

CMS Muon Meeting

HLT DT Calibration

(on Data Challenge Dedicated Stream)

<u>G. Cerminara</u> N. Amapane M. Giunta

Overview

- Goal: develop the tools for HLT calibration for DTs in ORCA
 - Calibration algorithms + tools to handle/apply calibration constants
 - For the complete DT system
- Today's presentation: a preliminary exercise!
 - Playground to develop and understand the tools in ORCA
 - Not supposed to be realistic!
 - Current assumptions:
 - T₀ known from test pulses
 - Alignment known from optical measurements (decouple alignment and calibration for the time being)

DT Calibration

- TDC synchronization (T_0 pedestals)
 - Not considered here
- Determination of drift velocity
 - A) Using meantimers
 - B) Using residuals of reconstructed segments
- Available input:

- "DT calibration stream" (included in DC04 production)
 - Contains a copy of the DT digis for events with one reconstructed μ
- Facilities implemented in ORCA:
 - Handling of per-wire digi offset
 - To allow per-wire T₀ subtraction
 - Handling of calibration constants
 - Interface to a "fake" condition database serving per-wire constants
 - RecHit reconstruction, different algorithms:
 - Using GARFIELD parametrization (CIEMAT)
 - Accounts for non-linearity and dependence on $\boldsymbol{\theta},\,\boldsymbol{B}$
 - Using constant v_d and σ (tunable on a per-wire basis)

Example of Miscalibration

Rø RecHit Residual

G. Cerminara

TORINO

RZ,wheel 0

RZ, wheel ±1

- Starting from mis-calibrated constants, perform segment reconstruction
- Compute meantimers with SL granularity
- Get v_d and resolution
- Write calibration table (for the full detector)
- Use this table to check the residuals obtained on "calibrated" RecHit

Calibration Results

Rø RecHit Residual

Calibration Results (II)

RZ,wheel 0

RZ, wheel ±1

С	MS	on Solenod
		Compact M
		/

Plans

- Try residual method
 - Depends on quality of segment reconstruction
 - Easier to compute resolutions
- Optimize the granularity
 - Per SL is probably too coarse; per wire requires too much statistics
 - Define regions with "homogeneous" **B** field within SLs
 - May also separate regions along wires (e.g. last few cm)
 - Using 3D segments
 - Increases complexity of calibration tables
- Take incident angle into account
 - In each region, compute parameters for few θ bins
 - More statistics required
 - Starts being complex to produce and to use in reconstruction...
- Alternative approach: calibrate the DT parametrization!

 Based on the inverse function developed by J. Puerta and P. Garcia Abia:

$$\mathbf{x} = \mathbf{f}^{-1}(\mathbf{t}, \boldsymbol{\theta}, \mathbf{B}_{\text{wire}}, \mathbf{B}_{\text{norm}})$$

 $\begin{cases} t = peak \text{ of (asymmetric) distribution} \\ x = measured coordinate \end{cases}$

not known at the level of individual digi!

- A 3-step procedure, while building segments
 - 1. coarse knowledge of $\boldsymbol{\theta},\,\boldsymbol{B}$
 - $-2.\theta$ from segment in SL
 - 3. **B** from 3D position of segment

Residuals Rø layers

1. Stage

3. Stage

 Resolution better than "meantimer resolution" since the cell non-linearity is taken into account!

Residuals RZ layers

1. Stage

3. Stage

TORINO

- - larger angles, different field

- Concept: add calibration parameters to the function
 - E.g. 2 multiplicative parameters, for the linear part and for the deviation from linearity:

$$\mathbf{x} = \mathbf{f}^{-1}(\mathbf{t}, \boldsymbol{\theta}, \mathbf{B}_{\text{wire}}, \mathbf{B}_{\text{norm}}, \mathbf{p}_1, \mathbf{p}_2)$$

- Fit the additional parameters to the data
 - In principle, a simple least-squares fit
 - In practice could be implemented with a iterative filter
- Advantages (providing it works!)
 - It will provide the best possible resolution, since non-linearity is taken into account
 - It will handle the dependency on θ, B with no need of complicated tools (i.e. partitioning in homogeneous B regions, computation and of calibration consts as a function of θ)

- First HLT calibration tools implemented in ORCA
- Prototype of a calibration job with meantimers
- Many ideas in progress!
- Plans to test it on 2003 and hopefully 2004 test beam data!