ISR Work Progress Report

CMS Week March16th 2004

A. Benvenuti INFN Bologna

HVB Failures Since November 2003

Date	Chamber	HVB	HV-time	Last on HV
28/11/03	MB3C14 Phi2 A	W1e(865)	2490	03/07/2003
28/11/03	MB3C12 Phi2 B	?(617)	2444	26/06/2003
05/12/03	MB3C04 Theta B	W1b(2329)	2513	26/06/2003
14/01/04	MB3C04 Theta A	W2b(2330)	~ 3000	18/12/2003
15/01/04	MB3C24 Theta B	W2g	>2000	18/12/2003
16/01/04	MB3C02 Phi1 B	W1d	2600	04/07/2003
16/01/04	MB3C06 Theta B	W2d	2090	22/04/2003
20/01/04	MB3C09 Theta B	W1c	2590	26/04/2003

We did not have any additional HVB failures

The decision was taken to replace the HVB for the YB2+ bottom with HVB_I (enlarged distance wire/ground) and produce a new HVB for the remaining chambers.

✓ The second round of alignment calibration (39 chambers) went very smoothly and quickly, 4 DT calibrated/day.

✓ Kerstin repaired most of the MB1 with problems, and selected the MB to install in YB2+

✓ HVB_I have been installed in 7MB2, 5MB3 and one MB1 but HVB20 still to be exchanged.

 ✓ Another shipment of 5 MB3 arrived on February 24th. The chambers went through the HV acceptance test; no problems were found. \checkmark 5 MB2 will arrive at the end of March bringing the total to 115 chambers.

 ✓ We should plan the next alignment calibration period after the next shipment of 2 MB4/4 from Legnaro (May/June but conflicts with YB2+ installation)

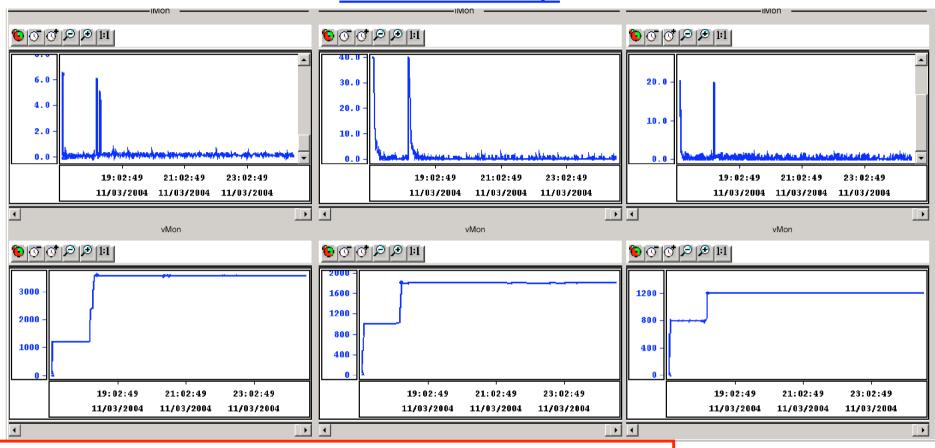
✓ Additional space is carved out in the I3 tunnel by reshuffling the shelves in two rows ~ 4 stack

DT Chambers at ISR

Туре	@ISR	Ali	gn	HV/Gas	ΗV	CR	
турс		L R		110/043	Cable	TEST	
MB1P	23	12	11	23	17	23	
MB1M	9	5	4	9	6	9	
MB4/9,11	4	2	2	0	0	4	
All MB1/4	36	19	17	32	23	36	
MB2P	23	12	10	22	13	18	
MB2M	10	5	5	10	6	5	
MB4/10 L	3	2	1	0	0	3	
MB4/10 R	3	2	1	0	0	3	
All MB2/4	39	21	17	32	19	29	A total of
MB3P	23	9	9	18	18	18	110 Chambers
MB3M	10	5	5	10	10	10	in 22 stacks
MB4/4	2	0	2	0	0	2	
All MB3/4	35	14	16	28	28	30	+ 5 MB2

HV Cable => Connectors soldered on Phi SL cables and tested

HV Test Upgrades


New monitoring program (S. Braibant, P.Giacomelli, M.Giunta) gives online displays of current and voltage for each channel. Statistics of time under HV, trips et cetera is push button retrievable from database. Installed on two SY127 crates (24 Chambers)

A version suitable for the CAEN SY1527 is now operational, 4 chambers are under HV in the final configuration.

Old System (Mary-Cruz) still used for acceptance tests and to identify problem boards.

The HV ON/OFF sequence has been revised with many more steps and a 1 hour pause at 1200/1000/-800V for "Cold" (after ~days without HV) turn ON.

Cold Start-up

- 1) 1200/1000/-800 V at 10V/sec, 10/40/20 micro A
- 2) 2400/1800/-1200 V
- 3) 3400/1800/1200 V, 3 micro A
- 4) 3600/180/1200 V, 3Micro A

~ 1 hour + 15 minutes To Ramp -up

MB3	BC16	MB3C	08 MB3	BC10	MB30	12															
							HV	Mon	itori	ng	Ch	ambei	::	мв30	C16	5			13/03/200	04 14:23:34	
			S	L PF	111					-						ь тн	ЕТА		10/00/200	54 14.20.04	
V0 VMon I0 IMon Trip St							O the true						vo	VMon				Status			
Tr	end	(V)	(V)	(uA)	<u>(uA)</u>	(s)	Status					Trend	(V)	(V)	(uA)	(uA)	<u>(s)</u>	Status			
	ANOD0	3600	3600		0.02	100		F			1	L5 ANOD		3598		0.04	100			(77 ())	_
	ANOD1	3600	3600	2	0	100			RUp (V/s)	5	ON	L5 ANOD		3598	2		100			p (V/s)	5 ON
	STRIP	1800 1200	1800 1200	5	U U	100 100		1	RDwn(V/s)	30		L5 STRI	-	1798 1199	5 5		100		RD	wn(V/s)	30
L1 :	IBEAM											L5 IBEAN						I			
	ANOD0	3600	3600		0.02	100		F	RUp (V/s)			L6 ANOD		3598		0.04	100		DIT	p (V/s)	=
	ANOD1	3600	3600	2	0.02	100				5	ON	L6 ANOD		3598	2		100				5 ON
	STRIP	1800	1800	5	0	100		1	RDwn(V/s)	30		L6 STRI		1799	5	0	100		RD	wn(V/s)	30
L2 :	IBEAM	1200	1200	5	U	100						L6 IBEAN	-	1199	5	0	100				
	ANOD0	3600	3600	2	U	100		F			1	L7 ANOD		3598	2		100		DIL	~ (W/~)	-
L3 /	ANOD1	3600	3600	2	U	100			RUp (V/s)	5	ON	L7 ANOD	_	3598	2		100			p (V/s)	5 ON
	STRIP	1800	1800	5	0	100		1	RDwn(V/s)	30		L7 STRI		1799	5		100		RD	wn(V/s)	30
L3 :	IBEAM	1200	1200	5	3333	100						L7 IBEAN	1200	1199	5	U	100				
L4 2	ANOD0	3600	3600	2	U	100		Г			1	L8 ANOD		3598		0.04	100				
L4 2	ANOD1	3600	3600	2	0.04	100			RUp (V/s)	5	ON	L8 ANOD		3598		0.04	100		RUI	p (V/s)	5 ON
L4 :	STRIP	1800	1800	5	U	100		1	RDwn(V/s)	30		L8 STRI		1798	5	0	100		RD	wn(V/s)	30
L4 :	IBEAM	1200	1200	5	U	100						L8 IBEAN	1200	1199	5		100				
																SL P					
												Trend	v 0	VMon	IO	IMon	Trip	Status			
			_										(V) 3600	(V) 3599	(uA)	(uA)	(s) 100				
L	ow Vo	ltage		ON			Ch	amhor	ON/OF	F		L9 ANOD		3599	2	0.00	100		RU	p (V/s)	5
G	lobal	Catho	ode	ON				aiiber	ON/OF			L9 ANOD		1799	5		100			- k	30 ON
			_				Set	chamb	er value	es		L9 STRI		1200	5		100			wn(V/s)	30
G	lobal	Anode		ON								-									
												L10 ANOD	-	3598 3599		U.U4 U.U4	100		RU	p (V/s)	5
												L10 ANOD	-	1799	5		100				ON
					_							L10 STRI		1200	5		100		RD	wn(V/s)	30
	Trip	auto	-recov	ver _	ON		Ch	amber	r stat.												
												L11 ANOD		3599	2		100		RU	p (V/s)	5
					- 1		Cha	mber	trendi	ng		L11 ANOD		3598	2		100				ON
	Pri	nt thi	ls pane	el 🦷	9							L11 STRI		1799 1200	5		100 100		RD	wn(V/s)	30
				-								L11 IBEA	_								
												L12 ANOD	0 3600	3599		0.02	100		DIT	p (V/s)	=
												L12 ANOD	1 3600	3599		0.04				- 4	5 ON
												L12 STRI	P 1800	1799	5		100		RD1	wn(V/s)	30
												L12 IBEA	M 1200	1200	5	U	100				

. . . .

1

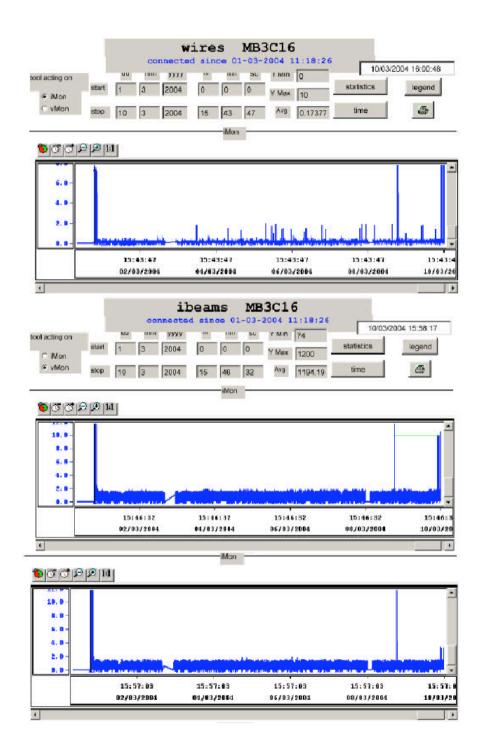
HV Current Spikes

Typology:

1) isolated current spikes in the wires HV line, (Most Common)

2)current spikes in the wire and cathode HV lines, (predominantly MB3)

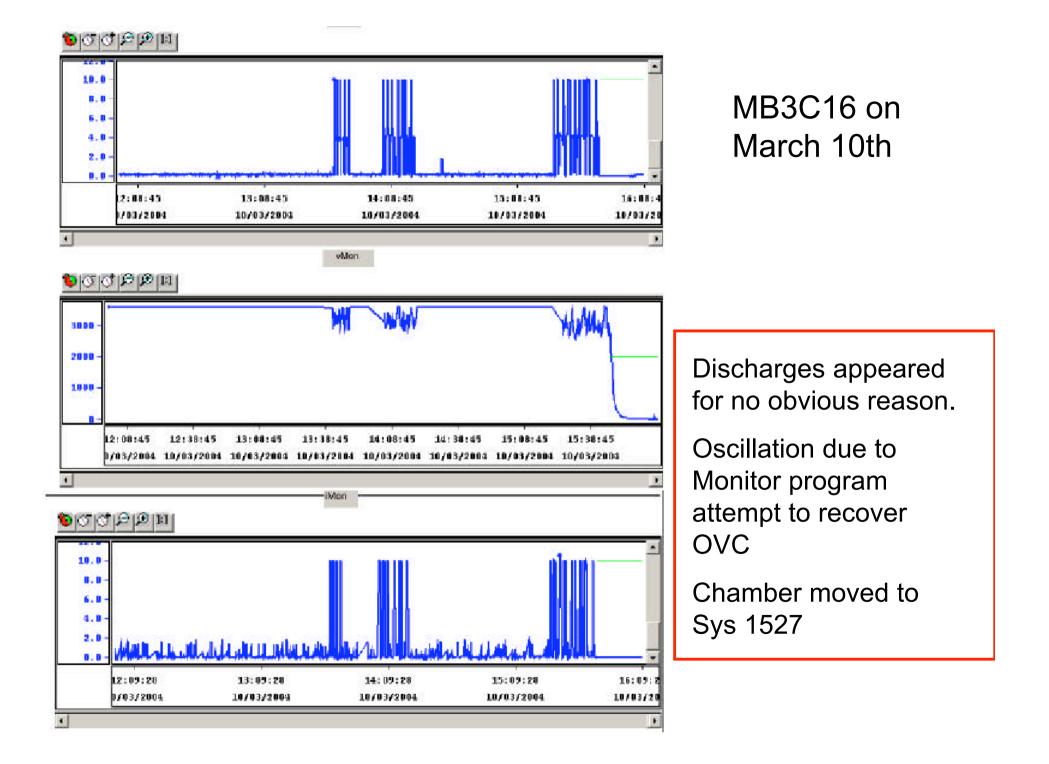
3)current spikes in the wire and strip HV lines (rare)


4) current spikes in all electrodes. (rare)

OVC spike rates vary from less than one/day to several/hour

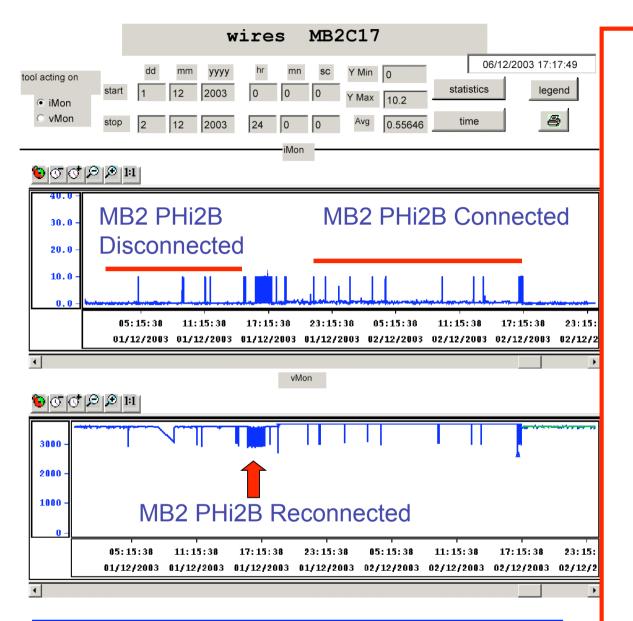
Type 1) is due to discharges outside the drift cell, mostly to the aluminum plane or to a cathode wire. Can be reduced by adding Mylar tape on aluminum plane but looks like a design feature

Type 2) is due to a "tappino" that does not have a side cover.


Type 2) is a real problem since discharges can result on repeated HV trips and requires the chamber to be turned off in order to disappear.

HVB replaced end of February.

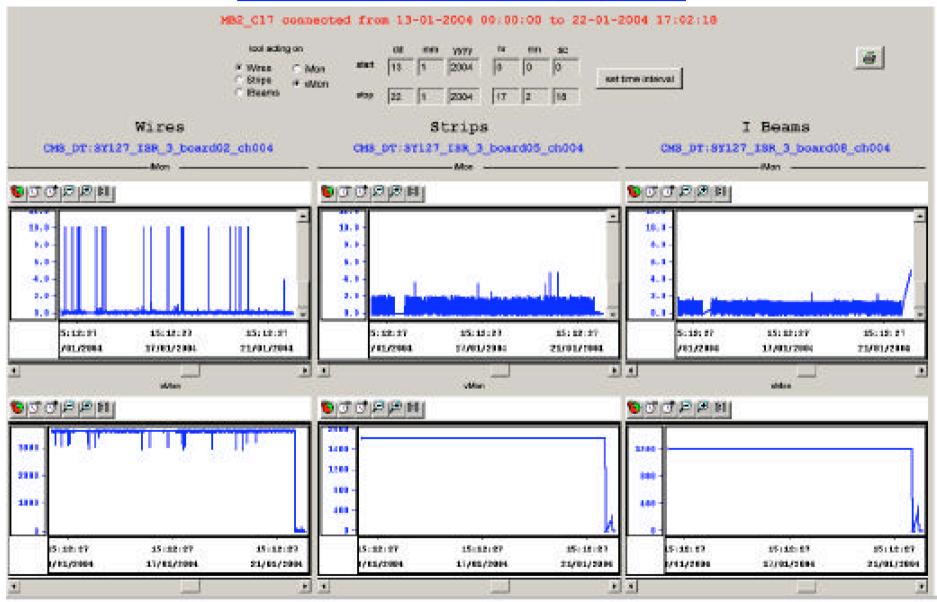

1 missing cover on PHI1 and another in Theta SL


Probably some missing on Front-end side

MB3C16

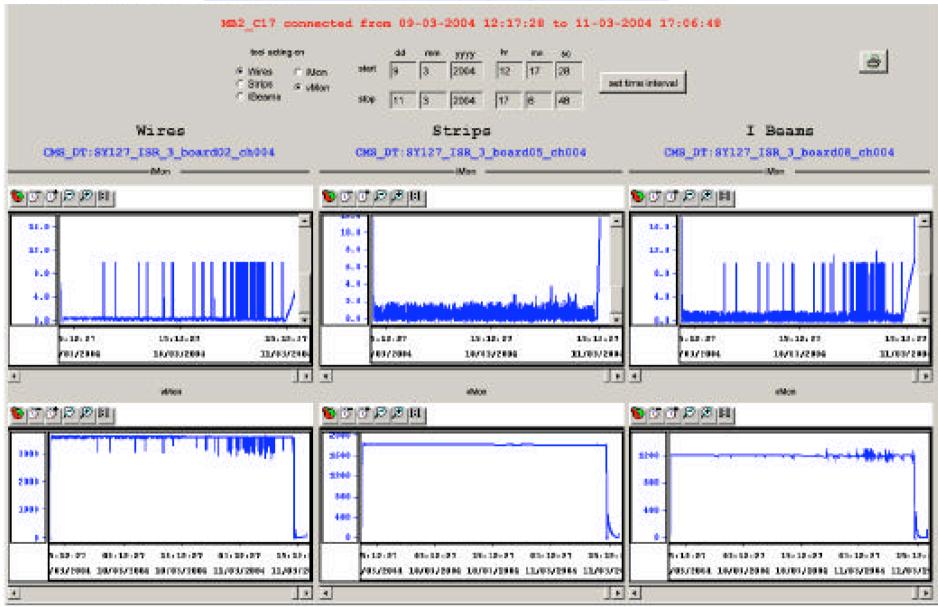
connected since 11-03-2004 14:38:27

Mary Cruz fixed the problem during the Dec03 CMS week (protection on HVB8)


MB2P17 and MB2P24 are on the same HV channel.

MB2P17 was discharging (clicking) the problem was localized on MB2P17 Phi2 B connector that was removed until 01/12 at 16:30 when it was put back to take data with scalers.

Since this did not help to find the problem, Phi2B was put under HV on the CLONE system (allows to isolate HV boards) but the clicking disappeared.


Back to the standard HV system still low clicking rate????

MB2C17 Before Changing HVB

Discharges reduced to 1-2 /day

MB2C17 after changing the HVB

Wire to cathode discharges appeared, problem not yet localized

Summary

- The current spikes problem is still with us, better QC is needed at the sites to ensure that all "tappino "covers are inserted and the aluminum surface is covered with mylar tape.
- We must decide if we should open the front-end side for the chambers with wire to cathode discharges.
- Replacing HVBs is not a simple operations, some wires were lost in the process, repair work is often needed afterwards.
- Chamber dressing is progressing but some items have to be postponed until the HVBs are replaced
- The space situation in the ISR tunnel is becoming critical