Problem set 1

Tutorial: 18 April 2018, 14:15

Problem 1: Dark matter distribution functions

The distribution of dark matter in an astrophysical system (for example a galaxy) is described by a distribution function $f(\mathbf{x}, \mathbf{v})$, which is related to the density profile $\rho(\mathbf{x})$ via $\rho(\mathbf{x}) = \int d^3 v f(\mathbf{x}, \mathbf{v})$. The Jeans theorem states that any self-consistent steady-state distribution function can depend on \mathbf{x} and \mathbf{v} only via so-called *integrals of motion*, meaning quantities that are conserved under gravitational interactions. The simplest such quantity is the total energy of a dark matter particle with mass m:

$$E = m \mathbf{v}^2 / 2 + m \Phi(r) , \qquad (1)$$

where $\Phi(r)$ denotes the gravitational potential.

Consider the distribution function given by

$$f(\mathbf{x}, \mathbf{v}) = \frac{\rho_1}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{E}{m\sigma^2}\right) , \qquad (2)$$

where ρ_1 and σ denote free parameters of the solution.

- a) Obtain an expression for the gravitational potential $\Phi(r)$ in terms of the density $\rho(r)$.
- b) Substitute this expression into Poisson's equation $\Delta \Phi(r) = 4\pi G \rho(r)$ to find a selfconsistent solution for $\rho(r)$.
- c) Compare this solution to the one obtained from hydrostatic equilibrium.
- d) Calculate the velocity dispersion $\langle v^2 \rangle$ and the circular velocity v_c as a function of radius r. What is the physical interpretation of σ ?
- e) The circular velocity of the sun is about $v_c \approx 220 \text{ km/s}$. Use this information to calculate the local dark matter density in the solar neighbourhood, $\rho_0 \equiv \rho(r \approx 8 \text{ kpc})$.
- f) Measurements of the local dark matter density give $\rho_0 \approx 0.3 \,\text{GeV/cm}^3$. Why does this number differ from the one calculated above?

Problem 2: Modified Newtonian Dynamics

An alternative proposal to explain galactic rotation curves is to assume that Newton's second law of motion is modified for very small acceleration $a \ll a_0$. Rather than F = m a, the relation between force and acceleration is then given by

$$F = m \frac{a^2}{a_0} . aga{3}$$

- a) Show that this modification implies $v_c(r) = (a_0 G M(r))^{1/4}$.
- b) Why would this explain galactic rotation curves without the need to introduce dark matter?
- c) For the Milky Way one measures a circular velocity of $v_{\rm c} \approx 220 \,\rm km/s$ and a total stellar mass of $M \approx 7 \cdot 10^{10} M_{\odot}$. Obtain an estimate for a_0 .
- d) Why is it impossible to test Modified Newtonian Dynamics with terrestrial experiments?