

Alignment issues

Alicia Calderón Celso Martínez Rivero Francisco Matorras IFCA Santander

Barrel Muon WS Aachen 29 April 2004

A. Calderón C.Martínez-Rivero F.Matorras

Aachen Barrel Muon WS 29/04/2004

1

- Brief reminder of concept
- Available code in ORCA for misalignment
- First ideas and some preliminary results on alignment with tracks.

Code for alignment

- Study the effect of misalignment on muon trigger L1, L2 and L3
- Use modified ORCA (already adapted to ORCA 7_7_1) to perform misalignments
 - Big advantage: Already existing MC is used, without being necessary to simulate distorted geometries.
- Based on existing Tracker 'misalignment tools'
 - Modify through ORCA cards de geometry in CommonDet
 - read Digis
 - Packages in Reco use CommonDet.
 - Digis appear as moved in global frame
- Existing Internal Note: CMS IN 2002/049

Code for alignment

- Different kind of movements –traslations and rotations- can be applied over single subdetectors –down to superlayers-.
- For simplicity some collective movements have been coded, grouping chambers in Rings, MBarrels or Endcap Layers:
 - Gravity movements:
 - According to magnet TDR Central Ring will fall ~15mm after installation
 - Compression:
 - Magnetic forces will compress in z the detector
 - Ring rotations
 - ¬ Positioning of rings and endcaps at ≈0.5 mrad
 - Barrel rotations
 - Relative positions of different stations in the same ring are not ideal.

A. Calderón C.Martínez-Rivero F.Matorras

Practical issues

5

- Check out from Head Muon/MuonAlignment
- Create libMuonAlignment.so library
- Compile with your favourite code!
- Add inside .orcarc the needed Cards
- needs documentation!

MuonAlignBM:rotbarrel = 0 MuonAlignBM:rotring = 0 MuonAlignBM:dispbarrel = 0 MuonAlignBM:compbarrel = 0 MuonAlignBM:dispring = 0 MuonAlignBM:dispgrav = 1 MuonAlignBM:endcap = 0 MuonAlignBM:dispx = 0.0 MuonAlignBM:dispy = -2.0 MuonAlignBM:rotEM1Phi = -0.003

MuonAlignBM:rotEM10Phi = 0.003 MuonAlignBM:rotBM1Phi = 0.003

MuonAlignBM:rotBM5Phi = 0.005

A. Calderón C.Martínez-Rivero F.Matorras

Alignment with tracks

- Baseline:
 - full L3 tracks of high momentum muons (>50 GeV?)
 - tracker only track extrapolated to MB1/ME1
 - compare local reco with extrapolations
 - 6 d.o.f of each chamber can be fitted independently
 - same procedure with MB2/ME2, etc.
- Alternative:
 - above method relies too much on tracker, what if not working or not aligned?
 - same procedure starting from MB1/ME1 and progress outwards
 - iterations may be needed
 - later the whole muon system can be compared with tracker as a *rigid* body
- Document in preparation to be circulated

Example: MB1 Z displacement of 0.5 and 2 cm. Residuals

A. Calderón C.Martínez-Rivero F.Matorras

MB1 rotation of 5 mrad

Example: MB1 Z rotation of 5mrad. Residuals in RPhi

A. Calderón C.Martínez-Rivero F.Matorras

MB gravity fall of 5mm

Example: Full MB gravity fall of 5mm. Residuals in RPhi

C.Martínez-Rivero F.Matorras

Output of alignment

- the output of the alignment with tracks will be the positions of each chamber
 - could go down to superlayer if needed
 - global position or displacement w.r.t ideal
- results compared, checked and combined with the equivalent from hardware alignment
 - a single output will be produced

- at reconstruction level one can use the code to introduce the latest modification to the geometry without having to use a full new geometry file
 - useful to check updates of geometry
 - probably the best solution if the geometry has to be updated often
 - the interface will be certainly different, not with ORCA cards
- when (and if) the geometry is stable for long periods an update of the production geometry file will be desirable

no need further alignment

Active/passive volumes

- Alignment of active volumes
- ...but movements mostly of the iron
- this package does not take that into account
 - could move a chamber into an unphysical region
- change full geometry when things are stable?
 - is it feasible to move passive layers?
- what about magnetic field:
 - if iron moves, the field will be different
 - move it with the iron is something but not the end of the story
 - is 1 cm movement in the iron relevant for our measurements?