40 MHz patterns

40 MHz patterns. C. Willmott

40 MHz patterns

Simulation

Pattern Analysis

40 MHz patterns. C. Willmott

Analytical Pattern Reconstruction

40 MHz patterns. C. Willmott

CMS Week Sep $20^{\mbox{th}}\,$, 2005

TDC Specifications

27. Technical Specifications.

Number of channels:	32 / 8	
Clock frequency:	40 MHz external 40MHz / 160 MHz / 320 MHz internal	
Time bin size:	781 ps 195 ps 98ps 24 ps	low resolution mode medium resolution mode high resolution mode very high resolution mode (8 channels)
Differential non linearity:	Typical values +/- 0.2 bin +/- 0.3 bin + 0.60, -0.25 b +0.35, -0.25 b +1.3, -0.7 bin	0.08 bin RMS low resolution mode 0.09 bin RMS medium resolution mode 0.09 bin RMS medium resolution mode 0.10 bin RMShigh resolution mode (DLL corr.) 0.21 bin RMS very high resolution mode
Integral non linearity:	Typical values +/- 0.25 bin +/- 0.50 bin +0.6,-1.4 bin +3.5,-5.0 bin	0.11 bin RMS low resolution mode 0.24 bin RMS medium resolution mode 0.50 bin RMS high resolution mode 2.1 bin RMS very high resolution mode

TDC DNL and INL

28. Time resolution measurements

The time resolution of the HPTDC 1.2 have been measured with different schemes to characterize the effective performance.

Differential and Integral non-linearities have been measured with code density tests using a random source of hits. Code density tests are very efficient to measure DNL and INL but must not be taken as a measure of the effective time resolution of a TDC device as all error components of random nature (e.g. jitter) are excluded from the results. Code density tests are also very useful to optimize the RC-delay chain and DLL tap adjustments.Non-linearities are only shown covering a time period of 25ns as the TDC architecture, using a simple counter to extend the dynamic range, insures that the patterns shown are repeated identically for each 25ns period

Fig. 33 DNL and INL in low resolution mode

Nasty Histograms

40 MHz patterns. C. Willmott

Some mathematical relationships

- Time-box histograms are a kind of "code density plots" which are directly related to differential non linearity (DNL).
- But we are interested in integral non linearity (INL) which can be calculated from DNL plot by integration.

Receipt

- Calculate DNL: dnl(i) = h(i)/histogram_mean_value 1
- Calculate INL : inl(i) = inl(i-1)+dnl(i)
- Find MAX, MIN in INL. These are maximum time deviation in TDC LC's.

Hints: to have meaningful results statistics fluctuations must be negligible. In practice counts per bin should be 10000 counts or higher. Use a flat region of the time-box.

Example

40 MHz patterns. C. Willmott

CMS Week Sep $\mathbf{20^{th}}$, 2005

<u>Conclusions</u>

- This effect can be explained as a phase modulation by clock harmonics.
- Small arrival time shifts may cause large visual effects in drift time histograms.
- Worst case configurations we manage to setup in our Lab seem to correspond to arrival time variations in the range of 100-200 ps, compatible with TDC specifications (INL).
- Most likely there is not a single source of phase modulation, but a sum of small effects across the whole system.

Next steps

- Isolate and quantify possible sources: TDC, ROB, TRB, cabling, PS, grounding ...
- Study multiple pulses case.

Simulated patterns

40 MHz patterns. C. Willmott