

Muon Testbeam May 2003 Drift Time Spectra

Michael Bontenackels

CMS Week – March 2004

- Test Beam Setup
- Distorted Drift Time Spectra
 - 40/80 MHz Pattern
 - Broadened Spectra
- Summary

Test Beam Setup

Beam Setup

- 120 GeV µ-beam
- train of 48 bunches with 25 ns bunch separation
- 10 x 10 cm² scintillator beam trigger
 @ 4 m (upstream) from chamber used as external trigger device for readout.

Chamber Setup

- MB3 Chamber with MB1 Minicrate
- nominal operating conditions

Readout Map

- less than ½ of cells in phi-SLs connected to DAQ
- full readout for theta-SL

Global Drift Time Spectrum

40/80 MHz Pattern

Summary

- all cells affected (visible if enough statistics available)
- weak 40 MHz pattern found also in recorded beam trigger signals (0.09% of recorded triggers)

Possible explanations

- crosstalk between clock and data (Matteo investigates this)
 - inside Minicrate
 - grounding
 - cable layout
- feedback from BTIs into TDCs
 - could explain 40 MHz and 80 MHz pattern
 - all cells are connected to $BTIs \rightarrow pattern$ in all cells

Broadened Spectra

Example 1 - "Double Hits"

Michael.Bontenackels@physik.rwth-aachen.de

190 195

TDC ticks [25/32 ns]

180

185

175

Entries

Mean

RMS

Underflow

Overflow

Integral

64971

181.1

0.7653

6.487e+04

200

0

Example 1 - Track Fits

- "double hits" do not influence track fits and efficiency of cell
- 40/80 MHz pattern may affect the resolution of cell (c.f. still visible spike pattern in spectrum of used hits for track fits)

Example 2 – "Double Hits" and Spikes

- "double hit" probability here ~ 23%
- ∆t = 198 ± 1 TDC ticks
 FEB output pulse length
- 2nd hits show 40/80 MHz spike pattern very strongly

Map of Distorted Cells

- severely distorted
- slightly distorted

Summary

- 40/80 MHz pattern seen in the drift time histograms of all cells. Its origin is unknown.
- Several cells have distorted drift time spectra due to "double hits".
- Both effects do not seem to affect the offline track reconstruction.

But ...

- Can these effects disturb the 1st level trigger?
 - ghost tracks and noise
 - wrong bx identification
- What happens if two or more cells with many of such "double hits" are very close to each other?
- Why are often the same cell numbers in different FEBs affected?

Backup (1) Example 2

stddef_372 SL Phi1 L4 Cell 37

Backup (2) Beam Trigger Signal

stddef_372 beam trigger channel

Backup (3) Beam Trigger Signal

stddef_372 beam trigger channel

Backup (4) Test Pulses

 generation of (up to 4) fake pulses in some cells known from test pulse measurements at Aachen

