Chamber Production Status @ Aachen

Status of 14.03.2005 full production (incl. spares) = 214 SL

Production Step	No. of SL	Remarks	
Mechanically finished	204 SL	Contains 2 spare feet-SL without HV+FE assembly.	
Fully assembled with HV + FE	173 SL	Limited by availability of HVB.	
Fully tested SL	171 SL	2 SL are used for system tests.	
HVB available for	0	New HVB_v5	
	24 SL	ISR HVB_v1	
	\rightarrow 197 SL		
Other materials available for	184 SL	Wire bunches for 1 SL missing	
Chambers completed	59		
Chambers to be glued	1	Based on available, tested SL	

Chambers at CERN = 43 MB1 + 9 Feet (Last shipment 8 chambers 03.12.2004) To be done: 10 chambers **or** 10 SL

RWIH

Material Status

As a reminder. Everything is known to experts and is in progress.

Mechanical parts:

Item	Needed Quantity
HV contacts for cathodes WITH pin	1550
Contact springs WITHOUT pin connecting to strips	60

HV assembly parts \rightarrow next page FE assembly parts \rightarrow next page

Material Need for HV

Item	Quantity needed	No.of SL	Requested
	for 214 SL	possible / all	spare parts**
HVB-16	Available 190+100	22 / 51	:-)
JL7 white	232	22 / 51	10
JL7 yellow	212	28 / 51	10
DC4 white	572	34 / 51	15
DC4 yellow	972	28 / 51	20
DC5 white	89	21 / 51	5
DC6 white	24	27 / 51	2
DC6 yellow	150	36 / 51	5
DC7 yellow	29	22 / 51	1
Wire bunch phi	23	12 / 34	1
Wire bunch theta	7	9 / 17	1
Ground connector	42	30 / 51	5
Interlock	20	41 / 51	2
Plastic clambs	204	38 / 51	15

Requested spare parts include potentially needed items for chamber repair at the ISR (based on repair experience so far)

Cables and wire bunches are expected by end of March.

Numbers are based on inventory Dec.2004

Material Need for FE

Item	Quantity needed	No.of SL	Requested
	for 214 SL		spare parts
FEB-16	160	14 / 42	15
FEB-20	20	20 / 42	3
HVC-16	138	12 / 42	15
HVC-20	-	42 / 42	-
LV feed-through	11	11 / 30	2
Slow control bus bar phi	10	10 / 28	1
Slow control bus bar theta	6	6 / 14	1
I2C Predecode bus phi	2*	2 / 28	1
I2C Predecode bus theta	8*	8 / 14	1
Signal feed-through 4-ch.	14	14 / 30	2
Signal feed-through 16-ch.	190	15 / 30	10
Slow control feed-through	15	15 / 30	2
TP feed-through standard	70	24 / 30	20
TP feed-through special	6	6 / 10	3
Cu-protection slow control	25*	25 / 30	1
Ground contacts FE-cover	530	0 / 22	

Material request based on inventory 06.12.04 Including delivery of 06.12.04 *Numbers should be verified

RNTHAACHEN KH 15.March 2005

Overview HVB in SL

Different HVB versions are installed in MB1-chambers:

- Wheel YB+2: 10 MB1 + 3 MB4_feet are equipped with HVB-I_v2
- Wheel YB+1: all 9 MB1+z equipped with HVB_v5 2 MB4_feet postponed
- Wheel xx: 2 Chimney chambers already with HVB_v5

HVB-type	No. of SL already equipped	HVB still available for
Old HVB_v1	89 SL	24 SL
HVB-I_v2	36 SL	0 SL
HVB from new pre- production v5	8 SL (2 chimney + 2 test SL)	0 SL
New HVB_v5	32 SL (9 MB1@ISR + 3 MB1@AC)	0 SL

3 MB1 -z at Aachen equipped with HVB_v5

HVB exchange at ISR and assembly at production site has to be done by the same people = slower assembly speed.

KWIF

HV Training for HVB_v5

 At Aachen 1 SL (SL 148) with new HVB (assembled at Aachen) stayed under HV for 50 days → no currents or other problems observed

- 2 chimney chambers + 5 MB1 with HVB available since Nov.2004, have been under HV for ~2-3 weeks until Feb.2005
- 4 MB1 chambers (MB1P19, MB1P25, MB1P35, MB1P37) HVB exchanged in Feb.2005 and chambers are under HV since ~05.02.2005
- \rightarrow Details see talk Jesus/Alberto

Last ISR Activity – February 2005

Period 01.-11.02.2005, 2 technicians (WT, SS) + 2 physicists (OT, KH)

- 5 MB1 for YB+1 done in November 2004. Four are certified by J.Puerta.
- In Feb.05 four MB1 exchanged HVB_v1 with HVB_v5 (assembled at China, protective tubes assembled at Aachen). No HVB for feet-chambers.

<u>MB1P35</u>

- * No HV on 1 wire pin in HV-connector (phi2) problem in HVB or HV installation(?)
- * Low efficiency in 8 cells (theta) \rightarrow exchanged FEB, OK

<u>MB1P25</u>

- * 2 very noisy cells (theta, L3C16, L3C44) → exchanged 2 FEB+HVC, OK
- * Bad cathode contact (theta) \rightarrow exchanged both contacts, also present in AC
- * With old HVB HV-problem in phi1 L3L4 \rightarrow not present with new HVB
- * Pulse width 2.5 V with ~40% efficiency (phi2) \rightarrow nothing done

<u>MB1P37</u>

- * With old HVB HV-problem in phi2 L3L4 \rightarrow not present with new HVB
- * Noise (theta) \rightarrow FEB exchanged \rightarrow after that asymmetric gas distribution

<u>MB1P19</u>

- * Many noisy cells in theta, phi1 \rightarrow OK after HV-training
- * 1 cell with HV-problems after HVB exchange (phi1, L3C13) \rightarrow disconnected

Noise

RWITH

Often noisy cells disappear when threshold is raised to 50 mV (instead of 15 mV nominal). But sometimes independent on threshold = real noise.

KH 15.March 2005

Gas Distribution

AACHEN KH 15.March 2005

RNTH

Pulse Width

• 2 plots showing that sometimes #entries for a certain pulse width is constant and sometimes it fluctuates.

PBINT

Last 4 wires always show more entries than others

100 120 140 160

ıt Aachen

Testbeam Analysis with ORCA

KH 15.March 2005

Phys.Inst.IIIA analysis team: M. Brodeck, M. Bontenackels, H. Fesefeldt, Th. Hebbker, K. Hoepfner

Our main interest:

- Experience with ORCA
- Muon data
- Performance of MB1 in comparison to cosmic tests
- Combined tracking for two chambers (MB1 and MB3)

So far, used runs which were identified as "good" (see Mary-Cruz transparencies from Dec.2004). For example 2611 in the following plots.

First Step = Reading Data

 Tools: ORCA_8_7_1 with testbeam package (TestBeams/DTBXAnalysis, TestBeams/MBTBDataFormat), ORCA geometry for chambers
With the right knowledge of needed packages → ORCA runs
Testbeam data are read. Trackfit functions.

• Working on geometry for 2 chambers in testbeam arrangement, needs new xml-file (H. Fesefeldt)

TDC spectrum pattern, see next page

Beam Clock Pattern

- First seen in testbeam data 2003. (see M. Bontenackels talk March 2004)
- Effect confirmed by Matteo et al., under investigation. Anna Meneguzzo saw effect as well → no cross talk but time information is shifted.

KH 15.March 2005

Second Step = Reconstruction of Local Position

- Tools: ORCA_8_7_1 with testbeam package (TestBeams/DTBXAnalysis, TestBeams/MBTBDataFormat)
- So far, geometry for single chamber from ORCA

Local Position Before Cuts

beamspot largely related to badly reconstructed

If no.hits >>12per chamber sometimes far too many tracks are reconstructed.

Single tracks

Local Position After Cuts

RNTHAACHEN KH 15.March 2005

Track Angle

 Using ORCA trackfit, track segments in phi 1 and phi 2 are reconstructed and matched.

What's Next

- Work on r-t relation, t₀ determination & calibration.
- Implement features from Aachen stand-alone cosmics analysis software.
- Determine QC parameters (efficiencies, resolution, mean time analysis, etc.)
- Compare to the ones determined from cosmics data taking.
- Implement xml-file for two chamber geometry in testbeam arrangement.
- Study tracking.