
Dark Matter Lecture Course Prof. Dr. Felix Kahlhoefer

Problem set 3

Tutorial: 2 May 2018, 12:15

Problem 6: The Lee-Weinberg bound

We assume that in addition to the three well-known neutrino species there is a fourth
Dirac neutrino ν with mass 1 MeV� mν and interactions

L =
g

2 cos θW
ν̄γµ(1− γ5)νZµ , (1)

where g ≈ 0.65 is the weak gauge coupling and θW ≈ 0.50 is the Weinberg angle. This
interaction induces the annihilation processes νν̄ → ff̄ , where f denotes Standard Model
fermions. The corresponding cross section (assuming mν �MZ) is given by

〈σv〉 =
g4m2

ν

16π cos4 θWM4
Z

× C , (2)

where MZ = 91 GeV is the Z-boson mass and C is a numerical constant that depends on
the number of fermions that are kinematically accessible. For the mass range of interest one
finds C ∼ 6.

a) Check explicitly that the additional neutrino would be in thermal equilibrium with the
Standard Model particles for T ≈ mν . You can assume gν = 4 and g∗ ≈ 80.

b) Estimate the relic abundance Ωνh
2 from thermal freeze-out.

c) To be consistent with observations, Ωνh
2 must not exceed the total amount of DM in the

Universe, ΩDMh
2 = 0.12. Use this requirement to obtain a lower bound on mν .

d) If the mass of the fourth neutrino were to saturate this bound, it would account for all of
the DM in the Universe. What independent measurement excludes this possibility?
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Problem 7: The unitarity bound

The velocity distribution of non-relativistic dark matter particles in the Early Universe
is given by the Boltzmann distribution f(v) ∝ exp(−E/T ), where E ≈ mDM(1 + 1

2v
2).

a) Let vrel be the relative velocity between two dark matter particles. Show that the distri-
bution function for vrel is given by

f(vrel) =
( x

4π

)3/2
exp

(
−
mDM v2rel

4T

)
. (3)

b) Assuming that the dark matter annihilation cross section can be written as

σ =
a

vrel
+ b vrel +O(v3rel) , (4)

show that
〈σvrel〉 ≈ a+

6b

x
, (5)

where x = mDM/T is the dimensionless temperature.

c) It can be shown in a very general way from the requirement of unitarity (i.e. the con-
servation of probability) that the annihilation cross section for a Majorana fermion must
satisfy the inequality

σ <
π

m2
DM v2rel

. (6)

Use this relation to derive an upper bound on 〈σvrel〉 as a function of mDM.

d) Calculate a lower bound on the thermal abundance of a dark matter particle with mass
mDM. Combine this result with the measured value ΩDMh

2 = 0.12 to derive the so-called
unitarity bound on the WIMP mass.
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