Muon DT Meeting

CERN, 9 December 2003

TB2003 data analysis

A. Meneguzzo, P. Ronchese, P. Zotto, S. Vanini

INFN and Università di Padova

S.Marcellini, A.Perrotta, R.Travaglini

INFN and Università di Bologna

Summary

- TDC-TRACO matching: bug fix & resolution
- Data simulation comparison
- ► Efficiency
- Ghosts:
 - → Out of time
 - → On time

Data Sample

- 40MHz bunched beam
- Several angles up to 45°
- Several BTI-TRACO-TS configurations
- 50000 events per run analyzed

Selection cuts:

- → scintillator trigger within 2ns
- → at least 2 cells hit in beam region
- \rightsquigarrow less than 3 hits outside time range -400ns $< t_0 < 800$ ns

In addition, to select single muon events:

- \rightsquigarrow less than 7 hits in at least one SL ϕ
- \rightsquigarrow less than 7 hits in SL heta

Trigger type fraction

fast drop at large angle

Normal beam incidence

P. Ronchese Test Beam 2003

2 muons on the same wire

TDC-Traco matching

Tracks are reconstructed by

- → BTI-TRACO at trigger time
- \rightsquigarrow software (using TDC data) at analysis time
- Look for correlation
- Spot problems
- Reference and units transformation
- full comparison: resolution

Correlation

Non overlapping lines Non continuous lines

Bug in the TRACO LUT: drift velocity not coherent with BTI setting: effect checked with simulation

7

Data-simulation comparison

Simulation of trigger response from TDC output and comparison with data: excellent overlap

Different angle handling

Data at different angles cannot be mixed when looking at simple correlation

- TRACO Look Up Tables are computed in different positions depending on candidate quality
- Track fit from Drift times is always performed at chamber center

LUTs and fit use different reference frames

 \Rightarrow

Need extrapolation and frame conversion before comparison

TDC fit - Traco comparison

After transformation trigger data and TDC fit show full agreement through all data samples

Radial angle resolution

Radial angle difference (mrad)

Double peaks due to the LUT bug (TRACO 10 data shaded) Constant resolution at \sim 250 μ rad (compatible with 1 count)

Bending angle resolution

0 degrees

LL

40

16000 2250 HL of events 2000 gifts 100 HH 14000 \$ 1750 ົ້ວ 12000 80 ් 1500 10000 Number 6 5 1250 60 8000 duni 1000 6000 40 ź 750 4000 500 20 2000 250 0 0 0 -40 -20 0 20 40 -40 -20 0 20 40 20 40 -20 0 Incident angle difference (mrad) Incident angle difference (mrad) Incident angle difference (mrad) ු 1200 H_i 900 Number of events H_{0} 800 5 1000 700 ق 800 600 mber 500 600 400 ž 300 400 200 200 100 0 E---0 <u>Lu</u> -500 -250 -250 0 250 500 250 500 0 Incident angle difference (mrad) Incident angle difference (mrad) L
 300

 250

 200

 150

 100
 300 ents L 250 of ev 200 Number 150 100 50 50 0 -500 0 -500 -250 250 500 -250 250 500 0 0 Incident angle difference (mrad) Incident angle difference (mrad)

trigger type dependence: \sim 5 mrad for correlated and \sim 40 mrad for uncorrelated Similar results obtained for other incidence angles

ъ

Number

Efficiency

Look for events with recorded trigger

→ at correct time

→ with correct track parameters

see effect of incidence at:

→ different angles

→ different position

BX & mu identification efficiency

bx efficiency: given by any trigger at correct time mu-id efficiency: given by a trigger with correct parameters

Efficiency vs. position

Ghosts

On time: two tracks generated in the same slot due to
TRACO superposition (same track copy)
BTI superposition (low quality track)

Out of time: fake alignment in nearby slots due to

 \rightsquigarrow tolerances

→ hit reflection

Different configurations studied

Second-track fraction

Excess of fake triggers at positive angles due to equation redundancies and noise hits: it may be removed by a redefinition, with an increase of low-quality trigger rate.

Out of time triggers

Increase with angle (more patterns for alignment), symmetric

Out of time triggers

Average well below 100%

Out of time trigger type

Most out of time fake triggers are uncorrelated L-type: not used as track origin

Theta trigger validation

Conf.1 (squares): L-trigger accepted if a H-trigger is present in \bigcirc SL Conf.2 (triangles): L-trigger refused

Low Trigger suppression

BTI LTS (circles): mandatory (too high noise otherwise) TRACO LTS (downward triangles): applicable (small efficiency loss)

TS ghost suppression

Recover of H_i triggers if L trigger in following slot (squares): small effect Ghost suppression disabled (triangles): unfeasible (much bigger noise)

Conclusions

Results obtained on

- → Resolution: at the expected level
- → Efficiency: 98-99% in most regions
- → Noise at acceptable level, space available for reduction
- Design choices validated
- trigger requirements are met

Acknowledgements

All these results could not be obtained without the big effort of a lot of people, for hardware and software setup:

M.Bellato, L.Castellani, E.Conti, C.Fernandez, F.Gonella,

S.Lacaprara, I.Lippi, G.Maron, M.Passaseo, M.Pegoraro,

N.Toniolo, S.Ventura, C.Willmott

+ all peoples being on shift during data acquisition