

QC of components (Al-plates, I-beams, HVB, HVC, FEB)

QC during mechanical production (wire tension, position, corner block position, 1.strip/I-beam)

QC after mechanical production/ during assembly with HV & FE (Gastightness, HV test in air & gas, noise, efficiency, mean time)

Storage of QC data

Positions of wire, 1.strip & corner blocks

WIRE POSITION

QC requirement:

- -Tolerance: nominal position + 100 μ m, measure FE & HV end
- Record in data base

QC @ Aachen:

Measure every wire position before closing layer, exchange till all positions are within limit

System calibrated with LEDsystem and reference bar

Output: final file with only positions within limits

POSITION OF 1.STRIP

QC requirement:

- -Tolerance is 500 μm, nominal?
- Record in data base
- Correction?

QC @ Aachen:

Measured 3-4 times along strip

Output:

paper document [4]

hen Production site

Non-straight

strips ? More

positions?

CORNER BLOCK POSITION

QC requirement:

-Measure corner block w.r.t. closest wire before closing SL

- Record in data base

QC @ Aachen:

Measured

Output:

Paper document [4]

Recording without correction

Wire Tension

QC requirement:

measure individual wires before closing the layer, allowed range 230 - 325gr, no recording

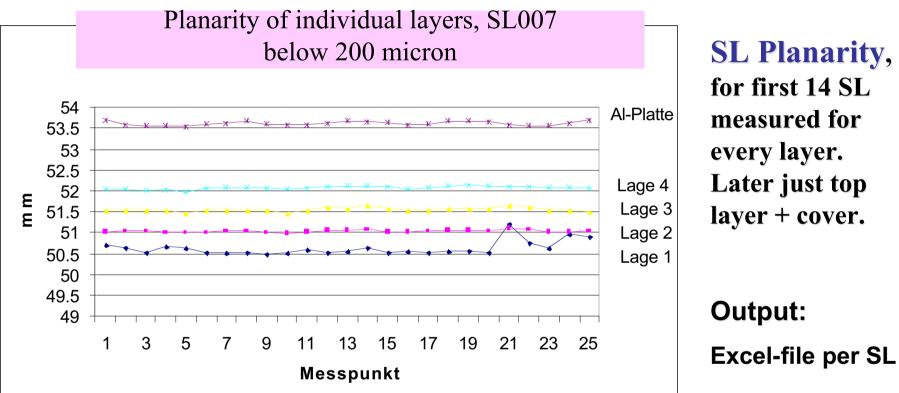
QC @ Aachen:

ALL wires are measured and stored in a local file

Frequency range phi 79.3 – 83.3 Hz, theta 90 – 98 Hz

Wires with frequencies outside this range get replaced

Output:


file with all wire tensions, only within tolerances (ASCII-> root)

layer + cover. **Output:**

Planarity of Honeycomb-panels

- Measured at Aachen: Hight over flat table (several points per HC) -> HR talk
- Output: local file

Quality Control

QC of components (Al-plates, I-beams, HVB, HVC, FEB)

- QC during mechanical production (wire tension, position, corner block position, 1.strip/I-beam)
 - QC after mechanical production/ during assembly with HV & FE (Gastightness, HV test in air & gas, noise, efficiency, mean time)

Storage of QC data

Gas Tightness (7.3 + 7.4)

QC requirement: 2 methods (pressure drop, oxygen content)

Record in DB

Pressure drop measurement is more relevant!

QC @ Aachen:

Pressure drop at 2 levels (2 HV-covers, FE+HV) for all SL

→ excellent results

Oxygen content just started recently

Information to store: 1 time constant per SL with final settings, Web accessible

> Gas tightness is essential for operation of CMS Muon system. We should make an effort to have good gas tightness. Time constants around 1000 are feasible.

Results from Pressure Drop

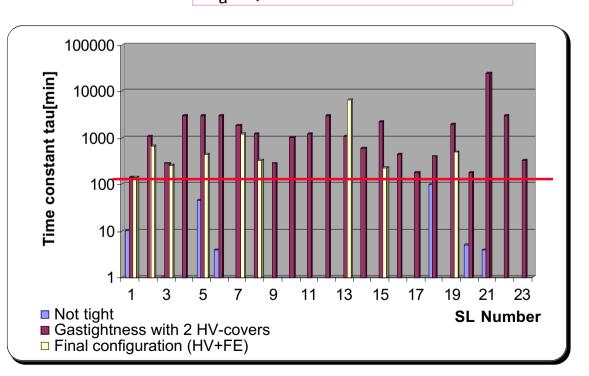
QC requirement: $\tau > 135$ min

With two HV covers, time constant on average $\tau \sim 1500$ min

In final conditions (FE+HV) τ = 1200 min

Pressure drop:

$$\tau = t / \ln \left(\frac{P_{i0} - P_a}{P_i - P_a} \right)$$


 P_i = pressure at t=0 P_a = pressure after t>0

Our observations:

Recommended to first measure with two HV covers (check of FE-cover tightness during second measurement)

In case of leakage, τ <5 min

If additional sealing required, usual close to corner-blocks

HV Test in Air (7.2)

Aachen Method:

- Ramp-up strips (2.5 kV) and cathodes (-2 kV) without HVB for 10 min, granularity: 16
- 2. Connect HVB and ramp-up to V_{wire/strip/cath}= 3.9/1.9/1.6 kV
- 3. Monitor currents with a resolution of 10 nA.

Require rest-currents \leq 200 nA per HV channel

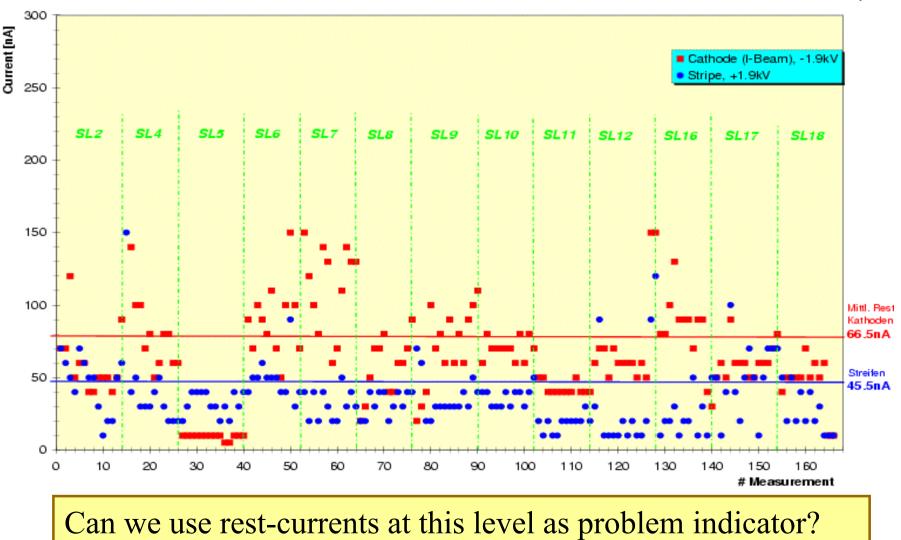
Time dependance observed (increase by ~10 during days, then stable)

- Changes triggered by HV problems in gas:
- Increased HV-values in air, aiming at values for HV stability in gas:
- Strips 1.8 kV (g -> 3.3 (air)
- 3.8 kV
- Cathodes 1.4 (gas) -> 2.5 (air)

3.1 kV

In QCD common current-limit. We	fc
observe $I_{wire/strip/cath}$ ~ 10 / 50 / 75 nA	fo art ith
In air mainly problems with strips.	ith

for several hours. Over night run arting with gas. Current fluctuations. th one SL.More statistics needed.



Distribution of rest-currents for strips and cathodes

Rest currents afte >10min in air ()'Platinentest'')

Time dependence (storage time, relaxation time of meas.)

HV Test in Gas (7.5)

QC requirement: "Conditioning is performed <u>ramping up and down HV</u> several times. This procedure stops if after N trials a channel is <u>not stable</u>... After several hours must be stable with \leq 5% of disconnected channels and with a current per channel below 50 nA."

Our observations:

- Ramping-speed is crucial.
- Rest-currents for strips & cathodes about 100 nA.
- Current fluctuations (limited by trip-limit 5 mA) stay for several days. Are they critical?
- Define stable running.

Aachen Procedure HV Training in Gas

- Flush with gas for ~8 h (6 vol.exchanges).
- Ramp-up in steps:

HV wire	HV strip	HV cathode	Δ HV
2000	1000	-800	1000
2500	1200	-900	1300
3000	1400	-1000	1600
3400	1600	-1100	1800
3600	1800	-1200	1800
Over	Night	~8-10 h	
3700	1800	-1300	1800
3700	1800	-1400	1800
Over	Night	~8-10 h	

Noticed: gas distribution inside SL very slow.

Total time: Good SL ~3 days

Incl.problem finding & repair (~1/3): 2-3 weeks

If problem, search for channel and disconnect (sometimes repair (glue, loose DC)) Very time consuming! Complicated by HV grouping.

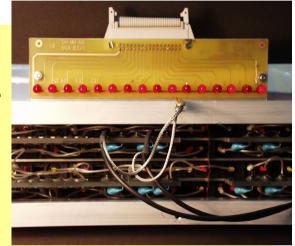
No. of SL with HV problems in gas: 5/8 -> too high for MP

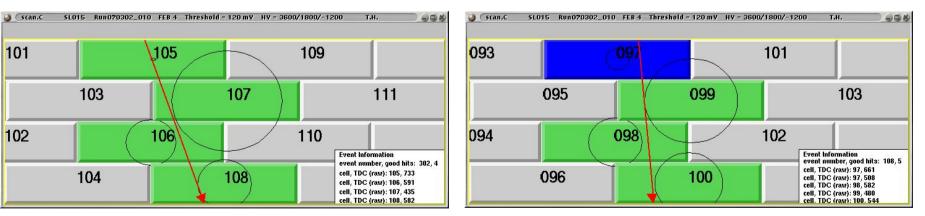
Results of HV Training in Gas

🞸 Bookm	arks 🤌 Netsite: [http)://www.physik.rwth-aa	chen.de/~hoepfner/Assembly	y/SL_Summary.html
	HV Training in A Highest HV Sett for longterm n	ings	cases	What to do with close-to-limit (e.g. 3595 V for wires, 1200 fo des, 1780 for strips?
SL #	Test in Air	Test in ArCO2		
001	3600/1800/-1800	3600/1800/-1400		
002	3600/1800/-1800	3595/1800/-1800		Fraction of disconnected
003	3600/1800/-1800	3600/1800/-1200		channels < 1%
008	3700/3600/-3000	3500/ 800/-1600		
009	3600/1800/-1800	3600/1800/-1400	- Deenite high	Exact SI $0.05(10)$ SI $0.10(4)$
010	3800/3500/-2900	2100/1400/-1000	Despite high	Except SL 005 (10), SI 010 (4)
011	3700/1800/-1800	3700/1800/-1500	voltage settings	
012	3700/1800/-1800	3700/1800/-1400 ?	in air, problems	Longterm stability: 2 SL
013	3700/1800/-1800	3200/1400/-1000	_in gas.	have been operating for
014	3700/1800/-1800	3700/1800/-1500		
015	3600/1800/-1800	3600/1800/-1600		~4 weeks. Occasionally
016	3700/1800/-1800	2200/1200/-1000		
019	3700/3600/3100			current over threshold,

Summary HV Remarks

- The HV training is most critical/time consuming step in the commissioning phase.
- 50% cells which got cleaned in air, could not hold the HV in gas.
- Ramping speed seems critical (< 10/5/5 V/sec).
- What are typical rest-currents for strips and cathodes?
- Can we use rest-currents in air as a problem indicator? Could avoid opening of SL and time consuming repair after cable harness and connector installed.
- We need an agreement what to do with close-to-limit cases.
- It seems advicable to ramp-up in air to higher voltages to reduce problems in gas.
- Cathode voltages for test and operation.
 - What to store from tests: on SL summary page (final settings, duration, number & cause of disconnected cells), Web accessible


Front-end/Testpulse System

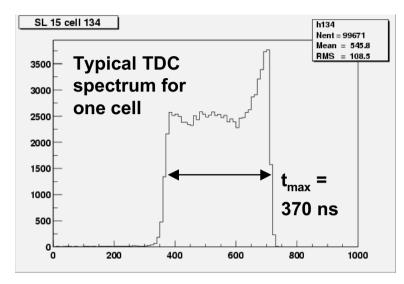


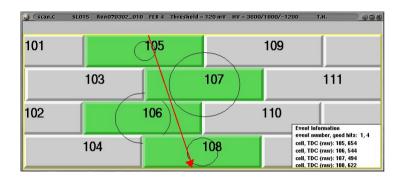
QC requirement: Rates

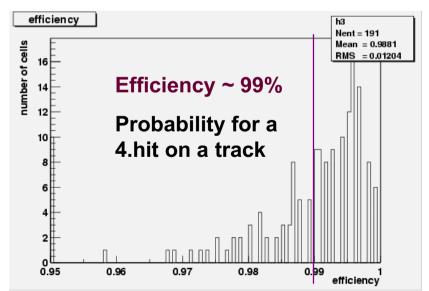
Tests done at Aachen:

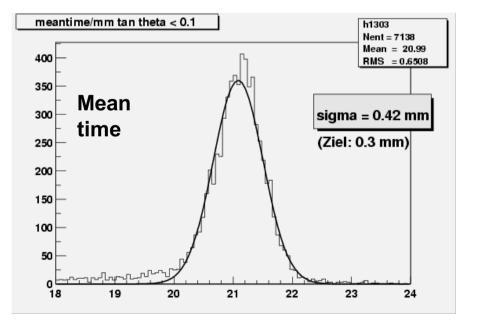
- 1) Contact test, on average exchange 1 FEB per SL
- 2) Testpulses, check if all channel see testpulses of 2 V, threshold 15 mV
- 3) Cosmics data taking -> TH talk

1 SL completely tested: SL 015 cells 41 (FEB3-9), 47 (FEB3-15), 119 (FEB8-7), 135 (FEB9-7), 170 (FEB11-10) <50% expected hits


101


102


TDC spectrum and Mean time



Meantime= $\frac{1}{2}[dist(1) + dist(3)] + dist(2)$

A Typical Cosmics Output File (SL 15)

Nois ~ 30		Efficiency ~ 0.98	Afterpulse probability ~ 0.08	Meantime [mm] ~ 20	RMS [mm] ~1.21.6		RMS [mm] ~ 0.62
2.line	e: Mear	ntime left/right	with RMS	0. +- 0.	0. +- 0.	0. +- 0.	0. +- 0.
1 2 51.3	; +- 3.4	0 +- 0	0.16 +- 0.02	20 +- 0.17	1.24 +- 0.12	0.784 +- 0.19	1.57 +- 0.13
3 224	+- 0 +- 7.2 +- 0.21	$\begin{array}{cccc} 0 & +- & 0 \\ 1 & +- & 0 \\ 1.42 & +- & 0.15 \end{array}$	20 +- 0.17 0.11 +-0.016 20.1 +- 0.13	1.24 +- 0.12 20.2 +- 0.11 1.34 +-0.095	1.37 +- 0.08	0.348 +-0.087	1.06 +-0.062
4 75.6	+- 4.2	1 +- 0	0.15 +-0.019	20.1 +- 0.13	1.33 +-0.094	0.205 +-0.056	0.681 +- 0.04
5 23	; +- 0.21 ; +- 2.3 ; +- 0.26	1.42 +- 0.15 0.986 +- 0.01 1.96 +- 0.18	20 +- 0.17 0.051 +-0.011 20.2 +- 0.22	1.24 +- 0.12 20.4 +- 0.18 1.45 +- 0.15	1.76 +- 0.12	0.142 +-0.076	0.977 +-0.054
6 28.5	i+- 2.6	1 +- 0	0.046 +-0.011	20.5 +- 0.11	1.61 +-0.079	0.204 +-0.079	1.03 +-0.056
7 65.9	+ - 0.17 +- 3.9 +- 0.18	0.995 +-0.0054	20.5 +- 0.14 0.044 +-0.0097 20.4 +- 0.13	$ \begin{array}{r} \begin{array}{r} 1.47 + - & 0.1 \\ 20.3 + - & 0.11 \\ 1.4 + - & 0.095 \end{array} $	1.64 +-0.079	0.42 +- 0.11	1.67 +-0.081
8 47.8	+- 3.3	0.968 +- 0.013	0.11 +-0.015	20.3 +- 0.15	1.59 +- 0.11	0.147 +-0.059	0.877 +-0.041
9 33.4	+ <u>+- 0.23</u> +- 2.8 +- 0.16		<u>20.7 +- 0.19</u> 0.11 +-0.014 20 +- 0.17	<u>1.46 +- 0.13</u> 20.2 +- 0.12 1.2 +- 0.12	1.33 +-0.084	0.187 +-0.081	1.31 +-0.058
10 35.7	'+- 2.9	0.996 +-0.0043	0.061 +-0.011	20.2 +- 0.09	1.41 +-0.064	0.423 +- 0.1	1.65 +-0.072
11 40.6	+- 0.13 +- 3.1 +- 0.12	1.5 +-0.095 0.996 +-0.0037 1.5 +-0.086	20.3 +- 0.12 0.043 +-0.0085 20.5 +- 0.12	1.3 +-0.084 20.4 +-0.085 1.44 +-0.084	1.47 +- 0.06	0.413 +-0.089	1.6 +-0.063
12 36.9 12 20.4) +- 2.9 } +- 0.19	0.989 +-0.0064 1.61 +- 0.13	0.063 +- 0.01 20.4 +- 0.16	20.4 +- 0.12 1.33 +- 0.11	1.48 +-0.087	0.0745 +-0.052	0.922 +-0.037
13 28.5		1.81 + 0.13 0.979 + 0.0077 1.81 + 0.13	0.053 +-0.0091 20.5 +- 0.18	20.6 + 0.13 1.54 + 0.13	1.7 +- 0.09	0.26 +-0.064	1.25 +-0.045
14 33.2	2.8	0.994 +-0.0043	0.08 +-0.011	20.5 +-0.083	1.59 +-0.059	0.387 +-0.078	1.54 +-0.055
15 52.2		1.73 +-0.092 0.988 +-0.0082	20.6 +- 0.11 0.037 +-0.0076	1.44 + -0.074 20.6 + -0.11	1.6 +-0.077	0.536 +- 0.13	2.01 +-0.095
16 36.9		0.987 +-0.0089	20.6 +- 0.13 0.07 +-0.0099	1.36 + -0.091 20.6 + -0.13	1.36 +-0.091	0.097 +-0.052	0.769 +-0.037
17 26.6) +- 0) +- 2.5) +- 0.19	0.987 +-0.0091	20.6 +- 0.13 0.067 +- 0.01 0 +- 0	1.36 +-0.091 20.3 +- 0.19 0 +- 0	1.78 +- 0.13	0.238 +- 0.09	1.26 +-0.064

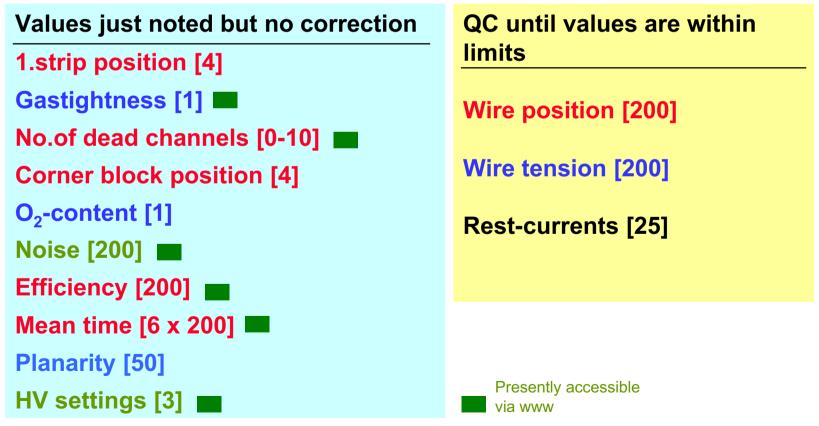
Netscape;

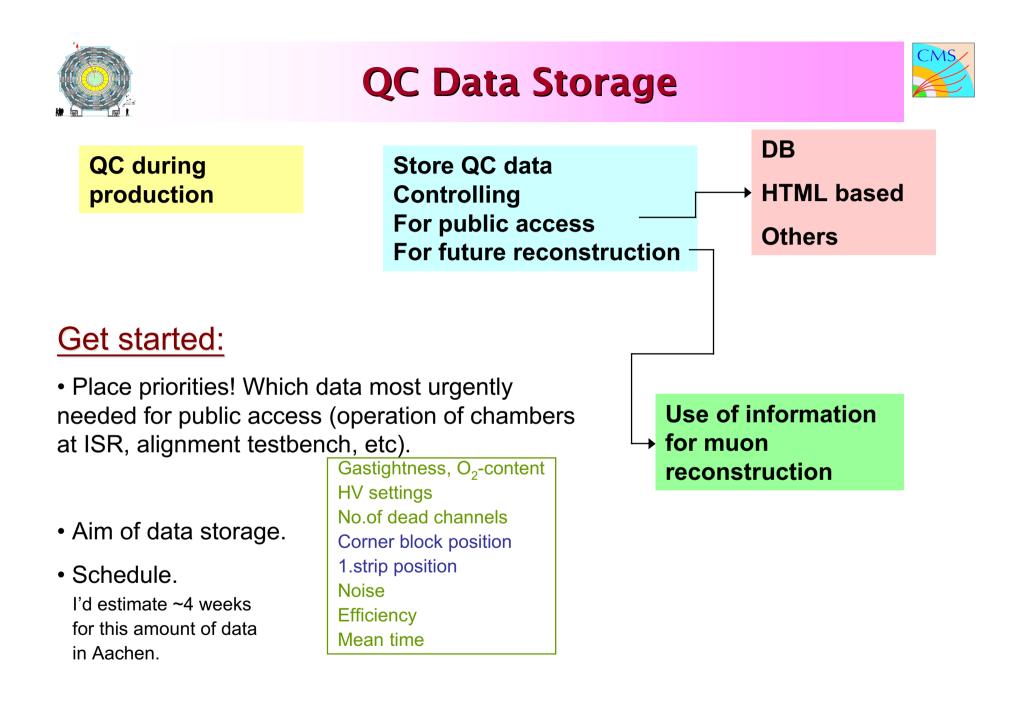
		<u>R</u>	<u>SL SUI</u> esults from gas tight	MMARY tness, HV and FE T	ests							
SL Number and SL type	Time constant Gas tightness HV + FE cover	Part of chamber No.	Status HV Test in gas	Total No. of dead channels	Cell No. Component	Dead FE-channel, Cell No.	SL Flyer (link to PS-file)					
SL 001 - phi	140	1	ок	0		1	ink to PS file					
3L 002 - theta	670	1	OK	0		0	<u>}</u>	SL	Sun	ımai	ry Sh	eet
3L 003 - phi	260	1	OK	0	-	1	SL Summary Sheet:					
3L 004 - phi		2	air				SL#				15	
3L 005 - theta	440	2	air	10	12, 22, 24, 18, 56, 178, 182, 204, 208 = Strips		HV in ArCO ₂ [V]		wires	strips	i-beams	date
					144 Cathode				3600	1800	-1600	10.01.0
\$L 006 - phi		2	air	1	166 Strip		Training duration	~ 18 h				
3L 007 - phi	1200	exploded SL	ок	2	102 Strip		Gastightness Dead cells	2600 min (2 HV cover) # type				
		CAPIODED OF		<u> </u>	18 ???		Kanal 9		# 41	<u> </u>	UP FE	
3L 008 - phi(l)	320		repair	1	Wire		Kanal 15		47		FE	 A state of the state of the state
3L 009 - theta			ongoing	1	141 Cathode left		Kanal 7		11		FE	5
3L 010 - phi			repair				Kanal 7		13		FE	
3L 011 - phi(l)			ок	0			Kanal 10		17	0	FE	<u>;</u>
3L 012 - theta			ок	1	210 Strip							
3L 013 - phi	6600		repair	3	66, 91, 76 Strips							
3L 014 - theta			ongoing	1	69 Strip							
3L 015 - phi(l)	230		ок	0			SL Flyer Cosmics					
3L 016 - phi			air									
3L 017 - theta			air						-ile	fror	n	
3L 018 - phi(l)												
3L 019 - phi	500							C	cosr	nics	s dat	a
3L 020 - theta												
3L 021-phi(l)								_ t	akir	۱g		
3L 022-phi				1		(-		

CMS

Marinas Proposal from last CMS week

Index of /dbcms/db/MB3_0	01/SL_ph1_002/L1_ph1_00002 - Microsoft Internet Explorer	
	Lools Help	100 C
↔ → → · @ Back Forward Sto		com Messenger
Address 🛃 http://www.pd.infn.it/c	dbcms/db/MB3_001/SL_ph1_002/L1_ph1_00002/	💌 🔗 Go Links 🎽
Favorites ×		<u> </u>
🞼 Add 🔁 Organize	Index	
 Links Personal Toolbar Folder Personal 	of /dbcms/db/MB3_001/SL_ph1_002/L1_ph1	1_00002
📃 Media	Name Last modified Size Description	
CMS muon chambers reposit		
 DCOM settings Deja.com_My Deja 	Parent Directory 20-Feb-02 16:11 -	
Deja.com_ My Deja Di Liddo & Perego S.p.A.	U FE.txt 23-Jan-02 12:31 2k	
 Free Library 	W FE L1 01jun15 1750 23-Jan-02 12:31 2k	Can local
Eree OPC Clients and Servers	W FE L1 01jun15 175023-Jan-02 12:31 13k	
ITCOBE CAEN Sy1527	W FE L1 01jun15 175022-Jan-02 19:21 2k	directories be
JCOP OPC		
Structure		linked ?
 MSN NBC Olympics 		
	W_HV_L1_01jun15_182523-Jan-02 12:32 2k	Platform
PVSS	w <u>HV L1_01jun15_1825</u> 23-Jan-02 12:32 12k	
🕗 Radio Station Guide	W HV L1 01jun15 1825 22-Jan-02 19:25 2k	independent tools
😛 RealPlayer Home Page	W HV L1 01jun15 182523-Jan-02 12:32 2k	
E Real-time CORBA with TAO		File format ,
 TAD with C++Builder The Temporal Doorway - A 		
Vizzavi		units etc.
Web Events		
ど Weekly Schedules		
🙋 ZG group Mobili		
 bttp://www.pd.ipfp.it/dbores/db/ 	/ /MB3_001/SL_ph1_002/L1_ph1_00002/W_FE.txt	internet
 Indexy www.barium.ix.apcuis/ap/ 	http://www.incomerce.com/comerce.com/comerce.com/comerce/com/comerce/com/comerce/com/comerce/com/com/com/com/com/com/com/com/com/com	- Internet




Relevance of QC Information for future Data Analysis

Some data are very relevant for muon reconstruction, like corner block position needed for alignment. Other data, like wire tension, are not essential for data analysis but for chamber operation.

QC during production has different meaning (monitoring <-> correction). Divide QC data in 2 groups [app.no. of data per SL]:

