Problem set 9

Tutorial: 20 June 2018, 12:15

Problem 20: Misalignment mechanism

Consider a complex scalar field Φ with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\partial^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi-\lambda\left(\Phi^{\dagger} \Phi-f_{a}^{2}\right)^{2}, \tag{1}
\end{equation*}
$$

where λ and f_{a} are parameters of the model. By introducing two real scalar fields φ and α, we can write $\Phi=e^{i \alpha}\left(\varphi+f_{a}\right)$.
a) Show that the resulting Lagrangian is invariant under the field shift $\alpha \rightarrow \alpha+\epsilon$. In particular, there is no mass term for α (i.e. no term proportional to α^{2}) and hence the field remains massless (a so-called Goldstone Boson).
b) The QCD phase transition introduces additional terms in the Lagrangian that depend on $\Phi+\Phi^{\dagger}$. Show that such terms are no longer invariant under the continuous shift symmetry, but only under a discrete shift symmetry $\alpha \rightarrow \alpha+2 \pi$.

In particular, the QCD phase transition introduces an additional term of the form

$$
\begin{equation*}
V\left(\Phi, \Phi^{\dagger}\right) \rightarrow V\left(\Phi, \Phi^{\dagger}\right)+\frac{m_{\pi}^{2} f_{\pi}^{2}}{4}[1-\cos (\alpha-\theta)] \tag{2}
\end{equation*}
$$

such that the potential is minimised for $\alpha=\theta$.
c) By writing $\alpha=\theta+a / f_{a}$, expand the new term in the potential around the minimum $a \approx 0$. Show that the field a now has a mass term of the form $m_{a}^{2} a^{2} / 2$ and determine m_{a}. Since m_{a} is small but non-zero, the field a is called a Pseudo-Goldstone Boson.
d) It can be shown that the cosmological abundance of axions is proportional to the square of the initial misalignment angle $\Delta \theta_{0}=\alpha_{0}-\theta$. Assuming that $\Delta \theta_{0}$ takes random values in the range $[-\pi, \pi]$ in different patches of the observable Universe, show that the average axion abundance from the misalignment mechanism can be estimated by replacing $\Delta \theta_{0} \rightarrow$ $\pi / \sqrt{3}$.

Problem 21: Coherent oscillations in quantum mechanics

Let us consider the quantum harmonic oscillator

$$
\begin{equation*}
H=a^{\dagger} a+\frac{1}{2} \tag{3}
\end{equation*}
$$

where in position space (and setting $\hbar=1$)

$$
\begin{equation*}
a=\frac{1}{\sqrt{2 m \omega}}\left(m \omega x+\frac{\mathrm{d}}{\mathrm{~d} x}\right) . \tag{4}
\end{equation*}
$$

Again in position space, the ground state is given by

$$
\begin{equation*}
|0\rangle=C_{0} \exp \left(-\frac{m \omega x^{2}}{2}\right) \tag{5}
\end{equation*}
$$

from which higher states are obtained via $|n\rangle=\frac{1}{\sqrt{n}} a^{\dagger}|n-1\rangle$.
Let us now consider a state that is obtained from the ground state by applying a displacement x_{0}

$$
\begin{equation*}
\left|x_{0}\right\rangle=C_{0} \exp \left(-\frac{m \omega\left(x-x_{0}\right)^{2}}{2}\right) \tag{6}
\end{equation*}
$$

a) Show that $\left|x_{0}\right\rangle$ is an eigenstate of the lowering operator a with eigenvalue $\sqrt{\frac{m \omega}{2}} x_{0}$ and thus the expectation value of the position operator is given by

$$
\begin{equation*}
\left\langle x_{0}\right| x\left|x_{0}\right\rangle=\frac{1}{\sqrt{2 m \omega}}\left\langle x_{0}\right|\left(a+a^{\dagger}\right)\left|x_{0}\right\rangle=\operatorname{Re} x_{0} \tag{7}
\end{equation*}
$$

A state with this property is called a coherent state.
b) Use this result to show that

$$
\begin{equation*}
\left|x_{0}\right\rangle=c_{0} \sum_{n=0}^{\infty} \frac{\left(\sqrt{\frac{m \omega}{2}} x_{0}\right)^{n}}{\sqrt{n!}}|n\rangle \tag{8}
\end{equation*}
$$

where c_{0} is a normalisation constant.
The time evolution of the eigenstates of the harmonic oscillator is given by

$$
\begin{equation*}
|n(t)\rangle=e^{i \omega\left(n+\frac{1}{2}\right) t}|n\rangle \tag{9}
\end{equation*}
$$

c) Use this property to show that $\left|x_{0}(t)\right\rangle$ remains a coherent state with $x_{0}(t)=x_{0} e^{i \omega t}$, such that the expectation value of the position operator is given by $\left\langle x_{0}(t)\right| x\left|x_{0}(t)\right\rangle=x_{0} \cos (\omega t)$. We can therefore interpret a coherent state as a displaced ground state with oscillation frequency ω.
d) Calculate finally the expectation value of the number operator $N=a^{\dagger} a$ and show that the average number of excited quanta is proportional to x_{0}^{2}.

