di-lepton channel
- More exclusive final states produced @ LHC
- MOTIVATION ⇒ *ttW production* @ *LHC*
- Background for *ttH* ⇒ 21SS & 31
 - Higher normalization for *ttW* compared to SM predictions from multipurpose MC generators 30%-70%
 - Problems with modeling of final states in phase space regions dominated by *ttW*

ATLAS-CONF-2019-045

- Improved description of *ttW* background needed to reach greater precision in future
- First calculations for off-shell *tt*W confirmed by second group ⇒ di-lepton channel

Stable top quarks

$t\bar{t}\gamma, t\bar{t}Z, t\bar{t}H, t\bar{t}W^+, t\bar{t}W^- @LHC$

Cafarella, Papadopoulos, Worek arXiv:0710.2427 [hep-ph]

COMPLETE OFF-SHELL EFFECTS:

- Off-shell top quarks described by Breit-Wigner propagators
- Double-, single- & non-resonant top-quark contributions included
- All interference effects incorporated at matrix element level

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$ $pp
ightarrow e^- ar{
u}_e \, \mu^+ \,
u_\mu \, e^- ar{
u}_e \, bar{b} + X$

• NWA:

• Works in the limit $\Rightarrow \Gamma_t/m_t \to 0$

 $\Gamma_t = 1.35159 \; {
m GeV}, \; m_t = 173.2 \, {
m GeV}, \; \Gamma_t/m_t pprox 0.008$

- Incorporates only double resonant contributions
- Restricts unstable top quarks & W gauge bosons to on-shell states

 $pp \rightarrow t\bar{t}W^+ + X \rightarrow W^+W^+W^- b\bar{b} + X \rightarrow e^+\nu_e \,\mu^-\bar{\nu}_\mu \,e^+\nu_e \,b\bar{b}$

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

Off-shell ttW⁺

 $H_T^{vis} = p_T(\mu^-) + p_T(\ell_1) + p_T(\ell_2) + p_T(j_{b_1}) + p_T(j_{b_2})$

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

- *Fixed scale choice* ⇒ Leads to perturbative instabilities in TeV region of differential cross & Large distortions
- *Dynamical scale choice* ⇒ Stabilises tails & keeps NLO uncertainties bands within LO ones

Off-shell & NWA & NWA_{LOdecay}

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

$pp ightarrow e^+ u_e \, \mu^- ar{ u}_\mu \, e^+ u_e \, bar{b} + X$

DIFFERENTIAL LEVEL:

- Off-shell up to **60% 70%**
- NLO <u>QCD</u> 10% 20%
- PDF up to **10%**
- Scales **10% 20%**
- For central value of scale
 substantial differences
 between NWA & NWA_{LOdecay}
- Similar effects for ttW⁻

INTEGRATED LEVEL:

- Complete top-quark off-shell effects 0.2%
- NLO *QCD* around 10% & Theoretical uncertenties: Scales 6%-7% ⇒ PDF 2%
- NLO *QCD* corrections to decays **3%-5%**

TTW⁺ / TTW⁻ @ NLO

Searching for more precise observables

$\mu_0=m_t+m_W/2$	$\left \sigma^{ m NLO}_{tar{t}W^+} \pm \delta_{ m scale} \pm \delta_{ m PDF} ight $	$\sigma^{ m NLO}_{tar{t}W^-}\pm\delta_{ m scale}\pm\delta_{ m PDF}$	$\sigma^{ m NLO}_{tar{t}W^+}/\sigma^{ m NLO}_{tar{t}W^-}$
NNPDF3.0	[ab]	[ab]	${\cal R}$
$p_{T, b} > 25 \text{ GeV}$	$123.2^{+6.3(5\%)}_{-8.7(7\%)}{}^{+2.1(2\%)}_{-2.1(2\%)}$	$68.0^{+4.8(7\%)+1.2(2\%)}_{-5.5(8\%)-1.2(2\%)}$	$1.81 \pm 0.03 (2\%)$
$p_{T,b} > 30~{\rm GeV}$	$113.1^{+5.4(5\%)}_{-7.8(7\%)}{}^{+1.9(2\%)}_{-1.9(2\%)}$	$62.3^{+4.2(7\%)+1.1(2\%)}_{-4.9(8\%)-1.1(2\%)}$	$1.81 \pm 0.03 (2\%)$
$p_{T,b} > 35~{\rm GeV}$	$102.6^{+4.7(5\%)+1.7(2\%)}_{-6.8(7\%)-1.7(2\%)}$	$56.3^{+3.7(7\%)+1.0(2\%)}_{-4.4(8\%)-1.0(2\%)}$	$1.82\pm 0.03(2\%)$
$p_{T,b} > 40~{\rm GeV}$	$92.0^{+4.0(4\%)+1.6(2\%)}_{-6.1(7\%)-1.6(2\%)}$	$50.3^{+3.3(6\%)+0.9(2\%)}_{-3.9(8\%)-0.9(2\%)}$	$1.83 \pm 0.04 (2\%)$

Off-shell ttW[±]

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

NLO QCD integrated fiducial cross sections & cross section ratios

- *ttW*⁺ & *ttW*⁻ similar from NLO *QCD* point of view ⇒ Integrated & differential level
- Scale uncertainties can be taken correlated
- Cross section ratios stable with respect to $p_T(b)$
- Insensitive to details of modelling of top quark production & decays ⇔ Off-shell/NWA/NWA_{LOdecay}
- Insensitive to scale choice $\Rightarrow \mu_0 = m_t + m_W/2$ versus $\mu_0 = H_T/3$

TOP QUARK CHARGE ASYMMETRY @ NLO

 μ_0

Searching for more precise observables

$$A_c^t = \frac{\sigma_{\rm bin}^+ - \sigma_{\rm bin}^-}{\sigma_{\rm bin}^+ + \sigma_{\rm bin}^-}, \qquad \qquad \sigma_{\rm bin}^\pm = \int \theta(\pm \Delta |y|) \,\theta_{\rm bin} \, d\sigma$$

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

• A_c^t charge asymmetry @ NLO for $pp \rightarrow ttW^+$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

- Asymmetry larger than for $pp \rightarrow tt$
- Top quark momenta must be reconstructed
- Scales no important
- Modelling important

	$t\bar{t}W^+$	Off-shell	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
	$\mu_0 = H_T/3$			
	$A_{c,y}^t \ [\%]$	$2.36(8)^{+1.19(50\%)}_{-0.77(33\%)}$	$1.93(5)^{+1.23(64\%)}_{-0.72(37\%)}$	$1.11(3)^{+0.55(49\%)}_{-0.53(48\%)}$
	$A_{c,exp,y}^t$ [%]	$2.66(10)^{+0.38(14\%)}_{-0.34(13\%)}$	$2.20(5)^{+0.45(20\%)}_{-0.31(14\%)}$	$2.08(5)^{+0.24(11\%)}_{-0.40(19\%)}$
	$t\bar{t}W^+$	OFF-SHELL	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
=	$m_t + m_W/2$			
	$A_{c,y}^t \; [\%]$	$2.09(8)^{+1.06(51\%)}_{-0.70(33\%)}$	$1.68(4)^{+1.00(60\%)}_{-0.67(40\%)}$	$0.86(3)^{+0.66(77\%)}_{-0.43(50\%)}$
	$A^t_{c,exp,y} \ [\%]$	$2.62(10)^{+0.39(15\%)}_{-0.34(13\%)}$	$2.19(4)^{+0.38(17\%)}_{-0.34(16\%)}$	$1.94(5)^{+0.46(24\%)}_{-0.32(16\%)}$

LEPTON CHARGE ASYMMETRY @ NLO

- A_c^l charge asymmetry @ NLO for $pp \rightarrow ttW^+$
- Directly measurable ⇒ No top quark reconstruction needed

-6

Off-shell ttW[±]

- Irreducible background for Higgs boson studied
- *ttH* \Rightarrow Observation in 2018
- Top-Yukawa coupling $Y_t \Rightarrow$ Probed directly
- ATLAS & CMS reported measurements for *ttH(H → bb)* decay channel of Higgs boson

EXPERIMENTAL CHALLENGES

- Identification of candidates for Higgs decay
- Combinatorial background
- Misidentification of light jets with *b*-jets
- *b*-jet tagging
- SM backgrounds

$$pp
ightarrow tar{t}H
ightarrow tar{t}bar{b}
ightarrow W^+W^-bar{b}bar{b}$$

THEORY CHALLENGES

- Two very different & distinctive scales
- $m_t \Rightarrow tt$ production & top-quark decays
- $p_T(b) \Rightarrow$ Describes *b*-jets from $g \rightarrow bb$ splitting
- Second calculation for off-shell *ttbb* in dilepton channel ⇒ Agreement with first calculations

 $pp
ightarrow e^+
u_e \, \mu^- \bar{
u}_\mu \, b \bar{b} \, b \bar{b} + X$

Denner, Lang, Pellen arXiv:2008.00918 [hep-ph] Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

Off-shell ttbb

Harlander, Klein, Lipp arXiv:2003.00896 [physics.ed-ph]

OFF-SHELL TTBB @ NLO

Integrated fiducial cross sections for ttbb

$p_T(b)$	$\sigma^{\rm LO}$ [fb]	$\delta_{ m scale}$	$\sigma^{\rm NLO}$ [fb]	$\delta_{ m scale}$	$\delta_{ m PDF}$	$\mathcal{K} = \sigma^{\mathrm{NLO}} / \sigma^{\mathrm{LO}}$
			$\mu_R = \mu_F =$	= $\mu_0 = m_t$		
25	6.998	$+4.525~(65\%) \\ -2.569~(37\%)$	13.24	$+2.33~(18\%) \\ -2.89~(22\%)$	$+0.19 (1\%) \\ -0.19 (1\%)$	1.89
30	5.113	$+3.343~(65\%)\ -1.889~(37\%)$	9.25	$+1.32~(14\%)\ -1.93~(21\%)$	$+0.14(2\%)\ -0.14(2\%)$	1.81
35	3.775	$+2.498~(66\%)\ -1.401~(37\%)$	6.57	$+0.79~(12\%)\ -1.32~(20\%)$	$+0.10(2\%)\ -0.10(2\%)$	1.74
40	2.805	$^{+1.867~(67\%)}_{-1.051~(37\%)}$	4.70	$+0.46~(10\%)\ -0.91~(19\%)$	$+0.08(2\%)\ -0.08(2\%)$	1.68

$\mu_R = \mu_F = \mu_0 = H_T/3$

25	6.813	$+4.338~(64\%)\-2.481~(36\%)$	13.22	$+2.66~(20\%)\ -2.95~(22\%)$	$+0.19 (1\%) \\ -0.19 (1\%)$	1.94
30	4.809	$+3.062~(64\%) \\ -1.756~(37\%)$	9.09	$^{+1.66}_{-1.98}$ (18%)	$+0.16(2\%)\ -0.16(2\%)$	1.89
35	3.431	$+2.191~(64\%) \\ -1.256~(37\%)$	6.37	$+1.07~(17\%)\ -1.36~(21\%)$	$+0.11(2\%)\ -0.11(2\%)$	1.86
40	2.464	$+1.582 (64\%) \\ -0.901 (37\%)$	4.51	$+0.72 (16\%) \\ -0.95 (21\%)$	$+0.09(2\%)\ -0.09(2\%)$	1.83

- Results for NNPDF3.1 LO & NLO with $\alpha_s(m_Z) = 0.118$
- LO NNPDF3.1 PDF set with $\alpha_s(m_Z) = 0.130 \implies K = 1.45$
- Other PDF sets give K-factor ∈ (1.81 & 1.37 & 1.23)
- With jet veto of 50 GeV *K* = 1.11 & *K* = 1.23

Off-shell ttbb

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

- Large but rather stable NLO corrections @ differential level
- Dynamical scales important
- PDF uncertainties small

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

Theoretical predictions	$\sigma_{e\mu+4b}$ [fb]
Sherpa+OpenLoops (4FS)	17.2 ± 4.2
Powheg-Box+Pythia 8 (4FS)	16.5
PowHel+Pythia 8 (5FS)	18.7
PowHel+Pythia 8 (4FS)	18.2
Helac-Nlo (5FS)	19.4 ± 4.2

$$\sigma_{e\mu+4b}^{\text{ATLAS}} = (25 \pm 6.5) \text{ fb}$$

$$\sigma_{e\mu+4b}^{\text{Helac-Nlo}} = (20.0 \pm 4.3) \text{ fb}$$

- Higher with leptonic *t* decays into *l*
- For similar scale choice HELAC-NLO result is even higher ~ 21 fb

ATLAS arXiv:1811.12113 [hep-ex]

- Comparison to ATLAS results
- eµ channel @ 13 TeV
- Agreements within theoretical uncertainties

INITIAL STATE BOTTOM

- Charge aware and charge blind schemes for *b*-jet tagging
- @ LO initial state *b*-quark contributions $\Rightarrow 0.1\% 0.2\%$
- **@NLO** \Rightarrow **1%** & up to **1.5%** with $p_T(b)$ scan & up to **2%** for jet veto of **50** *GeV* \Rightarrow Negligible contribution

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek arXiv:2105.08404 [hep-ph]

25

- Heavy flavours copiously produced @ LHC
- *bb & cc* cross sections among largest @ LHC
- Precise measurements in wide kinematic ranges
- Theoretical description of these processes @ NLO
- Lags behind experimental needs
- NNLO <u>QCD</u> corrections needed

heavy flavour of mass m_b

low p_T regime where $p_T \sim$	m_b high p_T one where $p_T \gg m_b$
 Fixed order perturbation Expansion in α_s(m_b) ⇒ SI convergence Full dependence of heavy quark mass m_b included 	 Fixed order perturbation theory no longer adequate Large quasi-collinear logarithms log(p_T/m_b) Resummation of logs needed Consistently carried out in perturbative fragmentation function (PFF) formalism

BB PRODUCTION @ NNLO

Total cross section for bb production @ LO & NLO & NNLO $m_b = 4.92 \text{ GeV}$

$\sigma \; [\mu { m b}]$	$p\bar{p}$ @ 1.96 TeV	$pp @ 7 { m TeV}$	$pp @ 13 { m TeV}$								
	$\mu_0=m_b$										
LO	$34.66 \ {}^{+51\%}_{-32\%}$	$138.7 \ {}^{+51\%}_{-46\%}$	$249.0 \begin{array}{c} +59\% \\ -51\% \end{array}$								
NLO	$60.23 {}^{+54\%}_{-28\%}$	$219.8 \ {}^{+61\%}_{-39\%}$	$378.6~^{+65\%}_{-45\%}$								
NNLO	$75.4(3) \ {}^{+22\%}_{-21\%}$	$288(2) \ ^{+30\%}_{-24\%}$	$508(3) \ ^{+32\%}_{-25\%}$								
	μ_0	$=2m_b$									
LO	$30.94 {}^{+41\%}_{-25\%}$	$145.8 \ ^{+41\%}_{-32\%}$	$281.9 \begin{array}{c} +41\% \\ -37\% \end{array}$								
NLO	$51.16~^{+33\%}_{-23\%}$	$203.3 {}^{+36\%}_{-26\%}$	$362.9 \ {}^{+34\%}_{-28\%}$								
NNLO	$66.7(2) \ ^{+21\%}_{-18\%}$	$258(1)~^{+20\%}_{-18\%}$	$458(2) \ ^{+20\%}_{-18\%}$								

*K*_{NNLO} = NNLO/NLO ranging from 1.25 to 1.34

Catani, Devoto, Grazzini, Kallweit, Mazzitelli arXiv:2010.11906 [hep-ph]

Uncertainties for bb production @ NNLO

	$\sigma_{ m NNLO}(\mu{ m b})$	$\Delta \sigma_{ m scale}$	$\Delta \sigma_{ m mass}$	$\Delta \sigma_{ m PDFs}$	$\Delta \sigma_{lpha_{ m S}}$
$p\bar{p}$ @ 1.96 TeV	75.4(3)	$^{+22\%}_{-21\%}$	$^{+9.8\%}_{-8.7\%}$	$\pm 1.3\%$	$^{+0.9\%}_{-3.0\%}$
pp @ 7 TeV	288(2)	$^{+30\%}_{-24\%}$	$^{+7.9\%}_{-7.2\%}$	$\pm 2.8\%$	$^{+0.3\%}_{-2.9\%}$
<i>pp</i> @ 13 TeV	508(3)	$^{+32\%}_{-25\%}$	$^{+7.4\%}_{-6.8\%}$	$\pm 4.6\%$	$^{+0.0\%}_{-3.0\%}$

- NNLO QCD reduce theoretical uncertainties
- $K_{NNLO} < K_{NLO}$
- Values of $\sigma_{NNLO} & \sigma_{NLO}$ consistent within their scale uncertainties
- Values of $\sigma_{NLO} \& \sigma_{LO}$ consistent as well
- Slow convergence of perturbative series comparing to *tt*
- NNLO effects considerably larger than for *tt*

- Heavy flavour production @ *high p_T* performed with *massless b quark* ⇒ High-energy limit
- All mass terms are negligible
- Mass-independent terms & Logarithmically enhanced ones automatically accounted for by *PFF formalism*
- Current state NLO + NLL accuracy
- First results for NNLO in QCD
- B-hadron differential distributions in *tt* production & decay

MOTIVATION FOR TT

- B-hadron production is central to top quark physics
- B-hadron related observables great tool for precise top quark mass determination
- Top quark mass provides large hard scale ⇒ Power suppressed effects ~ (m_b)ⁿ negligible

Czakon, Generet, Mitov, Poncelet arXiv:2102.08267 [hep-ph]

- Instead of *b-jet* based observables ⇒ Observables involving momentum of single hadron *H*
- *Experiment:* jet energy scale uncertainties dominate total uncertainty on jet-based observables ⇒ *Reduced for H*
- Fragmentation functions: Analogue parton distribution functions ⇒ Transitions from partons to hadrons ⇒ Perturbative (calculate) + Nonperturbative (fit to data)
- Fragmentation functions depend on hadron *H* ⇒
 Otherwise universal & extracted from experimental data

$$\frac{d\sigma_{h}}{dE_{h}}(E_{h}) = \sum_{i} \left(D_{i \to h} \otimes \frac{d\sigma_{i}}{dE_{i}} \right) (E_{h}) \equiv \sum_{i} \int_{0}^{1} \frac{dx}{x} D_{i \to h}(x) \frac{d\sigma_{i}}{dE_{i}} \left(\frac{E_{h}}{x} \right)$$

$$Partonic \ cross-section \ \& Fragmentation \ function$$
Hadron's energy
$$28$$

$$t \to B + W + X$$
 $W \to \ell + \nu$

- Energy cut-off of *E*(*B*) > 5 *GeV* implemented
- To avoid low x region of FF where predictions not valid

Directly measurable ⇒ No need to reconstruct frames associated with top quark Czakon, Generet, Mitov, Poncelet arXiv:2102.08267 [hep-ph]

- $m(Bl) \Rightarrow m_t$
- All curves convoluted with same FF ⇔ FFKM @ NNLO
- Shown comparison for LO & NLO & NNLO
- Breakdown of scale variation

 $\mu_R = \mu_F = \mu_{Fr} = \frac{m_t}{2}$

29

$$t \to B + W + X$$
 $W \to \ell + \nu$

- Energy cut-off of *E*(*B*) > 5 *GeV* implemented
- To avoid low x region of FF where predictions not valid

Directly measurable ⇒ No need to reconstruct frames associated with top quark Czakon, Generet, Mitov, Poncelet arXiv:2102.08267 [hep-ph]

- $E(B) \Rightarrow m_t$
- All curves convoluted with same FF ⇔ FFKM @ NNLO
- Shown comparison for *LO* & *NLO* & *NNLO*
- Breakdown of scale variation

 $\mu_R = \mu_F = \mu_{Fr} = \frac{m_t}{2}$

W&Z Physics

Photon & Jet Physics

MIXED QCD-EW CORRECTIONS TO Z & W

- MOTIVATION FOR DRELL-YAN PROCESS
 - "standard candle" processes
 - Allow for precision measurement of *m_W* & effective weak mixing angle
 - Constraining PDF
 - **BSM:** *M*_{*ll*} @ 1 TeV
- Mixed QCD-EW corrections to on-shell Z & W production

Dittmaier, Huss, Schwinn arXiv:1403.3216 [hep-ph] & arXiv:1511.08016 [hep-ph]

• A

NNLO-like \Rightarrow Two loop $\mathcal{O}(\alpha_s \alpha)$ corrections to on-shell Z & W. W/Z + jet @ $\mathcal{O}(\alpha)$. W/Z + γ @ $\mathcal{O}(\alpha_s)$. W/Z + γ + jet @ tree level.

• B

NLO \otimes NLO $\Rightarrow \mathcal{O}(\alpha_s)$ corrections to W/Zproduction combined with $\mathcal{O}(\alpha)$ corrections to leptonic W/Z decay \Rightarrow Large corrections. *Dominant* Impact on shape of distributions & on m_W

 $\delta m_W = -14 \,\,\mathrm{MeV}$

 C QCD corrections to W/Z self-energies. No impact on shape of distributions. Negligible

• D

Soft-photon corrections connecting initial state, intermediate *W*/*Z* & final-state leptons combined with QCD corrections to *W*/*Z* production. @ 0.1% level. Negligible

MIXED QCD-EW CORRECTIONS TO Z & W

- **ATLAS** measurement of m_W
- SM prediction from global electroweak fit
- Combined values of m_W measured at *LEP* & *Tevatron* collider

- EXPERIMENT
 - **Direct:** ATLAS & CMS collaborations aim to reduce uncertainty on m_W below **10** MeV

ATL-PHYS-PUB-2018-026

Indirect: Match uncertainty obtained from precision electroweak fits 8 MeV ⇒ Gfitter, HEPfit & Δr radiative corrections within SM to µ decay

arXiv:1407.3792 [hep-ph], arXiv 1608.01509 [hep-ph] Awramik, Czakon, Freitas, Weiglein '04

- THEORY
 - Fixed-order perturbation theory reach at most
 - ~1% uncertainties @ $N^{3}LO$
 - Not enough to much precision of **0.01%**
 - Cannot predict $p_T(e^+) \& M_T(W)$ to this precision
- INSTEAD
 - Combine W & Z predictions ⇔ Correlations
 - Make use of available precision for m_Z from LEP

MIXED QCD-EW CORRECTIONS TO Z & W

- Initial-Initial corrections to on-shell Z & W production
- LO leptonic decays of Z & W in NWA
- Corrections small @ per mill level

 $\sigma_{pp \to W^+} = \sigma_{\rm LO} + \Delta \sigma_{\rm NLO,\alpha_s} + \Delta \sigma_{\rm NLO,\alpha}, + \Delta \sigma_{\rm NNLO,\alpha\alpha_s} + \dots$

$\sigma[\mathrm{pb}]$	channel	$\mu = M_W$	$\mu = M_W/2$	$\mu = M_W/4$	
$\sigma_{ m LO}$		6007.6	5195.0	4325.9	
$\Delta \sigma_{\rm NLO, \alpha_s}$	all ch.	508.8	1137.0	1782.2	22%
	$qar{q}'$	1455.2	1126.7	839.2	
	qg/gq	-946.4	10.3	943.0	
$\Delta \sigma_{\rm NLO,\alpha}$	all ch.	2.1	-1.0	-2.6	0.02%
	$qar{q}'$	-2.2	-5.2	-6.7	
	$q\gamma/\gamma q$	4.2	4.2	4.04	
$\Delta \sigma_{\rm NNLO, \alpha_s \alpha}$	all ch.	-2.4	-2.3	-2.8	0.04%
	$q \bar{q}'/q q'$	-1.0	-1.2	-1.0	
	qg/gq	-1.4	-1.2	-2.1	
	$q\gamma/\gamma q$	0.06	0.03	-0.04	
	$g\gamma/\gamma g$	-0.12	0.04	0.30	

$$pp
ightarrow W^+ + X
ightarrow e^+
u_e + X @ 13 \,\mathrm{TeV}$$

Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch arXiv:2005.10221 [hep-ph] & arXiv:2009.10386 [hep-ph] & arXiv:2103.02671 [hep-ph]

• Estimate Impact on m_W measurement $\Rightarrow \langle p_T(e^+) \rangle$

Theoretical correction factor

$$C_{
m th} = rac{m_W}{m_Z} rac{\langle p_{\perp}^{l,Z}
angle^{
m th}}{\langle p_{\perp}^{l,W}
angle^{
m th}}$$

Adding new correction to theory changes both
 C_{th} & m_W

$$\begin{split} \frac{\delta m_W^{\text{meas}}}{m_W^{\text{meas}}} = \frac{\delta C_{\text{th}}}{C_{\text{th}}} = \frac{\delta \langle p_{\perp}^{l,Z} \rangle^{\text{th}}}{\langle p_{\perp}^{l,Z} \rangle^{\text{th}}} - \frac{\delta \langle p_{\perp}^{l,W} \rangle^{\text{th}}}{\langle p_{\perp}^{l,W} \rangle^{\text{th}}} \\ \delta m_W^{\text{QCD-EW}} = -7 \,\text{MeV} \qquad \delta m_W^{\text{EW}} = +1 \,\text{MeV} \end{split}$$

NNLO QCD FOR W+C JET PRODUCTION @ LHC

$pp ightarrow \mu^- ar{ u}_\mu \, j_c + X \ \& \ pp ightarrow \mu^+ u_\mu \, j_c + X$

- Direct link between W+c measurements & strange PDF
- Precision test of (perturbative) QCD
- Study of flavour jets

pł	$ ho \rightarrow W$		pp	ightarrow m W	$J^{-}j_{c}$		
Contribution	LO	NLO	NNLO	Contribution	LO	NLO	NNLO
₅g	\checkmark	\checkmark	\checkmark	$\overline{\mathbf{s}}\mathbf{g}$	Х	Х	\checkmark
\mathbf{sg}	Х	Х	\checkmark	\mathbf{sg}	\checkmark	\checkmark	\checkmark
$S\overline{S}$	Х	\checkmark	\checkmark	$s\overline{s}$	Х	\checkmark	\checkmark
$\overline{\mathbf{SS}}$	Х	\checkmark	\checkmark	SS	Х	\checkmark	\checkmark
$\overline{\mathrm{s}}q$	Х	\checkmark	\checkmark	$\mathrm{s}q$	Х	\checkmark	\checkmark
qq'	Х	\checkmark	\checkmark	qq'	Х	\checkmark	\checkmark
$\mathrm{g}q$	Х	Х	\checkmark	$\mathrm{g}q$	Х	Х	\checkmark
gg	Х	\checkmark	\checkmark	gg	Х	\checkmark	\checkmark

Czakon, Mitov, Pellen, Poncelet arXiv:2011.01011 [hep-ph]

Large-angle soft gluon splitting to large-angle soft cc pair cc clustered into different jets ⇒ incorrect jet flavour assignment

- @ NLO flavour criterion of pseudo-jet ensures that collinear splitting $g \rightarrow c\bar{c}$ is gluon (flavourless) jet
- *IR-safety* would be spoiled without this criterion
- @ NNLO flavour-dependent distance measure is needed
- Flavour-kt algorithm ⇒ Soft flavoured quarks recombined first to give gluon-like pseudo-jet

NNLO QCD FOR W+C JET PRODUCTION @ LHC

- Fiducial cross sections for $pp \to W^+ j_c \& pp \to W^- j_c$
- Ratios @ LHC $\sqrt{s} = 7 TeV$

Order	$\left ~~\sigma_{\mathrm{W^+j_c}} \left[\mathrm{pb} ight] ight.$	$\sigma_{\mathrm{W^-j_c}} ~\mathrm{[pb]}$	$\left R_{\mathrm{W}^{\pm}\mathrm{j_{c}}} = \sigma_{\mathrm{W}^{+}\mathrm{j_{c}}} / \sigma_{\mathrm{W}^{-}\mathrm{j_{c}}} \right.$
LO	$ 12.0725(4)^{+11.6\%}_{-12.9\%}$	$14.2624(5)^{+11.6\%}_{-10.9\%}$	$0.84646(4)^{+1.48\%}_{-2.22\%}$
NLO	$\left {\begin{array}{*{20}c} {35.164(9)}_{-7.0\%}^{+8.0\%}} ight.$	$\left { m 37.096(9)}^{+7.5\%}_{-6.7\%} ight.$	$0.9479(3)^{+0.49\%}_{-0.36\%}$
NNLO	$ 38.6(1)^{+2.2\%}_{-3.2\%} + 3.8\%$ (PDF) -3.2% $-3.8%$ (PDF)	$ 39.3(1)^{+1.8\%}_{-2.9\%} {}^{+3.9\%}_{-3.9\%}_{-3.9\%}_{({ m PDF})}$	$\left \begin{array}{c} 0.983(5)^{+0.45\% \ +2.7\%({ m PDF})}_{-0.37\% \ -2.7\%({ m PDF})} \end{array} \right $

Czakon, Mitov, Pellen, Poncelet <u>arXiv:2011.01011 [hep-ph]</u>

- NLO QCD ⇒ 160%-200% ⇒ Giant Kfactors due to di-jet topologies with softcollinear W radiation
- NNLO QCD corrections 🛱 6%-10%
- *R_W±_{j_c}* ⇒ Scales uncertainties taken as correlated
- NNLO $\delta_{\text{scale}} \Rightarrow 3\%$ for $\sigma \& 0.5\%$ for R
- NNLO $\delta_{PDF} \Rightarrow 4\%$ for $\sigma \& 3\%$ for R

$$\begin{split} \sigma^{\rm ATLAS}_{\rm W^+j_c} &= 33.6 \pm 0.9 \; ({\rm stat}) \pm 1.8 \; ({\rm syst}) \; {\rm pb} \\ \\ \sigma^{\rm ATLAS}_{\rm W^-j_c} &= 37.3 \pm 0.8 \; ({\rm stat}) \pm 1.9 \; ({\rm syst}) \; {\rm pb} \\ \\ R^{\rm ATLAS}_{\rm W^\pm j_c} &= 0.90 \pm 0.03 \; ({\rm stat}) \pm 0.02 \; ({\rm syst}) \end{split}$$

NNLO QCD FOR W+C JET PRODUCTION @ LHC

Czakon, Mitov, Pellen, Poncelet arXiv:2011.01011 [hep-ph]

- Rather good agreement \Rightarrow Data seem to be systematically lower than NNLO QCD predictions for W^+j_c
 - Differences in jet algorithm ⇒ Part of definition of observable
- Grey band represents PDF uncertainties @ NNLO
- Further studies & comparisons with ATLAS & CMS data will follow

W&Z Physics

Photon & Jet Physics

NNLO QCD FOR YYY @ LHC

- First NNLO QCD calculation for $2 \rightarrow 3$ process
- Simplest among the 2 → 3 massless cases: colour singlet
- 2-loop in leading colour approximation
- $\gamma \gamma \gamma \Rightarrow$ Measured @ LHC

ATLAS CERN-EP-2017-302

- Significantly above NLO QCD prediction in wide kinematic region
- NLO theory error is completely dominated by missing higher-orders
- Large NNLO/NLO K-factors ⇒ NNLO QCD corrections essential for theory/data comparison

Chawdhry, Czakon, Mitov, Poncelet arXiv:1911.00479 [hep-ph] & arXiv:2012.13553 [hep-ph]

- Large shifts from LO to NLO & from NLO to NNLO
- Much larger than scale variations @ LO & NLO
- *NLO/LO* correction of about 2.8
- *NNLO/NLO* correction about **1.6**

 $\sigma_{\rm fid}({\rm ATLAS}) = 72.6 \pm 6.5({\rm stat.}) \pm 9.2({\rm syst.}) \,{\rm fb}$ $\sigma_{\rm fid}({\rm NNLO\,QCD}; \ H_T/4) = 67.5^{+7.4\,(11\%)}_{-5.7\,(8\%)} \,({\rm scales}) \,{\rm fb}$

• NNLO QCD correction plays crucial role

NNLO QCD FOR YYY @ LHC

qg has dominant impact on large K-factors

- Anatomy of higher-order corrections to γγγ fiducial cross-section @ LO & NLO & NNLO by partonic channels
- *VV* ⇒ Double virtual scale-independent part of two-loop with leading colour

Chawdhry, Czakon, Mitov, Poncelet arXiv:1911.00479 [hep-ph] & arXiv:2012.13553 [hep-ph]

Large K-factors

- *qq* ⇒ Significant yet moderate correction @ NLO & NNLO
- gg & qq' ⇒ Effects is marginal ⇒ Few %
- Loop-induced amplitude *gg* → γγγ vanishes due charge conjugation
 ⇒ *Furry's theorem*
- *qg* ⇒ Opens up only @ NLO (LO-like)
 ⇒ Large corrections @ NNLO (NLO-like)
- NNLO first order with all partonic reactions
- N³LO should show more convergent behaviour ⇒ Scale variation should start to decrease

NNLO QCD FOR YYY @ LHC

Chawdhry, Czakon, Mitov, Poncelet arXiv:1911.00479 [hep-ph] & arXiv:2012.13553 [hep-ph]

- Corrections to shape & normalization
- Typical for colour singlets: Scale uncertainty stays large

NNLO QCD FOR *yy*J @ LHC

- Main background to cleanest Higgs boson decay $H \rightarrow \gamma \gamma$
- Higgs production @ high $p_T &$ Higgs couplings & Angular diphoton observables important for spin measurements
- *Feature* ⇒ Very large higher-order QCD corrections ⇒ Reliability of higher-order predictions is in question
- N³LO γγ ⇒ Ingredients: amplitudes for γγ @ 3-loop + γγj @ NNLO
 Caola, Manteuffel, Tancredi arXiv:2011.13946 [hep-ph]
- $p_T(\gamma\gamma)$ in $pp \to \gamma\gamma + X \implies @LO p_T(\gamma\gamma) = 0$
- $pp \rightarrow \gamma \gamma + X @ NNLO \Rightarrow NLO$ accuracy for $p_T(\gamma \gamma) > 0$
- NNLO accuracy for $p_T(\gamma\gamma)$ @ *nonzero* $p_T(\gamma\gamma) \Rightarrow$ NNLO QCD corrections for $pp \rightarrow \gamma\gamma j + X$

Chawdhry, Czakon, Mitov, Poncelet arXiv:2103.04319 [hep-ph] & arXiv:2105.06940 [hep-ph]

- First NNLO calculation for $pp \rightarrow \gamma \gamma j + X$
- 2-loop amplitude in leading colour approximation ⇒ 1% - 2% contribution
- Loop-induced contribution $gg \rightarrow g\gamma\gamma$ included & Contributes @ NNLO $\Rightarrow 5\%$

$$\mu_F^2 = \mu_R^2 = rac{1}{4} \left(m^2 (\gamma \gamma) + p_T (\gamma \gamma)^2
ight)$$

NNLO QCD FOR YYJ @ LHC

- Absolute $p_T(\gamma\gamma)$ differential distribution
- Predictions in LO & NLO & NNLO

- Scale dependence:
 - NLO: ~10% & NNLO: ~1-2%
- Low p_T region $\Rightarrow p_T(\gamma \gamma) < 100 \text{ GeV}$
 - Increased scale dependence & Larger K= NNLO/NLO
 - Strong effect from LI contribution $gg \rightarrow g\gamma\gamma$
 - NLO QCD corrections to LI contribution needed
 - 2-loop amplitude for $gg \rightarrow g\gamma\gamma$
- Small contribution from 2-loop finite remainder
- Sub-leading colour corrections should not be important

NNLO QCD FOR JJJ @ LHC

Czakon, Mitov, Poncelet RADCOR & LoopFest 2021

- Multi-jet rates provide an unique possibility to test <u>QCD</u>
- Measurements of α_s from jet ratios $\sim \alpha_s$
- Test of α_s running
- Multi-jet signatures backgrounds for many LHC signatures
- Allow to probe broad ranges of energy scales for heavy new physics
- Large cross sections
- Large statistics ⇒ In practice only limited by systematics

- NNLO QCD tri-jet production:
 - Bottleneck double virtual amplitudes
 - Recently published in leading colour approximation

Abreu, Febres Cordero, Ita, Page, Sotnikov arXiv:2102.13609 [hep-ph]

• Handling of real radiation

Czakon, Heymes arXiv:1005.0274 [hep-ph] arXiv:1101.0642 [hep-ph] arXiv:1408.2500 [hep-ph]

NNLO QCD FOR JJJ @ LHC

Two Jets

Differential ratio

- Hardest p_T in jj & jjj @ LHC
- All partonic subprocesses already present @ LO
- Nice convergence of perturbative expansion in α_s
- Paper in preparation

TAKE-HOME MESSAGE

- Huge amount of new high precision theoretical results !
- State-of-the-art:
 - $N^3LO 2 \rightarrow 1$
 - **NNLO** $2 \rightarrow 2 \& 2 \rightarrow 3$
 - **NLO** $2 \rightarrow 5 \& 2 \rightarrow 6$ with full off-shell effects
- Proper modelling of production & decay essential already now in presence of inclusive cuts
 - Corrections to production & decays important ⇒ *At least full NWA*
 - NLO *tt* spin correlations
 - Possibility of using kinematic-dependent $\mu_R \mathcal{E} \mu_F$ scales
 - Complete off-shell effects for *top quarks & W/Z* gauge bosons
- Even more important for:
 - Exclusive cuts & High luminosity measurements
 - New Physics searches & Might impact exclusion limits
 - SM parameter extraction

Lots of data, sophisticated analyses, precision measurements Should be compared to state-of-the-art theoretical predictions

TTW

Bevilacqua, Bi, Hartanto, Kraus, Worek arXiv:2005.09427 [hep-ph]

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, b ar{b} + X$

TTW

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek arXiv:2012.01363 [hep-ph]

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

 $pp
ightarrow e^+
u_e \, \mu^- \, ar{
u}_\mu \, e^+
u_e \, bar{b} + X$

ΤΤγ

Bevilacqua, Hartanto, Kraus, Weber, Worek arXiv:1912.09999 [hep-ph]

50

ΤΤγ

Bevilacqua, Hartanto, Kraus, Weber, Worek arXiv:1912.09999 [hep-ph]

51

ΤΤγ

 $pp
ightarrow e^+
u_e \, \mu^- ar{
u}_\mu \, b ar{b} \, \gamma \, + X$

3@LO&9@NLO DIFFERENT POSSIBILITIES

(i) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}$, (ii) $t = W^+(\to e^+\nu_e) b\gamma$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}$, (iii) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu)\bar{b}\gamma$

DOUBLE-RESONANT (DR) REGION

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

SINGLE-RESONANT (SR) REGIONS

 $|M(t) - m_t| < n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$ or

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

$$Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$$

NON-RESONANT (NR) REGION

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

BOUNDARY PARAMETER

- n = 5, 10, 15
- For n = 15

 $M(t) \in (152.9, 193.5)$ GeV