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Abstract

The striking evidence for the existence of dark matter in the Universe implies that there is new
physics to be discovered beyond the Standard Model. To identify the nature of this dark matter
is a key task for modern astroparticle physics, and a large number of experiments pursuing a
range of different search strategies have been developed to solve it. The topic of this thesis is the
complementarity of these different experiments and the issue of how to combine the information
from different searches independently of experimental and theoretical uncertainties. The first
part focuses on the direct detection of dark matter scattering in nuclear recoil detectors, with
a special emphasis on the impact of the assumed velocity distribution of Galactic dark matter
particles. By converting experimental data to variables that make the astrophysical unknowns
explicit, different experiments can be compared without implicit assumptions concerning the
dark matter halo. We extend this framework to include annual modulation signals and apply it
to recent experimental hints for dark matter, showing that the tension between these results and
constraints from other experiments is independent of astrophysical uncertainties. We explore
possible ways of ameliorating this tension by changing our assumptions on the properties of dark
matter interactions. In this context, we propose a new approach for inferring the properties
of the dark matter particle, which does not require any assumptions about the structure of
the dark matter halo. A particularly interesting option is to study dark matter particles that
couple differently to protons and neutrons (so-called isospin-violating dark matter). Such isospin-
violation arises naturally in models where the vector mediator is the gauge boson of a new
U(1) that mixes with the Standard Model gauge bosons. In the second part, we first discuss
the case where both the Z ′ and the dark matter particle have a mass of a few GeV and then
turn to the case where the Z ′ is significantly heavier. While the former case is most strongly
constrained by precision measurements from LEP and B-factories, the latter scenario can be
probed with great sensitivity at the LHC using monojet and monophoton searches, as well as
searches for resonances in dijet, dilepton and diboson final states. Finally, we study models of
dark matter where loop contributions are important for a comparison of LHC searches and direct
detection experiments. This is the case for dark matter interactions with Yukawa-like couplings
to quarks and for interactions that lead to spin-dependent or momentum suppressed scattering
cross sections at tree level. We find that including the contribution from heavy-quark loops can
significantly alter the conclusions obtained from a tree-level analysis.
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CHAPTER 1

Introduction

Almost everything we know about the Universe and its past has been deduced from observing

the sky and measuring the light and electromagnetic radiation emitted from astrophysical and

cosmic sources. Ironically, it is precisely these observations that have led us to the conclusion

that around 80% of the matter in the Universe is non-luminous, meaning that it does not emit,

absorb or reflect light. The clear evidence for the gravitational interactions of this so-called dark

matter (DM) is confronted with an almost complete ignorance of its properties. Identifying the

nature of DM is therefore a key challenge for modern astroparticle physics.

The aim of this chapter is to present the case for DM and review its theoretical interpretation.

In Sec. 1.1 we give an overview of the evidence for DM based on astrophysical measurements and

cosmology. We then use these observations in Sec. 1.2 to infer the basic properties that any DM

particle candidate must fulfil. In Sec. 1.3 a particular emphasis will be placed on the calculation

of the DM relic density from the thermal freeze-out mechanism. Finally, we present an overview

of popular particle physics models for DM in Sec. 1.4. In Sec. 1.5 we conclude this chapter with

an outline of the remainder of this thesis.

1.1 Observational evidence for dark matter

On galactic scales the central piece of evidence for DM comes from measurements of the rotational

velocity vrot of stars and gas in the outer regions of spiral galaxies. These velocities are observed

to be so large that the gravitational attraction of the visible mass alone would be insufficient to

support stable orbits. More precisely, the rotational velocity at a distance r from the centre of a
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galaxy should obey the relation

vrot(r) =

√
GNM(r)

r
, (1.1)

where GN is Newton’s constant and M(r) is the total mass contained within radius r. In the

absence of an invisible contribution to the mass, M(r) is expected to be approximately constant

beyond the optical disk and consequently circular velocities should fall off as vrot(r) ∝ r−1/2.

Instead, rotation curves are observed to be approximately constant up to very large radii [8, 9].

This discrepancy between the observed rotation curves and the prediction based on the visible

matter alone implies that there must be an additional contribution from a halo of non-luminous

matter such that M(r) ∝ r at large distances.

There are reasons to be uncomfortable with this line of reasoning, since there is no way of

knowing whether Newtonian dynamics remain accurate at galactic scales to the required precision.

Indeed, an alternative way to explain the observation of constant rotation curves is proposed by

a theory called Modified Newtonian Dynamics (MOND) [10], which changes the acceleration of

particles in very weak gravitational fields. To distinguish the DM hypothesis from MOND, it

is therefore crucial to find additional evidence for a missing mass component in other kinds of

systems using different observational techniques [11].

In galaxy clusters, measurements of the velocity dispersion of galaxies can be used to infer the

presence of DM in a way similar to the observation of galactic rotation curves. It was indeed

in the Coma cluster where evidence for DM was inferred for the first time: by applying the

virial theorem Fritz Zwicky concluded that the mass-to-light ratio of this cluster must be two

orders of magnitude larger than that of the Sun [12]. The same conclusion can be obtained from

measuring the temperature of the hot X-ray emitting gas, which in the absence of DM would

give the dominant contribution to the total mass of a galaxy cluster.

A more impressive method to infer — and even map — the total gravitating mass of a galaxy

cluster is to use gravitational lensing, i.e. the fact that gravitational fields affect the propagation

of light. For strong gravitational fields, General Relativity predicts that the resulting deflection

of light can lead to multiple images of a single bright background object. But even for weaker

gravitational fields a statistical analysis of the distortion of the images of background objects

can be used to infer the size and shape of the gravitational potential along the line of sight. This
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Fig. 1.1. Observation of the Bullet Cluster from Ref. [13]. The coloured regions show the
distribution of gas, inferred from its X-ray emission. The green contours show the distribution of
gravitating matter, which is reconstructed using weak gravitational lensing. Clearly, the total
mass of this system is dominated by a non-luminous component that has not been affected by
the cluster collision. © AAS. Reproduced with permission.

approach can be used not only to determine the mass-to-light ratio of galaxy clusters, but also

to study whether the DM profile traces the distribution of baryonic matter.

Systems of particular interest in this context are colliding galaxy clusters. In a cluster collision,

the hot gas of both systems will dissipate energy because of electromagnetic interactions and

will therefore be held up at the point of the collision. Provided DM is collisionless, on the other

hand, DM halos can pass straight through one another and will consequently be separated from

the gas. This expectation indeed agrees with observations. The most famous example is the

‘Bullet Cluster’ (1E0657-558) [13] where gravitational lensing can be used to demonstrate a clear

mismatch between the distribution of luminous and gravitating matter (see Fig. 1.1).

Finally, DM plays a crucial role in our understanding of how the first structures formed in the

early Universe. In the absence of DM, structure could only have begun to form after recombination,

when the photon pressure was no longer large enough to prevent baryons from forming overdense

regions. The amount and age of the observed large-scale structure in the Universe, however,

implies that matter must have begun to collapse into structures much earlier. This observation

can only be explained if the dominant part of non-relativistic matter is DM, which does not

interact with photons, so that perturbations can already begin to grow before recombination.

Once the Universe becomes matter dominated, baryons can then fall into the potential wells
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created by DM and rapidly form structures that match the DM perturbations. Indeed, numerical

N -body simulations of the growth of DM structure agree well with observations [14].

A precise confirmation of these processes can be obtained from the Cosmic Microwave Back-

ground (CMB), which contains an anisotropy due to the acoustic oscillations of the baryon-photon

plasma in the early Universe. Measuring the temperature distribution of the CMB therefore

enables us to determine the total contribution of DM and baryons to the energy density of the

Universe, called Ωχ and Ωb, respectively. In the framework of the standard concordance model

of cosmology, the most recent measurements of the Planck satellite have been used to infer [15]

Ωχ ≈ 0.265 , Ωb ≈ 0.0487 , (1.2)

implying that although non-relativistic matter accounts for almost a third of the energy density

of the Universe, only about 15% of this matter is baryonic. This spectacular observation can be

confirmed independently by comparing the predictions from Big Bang nucleosynthesis (BBN)

with the observed abundances of elements [16]. We are led to the conclusion that the largest

part of the matter density of the Universe is in a form of matter that is different from all the

matter we know.

1.2 Dark matter properties

All of the evidence for DM presented above results exclusively from its gravitational interactions.

Nevertheless, given the success of particle physics in describing the early Universe, it is well

motivated to assume that DM is composed of elementary particles. Astrophysical and cosmological

observations then provide a number of constraints that any viable candidate for the DM particle

must satisfy. The most obvious constraint is that DM must be electrically neutral and stable on

cosmological time scales, i.e. it must have a lifetime large compared to the age of the Universe.

In addition, we can derive several more non-trivial requirements for the DM particles.

First of all, we know that most of the DM must be non-baryonic [17], because the baryon

fraction of the Universe determined from BBN and the CMB is far too small to account for the

observed DM relic density. Moreover, gravitational microlensing of Milky Way satellites allows

to directly constrain the amount of DM in baryonic dark objects such as brown dwarfs or gas
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giants, collectively referred to as massive compact halo objects (MACHOs). These searches show

that the number of MACHOs in the Milky Way is too small to account for the missing mass

inferred from the Galactic rotation curve [18]. Similarly, one can directly constrain the amount

of diffuse baryons from observations of the Lyman alpha forest of the intergalactic medium [19].

Furthermore, it is possible to constrain the DM self-interaction cross section by measuring

the central density [20, 21] and ellipticity [22] of DM halos, or by studying colliding galaxy

clusters such as the Bullet Cluster [23, 24]. To be consistent with observations, the rate of

momentum transfer due to self-interactions should not significantly exceed the expansion rate of

the Universe. In terms of the self-interaction cross section, however, the resulting constraints are

rather weak, requiring typically σself/mχ . 10−24 cm2 GeV−1. In other words, while very strong

self-interactions are excluded, DM particles do by no means have to be completely collisionless.

Finally, observations require cold DM (CDM), i.e. that DM particles should be non-relativistic

at matter-radiation equality. The reason is that relativistic DM particles tend to wash out density

perturbations at scales below the free-streaming length of about 0.1 Mpc (1 keV/mχ). If the

free-streaming length is large compared to galactic scales, the resulting suppression of small-scale

structures would be in tension with the observed amount of structure. These considerations

typically rule out DM particles with mχ . 1 keV. In particular, we conclude that ordinary

neutrinos, which are constrained to have masses mν . 1 eV, cannot be the dominant component

of DM. Consequently, the Standard Model (SM) of particle physics does not contain a viable

candidate for the DM particle. In other words, the evidence for DM presented in this chapter is

at the same time evidence for Beyond the Standard Model (BSM) physics.

1.3 Thermal production of dark matter

A further fundamental requirement for any DM candidate is that it is produced in the early

Universe with the correct abundance to account for the observed relic density Ωχ = 0.265. In

this section, we present the standard approach of calculating the DM relic density from thermal

freeze-out, following Refs. [25–27]. Some alternative ways to obtain the observed relic abundance

will be discussed in Sec. 1.4.

A general assumption for many models of DM is that DM particles were in thermal equilibrium
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in the early Universe, i.e. that they interacted frequently with SM particles in the plasma. In such

a setup the production of DM particles from SM particles is efficient as long as the temperature

T is above the DM mass mχ. Moreover, DM production is in equilibrium with the annihilation

of DM into SM particles, with a rate given by Γprod = Γann = 〈σann v〉neq, where σann is the

total annihilation cross section of DM, v is the relative velocity of the annihilating particles and

the brackets denote a thermal average. The equilibrium number density neq for gχ degrees of

freedom is given by

neq = gχ

(
mχ T

2π

)3/2
exp(−mχ/T ) . (1.3)

As long as DM remains in thermal equilibrium, its density per comoving volume therefore

decreases exponentially as the Universe expands and cools down to temperatures below the DM

mass.

To describe the evolution of the Universe, one introduces the scale factor a(t) and defines the

Hubble parameter H(t) = ȧ(t)/a(t). The Friedman equation then determines the time evolution

of H in terms of the mass-energy density ρ:

H2 = 8π
3M2

P
ρ , (1.4)

where MP ≡ (GN)−1/2 = 1.22× 1019 GeV is the Planck mass and we assume that the Universe is

flat. During radiation domination

ρ = π2

30 g∗(T )T 4 (1.5)

and therefore H = 1.66√g∗ T 2/MP, where g∗ is the effective number of relativistic degrees of

freedom.

Once the temperature of the plasma drops below the DM mass, the number density of DM

particles becomes Boltzmann suppressed. As a consequence, DM annihilations become rapidly

less frequent, until the annihilation rate drops below the Hubble expansion rate, Γann . H. At

this point, the processes which keep DM in thermal equilibrium become inoperative and the

number of DM particles per comoving volume becomes constant. This thermal decoupling is

referred to as freeze-out.

Assuming that DM is its own anti-particle (as is the case in many of the models that we
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will discuss below), the number density n after freeze-out can be obtained from the Boltzmann

equation
dn
dt = −3H n− 〈σannv〉

(
n2 − n2

eq

)
. (1.6)

Introducing the entropy density

s = 2π2

45 gs∗(T )T 3 , (1.7)

with gs∗ being the effective degrees of freedom for the entropy density, we can rewrite Eq. (1.6) in

terms of Y ≡ n/s and x ≡ mχ/T to obtain

dY
dx = −

√
πg∗
45

MPmχ

x2 〈σannv〉
(
Y 2 − Y 2

eq

)
. (1.8)

From this equation, the freeze-out temperature Tfo can be found numerically. In terms of xfo the

present DM abundance Y0 is approximately given by [26]

Y0 =
√

45
πg∗

1
mχMP

xfo
〈σannv〉

. (1.9)

Instead of Y0 it is common to quote the DM relic density Ωχ ≡ ρχ/ρc, where ρχ = mχ Y s and

ρc = 3H2M2
P/(8π) is the critical density. Substituting the present values of H, s and T (called

H0, s0 and T0), one finds approximately

Ωχ h
2 = 1.07× 109 GeV−1

MP

xfo√
g∗〈σannv〉

, (1.10)

where h = H0/100 km s−1 ≈ 0.67 [15]. The freeze-out temperature depends only weakly on the

details of the model and is typically 20 . xfo . 30. The corresponding number of relativistic

degrees of freedom is 80 . g∗ . 90.1 Substituting these values, one finds the approximate

expression

Ωχ h
2 = 3× 10−27 cm3 s−1

〈σannv〉
. (1.11)

The cross section 〈σannv〉 ≈ 3× 10−26 cm3 s−1 required to match the observed DM relic density

Ωχ h
2 = 0.1199± 0.0027 [15] is often referred to as the thermal cross section.

To calculate 〈σannv〉, we can use the partial wave expansion σv = a + bv2 + O(v4), giving

〈σv〉 ' a + 6b/xfo. To good approximation Eq. (1.8) can then be integrated analytically, to

1This approximation assumes that freeze-out occurs between the electroweak phase transition and the QCD
phase transition and should therefore be valid for DM masses between a few GeV and a few TeV.
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give [25]

Ωχ h
2 ' 1.07× 109

GeV
xfo

MPl
√
g∗
(
a+ 3b

xfo

) . (1.12)

The calculations above still hold if DM particles are distinct from their anti-particles, provided

there is no asymmetry between the two. In this case, ρχ = 2mχ Y s, so for the same annihilation

cross section the final relic abundance is larger by a factor of 2.

1.4 Candidates for dark matter

As discussed in Sec. 1.2, the SM does not contain a suitable candidate for the DM particle.

While it is not difficult in principle to extend the SM so that it contains an additional particle

with the required properties, it is desirable that such an extension also address other open

problems in particle physics. In fact, the SM, while being extremely successful experimentally,

has various shortcomings from the theoretical perspective. In particular, it contains a number

of free parameters, which cannot be explained or predicted within the model. Well-motivated

extensions of the SM therefore often aim to account for the smallness of certain parameters

compared to others by introducing additional symmetries or dynamical mechanisms. Remarkably,

it turns out that many models developed for these reasons automatically contain a suitable DM

candidate. Here we review some of the most popular proposals.

1.4.1 WIMPs

Of all hypothetical DM candidates, none have been studied in more detail than weakly interacting

massive particles (WIMPs). This interest is based on the remarkable observation that for a

particle with weak interactions (characterised by Fermi’s constant GF ≈ 1.166× 10−5 GeV−2) the

DM annihilation cross section is parametrically given by 〈σannv〉 ∼ G2
Fm

2
χ/(4π), which yields

the thermal cross section for mχ ∼ 10 GeV [28]. The simplest example for such a particle, a

Dirac neutrino with mass of a few GeV, has been excluded by direct detection experiments (see

Sec. 2.1). Nevertheless, the term WIMP has been generalised to refer to any kind of stable

particle with a mass close to the electroweak scale, i.e. 10GeV . mχ . 1TeV, and an interaction

strength comparable to the SM weak interactions.

New stable particles at the electroweak scale are in fact a generic feature of extensions of the
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SM that aim to address the so-called hierarchy problem, i.e. the large separation between the

electroweak scale and the Planck scale. In order to protect the former against large contributions

from radiative corrections, one typically needs to introduce new states below the TeV scale. The

lightest such state can be stable — for example due to a discrete symmetry that forbids all

possible decay channels — and would then be a perfect WIMP candidate. The most well-known

example is weak scale supersymmetry (SUSY) with conserved R-parity, where the lightest SUSY

particle in many models is either the neutralino or the sneutrino (see Refs. [29, 30] and Sec. 2.3).

Another possibility is the first Kaluza-Klein excitation of the SM hypercharge gauge boson in

models of universal extra dimensions [31].

While the term WIMP has been used for a wide range of different models, all these models

have in common that the relic abundance is determined from thermal freeze-out. In practice,

however, the calculation of Ωχ is often more involved than outlined in Sec. 1.3, for example due

to the presence of thresholds or resonances, or because additional unstable particles with mass

close to mχ can lead to co-annihilations [32]. Note also, that a particle does not necessarily have

to be a WIMP in order to obtain the required abundance from the freeze-out mechanism. In

fact, an annihilation cross section close to the thermal cross section can be obtained for a wide

range of masses and couplings [33].

1.4.2 Asymmetric dark matter

Although the idea of thermal freeze-out is an attractive framework to explain the observed

abundance of matter, it actually fails to predict the relic density of baryons ΩB. The reason is

that baryons ought to stay in thermal equilibrium until T . mN/50, at which point ΩB . 10−10,

i.e. 9 orders of magnitude below the observed value ΩB ∼ 0.05. To explain this discrepancy,

as well as the apparent absence of anti-baryons in the Universe, one must invoke an initial

asymmetry

ηB ≡
nB − nB̄

nγ
. (1.13)

Such an asymmetry can only be generated by out-of-equilibrium processes violating C and

CP [34]. It has been subsequently recognised that these conditions necessitate BSM physics,

since the SM has insufficient CP violation and cannot accommodate the necessary departure



10 Introduction

from thermal equilibrium.

The idea of asymmetric DM (ADM) is based on the observation that ΩB and Ωχ are similar

in magnitude, a coincidence that cannot be explained if DM is a thermal relic. If, on the other

hand, the DM particle is a new electroweak-scale particle that shares in the generation of the

baryon asymmetry, there is a natural link between the respective abundances [35–39]. Provided

that the DM particles stay in thermal equilibrium sufficiently long, almost all anti-particles will

annihilate away and their number density is exponentially suppressed. Consequently, the DM

number density nχ is entirely determined by the asymmetry ηχ, and we obtain the relation

Ωχ
ΩB

= mχ ηχ
mN ηB

, (1.14)

where mN is the nucleon mass.

Assuming comparable asymmetries, the observed cosmological abundance is therefore realised

for mχ ∼ 5 GeV, providing an attractive framework for relatively light DM particles. Models for

ADM often invoke new strong dynamics, such as technicolour [35, 40], where the conservation

of technibaryon number explains the stability of the DM particle. Nevertheless, candidates for

ADM can also arise in SUSY models [39].

1.4.3 SuperWIMPs and FIMPs

SuperWIMPs are particles that have only ‘super weak’ interactions and are produced non-

thermally by the decay of a heavier state. If this heavier state can decay only to the superWIMP,

it will naturally have a very long lifetime due to the smallness of the couplings. Consequently,

this particle can act as a WIMP in the early Universe and obtain its relic density from thermal

freeze-out. The relic density of the superWIMP is then given by

ΩSWIMP = mSWIMP
mWIMP

ΩWIMP . (1.15)

The freeze-out mechanism can therefore still be exploited to account for the observed relic density,

but the resulting DM particles would be almost impossible to detect [41].

The most common example for a superWIMP is the gravitino, which is the supersymmetric

partner of the graviton. Note, however, that gravitinos can also be produced thermally via

non-renormalisable interactions. While these interactions are strongly suppressed today, they
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may have been efficient in the early Universe, if the reheat temperature TR after inflation was

sufficiently high [42, 43]. Particles that are produced thermally in spite of highly suppressed

interactions are often referred to as feebly interacting massive particles (FIMPs). Since these

particles never reach thermal equilibrium themselves, this generation mechanism is sometimes

referred to as freeze-in [44].

1.4.4 Axions

An important shortcoming of the SM is its failure to explain the absence of sizeable CP violation

in the strong sector (in particular the smallness of the neutron electric dipole moment). The

most attractive solution to this so-called ‘strong CP problem’ is the postulation of a new global

quasi-symmetry (called UPQ(1) after the original proponents [45, 46]), which is broken both

spontaneously and by non-perturbative effects. The breakdown of UPQ(1) leads to a new degree

of freedom, the axion field, with a classical potential that dynamically sets the CP -violating

term to zero.

It was pointed out subsequently that this solution of the strong CP problem implies the

presence of a new light state, the axion [47, 48]. In terms of the scale fa at which UPQ(1) is

broken, the axion mass is given by

ma ∼ mπ fπ/fa ∼ 0.6 eV 107 GeV
fa

, (1.16)

where mπ and fπ are the mass and decay constant of the pion, respectively. The couplings of

the axion to SM particles is similarly suppressed by the scale fa. While thermal production of

axions in the early Universe is therefore completely negligible, a sizeable relic abundance can

arise from the ‘mis-alignment mechanism’ [49–51]. This non-thermal production mechanism

guarantees that axions are produced non-relativistically, i.e. as CDM. Consequently, axions are

consistent with large-scale structure formation in spite of their very small mass. In particular,

for 10−6 eV . ma . 10−3 eV the observed relic abundance can be reproduced while avoiding

astrophysical constraints from consideration of energy loss by stars and supernovae.
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1.4.5 Sterile neutrinos

The motivation for sterile neutrinos comes from the necessity to augment the SM in order to

account for the non-zero neutrino masses that are inferred from neutrino oscillations. It would

be desirable that this new mechanism also explains the smallness of the neutrino masses mν

compared to all other fermions. The most attractive solution to this problem is the see-saw

mechanism [52, 53], which is based on the introduction of a new set of singlet Majorana fermions.

These so-called sterile neutrinos can have both a Dirac mass term mD and a Majorana mass term

mM . Diagonalisation of the neutrino mass matrix then gives mν ∼ m2
D/mM , i.e. a suppression

of the active neutrino masses if mM is sufficiently larger than mD. An attractive option is that

mD is at the keV scale, while mM is at the electroweak scale (sometimes referred to as the

νMSM [54]). The lightest sterile neutrino then has a mass of around 10 keV and can play the

role of the DM.

In the νMSM, the lightest sterile neutrino can decay into an active neutrino and a photon, but

its lifetime is sufficiently large that it appears stable on cosmological timescales and avoids direct

constraints from X-ray observations. Sterile neutrinos can be produced in the early Universe

either by mixing with the active neutrinos or from the decay of a heavier state in a similar way

as a superWIMP [55]. Interestingly, keV sterile neutrinos can be warm DM, i.e. they can have

a free-streaming length comparable to the size of dwarf spheroidal galaxies. In this case they

would suppress the formation of structure at the smallest scales and potentially explain various

discrepancies between N -body simulations of CDM and observations (see e.g. Refs. [56–58]).

1.5 Outline

Given the large number of different candidates for the DM particle presented in the previous

section and the vast range of conceivable properties, it should be clear that a comprehensive

treatment of all options is difficult. Nevertheless, the aim of this thesis is to study the experimental

signatures of DM that are relevant to large classes of DM models. Rather than exploring any

specific model in detail we will only make the basic assumption that the couplings between DM

and SM particles are sufficiently large that interactions like DM scattering and annihilation can

lead to observable signals. This assumption also ensures that DM particles were in thermal
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equilibrium in the early Universe, provided the Universe once had a temperature exceeding the

DM mass. We will not limit ourselves to WIMPs, however, but also consider the possibility that

DM carries an initial asymmetry that determines the DM relic density. The latter option is

particularly interesting, since we will often focus on the possibility that the DM particle has a

mass of about 10 GeV (see Sec. 2.1.3).

We will discuss possible ways to search for DM particles with these properties in Chapter 2.

In particular, we will point out the complementarity between the different search strategies and

review some recent experimental results. In the process, we will introduce the basic framework

and relevant notation for the remainder of this thesis. Chapter 3 then focuses on the direct

detection of DM scattering in nuclear recoil detectors, in particular on the uncertainties related

to the assumed velocity distribution of Galactic DM particles. By converting experimental

data to new variables, we can make the astrophysical unknowns explicit and thus compare

different experiments without the need to make implicit assumptions concerning the DM halo.

We will apply this method to recent experimental results to show that some of them can be

brought into mutual agreement, while others remain in tension independently of astrophysical

uncertainties. We will explore possible ways of reducing this tension by altering the properties of

DM interactions. In this context, we will propose a new approach for inferring the properties of

the DM particle, which does not require any assumptions about the structure of the DM halo.

In Chapter 4 we will discuss the experimental signatures of DM interacting with nuclei via a

vector mediator, such as the gauge boson of a new U(1). We will first discuss the case where

this new Z ′ as well as the DM particle have a mass of a few GeV and then turn to the case

where the Z ′ is significantly heavier. While the former case is most strongly constrained by

precision measurements, the latter scenario can be probed with great sensitivity at hadron

colliders. Finally, Chapter 5 explores in more detail the subtleties of DM searches at colliders,

with a particular focus on cases where loop contributions are important for a comparison of

collider searches and direct detection experiments. Of particular interest are models where the

dominant contribution to the DM production cross section arises from heavy-quark loops and

models where the direct detection cross section is spin-dependent or momentum suppressed. Our

conclusions are presented in Chapter 6 together with an outlook and perspectives for future

work.





CHAPTER 2

Detection of dark matter

The overwhelming amount of evidence for the gravitational interactions of DM and the large

variety of viable particle candidates makes the identification of DM a key challenge for modern

astroparticle physics. There are three different experimental strategies that promise to shed light

on this puzzle [30, 59, 60]. Direct detection experiments attempt to observe the interactions

of DM particles with nuclei in shielded underground detectors. Indirect detection experiments

look for the products of DM annihilations with satellites, balloons and ground based telescopes.

Finally, accelerator experiments aim to actually produce DM by colliding SM particles at high

energies. We present a discussion of these different approaches in Secs. 2.1–2.3 and introduce

the framework and notation for the remainder of this thesis. A particular focus will be on

the calculation of differential event rates in direct detection experiments. We review some

recent experimental results and emphasise the complementarity of different types of experiments.

Finally, we discuss the idea of using effective operators to compare different search strategies in

Sec. 2.4.

2.1 Direct detection

As DM particles from the DM halo of the Milky Way pass through the Earth, they can scatter off

nuclei and transfer some of their kinetic energy. Direct detection experiments aim to observe these

interactions by measuring the resulting nuclear recoil energy ER in dedicated low-background

detectors [61–63] (see Ref. [64] for a recent review). In the laboratory frame the differential event
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rate with respect to recoil energy is given by

dR
dER

= ρ

mNmχ

∞∫
vmin

vf(v + vE(t)) dσ
dER

d3v , (2.1)

where ρ is the local DM density, mχ and mN are the DM and target nucleus mass, f(v) is the

local DM velocity distribution evaluated in the Galactic rest frame, vE(t) is the velocity of the

Earth relative to the Galactic rest frame [65, 66] and v = |v|. For elastic scattering the minimum

velocity required for a DM particle to transfer the energy ER to a given nucleus N is

vmin(ER) =
√
mNER
2µ2

Nχ
, (2.2)

where µNχ = mNmχ/(mN +mχ) is the reduced mass of the DM-nucleus system.

The differential cross section dσ/dER depends on the underlying properties of the DM-

quark interaction, in particular on whether the interactions are spin-independent (SI) or spin-

dependent (SD), see e.g. Refs. [67–69]. For SI scattering, one finds

dσ
dER

= C2
T(A,Z)F 2(ER) mN σn

2µ2
nχ v

2 , (2.3)

where µnχ is the reduced DM-neutron mass and CT(A,Z) ≡ [fp/fnZ + (A− Z)] with A and

Z being the mass and charge number of the target nucleus and fn,p denoting the effective

DM coupling to neutrons and protons, respectively. Furthermore, F (ER) is the nuclear form

factor and σn is the DM-neutron scattering cross section at zero momentum transfer. The

above parameterisation of the cross section holds e.g. for DM-nucleus scattering mediated by a

heavy CP -even scalar boson or by a heavy vector mediator coupling to the vector current (see

Sec. 2.4). While the factor C2
T encodes the coherent enhancement of the DM interactions for

zero momentum transfer, the form factor F 2(ER) reflects the loss of this coherence for ER > 0

due to the finite size of the nucleus. For fp = fn one finds that the differential cross section

at zero momentum transfer is proportional to A2, because the contributions from all nucleons

interfere constructively.

For SD scattering, the corresponding expression for the differential cross section is

dσ
dER

= 4π
3(2J + 1)

[
a2

0S00(ER) + a0a1S01(ER) + a2
1S11(ER)

] mN σ
SD
n

2µ2
nχ v

2 , (2.4)

where J is the nucleus spin and Sij are nuclear form factors. The effective couplings a0 and a1
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are defined as a0 ≡ an + ap and a1 ≡ an − ap with an,p denoting the effective DM coupling to

neutrons and protons, respectively. SD interactions can arise for example from the exchange of a

heavy vector mediator coupling only to the axial current (see Sec. 2.4).

Unless otherwise stated, we adopt for the astrophysical parameters the Standard Halo

Model (SHM), i.e. a truncated Maxwell-Boltzmann (M-B) distribution for f(v) with velo-

city dispersion v0 = 220 km s−1 and escape velocity vesc = 544 km s−1 (see also Appendix A.1),

and take ρ = 0.3GeV cm−3. For SI scattering, we use the Helm form factor [70], for SD scattering

we take the form factors from Ref. [71] for xenon, from Ref. [72] for caesium and from Ref. [73]

for all other target materials.

The number of events P (E1, E2) expected in the energy range [E1, E2] is

P (E1, E2) = κ

∫
Res(E1, E2, ER) ε(ER) dR

dER
dER , (2.5)

where κ is the exposure of the detector, ε(ER) is the detector acceptance and

Res(E1, E2, ER) ≡ 1
2

[
erf
(
E2 − ER√

2∆ER

)
− erf

(
E1 − ER√

2∆ER

)]
(2.6)

is the detector response function for a detector with energy resolution ∆ER [74].

2.1.1 The velocity integral

Substituting the standard parameterisation for either SI or SD scattering into Eq. (2.1), we see

that direct detection experiments do not directly probe the local velocity distribution f(v), but

rather the velocity integral

g(vmin, t) ≡
∞∫

vmin

f(v + vE(t))
v

d3v . (2.7)

For our purposes, it will be convenient to absorb the DM mass, cross section and density into

this definition and consider the rescaled velocity integral

g̃(vmin) ≡ ρ σn
mχ

g(vmin) , (2.8)
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Fig. 2.1. The one-dimensional velocity distribution 4π v2 f(v) (left) and the rescaled velocity
integral g̃(vmin) (right) for the SHM (purple, dot-dashed) and a sharply peaked DM stream
(green, solid). In order to calculate g̃(vmin), we have assumed σn = 10−40 cm2, ρ = 0.3 GeV cm−3

and mχ = 15 GeV. The velocity of the DM stream is vs = (250, 0, 0) km s−1, giving v̂min =
|vs − vE| ≈ 330 km s−1.

which has typical values in the range
(
10−30–10−22) day−1. The differential event rate for SI

scattering can then be written in the very simple way

dR
dER

= C2
T(A,Z)F 2(ER)

2µ2
nχ

g̃(vmin) . (2.9)

At this point, it is worth developing some intuition for g̃(vmin) and elucidating its relation

to the more familiar DM velocity distribution f(v). In the left panel of Fig. 2.1, we show the

canonical M-B velocity distribution of the SHM, along with a sharply peaked function which

could arise from a stream of DM or alternatively can be thought of as a shifted M-B distribution

in the limit of small velocity dispersion. In the right panel we show the corresponding g̃(vmin).1

Since f(v) is positive everywhere, g̃(vmin) has the important property that for any velocity

distribution it is a decreasing function of vmin [75]. As the velocity dispersion decreases, g̃(vmin)

becomes more like a step function, which is the minimal form consistent with this property.

In Fig. 2.2 we examine the range of predictions for g(vmin) from a variety of reasonable models

for the Galactic halo. First of all we note that g(vmin) can change considerably even in the

context of the SHM if we vary v0 and vesc within their observational bounds (see the left panel

of Fig. 2.2). Moreover, the SHM is unlikely to be an accurate description and many alternative

models and parameterisations for the halo exist in the literature. We present an overview in

1We neglect the time dependence of g(vmin) here, which would lead to a slight smearing of the step func-
tion.
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Appendix A.1 and show the corresponding velocity integrals in the right panel of Fig. 2.2. Even

for a fixed choice of vesc and v0 there is a large spread in the predictions of the velocity integral,

especially near the cut-off.

2.1.2 Experimental signatures

We observe from Fig. 2.1 that the velocity integral decreases rapidly for increasing vmin, in

particular for velocities close to the escape velocity. The corresponding recoil energy spectrum

in a given detector will fall even faster because of the contribution of the nuclear form factor,

which reflects the loss of coherence for large momentum transfer. Furthermore, since g(vmin) = 0

for vmin > vesc + vE, there will be no events above the maximum recoil energy

Emax
R =

2µ2
Nχ

mN
(vesc + vE)2 . (2.10)

The lighter the DM particles, the smaller the possible recoil energies. In fact, for mN = 120 GeV

and mχ = 50 GeV on obtains Emax
R ∼ 130 keV, for mχ = 10 GeV only Emax

R ∼ 9 keV.

Current direct detection experiments are able to reduce known backgrounds to the point where

they are sensitive to less than 1 event per kg target material per year. Nevertheless, the expected

recoil spectrum is essentially featureless and close to the low-energy threshold of the detector
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and therefore difficult to distinguish from potential unknown backgrounds. Isolating a DM signal

and convincingly rejecting possible background contributions is therefore a great experimental

challenge.

The expected DM signal does, however, have some characteristic features that can be used to

improve experimental sensitivity and confirm the nature of an observed excess. In particular, the

event rate is expected to show an annual modulation due to the motion of the Earth around the

Sun [77, 78]. In summer, when the velocity of the Earth relative to the Sun is mostly aligned

with the velocity of the Sun relative to the DM halo, incoming DM particles will on average

have larger velocities, leading to a harder recoil spectrum compared to winter, when the velocity

of the Earth is mostly anti-aligned with the velocity of the Sun. An experiment observing

only the high-energy tail of the recoil spectrum is therefore expected to observe more events in

summer, with the peak around 2 June. We will discuss these annual modulations in more detail

in Chapter 3.

The motion of the Earth relative to the DM halo also implies that the nuclear recoils will

not have an isotropic distribution but instead point preferentially in the backward direction.

Consequently, if the direction of nuclear recoils can be observed, there should be a strong

correlation with the motion of the Earth [79]. In practice, directional detection is extremely

challenging, since a relatively low-density target is required in order to obtain observable track

lengths. Since it is very difficult to achieve a target mass with competitive sensitivity, we will

not consider directional detection further in this thesis.

2.1.3 Hints for light dark matter

The majority of direct detection experiments have focussed on DM particles with a mass of

100 GeV . mχ . 1 TeV, motivated simultaneously by the WIMP paradigm and by the existence

of a natural particle candidate in SUSY extensions of the SM (see Chapter 1). With an

impressive increase of sensitivity over the past few years, direct detection experiments such as

XENON100 [80] and LUX [81] have pushed down the bounds on the SI scattering cross section

on nuclei for such particles to the point where they significantly constrain the relevant SUSY

parameter space (see e.g. Ref. [82]).

Less attention has been paid to searching for lighter particles, not only because of fewer
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theoretical motivations, but also because the typical energy deposited in the scattering of light

DM particles is close to the detector threshold, making it very difficult to distinguish nuclear

recoils from background [83]. For these reasons, an ideal experiment to probe the low-mass region

should have target nuclei with low mass number and a low energy threshold. Unfortunately, it

is hard to reliably determine the detector response to a potential DM signal at such low recoil

energies [84, 85] and the interpretation of the data becomes very sensitive to the assumed velocity

distribution of the DM halo [86–89]. With increasing interest amongst theorists in developing

particle physics models for light DM (see Sec. 1.4), the experimental community is nevertheless

becoming more and more aware of the importance of looking in this mass region.

Indeed, over the past years several experiments have observed hints for DM particles with

mχ ∼ 10GeV. This mass region (and a cross section of σp ∼ 10−40 cm2) is favoured by an excess

of events over the expected background observed by CoGeNT [90] and CRESST-II [91], the latter

quoting a statistical significance of over 4σ. Moreover, the CDMS-II collaboration has observed

3 events in the DM search region of their silicon detectors (CDMS-Si for short), compared to a

background expectation of only 0.62 events [92]. Considering only the number of events this

signal is compatible with background at the 2σ level, but taking into account their distribution,

a background+DM interpretation of the data is preferred over the background-only hypothesis

with a probability of 99.8%. The highest likelihood is found for a DM particle with mass 8.6GeV,

but the favoured cross section is 1.9× 10−41 cm2, i.e. significantly below the value obtained from

CoGeNT and CRESST-II.

Two DM direct detection experiments, namely DAMA [93] and CoGeNT [94], have published

data with evidence for an annual modulation consistent with the expectation for a DM signal. The

combined results from DAMA/NaI and DAMA/LIBRA have a statistical significance exceeding

8σ, the annual modulation observed by CoGeNT has a significance of 2.8σ. Again, the simplest

explanation of these experiments in terms of DM is SI elastic scattering of a DM particle with

mχ ∼ 10GeV [95]. However, although favouring a similar mass range, the scattering cross section

required to explain the DAMA signal (assuming the modulation fraction predicted by the SHM)

is too large to be brought into agreement with the other experimental claims. It is therefore very

difficult to find a consistent interpretation of all these ‘anomalies’.

Moreover, an interpretation of the observed signals in terms of elastic SI scattering of DM is
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strongly disfavoured by other null results, such as CDMS-II [96], SuperCDMS [97], XENON10 [98],

XENON100 [80] and LUX [81] (see e.g. [99–104]). A more detailed discussion of these experimental

results will be provided in Chapter 3 and Appendix A.2. The main focus of our discussion

will be whether the tension between different experiments can be reduced by accounting for

experimental and astrophysical uncertainties, and if better agreement is found for different

assumptions concerning the underlying nature of DM scattering.

2.2 Indirect detection

The key idea of DM indirect detection is to study regions in space where large DM densities are

expected, such as the Galactic centre or the centre of the Sun, and search for an excess of SM

particles produced from the annihilation or decay of DM. Here we briefly review the different

kinds of indirect searches and comment on the respective challenges.

Among the most important search channels for the indirect detection of DM are γ-rays, because

they travel in straight lines and suffer from very little absorption. Moreover, if two DM particles

annihilate directly into two photons, one expects to observe a mono-energetic γ-ray line with

an energy equal to the DM mass. Since DM cannot carry electric charge, however, annihilation

into two photons can only be induced at the loop level and may therefore be undetectably

small (see e.g. Ref. [105]). Nevertheless, other processes can lead to distinctive γ-ray spectra,

such as internal bremsstrahlung [106] or diffuse γ-rays resulting from the bremsstrahlung and

Inverse Compton scattering of electrons and positrons produced in DM annihilation or decay

processes [107]. The strongest bounds on the γ-ray flux currently come from Fermi-LAT [108, 109].

Note that, since the astrophysical backgrounds at the Galactic centre are often difficult to model,

the best constraints often come from observations of Milky Way dwarf spheroidals, which are

strongly DM dominated [110].

Another interesting possibility for indirect detection is to search for an anomalous component

of antimatter in cosmic rays, in particular positrons and antiprotons, but also heavier anti-nuclei.

The two great challenges for these searches are to model the transport of charged particles

through the interstellar medium (see e.g. Ref. [111]) and to model alternative sources for cosmic

rays like nearby supernova remnants [112]. Such astrophysical foregrounds could plausibly explain
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the positron excess observed by PAMELA [113] and later confirmed by AMS-2 [114]. A way to

test the various explanations for this excess is to measure the boron-to-carbon ratio in cosmic

rays [112]. A very promising alternative is to search for light anti-nuclei, which would provide a

better discrimination between DM annihilation and astrophysical contributions [115].

While being much more difficult to detect than photons or charged particles, neutrinos

nevertheless have great potential in the search for DM. The reason is that neutrinos offer the

unique possibility to look for DM annihilation in the centre of the Sun, for example using

IceCube [116]. The Sun is expected to accumulate DM as the Solar System moves through the

Galactic halo, because DM particles can become gravitationally bound to the Sun if they scatter

with nuclei and lose some of their momentum [117]. Even if DM does not directly annihilate

into neutrinos, the annihilation into heavy quarks and charged leptons will produce an excess of

high-energy neutrinos, which can easily escape from the Sun [118]. Since no other process in the

Sun can produce neutrinos with energies of a GeV or more, observation of such an excess would

provide unambiguous evidence for DM. Note that, in contrast to most other indirect searches,

bounds on the neutrino flux from the Sun typically do not constrain the DM annihilation cross

section, but the DM scattering cross section, which determines the capture rate and therefore

the DM density inside the Sun.

For ADM, annihilation processes are usually absent and consequently most indirect searches do

not give relevant constraints. Nevertheless, since in these models DM particles would continuously

accumulate in stars, other indirect signatures are expected. For example, ADM may alter the

heat transfer in stars [119–121] or even lead to the collapse of neutron stars to black holes [122].

2.3 Collider searches

It is a remarkable fact that one of the leading experiments for DM detection is the CERN Large

Hadron Collider (LHC). Although any DM particles produced at the LHC will escape from the

detector unnoticed, we may observe large amounts of missing transverse energy (/ET ) if one or

more SM particles are produced in association with the DM particles.

This experimental signature occurs naturally in the case where the DM particle is the lightest

of a set of new particles that are odd under a new Z2 symmetry while all SM particles are even.
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Such a Z2 symmetry not only ensures the stability of the DM particle, but it also guarantees that

any other odd particle produced at a collider must ultimately decay into the DM particle together

with a number of SM particles. In contrast to the DM particle, the heavier odd particles can

in principle participate in the strong interactions, so they may be produced at hadron colliders

much more easily. The decay to the colour-neutral lightest state must then necessarily involve

strongly-interacting SM particles, which lead to easily observable jets of hadrons in combination

with large /ET from the escaping DM particles. The most common example for this setup is

SUSY with R-parity conservation, which is imposed to suppress proton decay.

If we do not want to assume the presence of new heavier states, however, the only way to

produce DM is via its direct couplings to SM particles [123], i.e. by inverting the annihilation of

DM that occurred in the early Universe (see Sec. 1.3). In this case, we only obtain an observable

signal if additional SM particles are produced via SM interactions, for example a single jet from

initial state radiation (ISR). Experimental searches for such monojet events have been performed

at the Tevatron [124] as well as at the LHC by both CMS [125] and ATLAS [126]. Unfortunately,

the SM backgrounds in these searches are large and the transverse momentum (pT) spectrum of

the signal — although slightly harder than the background — is essentially featureless.

Consequently, these search channels typically do not provide sufficient information to determine

the mass of the DM particles. Nevertheless, the resulting bounds on the production cross section

allow to directly constrain the couplings of DM particles to quarks, which also determine the DM

scattering cross section in direct detection experiments [127–129]. Similar, although typically

weaker, constraints can be obtained from other search channels, such as mono-photons [130],

mono-leptons [131], mono-Z [132, 133] or mono-Higgs [134].

LHC searches for DM are complementary to the other search strategies described above in the

sense that they are better suited to probe certain mass regions and types of DM interactions.

In particular, collider searches do not suffer from a limitation for light DM, since in the low-

mass region the monojet cross sections as well as the kinematic distributions become essentially

independent of the DM mass. On the other hand, present collider searches cease to be constraining

for DM particles with mass of a TeV or more simply because of kinematics, making direct and

indirect searches the most promising detection strategies for these parameter regions. We will

now discuss the comparison of different search strategies in more detail.
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2.4 Comparing different searches using effective operators

Clearly, all of the search strategies described above are related in the sense that they probe the

interactions between DM and SM particles, in particular quarks. Therefore, if a DM signal is

observed in one experiment, it should be possible to predict the corresponding experimental

signatures arising from related processes in other searches. Conversely, there should be a way of

comparing the bounds on the DM interaction strength obtained from different search strategies.

A naive comparison, however, is complicated by the fact that different search strategies probe

DM interactions at very different energies. In direct searches, DM particles are non-relativistic

with v/c ∼ 10−3 and the typical momentum transfer is of the order of a few MeV. DM particles

in the Galactic centre are equally non-relativistic, but the energy available in DM annihilation is

twice the rest mass of the DM particle. At the LHC, on the other hand, DM particles may be

produced with energies of up to several TeV.

This separation of scales implies that different experiments probe different aspects of the DM

interactions [135]. For example, direct detection experiments cannot probe the coupling of DM

particles to individual quarks, but only the coherent interaction with the entire nucleus, which can

be enhanced or suppressed depending on how the contributions from individual quarks interfere.

Moreover, interactions between DM particles and quarks can be such that they vanish in the

non-relativistic limit, i.e. they are suppressed by powers of either v, q/mχ or q/mN (so-called

momentum suppression). Similarly, annihilation cross sections may be suppressed by powers of

the DM velocity if the conservation of angular momentum requires the annihilating DM particles

to have non-zero angular momentum (i.e. if s-wave annihilation is forbidden).

To discuss a particularly striking example, let us consider the case where the DM particle is a

Dirac fermion χ and the interactions between DM and quarks are mediated by a vector boson R.

The most general (renormalisable) way to couple R to DM and quarks is then given by (see also

Sec. 4.1)

L =
∑
q

q̄
(
gV
q γ

µ + gA
q γ

µγ5
)
q Rµ + χ̄

(
gV
χ γ

µ + gA
χ γ

µγ5
)
χRµ . (2.11)

At the LHC it is impossible to distinguish whether R couples predominantly to the axial current

(gV ≈ 0) or to the vector current (gA ≈ 0), since monojet cross sections are almost identical for



26 Detection of dark matter

the two cases. In direct detection, however, the two cases give vastly different predictions. If R

couples to the vector current, one obtains SI scattering with

σSIN = f2
N

µ2
Nχ

πM4
R

, (2.12)

where N stands for either p or n, MR is the mass of the vector mediator and the effective

DM-nucleon couplings are given by fp = gV
χ (2gV

u + gV
d ) and fn = gV

χ (gV
u + 2gV

d ).

If, on the other hand, R couples to the axial current, one obtains SD interactions with

σSD
N = a2

N

3µ2
Nχ

πM4
R

. (2.13)

The effective SD couplings are given by

ap,n = gA
χ

∑
q=u,d,s

∆q(p,n) gA
q , (2.14)

where the coefficients ∆q(N) encode the contributions of the light quarks to the nucleon spin,

which can be extracted from polarised deep inelastic scattering. The Particle Data Group (PDG)

values are [136]

∆u(p) = ∆d(n) = 0.84± 0.03 ,

∆d(p) = ∆u(n) = −0.43± 0.03 ,

∆s(p) = ∆s(n) = −0.09± 0.03 . (2.15)

For SD interactions there is no coherent enhancement proportional to the square of the nucleus

mass and typically not all isotopes of a given target element carry spin. Consequently, expected

event rates are suppressed by several orders of magnitude compared to SI interactions with

similar couplings.

Finally, if R has mixed couplings (e.g. gA
q = 0 and gV

χ = 0), DM scattering is momentum

suppressed and vanishes in the non-relativistic limit. Because of this suppression such interactions

are very difficult to probe in direct detection experiments (see Sec. 5.2). Similarly, DM annihilation

into quarks is unsuppressed for vector couplings, helicity suppressed (i.e. proportional to m2
q) for

axial couplings, and velocity suppressed (i.e. p-wave) for mixed couplings [137].

This simple example clearly demonstrates that we can only compare different searches once we

have specified the Lorentz structure of the assumed DM-quark interactions. However, it is not



2.4 Comparing different searches using effective operators 27

necessary to also specify the details of the mediator of the interaction. Indeed, for sufficiently

large mediator mass, we can integrate out the heavy mediator to obtain effective four-fermion

interactions. The three examples discussed above then correspond to the vector operator

OV ≡
1
Λ2

V
(χ̄γµχ) (q̄γµq) , (2.16)

the axialvector operator

OAX ≡
1

Λ2
AX

(χ̄γµγ5χ) (q̄γµγ5q) (2.17)

and the so-called anapole operator [138, 139]

OAN ≡
1

Λ2
AN

(χ̄γµγ5χ) (q̄γµq) . (2.18)

The suppression scale Λ is associated with the scale of new physics. In terms of the ultraviolet

(UV) completion discussed above it is given by Λ2 = M2
R/(gq gχ).

If the mediator is sufficiently heavy (mR � 1 TeV), the effective interactions introduced above

remain valid even at LHC energies. Both monojet cross sections and direct detection cross

sections will then be proportional to Λ−4, so that we can directly translate bounds from one kind

of search to the other. For the vector operator and light DM, for example, current LHC searches

find Λ & 900 GeV, corresponding to σN . 10−39 cm2 [125, 126]. This bound implies that LHC

searches are superior to direct detection experiments for mχ . 5 GeV and inferior for heavier

DM. A similar bound is found for the axialvector operator, which is stronger than the typical

constraints on SD interactions from direct detection experiments over the entire DM mass range.

Nevertheless, there are reasons to be cautious when applying effective operators to LHC

searches for DM. In particular, the UV completion should have perturbative couplings, meaning

that gq,χ .
√

4π. Consequently, for Λ = 900 GeV, the mediator mass has to be smaller than

about 3.2 TeV.1 Once the centre-of-mass energy
√
s becomes comparable to this scale, we can no

longer rely on an effective operator description, because the mediator may be produced on-shell

(see e.g. Refs. [140, 141]).

Similarly, effective operators run into problems with unitarity [142]. In order for all predicted

probabilities to be smaller than unity, we must impose partial wave unitarity, which corresponds

1In fact, one could even argue that for a perturbative UV completion the width of the mediator, Γ , should
satisfy Γ/MR < 1. This requirement would imply gq . 1 and therefore MR . 1.7 TeV.
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to the inequality ∣∣∣∣∣∣ 1
32π

1∫
−1

d(cos θ) PJ(cos θ)M(s, cos θ)

∣∣∣∣∣∣ < 1 (2.19)

for all J , where PJ is the Jth Legendre polynomial andM is the amplitude under consideration.

For the vector operator and the process qq̄ → χχ̄ we find M = 2
√

3 s/Λ2, so the inequality

above is violated for
√
s > 1.9TeV, implying that new physics must appear below this scale. The

conclusion is that effective operators may not be valid at the LHC, because the mediator may be

accessible for LHC energies. We will discuss this case in more detail in Chapter 4.

Nevertheless, bearing the caveats discussed above in mind, effective operators can be very

valuable tools to study the qualitative behaviour of different types of DM interactions and to

develop an intuition for the relevant effects in monojet searches and direct detection experiments.

For these reasons, there is an extensive literature on the interpretation of DM searches using

effective operators [60, 68, 125–130, 137–139, 143–156]. We now define all effective operators

that will be studied in this thesis for future reference.

In analogy to the operators obtained by integrating out a vector mediator, we can study

interactions that arise from the exchange of a heavy scalar or pseudoscalar state Φ that connects

SM quarks to DM. If this mediator is a SM singlet, it can only couple to quarks via mixing with

the Higgs. The induced quark couplings will then be proportional to the SM Yukawa couplings.

Consequently, we write the scalar and pseudoscalar operators as

OS ≡
mq

Λ3
S
q̄q χ̄χ , OP ≡

mq

Λ3
P
q̄γ5q χ̄γ5χ , (2.20)

where the scale Λ is related to the fundamental couplings by Λ3 = vM2
Φ/(gqgχ) with v = 246GeV

being the SM Higgs vacuum expectation value. Like the vector operator, the operator OS leads

to SI scattering in direct detection experiments and one obtains an expression analogous to

Eq. (2.12). The calculation of the effective DM-nucleon couplings fp and fn is however more

involved, since there is a non-vanishing contribution from sea quarks and gluons. The details

of this calculation are presented in Appendix A.5. For the pseudoscalar operator, on the other

hand, direct detection signals are both SD and momentum suppressed and hence unobservably

small.
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Further operators of interest are the tensor and pseudotensor operator [68]

OT ≡
1
Λ2

T
(χ̄σµνχ) (q̄σµν q) , OPT ≡

i

Λ2
PT

(χ̄σµνγ5χ) (q̄σµν q) . (2.21)

These operators do not typically arise from integrating out a heavy mediator. They can, however,

be obtained (together with other effective four-fermion operators) from Fierz rearrangements

of effective operators like (χ̄q)(q̄χ) and (χ̄γ5q)(q̄γ5χ), which in turn result from integrating out

a t-channel mediator (such as the heavy coloured particles present in models of top-flavoured

minimal flavour violating DM [157]). The operator OT induces SD interactions with

σSDN = a2
N

12
π

µ2
Nχ

Λ4
T
, (2.22)

which differs from the corresponding formula for the axialvector operator by a factor of 4 [144].

For OPT on the other hand the direct detection cross section is momentum-suppressed (see

Sec. 5.2).

Finally, SI scattering can also result from the magnetic and electric dipole-type interactions [146,

147] encoded in

OM ≡
1
Λ2

M
CM (χ̄σµνχ)Fµν , OE ≡= i

Λ2
E
CE (χ̄σµνγ5χ)Fµν , (2.23)

with Fµν denoting the regular electromagnetic field strength tensor. The coefficient CM (CE)

carries the dimension of a mass and can be interpreted as the magnetic (electric) dipole moment

of the DM particle in units of Λ2. As we shall see in Sec. 5.2.1, the resulting cross sections for

DM-nucleon scattering via photon exchange are enhanced for small momentum transfer, due to

the propagator from the massless mediator, i.e. the photon.

Our discussion above has been limited to the case where the DM particle is a Dirac fermion.

For the case of Majorana fermions the vector, tensor and pseudotensor operators vanish. The

qualitative behaviour of the remaining operators is unchanged, but predicted cross sections will

change by numerical factors of order unity. Wherever applicable, we will quote the final results

for both cases. Operators analogous to the ones above can also be written down for a scalar

DM particle φ. In the following, only two cases will be of interest, namely the scalar and vector
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operators

OφS ≡
mq

Λ2
S
q̄q φ∗φ , OφV ≡

i

Λ2
V

(φ∗ ∂µφ− φ∂µφ∗) (q̄γµq) , (2.24)

both of which lead to SI scattering.

To conclude this section, we point out that for our discussion here we have only considered

tree-level processes. This treatment suggests that LHC searches involving /ET provide the

strongest constraints on OT and OAX and the only constraint on the operators OPT and OAN.

As we shall see in Chapter 5, this naive expectation is however not necessarily correct, because

each of these operators induces one of the SI operators given above at the one-loop level.



CHAPTER 3

Astrophysical uncertainties & halo-independent methods

In this chapter we study the impact of the assumed DM velocity distribution f(v) on the

interpretation of results from direct detection experiments. Our poor knowledge of this quantity

strongly affects the conclusions we can draw from the data, for example whether the results of

different experiments are mutually consistent [76, 86, 88, 89, 158–164]. The standard approach of

showing bounds on the DM scattering cross section as a function of the DM mass is not suitable

for studying these uncertainties, because the exclusion bounds have to be reproduced separately

for every velocity distribution under consideration.

One might wonder if the experimental data can itself be used to infer the DM velocity

distribution. Unfortunately, this turns out to be rather difficult [165–167] because a nuclear

recoil of energy ER can originate from any DM particle which has a velocity larger than the

minimum velocity vmin(ER). Consequently, rather than probing the velocity distribution, direct

detection experiments actually measure the velocity integral g(vmin) defined in Eq. (2.7). Based

on this observation it was suggested by Fox et al. [168] that results from one experiment be

converted into vmin-space in order to predict the event rate in a second experiment without

having to make any assumptions concerning astrophysics. While this approach works well in

comparing two experiments that are sensitive to a similar range of DM velocities, it is difficult to

compare a large number of experiments or experiments that probe different regions of vmin-space.

It would therefore be preferable to have a framework in which the astrophysical unknowns are

made explicit so that one can assess their impact on the extraction of DM properties.

In Sec. 3.1 we investigate in detail the idea, also suggested in Ref. [168], of mapping all

experimental results into vmin-space. To do so, we must make an assumption on the mass of
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the DM particles, so the approach is complementary to the usual analysis of direct detection

experiments, where the astrophysical parameters are held fixed and the DM mass and cross section

are allowed to vary. Just as the usual presentation of results shows whether all experiments are

consistent for some range of DM mass and scattering cross section, our treatment will illustrate

whether it is possible to find a DM velocity distribution that can reconcile all experimental

results. We extend the existing framework to include annual modulation signals, as well as

experiments with multiple target elements.

In Sec. 3.2 we illustrate this idea by focussing on the DM mass range (6–15) GeV motivated

by claims of signals from DAMA, CoGeNT and CRESST-II (see Sec. 2.1.3), and show that

g(vmin) can indeed be chosen in such a way that a consistent description of these experiments is

possible. However, upper limits on signals from XENON10/100 and CDMS-II cannot be evaded

by appealing to astrophysical uncertainties alone. We explore this tension in more detail in

Sec. 3.3 with a focus on the results from CDMS-Si and XENON10/100. While the amount of

disagreement between these experiments is independent of astrophysical uncertainties, there are

possible ways of ameliorating the tension by altering the properties of DM interactions.

Finally, in Sec. 3.4 we propose a new approach for determining DM parameters, which does not

involve any assumptions about the structure of the DM halo. Given a DM model, our method

yields the velocity distribution which best describes a set of direct detection data as a finite sum

of streams with optimised speeds and densities. We give an explicit example in which the method

is applied to determining the ratio of proton to neutron couplings of DM from a hypothetical set

of future data.

3.1 Resolving astrophysical uncertainties

In this section we discuss how information on g̃(vmin), defined in Eqs. (2.7) and (2.8), can be

extracted from direct detection experiments.1 First we consider experiments that observe a

signal that can be interpreted in terms of DM scattering, such as CoGeNT and CRESST-II. In

this case, the measured signal can be directly translated into a measurement of g̃(vmin). Then

there are experiments that do not observe a DM signal above their expected background and

1A similar discussion is presented in the appendix of Ref. [168].
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thus give a constraint on the differential DM scattering rate, which can be converted into a

bound on g̃(vmin). Since g̃(vmin) is time-dependent, the resulting limit strictly speaking applies

to the time average of g̃(vmin) over the period of data taking. The modulating part of g̃(vmin) —

and how to constrain it — will be discussed separately.

3.1.1 Measuring the velocity integral

It is straightforward to infer the value of g̃(vmin) at vmin(ER) from a nuclear recoil detector such

as CoGeNT that consists of a single element and measures the differential event rate dR/dER at

the recoil energy ER. Inverting Eq. (2.9), we find

g̃(vmin) = 2µ2
nχ

1
C2

T(A,Z)F 2(ER)
dR
dER

. (3.1)

For a realistic treatment we must take the detector resolution ∆E and the detector acceptance

ε(ER) into account. If the detector measures the differential event rate in the interval [E1, E2],

we can infer the value of g̃(vmin) for vmin in the interval [vmin(E1 −∆E), vmin(E2 +∆E)]:

g̃(vmin) = 2µ2
nχ

1
C2

T(A,Z)F 2(ÊR) ε(ÊR)
dR
dER

. (3.2)

The recoil energy ÊR, where the nuclear form factor and the acceptance are evaluated, should

lie in the range E1 < ÊR < E2. We assume that the energy bin is sufficiently small that these

quantities do not vary significantly with ÊR over the bin range.1 For rapidly varying form factors

or efficiencies, a somewhat different approach is needed [169].

Additional care is required for experiments like DAMA and CRESST-II, which have targets

with more than one element. The target of the DAMA detector comprises sodium and iodine

nuclei, the latter being much heavier than the former (mI ≈ 5.5mNa). If we focus on light DM,

however, the possible momentum transfer is so small that the kinetic energy of the recoiling

iodine nucleus is always below the energy threshold of the detector. Consequently, it is a good

approximation to assume that all contributions to dR/dER come from scattering on sodium, and

use Eq. (3.2) taking the mass fraction of sodium in the detector into account (see Sec. 3.1.3).

For CRESST-II, which contains oxygen, calcium and tungsten, the situation is more com-

1This assumption is good for CoGeNT and light DM. However it is not necessarily a good approximation
for CRESST-II where ε(ER) can change rapidly within a single bin if it contains the onset of a new detector
module. This problem can however be avoided by an appropriate binning of the data (see Appendix A.2).
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plicated. Since tungsten is much heavier than oxygen and calcium, we can again ignore it.

Oxygen and calcium however are relatively close in mass, so extracting information on g̃(vmin)

becomes more complicated. We discuss these difficulties — and how to deal with them — in

Appendix A.4.

3.1.2 Constraining the velocity integral

Next we consider experiments that do not measure the differential event rate but rather place a

bound on dR/dER over some energy range. This is usually converted into a constraint on σn for

a given DM mass, assuming a Galactic halo model such as the SHM. Instead we wish to use the

bound on dR/dER to constrain g̃(vmin) for different values of vmin.1

Since f(v) ≥ 0, the following inequality holds for any value of vmin:

g̃(vmin) ≥ g̃(v̂min)Θ(v̂min − vmin) , (3.3)

where v̂min is an arbitrary constant and Θ(x) is the Heaviside step function. Of all velocity

integrals that have g̃(v̂min) = g̃0, the one defined by g̃(vmin) = g̃0Θ(v̂min − vmin) thus predicts

the smallest number of events in any given experiment. Of course g(vmin) ∝ Θ(v̂min − vmin) is

not a realistic model for the Galactic halo, but it nevertheless is a valid velocity integral that

can be used to predict the event rate for a given experiment. A more realistic halo must satisfy

Eq. (3.3) and will therefore necessarily predict a larger event rate. Consequently, if we can

reject the case when g̃(vmin) = g̃0Θ(v̂min − vmin), we can also reject any other halo model with

g̃(v̂min) = g̃0.

If an experiment places an upper bound on dR/dER, we can hence bound g̃(vmin) by fixing

vmin = v̂min and finding the smallest value of g̃(v̂min) such that the predicted event rate for

g̃(vmin) = g̃(v̂min)Θ(v̂min − vmin) exceeds the allowed value at a given confidence level (CL).

Repeating this procedure for all v̂min, we obtain a continuous upper bound on g̃(v̂min), as

illustrated in Fig. 3.1. If the exclusion curve thus obtained touches (or crosses) the g̃(vmin) curve

for a particular f(v), this model will be excluded by the experimental data at the same CL used

to construct the exclusion bound. In other words, if the bound on g̃(vmin) lies below (some of)

1Again, difficulties arising for experiments with more than one type of target nuclei are discussed in Ap-
pendix A.4.



3.1 Resolving astrophysical uncertainties 35

300 400 500 600 700 800
10-29

10-28

10-27

10-26

10-25

vmin @km s-1D

g� Hv m
in

L@
da

y-
1 D

Fig. 3.1. An illustration of the method used to constrain the rescaled velocity integral. The blue
dashed lines correspond to velocity integrals of the form g̃0Θ(v̂min − vmin) for different choices
of g̃0 and v̂min. The predicted event rate in the XENON100 detector for each of these velocity
integrals can be rejected by the data from XENON100. The green line shows the resulting bound
on g̃(vmin).

the values of g̃(vmin) implied by the measured recoil spectra from CoGeNT or CRESST-II, it

will not be possible to find a halo model that consistently describes all measurements and evades

all experimental bounds.

Note that the converse of this statement is not necessarily true: even if g̃(vmin) stays below a

given exclusion curve for all values of vmin, this does not imply that the model is not excluded

by the corresponding experiment. By construction, we have only ensured that the predicted

differential event rate in each individual energy bin is below the respective experimental limit.

However, if the measured velocity integral remains close to the exclusion limit over a wide range

of vmin, the predicted total event rate, i.e. the integral of the differential event rate over several

bins, may be excluded at the chosen CL.

3.1.3 Measuring the modulation amplitude

We now turn to the annual modulation of DM signals due to the motion of the Earth relative to

the Galactic rest frame. We wish to include these annual modulations into our analysis of the

velocity integral to determine whether the modulation signals observed by DAMA and CoGeNT

are compatible with the null results from other experiments.1 We first discuss how constraints

1It is already known [102] that the two modulation signals are (marginally) compatible with each other,
independent of astrophysics.
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can be obtained without making any assumptions about the modulation fraction and then discuss

how the modulation fraction can be constrained in order to obtain stronger experimental bounds.

The time dependence of g(vmin, t) can be approximately parameterised as

g(vmin, t) = g(vmin)
[
1 +A(vmin) · cos

(
2π t− t0(vmin)

1 yr

)]
, (3.4)

where g(vmin) is the time average of g(vmin, t). Note that, as emphasised in Ref. [76], both the

modulation fraction A and the peak date t0 can in general depend on vmin. For future use we

define the modulation amplitude ∆g(vmin) as

∆g(vmin) ≡ 1
2 [g(vmin, t0(vmin))− g(vmin, t0(vmin) + 0.5 yr)] = A(vmin) g(vmin) (3.5)

and introduce the rescaled modulation amplitude ∆g̃(vmin) = ∆g(vmin)σn ρ/mχ in analogy to

Eq. (2.8).

First we need to constrain the function t0(vmin). CoGeNT and DAMA probe largely the

same region of vmin-space, so it would be inconsistent to assume different phases for the two

experiments. It was shown [102] that the phase measured by DAMA and by CoGeNT are

consistent at the 90% CL for sufficiently low DM mass. We will therefore take t0(vmin) = 146

days which is the best-fit value from DAMA. Varying t0 within the 1σ region allowed by DAMA

changes the best-fit value for the CoGeNT modulation amplitude by about 20%, which does not

significantly affect any of our conclusions.

In complete analogy to Sec. 3.1.1 we can infer measurements of ∆g̃(vmin) from the modulation

of the event rate, ∆dR/dER, seen by DAMA and CoGeNT

∆g̃(vmin) = 2µ2
nχ

1
C2

T(A,Z)F 2(ER) ∆
dR
dER

. (3.6)

As the modulation fraction must satisfyA(vmin) ≤ 1, we see from Eq. (3.5) that∆g̃(vmin) ≤ g̃(vmin).

We can therefore trivially obtain a bound on ∆g̃(vmin) from the constraints for g̃(vmin) obtained

using the method introduced above. We can then compare the values for ∆g̃(vmin) obtained

from DAMA and CoGeNT with the bounds on ∆g̃(vmin) obtained from null results.



3.1 Resolving astrophysical uncertainties 37

0.0

0.2

0.4

0.6

0.8

1.0

150 350 550 750

A
(v

m
in
)

vmin [km s−1]

Isothermal Halo
Tsallis Model

Double-power law
Triaxial Halo
NFW Model

Via Lactea II Halo

0.0

0.2

0.4

0.6

0.8

1.0

150 350 550 750

A
(v

m
in
)

vmin [km s−1]

CoGeNT anisotropic
CoGeNT isotropic

Adopted bound

Fig. 3.2. Left: The modulation fraction A(vmin) for different descriptions of the Galactic DM
halo. Right: The constraint for the modulation fraction extracted from the CoGeNT data (boxes)
together with the bound that we will adopt (red solid line). The shaded region in both panels
corresponds to the modulation fractions observed in the GHALOs simulation [76].

3.1.4 Constraining the modulation fraction

We will now discuss what can reasonably be assumed about the modulation fraction A(vmin)

given known models of the Galactic halo, and how it can be constrained once the velocity integral

is measured. The predicted modulation fractions for various halo models are shown in the left

panel of Fig. 3.2. We observe that A(vmin) is almost everywhere significantly smaller than 100%.

Indeed, a modulation fraction of 100% would imply that no signal is observed at t0 + 0.5 yr,

which is possible only if vmin > vesc + vE(t0 + 0.5 yr).

It therefore appears sensible to analyse experimental data not only using the trivial requirement

A(vmin) ≤ 1, but to impose a stronger constraint on the modulation fraction. If we require that

the modulation fraction satisfies A(vmin) ≤ Amax(vmin), any direct detection experiment that

constrains g̃(vmin) ≤ g̃max(vmin) will also constrain ∆g̃(vmin) according to

∆g̃(vmin) = A(vmin) g̃(vmin) ≤ Amax(vmin) g̃max(vmin) . (3.7)

The empirical bound that we will adopt is shown as the red line in the right panel of Fig. 3.2.

Note that this is a weak bound in the sense that we allow modulation fractions much larger than

the value expected in any reasonable description of the DM halo.
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Of course it would be desirable to actually use measurements of g̃(vmin) to place a bound on

A(vmin) rather than having to make an ad-hoc assumption. Comparing the left panel of Fig. 3.2

to the right panel of Fig. 2.2, we observe that there is indeed a direct correspondence between

the velocity integral and the modulation fraction: the steeper the slope of the velocity integral,

the larger the modulation fraction. This result is intuitively clear: If g(vmin) falls steeply with

increasing vmin we can also expect large changes between the rates observed in summer and

winter. This observation can in fact be used to constrain the modulation fraction once the

velocity integral is known. The basic idea is that we can place an upper bound on the maximum

value, g̃(vmin, summer), and a lower bound on the minimum value, g̃(vmin, winter), using only

the time average g̃(vmin).

How such bounds can be obtained is sketched in Fig. 3.3. We observe that

g̃(vmin, summer) < g̃(vmin − u) , g̃(vmin, winter) > g̃(vmin + u) , (3.8)

where u = 29.8 km s−1 is the velocity of the Earth around the Sun. It then follows that

∆g̃(vmin) = g̃(vmin, summer)− g̃(vmin, winter) < g̃(vmin − u)− g̃(vmin + u) (3.9)

and therefore that the modulation fraction is bounded by

A(vmin) = g̃(vmin, summer)− g̃(vmin, winter)
g̃(vmin, summer) + g̃(vmin, winter)

<
g̃(vmin − u)− g̃(vmin + u)

2 g̃(vmin) , (3.10)

where we have used g̃(vmin, summer) + g̃(vmin, winter) ≈ 2 g̃(vmin).

An even stronger constraint can be obtained under the assumption of an isotropic DM halo.

In this case, only the seasonal change in the radial component of u, ur, matters, because the

halo will look the same for any value of uφ and uθ. We can then replace u in the equation above

by ur = u cos γ = 15.0 km s−1, where γ is the inclination angle between the Galactic and Ecliptic

plane.

As an example, we use the CoGeNT data to derive a bound on the modulation fraction

for a given DM mass. For this purpose, we need to bin the measured events in such a way

that the resulting bin width in vmin-space is equal to u (see Appendix A.2). The resulting

constraints for mχ = 9 GeV are shown in the right panel of Fig. 3.2. We observe that assuming

an isotropic halo, these constraints are actually quite severe, limiting the modulation fraction to
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Fig. 3.3. A graphical representation of the velocity integral. The red shaded region is the
region of velocity space that is being integrated over, while the white regions are excluded by
the requirement v > vmin. Note that the relative magnitude of the different velocities are not
drawn to scale.

20% at vmin = 400 km s−1, which in fact coincides with our adopted bound for A(vmin). For an

anisotropic halo, modulation fractions of up to 40% may be possible in the same range.

This observation is also relevant for a self-consistent DM interpretation of the CoGeNT

experiment. To bring the modulation observed by CoGeNT into agreement with the measured

event rate, a relatively large modulation fraction is required [99]. If a significant part of the

signal observed in CoGeNT were to be rejected as surface events, as suggested in Refs. [90, 170],

the required modulation fractions would be even larger. In this case, the constraint on the

modulation fraction derived above can be used to conclude that a consistent description is only

possible if the DM halo is highly anisotropic.

3.2 Halo-independent methods: Results

We now apply the methods developed in the previous section to analyse recent results from

direct detection experiments (see Appendix A.2 for details). First of all, we use the event rates

reported by CoGeNT and CRESST-II to measure g̃(vmin) and the null results from XENON,

CDMS-II, SIMPLE and the CRESST-II commissioning run to constrain it. Our results are shown

in Fig. 3.4 for various values of the DM mass mχ. As we increase mχ the exclusion curves as

well as the CoGeNT data points move according to vmin ∝ 1/mχ (which holds when mχ � mN).
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Fig. 3.4. Measurements and exclusion bounds of the velocity integral g̃(vmin) for different DM
masses mχ. Values of g̃(vmin) above the lines are excluded with at least 90% confidence. For
mχ = 6, 9 and 12 GeV the data points for CRESST-II have been obtained using two different
methods, as described in Appendix A.4. It is not possible to find any model for the DM halo
that provides a consistent description of all experiments.

The CRESST-II data points and exclusion curves scale differently because in the lower panels

mχ becomes comparable to the mass of oxygen nuclei.

For all DM masses considered, one can see the obvious conflict between the measurements

by CoGeNT and CRESST-II and the exclusion bounds from other experiments. In each case,

most of the measured points lie above one or more of the exclusion curves. We conclude that a

consistent description of all experiments is not possible for any model of the DM halo if the DM

particles undergo elastic SI scattering with fn/fp = 1. There is no functional form for g̃(vmin)

that would allow a DM interpretation of the CoGeNT or CRESST-II data that is consistent with

all other experiments.
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3.2.1 A consistent description of CoGeNT and CRESST-II

Even though we cannot find a halo model that provides a consistent description of all experiments,

it can be seen in Fig. 3.4 that CRESST-II and CoGeNT probe g̃(vmin) at different ranges of vmin.

Therefore it should be possible to choose g̃(vmin) such that we obtain a consistent description

for these two experiments. This choice must be different from the SHM for which the best-fit

DM regions of CRESST-II and CoGeNT do not overlap, because CRESST-II favours larger DM

masses than CoGeNT [91, 104].

To understand the origin of this discrepancy, we show the SHM prediction for g̃(vmin) in

Fig. 3.5 together with the measurements from CoGeNT and CRESST-II for mχ = 9 GeV. We

observe that the SHM prediction of the rescaled velocity integral below 500 km s−1 is slightly too

flat to fit the CoGeNT data, which therefore favours smaller DM masses. Moreover there is an

additional constraint (which is not apparent in Fig. 3.5) from the fact that CoGeNT does not

observe a signal at higher energies. This constraint additionally disfavours the case mχ ≥ 9 GeV

if the rescaled velocity integral is too flat. Consequently, if we want to push the CoGeNT region

to larger DM mass, we need to make the rescaled velocity integral steeper below 500 km s−1.

As a result our new velocity integral will predict fewer events from oxygen in the lowest bins

of CRESST-II because g̃(vmin) becomes smaller around 500 km s−1. To compensate, we must

increase the contribution from calcium in the lowest bins, corresponding to larger values of
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Fig. 3.6. 90% confidence regions inferred from the absolute rate observed by CoGeNT and
1σ regions from CRESST-II as well as the 90% exclusion limits from other experiments for the
SHM (left) and the Modified Halo Model (right). By construction, the Modified Halo Model
leads to an overlap of the CoGeNT and CRESST-II regions.

g̃(vmin) around 600 km s−1 (see also the discussion in Appendix A.4).

We can easily achieve this goal by adding two SHM-like contributions, one with relatively

small velocity dispersion and low cut-off which dominates at low values of vmin, and a second one

with much larger v0 and vesc. Of course, the resulting velocity distribution is not a self-consistent

model of the DM halo; it is only a convenient parameterisation to illustrate how the velocity

integral can be changed to simultaneously accommodate several direct detection experiments.

Nevertheless, it is not inconceivable that such a velocity integral can be realised in models with a

strong anisotropy, where the tangential component with low velocity dispersion dominates at low

energies and the radial component with high dispersion dominates at high energies. We shall

refer to this new velocity integral as the Modified Halo Model (or MHM for short).

We show the corresponding best-fit regions and exclusion limits in the mχ-σn plane in

Fig. 3.6. As desired, the CoGeNT and CRESST-II1 regions now overlap at mχ ∼ 9 GeV. The

common parameter region is, nevertheless, clearly excluded by XENON10/100 and CDMS-II, an

1Note that for CRESST-II we show the 1σ best-fit region using the publicly available data as stated in
Appendix A.2. The region we obtain corresponds roughly to the 2σ region published by the CRESST collabora-
tion [91].



3.2 Halo-independent methods: Results 43

ì

ì
ì

ì
ì

ì

ì

ì

æ

æ

æ

200 300 400 500 600 700 800
10-27

10-26

10-25

10-24

vmin @km s-1D

D
g� Hv m

in
L@

da
y-

1 D

mΧ = 9 GeV

CRESST-II
SIMPLE
CDMS-Si
CDMS-Ge HlowL
XENON10-S2
XENON100
DAMA
CoGeNT

ì

ì
ì

ì
ì

ì

ì

ì

æ

æ

æ

200 300 400 500 600 700 800
10-27

10-26

10-25

10-24

vmin @km s-1D

D
g� Hv m

in
L@

da
y-

1 D

mΧ = 12 GeV

ì

ì
ì

ì
ì

ì

ì

ì

æ

æ

æ

200 300 400 500 600 700 800
10-27

10-26

10-25

10-24

vmin @km s-1D

D
g� Hv m

in
L@

da
y-

1 D

mΧ = 9 GeV

ì

ì
ì

ì
ì

ì

ì

ì

æ

æ

æ

200 300 400 500 600 700 800
10-27

10-26

10-25

10-24

vmin @km s-1D

D
g� Hv m

in
L@

da
y-

1 D
mΧ = 12 GeV

Fig. 3.7. Measured values of ∆g̃(vmin) from DAMA and CoGeNT compared to the exclusion
limits from other experiments. For the upper panels, no assumptions on the modulation fraction
have been made, for the lower panels, we assume that the modulation fraction is bounded by the
red line in the right panel of Fig. 3.2. Even for such weak assumptions on the modulation fraction
there is significant tension between the different experiments, most notably it is impossible to
find a DM velocity distribution that describes the observed modulations and evades the bound
from XENON100.

observation which we have already made from Fig. 3.4.

3.2.2 A consistent description of DAMA, CoGeNT and CRESST-II

Now we include annual modulations in our halo-independent analysis. The values of ∆g̃(vmin)

inferred from CoGeNT and DAMA are shown in Fig. 3.7 together with constraints from experi-

mental null results. For the upper panels, no assumptions on the modulation fraction have been

made, for the lower panels, we assume that the modulation fraction is bounded by the red line
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in the right panel of Fig. 3.2. We observe that even in the most conservative case the bounds

from the XENON10 and XENON100 experiments remain strong. Other experiments, however,

do not significantly constrain ∆g̃(vmin). Once we include our (rather weak) assumption on the

modulation fraction, the bounds on ∆g̃(vmin) become significantly more constraining. Decreasing

the mass of the DM particle can reduce this tension considerably because at high values of vmin

larger modulation fractions are allowed so the exclusion limits become less stringent. On the

other hand, for small masses it becomes increasingly difficult to explain the modulation observed

by CoGeNT above 2keVee because these recoil energies correspond to very large velocities, where

we expect g̃(vmin) — and therefore ∆g̃(vmin) — to be small.

As can be seen from Fig. 3.7, DAMA and CoGeNT probe the same region of vmin-space, so it

is not possible to improve their agreement by changing the halo model as we did for CoGeNT

and CRESST-II. Fortunately, such a modification is not necessary because DAMA and CoGeNT

favour roughly the same modulation amplitude. The more interesting question is whether this

modulation amplitude is compatible with the average value of g̃(vmin) inferred from CRESST-II

and the CoGeNT unmodulated event rate.

For a cross section of σn ≈ 10−40 cm2, as favoured by the combination of CoGeNT and

CRESST-II (see Fig. 3.6) the SHM prediction of the modulation amplitude is too small to

account for the modulation seen by DAMA and CoGeNT [69, 99–102]. This is obvious from

plotting the SHM prediction for ∆g̃(vmin) together with the measured modulation amplitudes

(see Fig. 3.8). However, we have already noted in Sec. 3.2.1 that the velocity integral must

be modified if we want to simultaneously explain CoGeNT and CRESST-II. Now we consider

whether we can bring these experiments into agreement with DAMA (and therefore also with

the CoGeNT modulation) by additionally allowing a larger modulation fraction. Of course, for

a given velocity integral the modulation fraction must satisfy Eq. (3.10), so we cannot choose

arbitrarily large values.

To explore one possible option, we assume that g(vmin) is given by the Modified Halo Model

(see Fig. 3.5) and that the modulation fraction saturates the bound Amax(vmin) shown in Fig. 3.2.

By the reasoning in Sec. 3.1.4 these two assumptions are compatible only if the DM halo is highly

anisotropic. As can be seen in Fig. 3.8, we then obtain a sufficiently large modulation amplitude

to describe the DAMA and CoGeNT modulations. Consequently, the four best-fit regions in the
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Fig. 3.8. Measurements of the modulation amplitude ∆g̃(vmin) compared to the predictions of
the SHM and the Modified Halo Model. In both cases, we have assumed σn = 10−40 cm2 and
ρ = 0.3 GeV cm−3. While in the SHM the predicted modulation amplitude for these parameters
is too small to explain the observed modulations, we can get a sufficiently large modulation
amplitude in the Modified Halo Model.

traditional σn-mχ parameter plane are now in good agreement (Fig. 3.9). However these are

of course excluded by XENON10/100 and CDMS-II. Because of this obvious contradiction we

wish to emphasise again that we do not consider present data sufficient to actually determine

the velocity integral or the modulation amplitude. We use it only to illustrate how our method

can be applied to bring future, more reliable, data sets into agreement.

For the entire analysis above, we have assumed standard interactions between DM and nuclei,

i.e. we have performed all calculations only for elastic SI scattering with equal couplings to

protons and neutrons. Nevertheless, there are many well-motivated models where DM couples

to quarks in a more complicated way (some possible options will be discussed in Chapters 4

and 5). It is therefore an interesting question to study whether the halo-independent tension

between the different experiments can be alleviated by modifying the assumed particle physics

properties of DM [103, 104, 171–173]. We will now study this question in the context of the

tension between experimental results from XENON10/100 and CDMS-Si.

3.3 CDMS versus XENON

In this section, we will discuss the tension between the exclusion bounds obtained from XENON10

and XENON100 and the best-fit parameter region from CDMS-Si. We provide the details of our

analysis in Appendix A.2 and present our results in Fig. 3.10. For the analysis of CDMS-Si we
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Fig. 3.9. 90% confidence regions from CoGeNT (inferred separately from the modulation and
the absolute rate) and DAMA as well as the 1σ region from CRESST-II for the SHM (left) and
the Modified Halo Model (right). The 90% exclusion limits from other experiments are also
shown. By construction, the Modified Halo Model brings the four best-fit regions into good
agreement.

use the extended maximum likelihood method [174], which is described in detail in Appendix A.3.

The contours we show correspond to 68% and 90% CL — these agree well with the ones shown

by the CDMS-II collaboration [92]. In excellent agreement with their analysis, we find that the

best-fit point is mχ = 8.55 GeV with σn = 2 × 10−41 cm2. Assuming that the log-likelihood

follows a χ2-distribution, we determine the p-value of the background-only hypothesis to be

0.38%.1

For XENON10, we consider the S2-only analysis [98]. The sensitivity of this analysis depends

strongly on the behaviour of the ionisation yield Qy at low energies [84, 85]. To calculate

the central bound (thick dashed blue line) in Fig. 3.10 we adopt the original choice of Qy

made in Ref. [98], assuming that Qy vanishes for ER < 1.4 keV, and use the ‘maximum gap

method’ [175] to set a bound. We have checked that the ‘pmax method’ [175] and the ‘binned

Poisson method’ [74, 176] give comparable bounds. In every case, we find bounds that are

significantly weaker than the published one [98] — even when we assume exactly the same values

1As argued in Appendix A.3, the assumption of a χ2-distribution for the log-likelihood function is not
necessarily good. Indeed, running a Monte Carlo simulation of background events in CDMS-Si, we find a
somewhat smaller p-value of 0.12%.
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however, is significantly weaker than the published one [98]. We consider three choices of the
ionisation yield Qy to illustrate the corresponding variation of the extracted bound.

of Qy — but in good agreement with other independent analyses [85, 100].1

We also consider values of Qy that have recently been determined by the XENON100 collab-

oration by comparing calibration data to Monte Carlo simulations [177]. We adopt the range

of values given in fig. 3 of Ref. [177], which we have reproduced together with the choice of

Qy from [98] in Fig. 3.10 (inset). Most of the sensitivity for detecting low-mass DM relies on

recoil energies below 3 keV, where Qy cannot be reliably extracted from the data. We therefore

extrapolate Qy in two different ways that bracket the range of possibilities: the pessimistic choice

(light dashed blue line in Fig. 3.10) assumes that Qy follows the lower bound of the range given

in Ref. [177] and then drops to zero at 2 keV. The optimistic choice (light dotted blue line)

assumes that Qy follows the upper bound of the range, continuing to rise up to 8 e− keV−1 below

3 keV, and then drops to 0 at 1 keV. Even for the optimistic case we do not extrapolate Qy

below 1 keV, i.e. we neglect upward fluctuations. Changing Qy also changes the energy scale

shown in fig. 2 of Ref. [98], so we convert the energies of the observed events appropriately when

1The XENON10 collaboration has subsequently issued an erratum acknowledging the error. The corrected
limit is in good agreement with our result.
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setting the bound. It is clear from Fig. 3.10 that although the XENON10 S2-only analysis does

constrain the CDMS-Si parameter region, an unambiguous bound cannot be placed at low mass

because of the uncertainty in the value of the ionisation yield Qy at low energy.

Henceforth we present only one XENON10 bound, adopting the original choice of Qy from

Ref. [98]. As this bound is significantly weaker than the published one [98], CDMS-Si and

XENON10/100 are actually consistent at about 90% CL. Nevertheless there is some tension

between these results. We will now explore possible ways to ameliorate this tension.

3.3.1 Astrophysical uncertainties

First of all, we perform the analysis introduced in Sec. 3.1 in order to map XENON10/100 and

CDMS-Si into vmin-space. The resulting bounds from XENON10 and XENON100 are shown

as the blue (dashed) and purple (dot-dashed) lines in Fig. 3.11, respectively. For CDMS-Si the

differential event rate is found most easily by binning both the observed events and the background

expectation.1 We subtract the background using the Feldman-Cousins technique [179], which

allows us to calculate an upper and lower bound on the signal event rate at 1σ CL. The orange

data points in Fig. 3.11 show the result of this procedure for mχ = 9 GeV (upper panels) and

mχ = 7 GeV and mχ = 11 GeV (lower-left and lower-right panel, respectively). Binning the

data introduces a certain arbitrariness so we check the robustness of our results by considering

two choices of the bin width: 2 keV and 3 keV for the upper-left and the upper-right panel of

Fig. 3.11, respectively. The inferred values for g̃(vmin) agree well, implying that our conclusions

are largely independent of the choice of bin width. In all cases, the highest bin is in significant

tension with the XENON100 bound except for the case mχ = 7 GeV, corresponding to the least

constrained mass in Fig. 3.10.

We observe from Fig. 3.11 that all three experiments probe essentially the same region of

vmin-space. This suggests that it will not be possible to significantly improve the consistency of

CDMS-Si and XENON10/100 by varying astrophysical parameters. To explicitly confirm this

expectation, we consider two variations in astrophysical parameters. In the left panel of Fig. 3.12

we keep the usual M-B velocity distribution but choose v0 = 250 km s−1 and vesc = 650 km s−1,

1An alternative method that uses the extended maximum likelihood method to avoid the need for binning
has been proposed recently in Ref. [178].
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Fig. 3.11. The CDMS-Si and XENON10/100 results translated into vmin-space. The upper
panels show the case mχ = 9 GeV for two choices of binning, the lower panels show alternative
assumptions for the DM mass. For all the cases considered, the region of vmin-space probed by
CDMS-Si is constrained by XENON10/100.

which are at the upper end of the allowed range for these parameters (see Appendix A.1).

Although we see that the CDMS-Si region and XENON10/100 bounds move towards lower

masses by about 1 GeV, the tension between the experiments remains essentially unchanged.

As a more radical modification we consider the effect of a debris flow (described in detail in

Appendix A.1). We see again that although the preferred mass changes, the overall agreement

does not.

3.3.2 Non-standard momentum and velocity dependence

We have seen that CDMS-Si and XENON10/100 probe the same region of vmin-space so the

tension between these experiments is independent of astrophysical uncertainties. We now
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Fig. 3.12. The CDMS-Si region and XENON10/100 bounds calculated for different astrophysical
parameters. The left panel shows the SHM, but with higher values of v0 and vesc. The right panel
shows the effect of a debris flow which contributes 20% to the local DM density. Although the
signal region and bounds move by a few GeV, the consistency of CDMS-Si and XENON10/100
is unchanged in either case, since all experiments probe the same region of vmin-space.

consider the effect of modifying the particle physics in such a way that we introduce an additional

momentum- or velocity-dependence of the cross section which can change the recoil energy

spectrum.

Non-trivial momentum dependence can be studied using the simple parameterisation [180]

dσ
dER

=
( dσ

dER

)
0

(
q2

q2
ref

)n
, (3.11)

where (dσ/dER)0 is the differential cross section introduced in Eq. (2.3), q =
√

2mNER is the

momentum transfer and qref is an arbitrary normalisation. The crucial observation is that the

momentum transfer q is related to the minimum velocity vmin by

vmin = q

2µNχ
. (3.12)

For DM with mχ � mN, however, the reduced mass is approximately given by µNχ ≈ mχ

independent of mN. Consequently, experiments that probe the same range of vmin will also probe

the same range of q (see also Ref. [181]). We cannot therefore significantly shift the parameter

region favoured by CDMS-Si relative to the XENON10/100 bounds by introducing a momentum

dependence. This is illustrated in the left panel of Fig. 3.13 for qref = 10MeV and n = −2, which
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Fig. 3.13. Two examples for modifications of the momentum- and velocity-dependence of the
differential cross section. Left: Long-range interactions, which enhance the cross section for small
momentum transfer. Right: Anapole interactions, which suppress the cross section for small
momentum transfer and small velocity (note the change of vertical scale).

corresponds to long-range interactions arising from a (nearly) massless mediator. As expected,

no significant improvement is found.

In many realistic models, the cross section depends not only on the momentum transfer

but also on the velocity v of the incoming DM particle. This is the case e.g. for dipole

interactions [146, 147, 182] and anapole interactions [138, 139]. Since we know already that both

CDMS-Si and XENON10/100 probe the same part of the DM velocity distribution, such an

additional velocity dependence is not expected to change the picture significantly. We confirm

this expectation for the case of anapole interactions, which lead to a differential scattering cross

section [139]
dσ

dER
= mN σref

2µ2
Nχ

Z2

v2

[
v2 + q2

2m2
N

(
1− m2

N
2µ2

)]
F (ER)2 . (3.13)

Our results are shown in the right panel of Fig. 3.13. As expected, because of the momentum- and

velocity-suppression, the CDMS-Si favoured parameter region and the XENON10/100 bounds

are moved to much larger cross sections, but their relative position remains largely unchanged.

Nevertheless, we do observe a slight shift of the CDMS-Si region compared to the XENON10/100

bounds, which can be traced back to the fact that for anapole interactions DM particles couple

to protons only, leading to a factor of Z2 rather than A2 in the cross section. We explore the
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effect of different DM couplings to protons and neutrons in more detail in the next section.

3.3.3 Reducing the tension between CDMS-Si and XENON10/100

CDMS-Si and XENON10/100 cannot be brought into better agreement by modifying either the

DM velocity distribution or the velocity/momentum dependence of the cross section. To weaken

the constraints from XENON10/100, we need to reduce the enhancement of the cross section

for heavy nuclei. In this section, we discuss two possible modifications of DM interactions that

can increase the sensitivity of light targets compared to heavy ones: inelastic DM [183] and

isospin-dependent couplings [184–187].

In the former case, DM-nucleon interactions require the transition between two DM states of

slightly different mass. The minimum velocity required for a recoil of energy ER is then

vmin =
∣∣∣∣δ + mNER

µ

∣∣∣∣ 1√
2ER mN

, (3.14)

where δ is the mass splitting between incoming and outgoing DM state. If the incoming DM

particle is lighter (δ > 0), scattering will be enhanced for heavy targets. However, if the heavier

state is also populated initially, scattering with δ < 0 will favour lighter targets. This second case,

referred to as exothermic DM [188, 189], thus seems a promising option to fully reconcile CDMS-

Si and XENON10/100. We present our results in Fig. 3.14. As expected, the XENON10/100

bounds are strengthened for inelastic DM and weakened for exothermic DM. In fact, a relatively

small splitting of δ = −50 keV is sufficient to bring CDMS-Si and XENON10/100 into good

agreement.

Another possible route is based on the observation that the strength of the XENON10/100

bounds results partially from the factor A2 in the cross section, following from the assumption

that DM couples equally to protons and neutrons. If DM couples to protons only (as for anapole

interactions), the cross section will be proportional to Z2, thus reducing the enhancement of

neutron-rich targets. If the coupling to neutrons is slightly negative, fn/fp < 0, targets with a

large fraction of neutrons will suffer even more strongly, because of the destructive interference

between protons and neutrons. Such negative values of fn/fp (often referred to as isospin-

dependent or isospin-violating couplings) can arise e.g. in theories with a light Z ′ that mixes

with the SM gauge bosons (see Chapter 4).
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Fig. 3.14. Two examples for inelastic scattering. Left: Inelastic interactions with δ > 0, which
suppress the scattering rate on light target nuclei. Right: Exothermic interactions with δ < 0,
which enhance the scattering rate on light target nuclei. Note the change of scales in these
figures.

To study this possibility, we scan simultaneously over fn/fp, σn and mχ and calculate the

likelihood for each set of parameters, using the maximum likelihood method described in Ref. [100].

In particular, we assume that the likelihood for XENON10 and XENON100 for a given set of

parameters are given by LXe = exp(−Nmax), where Nmax is the number of events expected in

the largest interval determined using the maximum gap method. Since we use an unbinned

maximum likelihood method for CDMS-Si, the minimum value of the likelihood depends on an

arbitrary normalisation constant and does not carry physical significance. We cannot therefore

perform a goodness-of-fit analysis, but we can infer confidence regions for parameter estimation.

The results of this analysis are shown in the left panel of Fig. 3.15. As expected [184–187], the

best fit is found for fn/fp ≈ −0.7, which strongly suppresses the bounds from XENON10/100, as

shown in the right panel of Fig. 3.15. Note that in this particular case, the strongest constraints

on CDMS-Si arise from SIMPLE and the CRESST-II commissioning run (not shown). For

fn/fp = −0.7 these experiments require σn . 10−39 cm2 at mχ ≈ 10 GeV [1] and therefore do

not significantly constrain the CDMS-Si preferred region.

In spite of the preference for fn/fp ≈ −0.7, we observe that much larger values of fn/fp are

still allowed by the data. At 1σ CL, we find −0.76 < fn/fp < −0.58 and the 2σ confidence

region extends up to fn/fp ≈ −0.2. To illustrate this point, we show the cases fn/fp = −0.5



54 Astrophysical uncertainties and halo-independent methods

5 10 15 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

mΧ @GeVD

f n
�f p

�
68%

90%

95%

��

5 10 20
10-41

10-40

10-39

10-38

10-37

10-36

mΧ @GeVD

Σ
n

@cm
2 D

XENON100

XENON10

CDMS-Si

fn� fp = -0.7

Fig. 3.15. Isospin-dependent couplings. Left: Combined parameter estimation of fn/fp, mχ and
σn (not shown) using a global maximum likelihood method (see text for details). As expected,
there is a preference for fn/fp = −0.7 but the 2σ confidence region extends up to fn/fp ≈ −0.2.
Right: CDMS-Si allowed parameter region and XENON10/100 bounds for fn/fp = −0.7. In
both plots, the best-fit point is indicated with a white cross.

and fn/fp = −0.2 in Fig. 3.16. We conclude that little fine-tuning is required to suppress the

bounds from XENON10/100, in particular we do not require a precise cancellation of proton and

neutron contributions and are therefore not sensitive to potential differences in the form factors

as discussed in Ref. [190]. We also emphasise that even though fn = fp is strongly disfavoured

compared to fn/fp = −0.7 when performing a parameter estimation, this does not imply that

such a value cannot give a good fit to the data. In fact, as we have shown above, CDMS-Si and

XENON10/100 are compatible at the 90% CL even for fn = fp.

3.4 A new halo-independent approach

In this section we address the question of how strongly astrophysical uncertainties affect the

potential to determine the DM properties from future direct detection experiments. It is known

that, since changes in the halo structure can mimic changes in the DM parameters, a single direct

detection experiment is insufficient to determine even the DM mass [191]. To make progress,

one has to find a way to combine information from different target materials and quantify the

impact of astrophysical uncertainties [64, 192, 193].

The standard approach to this problem is to parameterise the uncertainties in f(v) and scan (or
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Fig. 3.16. Alternative choices for isospin-dependent couplings. No significant fine-tuning of
fn/fp is required to weaken the XENON10/100 bounds relative to CDMS-Si. Note the change
of scales in these figures.

marginalise) over the associated parameters [163–165, 194–196]. This approach suffers from the

problem that it is unclear whether the chosen parameterisation of the halo is sufficiently general.

Moreover, it is typically necessary to perform large numbers of numerical integrations over the

DM velocity distribution, making this method numerically slow. Efficient scans then often require

a Bayesian approach with the need to motivate prior distributions for DM parameters.

We therefore propose a new method for dealing with uncertainties in the DM velocity distribu-

tion, where instead of parameterising f(v), we directly parameterise g̃(vmin), so that predicted

event rates depend on the parameters in a very simple way. In analogy to the treatment of the

DM speed distribution f(v) =
∫
f(v) dΩv in Ref. [166], we will write the velocity integral as

a sum of step functions. This approach allows us to have a large number of free parameters

and removes the need to make any assumptions about the form of f(v). Consequently, any

conclusions drawn from it will be completely robust in the face of astrophysical uncertainties.

Moreover, our method involves a frequentist rather than a Bayesian approach, so that no prior

distributions for any of the parameters need to be proposed.

3.4.1 Finding the optimum velocity integral

Our goal is to find the function g̃(vmin) that best describes a given set of data from direct

detection experiments for a proposed DM model. We want to make no assumptions on the
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Fig. 3.17. The red (dashed) line shows the SHM prediction for g̃(vmin), the purple line shows our
best-fit approximation using 10 steps. Increasing the number of steps leads to a rapid decrease
of χ2(g), which quickly converges to zero (see inset).

functional form of g̃(vmin) apart from it being monotonically decreasing [75]. We therefore

proceed as follows:

• We determine the region of vmin-space probed by the experiments under consideration

by converting recoil energies into vmin-values. We then divide this region into Ns evenly

spaced intervals of the form [vj , vj+1].

• We take the ansatz that g̃(vmin) is a monotonically decreasing sum of Ns steps, i.e. we

introduce Ns constants gj , such that g̃(vmin) = gj for vmin ∈ [vj , vj+1] (see Fig. 3.17). The

monotonicity requirement implies that 0 ≤ gj ≤ gj−1 for all j.1

• Using this ansatz and given an experiment with energy bins of the form
[
E(i), E(i+1)

]
we now predict the expected number of events, Pi(g), in each bin. Defining Ej implicitly

by vj = vmin(Ej) and using Eq. (2.5) we obtain the simple expression Pi(g) = ∑
j Cij gj ,

where

Cij ≡
C2
T(A,Z)
2µ2

nχ

κ

Ej+1∫
Ej

Res
(
E(i), E(i+1), ER

)
ε(ER)F 2(ER) dER (3.15)

are calculable constants that depend only on the experimental details and the assumed

DM properties, but are independent of astrophysics.

1Note that the overall normalisation of g̃(vmin) is unconstrained, because we allow σn to take arbitrary
values for a given mχ. For more restricted model hypotheses, we would have to include an additional constraint
on the normalisation of g̃(vmin).
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• We now define the usual χ2 test statistic

χ2(g) ≡
∑
i

(Pi(g)−Ni)2

Pi(g) , (3.16)

where Ni is the experimentally observed number of events in the ith bin.

• Now, we numerically find the step heights gj that minimise χ2(g), maintaining the require-

ment of monotonicity 0 ≤ gj ≤ gj−1. Although Ns can be rather large (see below), it is

nevertheless easily possible to find the global minimum of χ2(g). The reason is that the

allowed region of g is convex and the Hessian of χ2(g) is positive semi-definite everywhere

within. Consequently, any local minimum of χ2(g) is automatically a global minimum.

• Finally, we take Ns → ∞. In practice, we take Ns so large that further increases yield

negligible improvements to χ2. In typical examples of interest, we find that Ns & 30 is

sufficient for this purpose. For such values of Ns the minimisation takes roughly a few

seconds on a standard desktop computer.

Effectively, we decompose the DM velocity distribution into a large number of streams with

different densities and speeds. Since any continuous function may be approximated arbitrarily

well by a sum of step functions, this method effectively finds the best possible form for g̃(vmin)

for a given set of data and model parameters.

Interestingly, we have found that, even in the limit that Ns → ∞, the number of non-zero

steps in the optimised halos (i.e. the number of steps with gj 6= gj+1) always remains smaller

than the number of bins of data. This follows from the fact that, if we divide an optimised

g̃(vmin) into ‘flat’ sections with differing heights hi, then these must all satisfy ∂χ2/∂hi = 0. It

may be checked that these equations can only all be satisfied if either the number of flat sections

is smaller than the number of bins, or if the predictions Pi can be made to perfectly match the

observations Ni. The latter possibility, however, is extremely unlikely for realistic cases including

Poisson fluctuations. As a result, taking the limit Ns →∞ does not actually lead to more and

more steps being added to the optimised halos, but rather allows for finer adjustments of the

endpoints of the flat sections. Taking large Ns thus turns out to be a useful trick for determining

the optimal endpoints for the flat sections in a numerically efficient way.
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Fig. 3.18. DM parameter estimation using mock data for different non-standard DM velocity
distributions. For the left plot it is assumed that 10% of the local DM density is in a DM stream,
for the right plot it is assumed that 25% of the local DM density is in a dark disk. The crosses
(shaded regions) correspond to the best-fit values (90% confidence regions) for three different
methods (see text). The best-fit values for the DM parameters obtained from our new method
(purple cross) perfectly coincide with the true values (white star). The insets show the best-fit
halo that we obtain at the global minimum of χ2(g) (solid purple line), compared to the assumed
halo used to generate the data (red dashed line).

We can now repeat our procedure for different sets of DM parameters and thereby find the

minimum of χ2(g), called χ̂2, for every point in parameter space. The best-fit values for the DM

parameters are then determined by finding the global minimum of χ̂2, which we call χ̂2
min. We

then define the test statistic ∆χ2 ≡ χ̂2−χ̂2
min, which we have confirmed to follow a χ2-distribution

with the degrees of freedom given by the number of fitted DM parameters. Consequently, ∆χ2

can be used to define confidence intervals as usual.

To illustrate this method, we have generated mock data for a set of future experiments (taken

from Ref. [192], see below). Two particular examples are shown in Fig. 3.18, where we use

non-standard DM velocity distributions (see Appendix A.1) to generate a total of about 700

events across three different targets. For the left plot, we assume a 10% contribution from a DM

stream with a velocity of 600 km s−1 in the laboratory frame and take mχ = 50 GeV, fp/fn = 1

and σn = 8×10−46 cm2. For the right plot we consider the case that the DM velocity distribution

contains a 25% contribution from a dark disk with velocity dispersion and lag relative to the

baryonic disk both equal to 50 km s−1 [197], and have assumed mχ = 800 GeV, fp/fn = 1 and

σn = 7× 10−45 cm2. In both cases we neglect Poisson fluctuations.
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We observe that in both scenarios (as well as in all other cases that we have considered) the

best-fit values for the DM parameters obtained from our method (purple cross) perfectly coincide

with the true values (white star) and the best-fit g̃(vmin) matches perfectly the assumed velocity

integral (see insets). For comparison, we also show the best-fit values and 90% confidence regions

obtained from two alternative methods, namely simply assuming the SHM with fixed parameters

and optimising the fit over σn only (red) or assuming the SHM, but optimising the fits over

both σn and the velocity dispersion σdis (green). It may be seen that both of these methods

incorrectly exclude the true DM parameters at 90% CL.1

3.4.2 Example: hypercharged dark matter

We will now focus on a concrete model to show how our method is used in practice. If DM

carries SM hypercharge (and is in an appropriate representation of SU(2)L so that it has an

electrically neutral component), then it will generically interact with nuclei via tree-level Z-boson

exchange, which results in a coupling ratio of fp/fn ≈ −0.04. As discussed in Ref. [199], current

direct detection constraints on such DM particles require masses greater than about 108 GeV,

and future experiments will be able to see a signal for mχ up to
(
1010–1011)GeV. Such heavy

DM particles most simply obtain an appropriate relic abundance by having masses close to

the reheating temperature of the Universe. Since the coupling strength of hypercharged DM

is fixed, detection of a signal would immediately reveal the DM mass through the scattering

rate, and this would then give otherwise unobtainable information about the thermal history of

the Universe. In this scenario it would be of crucial importance to confirm that DM-nucleon

scattering is mediated by Z-bosons. We will therefore use hypercharged DM as an example to

show how our method may be used to determine fp/fn in a halo-independent way.

The most likely target materials for ton-scale future direct detection experiments are xenon,

germanium and argon [192]. Since their neutron to proton number ratios differ by less than 15%,

determining fp/fn by looking at the relative rates of a signal on these elements will not be easy.

Moreover, planned experiments using these elements will probe different regions of vmin-space,

not only because the energy thresholds may differ, but also because for mχ � mN heavier target
1It should be noted that other methods exist in the literature, such as the very general parameterisation

of f(v) discussed in Refs. [195, 196, 198], that are well suited for reconstructing the DM parameters for non-
standard velocity distributions. We leave a comparison of these methods with our approach to future work.
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Fig. 3.19. Hypothetical measurements of the velocity integral g̃(vmin) from future experiments
together with the best-fit velocity integral and the SHM velocity integral. For the left panel, the
shown data points correspond to the prediction for hypercharged DM with mχ = 7× 107 GeV,
but are interpreted under the incorrect assumption that fp = fn. In the right panel, we show
the same setup but additionally include a set of possible Poisson fluctuations.

nuclei are sensitive to smaller velocities.

Consequently, astrophysical uncertainties severely affect the determination of fp/fn. If, for

example, future data shows an excess of events in Xe-based experiments compared to Ar-based

experiments, this observation could either be due to preferential coupling of DM to neutrons, as in

the hypercharged scenario, or due to the DM velocity distribution decreasing more rapidly than in

the SHM. Nevertheless, as long as there is non-negligible overlap between the regions of vmin-space

probed by different experiments, it will be possible to determine fp/fn in a halo-independent

way, given sufficient exposure.

This situation is illustrated in the left panel of Fig. 3.19. The data points correspond to

hypothetical measurements from future experiments employing Xe (blue), Ge (green) and

Ar (purple) targets, assuming fermionic DM with hypercharge 1/2 and mχ = 7 × 107 GeV,

compatible with the constraint from LUX, as well as a DM velocity distribution given by the

SHM. For this plot, we have chosen a bin width of 10 keV and taken all experimental details

from Ref. [192]. In particular, we take energy-independent effective exposures of 2, 2.16, and

6.4 ton yr and low energy thresholds of 10, 10 and 30 keV at Xe, Ge and Ar, respectively.

For Xe we only include the lowest 6 bins, because its rapidly decreasing form factor cuts off

the event rate at higher energies. We have checked that changing the number of bins or the bin

size has negligible impact on our results. We map the experimental data onto g̃(vmin)-values bin
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by bin using Eq. (3.2) and test the incorrect model hypothesis that fp/fn = 1.

Because of this incorrect hypothesis the data points from Xe predict values of g̃(vmin) that are

large compared to the SHM prediction with best-fit normalisation (orange dashed line), while

the Ar predictions are comparatively small. The optimum velocity integral g̃(vmin) as obtained

from our method (red solid line), therefore clearly deviates from the SHM prediction and falls

more steeply to reproduce this trend. In the absence of Poisson fluctuations, the value of χ̂2

associated to the best-fit velocity integral in this example is χ̂2 = 1.05. Had we made the ‘correct’

hypothesis that fp/fn = −0.04, the best-fit velocity integral would be identical to the SHM

prediction used to generate the data, giving χ̂2
min ≈ 0 (see Fig. 3.17).

The difference ∆χ2 = 1.05 describes the extent to which fp/fn = 1 is disfavoured by the

data. In this particular example, the hypothesis is excluded at the 69% CL. Of course, Poisson

fluctuations are expected to modify our conclusions. Nevertheless, our method still enables us to

find the best-fit velocity integral even when the data points would favour an increasing velocity

integral in some regions of vmin-space. One possible example for the effect of such fluctuations is

shown in the right panel of Fig. 3.19, together with the corresponding best-fit velocity integral.

If we include Poisson fluctuations, we find a median exclusion of the hypothesis that fp/fn = 1

at the 66% CL. With a probability of about 22%, the fluctuations are such that we can exclude

fp/fn = 1 with at least 90% confidence.

In Fig. 3.20 we show the 90% confidence limits on fp/fn which may be obtained from various

exposures at Xe (rescaling the exposures at Ge and Ar from Ref. [192] correspondingly). The

data is generated assuming the same parameters for hypercharged DM as above, and we have

minimised χ2 over both g and the hypothesised DM mass. In order to show what may be

accomplished in a typical case, we have again ignored Poisson fluctuations for this plot.

To conclude this section, we note that the power to exclude fp/fn = 1 comes largely from the

fact that Ge-based experiments have overlap in vmin-space with both Xe and Ar targets. In the

absence of a Ge target, we find (neglecting Poisson fluctuations) ∆χ2 < 0.001. We come to the

important conclusion that for heavy DM essentially no information can be inferred about fp/fn

in a halo-independent way when using only Xe and Ar targets.
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Fig. 3.20. Expected 90% confidence intervals on the ratio of DM couplings for different
experimental exposures without making any assumptions about the DM velocity distribution.
The underlying data was generated assuming hypercharged DM with mass given on the horizontal
axis. The vertical dashed line indicates the lower bound on mχ from the LUX experiment [81],
the horizontal dashed line corresponds to fp/fn = −0.04.

3.4.3 Applications and future directions

The method we have presented here is extremely general and — given a data set — can be used

to determine the best-fit velocity distribution for a wide variety of possible model hypotheses.

There is no obstacle to performing analyses of many more complicated particle physics models,

such as inelastic or exothermic DM or DM with long-range or momentum-suppressed interactions.

Similarly, our method could also be applied to ∆g(vmin) in order to compare annually modulating

signals of DM and to constraining the modulation fraction.

Another exciting prospect is to apply our method to experimental results that give contradictory

information when interpreted in terms of the SHM (such as CoGeNT, CDMS-Si, LUX and

SuperCDMS) to understand if a different DM velocity distribution can bring these experiments

into agreement. Here, however, there are two important complications. The first issue is that,

for experiments with unclear compatibility, one would be interested in determining the goodness

of fit at the actual best-fit point in addition to the determination of confidence intervals in

DM parameter space. Typically, the value of the χ2 statistic at a best fit point follows a χ2

distribution with number of degrees of freedom given by the number of observations (i.e. bins)

minus the number of free parameters. Our requirement of monotonicity, however, makes the

notion of the number of free parameters in our halo fits somewhat unclear. In particular, we
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know that it generally remains impossible for us to fit data arbitrarily well even in the limit of

an infinite number of g̃(vmin) steps. The second issue is that, for experiments observing small

event rates, binning the data and using χ2-methods becomes unreliable. In principle, there is no

obvious obstacle to using an unbinned extended maximum likelihood method [174] to determine

the optimum g̃(vmin), but doing so would appear to make future progress on the goodness-of-fit

question difficult. We leave these problems to future work.





CHAPTER 4

Phenomenology and collider constraints for vector mediators

In this chapter we turn to the discussion of particle physics models that can account for the

potential DM signals discussed in the previous chapter. For this purpose we study the interactions

of a new spin-1 mediator that connects the SM to DM. We will show that it is possible to achieve

sufficiently large DM-nucleon scattering cross sections while allowing naturally for fn/fp 6= 1. In

particular, it is possible to obtain fn/fp ∼ −0.7 using a single mediator. For models that obtain

isospin-violating couplings from the interference of several independent mediators, we refer to

Refs. [171, 200] but note the problems arising from radiative corrections [190, 201].

In Sec. 4.1 we present the effective Lagrangian describing the interactions of a general spin-1

mediator with SM fermions and DM particles and calculate the ratio fn/fp for DM-nucleon

scattering that results from the mixing of the mediator with the neutral gauge bosons of the

SM. We then consider a specific example for such a vector mediator, namely a Z ′ with kinetic

mixing and mass mixing in Sec. 4.2. We first focus on the case of mediators with a mass small

compared to the Z boson and show that large direct detection cross sections are compatible with

all experimental constraints (Sec. 4.3). For the case of a heavy Z ′ we study the constraints from

collider experiments, including monojet and monophoton searches but also constraints that arise

from the couplings of Z ′ to leptons, SM gauge bosons and the Higgs (Sec. 4.4). Finally, in Sec. 4.5

we return to the general case of a vector mediator with arbitrary couplings and demonstrate that

using experimental searches for dijet resonances it is still possible (under certain assumptions) to

constrain the direct detection cross section.
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4.1 Interactions of a vector mediator

In this section we discuss the general calculation of the effective couplings for DM scattering

on neutrons and protons via the exchange of a neutral spin-1 mass eigenstate R. We write the

Lagrangian for interactions between R and SM fermions as well as DM particles as

LR ⊃ LRDM + LR
ff̄
. (4.1)

If DM is a Dirac fermion χ

LRDM = Rµ χ̄ γ
µ(gVχR − gAχRγ5)χ , (4.2)

while for a complex scalar φ

LRDM = gφRRµ J
µ
φ , (4.3)

where Jµφ ≡ i(φ∗ ∂µφ−φ∂µφ∗). For a Majorana fermion, the vector coupling gVχR vanishes, while

a real scalar can only couple to R via the CP -odd operator ∂µRµ φ2, which we do not consider

further here (for a discussion see e.g. Ref. [202]).

The interactions of R with the SM fermions are described by

LR
ff̄

=
∑

f=q,`,ν
Rµ f̄ γ

µ(gVfR − gAfR γ5)f , (4.4)

where q, `, ν denote SM quarks, charged leptons and neutrinos, respectively.

We assume that the mass eigenstate R arises from the mixing of an interaction eigenstate

vector X with the SM U(1)Y B field and the neutral component W 3 of the SU(2)L weak fields
Bµ

W 3
µ

Xµ

 =


N11 N12 N13

N21 N22 N23

N31 N32 N33



Aµ

Zµ

Rµ

 , (4.5)

where A and Z are the physical photon and neutral massive gauge boson fields of the SM. We

will show below that by an appropriate redefinition of the fields both kinetic mixing and mass

mixing can be written in this way.

In addition to any direct couplings of X to SM fermions, denoted by fV,A
f , the mixing will

introduce additional contributions, so that the overall couplings of R to light quarks will be
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given by1

gV
uR = − 1

12(5ĝ′N13 + 3ĝN23)− fV
u N33 , gA

uR = 1
4(ĝ′N13 − ĝN23)− fA

u N33 ,

gV
dR = 1

12(ĝ′N13 + 3ĝN23)− fV
d N33 , gA

dR = −1
4(ĝ′N13 − ĝN23)− fA

d N33 ,

gV
eR = 1

4(3ĝ′N13 + ĝN23)− fV
e N33 , gA

eR = −1
4(ĝ′N13 − ĝN23)− fA

e N33 ,

gV
νR = 1

4(ĝ′N13 − ĝN23)− fV
ν N33 , gA

νR = 1
4(ĝ′N13 − ĝN23)− fA

ν N33 , (4.6)

where the numerical coefficients are determined from the hypercharge and weak quantum numbers

of the SM fermions. Similarly, the effective vector and axial couplings of R to the DM particle

are given by gV
χR = fV

χ N33 and gA
χR = fA

χ N33, or gφR = fφN33, depending on whether the DM

particle is a fermion or a scalar.

A mixing as in Eq. (4.5) not only induces couplings of R to the SM fermions, but also couplings

of Z (and in some cases A) to the DM particle. The corresponding coupling constants can

be calculated analogously by examining the corresponding column of the mixing matrix. The

effective coupling constants for A are obtained from the first column, i.e. replacing Ni3 by Ni1,

and the effective coupling constants for Z are obtained from the second column. Note that

if N31 = 0, there is no coupling of the physical photon to the DM state and hence no DM

millicharge. Because of the strong constraints on such millicharges, we limit our discussion to

this case and show below that indeed N31 remains zero in the scenario we are interested in.

In this case, the photon does not mediate DM-nucleon interactions and we can therefore study

these interactions by integrating out the vector mediator R and the SM Z-boson. We then

obtain the effective four-fermion interactions (see Sec. 2.4)

Leff
R = bVf χ̄γµχ f̄γ

µf + bAf χ̄γµγ
5χ f̄γµγ5f

+ c1
f χ̄γµγ

5χ f̄γµf + c2
f χ̄γµχ f̄γ

µγ5f , (4.7)

where

bA,Vf ≡ bA,VfR + bA,VfZ ≡
gA,V
χR gA,V

fR

m2
R

+
gA,V
χZ gA,V

fZ

m2
Z

. (4.8)

As discussed in Sec. 2.4, the mixing terms proportional to cif are suppressed in the non-relativistic
1We use ĝ and ĝ′ to denote the fundamental gauge couplings of SU(2)L and U(1)Y , which may be different

from the observed ones, g and g′, due to the effects of mixing.
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limit, so we neglect them in our analysis. Unless bV is very small compared to bA, the direct

detection cross section will be dominated by the effective vector-vector interaction between the

DM particle and nucleons (p, n) given by

LV
χ = fχp χ̄γµχ p̄γ

µp+ fχn χ̄γµχ n̄γ
µn ; fχp = 2 bVu + bVd , f

χ
n = 2 bVd + bVu . (4.9)

Because of the conservation of the vector current, there is no contribution of sea quarks or gluons

to the effective couplings. In the case of the complex scalar DM we have similarly

Leff
φ = aV

f J
µ
φ f̄γµf , LV

φ = fφp J
µ
φ p̄γµp+ fφn J

µ
φ n̄γµn , (4.10)

where

aV
f ≡ aV

fR + aV
fZ ≡

gφR g
V
fR

m2
R

+
gφZ g

V
fZ

m2
Z

; fφp = 2 aV
u + aV

d , fφn = 2aV
d + aV

u . (4.11)

At this point, it is instructive to look at a few familiar cases:

1. For a mediator coupling to the baryonic current we have bVu /bVd = fn/fp = 1.

2. For a mediator coupling to the weak isospin current we have bVu /bVd = fn/fp = −1.

3. For a coupling to the EM current we have bVu /bVd = −2 and thus fn/fp = 0.

4. Finally, a coupling to the vectorial part of the SM Z current gives bVu /bVd ≈ −1/2 and thus

fp/fn = (fn/fp)−1 ≈ −0.04, corresponding to a coupling dominantly to neutrons.

We have seen in Sec. 3.3 that experimental bounds from xenon-based experiments can be

weakened considerably if −0.8 < fn/fp < −0.5. In isolation, none of the possibilities above

yields such a ratio of fn/fp. As we will show in the following section, however, a single light

vector mediator which mixes with the neutral SM gauge bosons can generate fn/fp ≈ −0.7 with

sufficiently large cross sections to explain the CDMS-Si signal and be in agreement with all other

experimental constraints.

4.2 Effective Lagrangian for a light Z ′

From now on we will take the interaction eigenstate X to be the new gauge boson corresponding

to an additional U(1)X symmetry [203–206]. The corresponding mass eigenstate Z ′ is then a
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specific realisation of the vector mediator R. The general possibility of DM (in particular light

DM) coupling to the SM via a Z ′ has been considered before in Refs. [172, 207–212].

We consider an effective Lagrangian that includes kinetic mixing and mass mixing [204]:1

L = LSM −
1
4 X̂

µνX̂µν + 1
2 m

2
X̂
X̂µX̂

µ + χ̄
(
i/∂ −mχ

)
χ

− 1
2 sin ε B̂µνX̂µν + δm2 ẐµX̂

µ −
∑
f

fV
f X̂

µ f̄γµf − fV
χ X̂

µ χ̄γµχ , (4.12)

where X̂µν = ∂µX̂ν − ∂νX̂µ and the U(1)X is assumed to be broken, leading to a vector

boson mass of mX̂ . We denote fields in the original basis with hats (B̂, Ŵ 3, X̂) and define

Ẑ ≡ ĉWŴ
3 − ŝWB̂, where ŝW (ĉW) is the sine (cosine) of the Weinberg angle and ĝ′, ĝ are the

corresponding gauge couplings. Canonically normalised interaction eigenstates after kinetic

diagonalisation and normalisation are denoted without hats, while the mass eigenstates after

mass diagonalisation are denoted by (A,Z,Z ′). In the following we will abbreviate sθ ≡ sin θ,

cθ ≡ cos θ and tθ ≡ tan θ.

The diagonalisation of the above Lagrangian is discussed in detail for example in Ref. [204]. The

field strengths are diagonalised and canonically normalised by two consecutive transformations:
B̂µ

Ŵ 3
µ

X̂µ

 =


1 0 −tε
0 1 0

0 0 1/cε




Bµ

W 3
µ

Xµ

 , (4.13)


Bµ

W 3
µ

Xµ

 =


ĉW −ŝWcξ ŝWsξ

ŝW ĉWcξ −ĉWsξ

0 sξ cξ



Aµ

Zµ

Z ′µ

 , (4.14)

where

t2ξ =
−2 cε(δm2 +m2

Ẑ
ŝW sε)

m2
X̂
−m2

Ẑ
c2
ε +m2

Ẑ
ŝ2

W s2
ε + 2 δm2 ŝW sε

. (4.15)

Multiplying the two matrices, we obtain the effective couplings between the Z ′ and quarks

gV
u = 5

12
e cξ tε
ĉW

+ 1
4
e sξ tε
ĉW ŝW

− 2
3
e ŝW sξ
ĉW

− cξ
cε
fV
u ,

1There could also be a mass mixing term between Z′ and B, which arises e.g. in Stückelberg models. How-
ever, we consider here only such mass mixing as can be induced by a Higgs vacuum expectation value, which
mixes only Z and Z′.



70 Phenomenology and collider constraints for vector mediators

gV
d = − 1

12
e cξ tε
ĉW

− 1
4
e sξ tε
ĉW ŝW

+ 2
3
e ŝW sξ
ĉW

− cξ
cε
fV
d . (4.16)

Note also that in the case we consider, N31 = 0, which implies that there is no DM-photon

coupling. This result is due to the fact that we only consider mass mixing between X̂ and the

Ẑ interaction eigenstate. If the mass mixing were to include a component with the interaction

eigenstate photon Â, then millicharges for the DM would result [213]. In our case, an important

consequence is that even if the SM fermions are charged under X as in Ref. [204], the electric

charge remains unchanged, such that ê = e.

The physical Z and Z ′ masses after diagonalisation are given by

m2
Z = m2

Ẑ
(1 + ŝW tξ tε) + δm2 c−1

ε tξ , (4.17)

m2
Z′ =

m2
X̂

+ δm2(ŝW sε − cε tξ)
c2
ε (1 + ŝW tξ tε)

. (4.18)

For the ‘physical’ weak angle, we adopt the definition

s2
W c2

W = π α(mZ)√
2GFm2

Z

, (4.19)

where α = e2/(4π). Eq. (4.19) is also true with the replacements sW → ŝW, cW → ĉW and

mZ → mẐ , leading to the identity sW cW mZ = ŝW ĉW mẐ . From these equations we fix ŝW

and mẐ such that the experimentally well-measured quantities GF (or alternatively sW) and

mZ come out correctly. Finally, from the mixing matrix Nij , the nucleon-DM couplings can be

calculated using the formulae from Sec. 4.1 [209]

fp =
ĝ fV

χ

4 ĉW
c2
ξ

cε
tξ

[
(1− 4ŝ2

W)
(

1
m2
Z

− 1
m2
Z′

)
− 3 ŝW

tε
tξ

(
t2ξ
m2
Z

+ 1
m2
Z′

)]
−
c2
ξ

c2
ε

fV
χ

2 fV
u + fV

d

m2
Z′

,

fn =−
ĝ fV

χ

4 ĉW
c2
ξ

cε
tξ

[(
1
m2
Z

− 1
m2
Z′

)
+ ŝW

tε
tξ

(
t2ξ
m2
Z

+ 1
m2
Z′

)]
−
c2
ξ

c2
ε

fV
χ

fV
u + 2 fV

d

m2
Z′

. (4.20)

In the equations above, we have allowed for the possibility that SM fermions are charged under

the new U(1)X gauge group. Couplings to leptons, however, have to be very small for the Z ′

masses we are interested in. The simplest way to accommodate this constraint is to assume

that the Z ′ couples to the baryon current and hence arises from a gauged version of U(1)B.

Anomaly-free models for such a baryonic Z ′ have been considered e.g. in Refs. [214, 215]. In

these models, kinetic mixing between the Z ′ and the SM gauge bosons is naturally induced by
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Fig. 4.1. Lines of constant fn/fp in the plane of kinetic and mass mixing parameters ε and δm.
The solid purple line corresponds to fn/fp ≈ −0.7. We have fixed mZ′ = 4 GeV.

quark loops [215]. However, these mixing effects will typically be small compared to the direct

couplings of Z ′ to quarks, and since up and down quarks have equal charges under the baryonic

U(1), one then obtains fn/fp ≈ 1.

We will therefore focus on the case that the SM is completely uncharged under the U(1)X . Of

course, in this case the question arises how any mixing terms can be generated at all. It is known

that kinetic mixing will be zero at tree level if both U(1)s arise from the breaking of a simple

group [216]. However, if there is matter which is charged under both U(1)s, kinetic mixing will

in general be induced at the 1-loop level. Similarly, the mass mixing term can also be generated,

e.g. via the operator 1
Λ2h

†Dµhh
′†Dµh′ → v2 v′2

Λ2 ZZ ′, where h′ is the additional Higgs field which

gives mass to the Z ′. Note however that while the kinetic mixing term is renormalisable, we

have to invoke higher dimensional operators to generate a mass mixing term.

If we set δm2 = 0, i.e. consider kinetic mixing alone, the mass eigenstate Z ′ has photon-like

couplings to quarks leading to fn/fp = 0. On the other hand, for ε = 0, i.e. considering only

mass mixing, the resulting Z ′ has Z-like coupling to quarks which leads to fn/fp � −1. If both

parameters are non-zero, fn/fp is naturally negative, as is shown in Fig. 4.1 for mZ′ = 4 GeV.

Indeed, the value fn/fp ≈ −0.7 required to evade the XENON10/100 constraints can be achieved

for ε ≈ δm2/m2
Z . For this choice of parameters, and assuming ε � 1, we find ξ ≈ ε(1 + ŝW ),

which leads to the couplings

fp ' −
ĝ fVχ
4 ĉW

c2
ξ

cε
tξ

1
m2
Z′

3 ŝW
(1 + ŝW ) , fn '

ĝ fVχ
4 ĉW

c2
ξ

cε
tξ

1
m2
Z′

(
1− ŝW

1 + ŝW

)
. (4.21)
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We therefore obtain the simple expression fn/fp ≈ −1/(3ŝW ) ≈ −0.7.

4.3 Mixing parameters for a light Z ′

In this section we discuss various constraints on a Z ′ with mZ′ � mZ that couples the SM to

DM. In Sec. 4.4 we will then discuss constraints on a heavy Z ′ with mZ′ � mZ . Note that we

do not require the Z ′ interactions with the SM to yield the correct thermal relic density for χ.

For a light Z ′, DM annihilation can be very efficient, leading to a depletion of the DM density.

However, the observed relic abundance may still be obtained if there is an initial asymmetry in

the dark sector (see Sec. 1.4). Conversely, for a heavy Z ′ but low mass DM, the interactions are

typically so weak that they predict an overproduction of DM in the early universe. To obtain the

required DM relic density in this scenario, one must assume either a contribution from additional

mediators in the early Universe or additional couplings of the Z ′ to new hidden sector states.

Before discussing experimental bounds, let us determine the interesting parameter values for

direct detection experiments. We have seen in Sec. 3.3 that assuming elastic SI scattering with

fn/fp = −0.7, experimental hints for DM imply mχ ∼ 10 GeV and σSI ∼
(
10−39–10−38) cm2.

If we fix the kinetic mixing ε by the requirement fn/fp ≈ −0.7, there are three remaining free

parameters in our model:1 mZ′ , δm and fV
χ . As an example we take mZ′ = 4 GeV, δm = 8 GeV

and mχ = 8 GeV, leading to ε = 0.007 and ξ = 0.011. Using Eqs. (2.12) and (4.9), the resulting

SI scattering cross section is

σn ' 8× 10−37 (fV
χ )2 cm2 . (4.22)

Thus, a sufficiently large cross section can easily be achieved for fV
χ ∼ 0.1. Even for smaller

mixing parameters or a somewhat heavier Z ′ larger values of fV
χ could still lead to cross sections of

the required magnitude. In fact, there is no reason why fV
χ cannot be as large as its perturbative

bound fV
χ .

√
4π. Note however, that since σn ∝ m−4

Z′ , the cross section quickly becomes too

small if mZ′ is larger than about 15 GeV.

1Note that ξ is fixed as soon as δm and mZ′ are determined and that the DM-neutron cross section is
largely independent of the DM mass as long as mχ � mn.
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Electroweak precision tests

The constraints from electroweak precision tests (EWPT) are encoded in the S and T parameters.

To determine these parameters, we use the effective Lagrangian formulation of the interaction

between the Z boson and the SM fermions [204, 217]:

LZ =− e

2 sW cW

(
1 + αT

2

)
× f̄γµ

[(
T f3 − 2Qf

(
s2

W + αS − 4c2
W s2

W αT

4(c2
W − s2

W)

))
− T f3 γ

5
]
f Zµ . (4.23)

We can then determine S and T to quadratic order in ξ and ε, finding1

αS = 4 c2
W sW ξ (ε− sWξ) , α T = ξ2

(
m2
Z′

m2
Z

− 2
)

+ 2 sW ξ ε . (4.24)

In the framework that we consider, one typically has ε > sW ξ so that the S parameter is slightly

positive. On the other hand, for mZ′ < mZ the T parameter will generally be negative. In this

direction, S and T are tightly constrained. Nevertheless, given that our preferred parameter

region corresponds to ξ ∼ ε ∼ 0.01, we find S ≈ 0.01 and T ≈ −0.015, which is within the 95%

CL PDG constraints [136].

Similarly we find that the ρ parameter, given by

ρ = m2
W

m2
Z c

2
W

= s2
W
ŝ2

W
, (4.25)

is in slight tension but still reasonable agreement with experimental constraints. To quadratic

order in ξ and ε we obtain

ρ− 1 = c2
W ξ2

c2
W − s2

W

(
m2
Z′

m2
Z

− 1
)
, (4.26)

which gives ρ − 1 = −3 × 10−4 for ξ = 0.015 in comparison with a measured value [136] of

ρ− 1 = 4+8
−4 × 10−4.

1Note that due to the requirement fn/fp ≈ −0.7, ε must be of the same order of magnitude as ξ. We
therefore have a term −2 appearing in the expression for T as opposed to a −1 in Ref. [204].
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Z decay width

The induced coupling of the Z to the DM particle increases the invisible Z decay width. The

contribution is approximately

Γ (Z → χ̄χ) = mZ

12π
(
|gV
χZ |2 + |gAχZ |2

)
= mZ

12πs
2
ξ

(
|fV
χ |2 + |fAχ |2

)
. (4.27)

Consequently, as long as sξ < 0.015, we satisfy the experimental limit Γ (Z → χ̄χ) < 1.5 MeV

even for fχ ∼ 1.

Muon g − 2

In the presence of a new vector mediator the anomalous magnetic moment of the muon will

generally change. In the case of a dark Z ′ with mZ′ � mZ , the contribution to aµ = (gµ − 2)/2

can be estimated to be [209]

δaµ '
α ξ2

3π c2W s2
W

m2
µ

m2
Z′

(4.28)

up to a factor of order unity.1 The requirement δaµ ∼ 4 × 10−9 then implies an approximate

limit of mZ′ & 1 GeV for ξ ∼ 10−2.

Atomic parity violation

The contribution of the Z ′ to atomic parity violation (APV) is proportional to the product of the

axial coupling of the Z ′ to electrons, gAeZ′ , and the vector coupling to quarks, gV
qZ′ . In practice,

however, one can only measure the vector coupling to an entire nucleus, which is proportional

to Zfp + (A− Z)fn. Since fp and fn have different signs in all the cases that we consider, the

two contributions nearly cancel, so that no relevant constraint arises from APV. In fact, the

strongest bounds on APV come from measurements of cesium, which has almost the same ratio

of protons to neutrons as xenon. Consequently, if indeed fn/fp ≈ −0.7, the Z ′ will give almost

no contribution to APV in cesium.

1Here we assume that there are no cancellations between the axial and the vectorial part.
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Hadronic decays

Measurements of the decays of ψ and Υ strongly constrain the axial coupling of the Z ′ to c and

b quarks. According to Ref. [218], these limits are

|gAc | . 1.5× 10−3 mZ′

GeV , (4.29)

|gAb | . 0.8× 10−3 mZ′

GeV . (4.30)

In our model, there is no direct axial coupling of the Z ′ to quarks, so that such a coupling

can only arise from Z-Z ′ mixing. The resulting coupling constants are proportional to ξ, but

can nevertheless become too large unless mZ′ & 1 GeV. The constraint for vector couplings is

significantly weaker (especially if the decay of the Υ into two DM particles is kinematically not

possible). In fact, according to Ref. [219] it is easily possible to have |gV
q | ∼ 0.1. Ongoing and

forthcoming searches for a light Z ′ at collider experiments such as BaBar, Belle, BEPC and

LHCb will be able to constrain these parameters more tightly [220].

Spin-dependent interactions

If the Z ′ couples to the axial DM current, one obtains an effective axial-axial coupling between

the DM particle and quarks given by

bAq =
gA
χ g

A
q

m2
Z′

, (4.31)

neglecting the contribution of the Z, which gives a correction of order 1%. From Eq. (4.6) it

follows that bAd = bAs = −bAu . Consequently, we obtain from Eq. (2.15)

ap = −1.36 bAd ,

an = 1.18 bAd , (4.32)

implying that the DM particle couples with roughly the same strength but opposite sign to the

proton and neutron spin.

Using the results from Sec. 4.2 and Eq. (2.13), we find

σSD
p,n ' 0.1

µ2
χ

m4
Z′
ĝ′2(fA

χ )2
(
cξ
cε

)2
(
ŝWsξ − cξtε + ĉ2

W
ŝW

sξ

)2
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' 3× 10−36 cm2(fA
χ )2 , (4.33)

where in the second line we have substituted the same benchmark parameters as for the

calculation of the SI cross section. For fA
χ ∼ fV

χ , the SD cross section therefore is significantly

larger than the SI one. Furthermore, for fn/fp ∼ −0.7, SI interactions do not benefit from a

large coherent enhancement, so that for comparable vector and axial couplings of the Z ′ both

types of interactions should give similar signals in direct detection experiments. Consequently,

both contributions should be included when interpreting direct detection experiments in the

context of this model. We leave such a study to future work.

4.4 Mixing parameters for a heavy Z ′

We now turn to the case of a Z ′ with mZ′ � mZ . In this case, most of the constraints discussed

above will become weak. The notable exception are the constraints arising from measurements of

the Z-pole, which directly constrain the magnitude of the mixing between Z and Z ′ independent

of mZ′ . In addition, there will be a large number of additional constraints arising from the fact

that a heavy Z ′ will be resonantly produced at colliders and its decays into SM particles can

lead to observable signals. We will now consider these constraints in detail, beginning with a

discussion of Z ′ production.

4.4.1 Production and decay of a heavy Z ′ at colliders

We can decompose the cross section for the production of a Z ′ in association with additional

particles Y and subsequent decay of Z ′ into xy as follows:

σ(qq̄ → Z ′ + Y → xy + Y ) = σ(qq̄ → Z ′ + Y ) · BR(Z ′ → xy) , (4.34)

where we have used the narrow width approximation (NWA), applicable if ΓZ′/mZ′ � 1. Possible

ways to produce a heavy Z ′ at colliders are Drell-Yan (D-Y) production, vector boson fusion

(VBF) or ‘Z ′-Strahlung’ from a SM gauge boson. Here, we will focus on D-Y production.

As a consequence of the NWA, the D-Y cross section σ(qq̄ → Z ′ → xy) can be written in
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Fig. 4.2. Cross section for the D-Y production of a Z ′ as a function of mZ′ at the LHC (with√
s = 7 TeV and

√
s = 8 TeV) and at the Tevatron for gA,Vu,d equal to those of the SM Z boson

(solid lines). We also show the production cross section for the case that the Z ′ couples either
only to u-quarks or only to d-quarks.

terms of the couplings gu,d ≡
√

(gVqR)2 + (gAqR)2 of the Z ′ to quarks as [221, 222]

σxy ∝
[
g2
uwu(

√
s,m2

Z′) + g2
d wd(

√
s,m2

Z′)
]
· BR(Z ′ → xy) , (4.35)

where wu,d parameterise the parton distribution functions (PDFs) of the proton. The coefficients

wu,d are known and for a narrow resonance depend only on the centre-of-mass energy
√
s and

mZ′ . In Fig. 4.2 we show the leading order (LO) cross section for σ(pp→ Z ′) with the couplings

gu,d set equal to those of the SM Z boson, as well as the individual contributions from u- and

d-quarks. For different quark couplings the production cross section of the Z ′ may then be found

by a simple rescaling. Note that QCD corrections can enhance the D-Y production significantly.

In the following, we take the K-factors for the MSTW2008NNLO PDF from Ref. [222].

In order to calculate the total cross section for a given process, the remaining task is to

calculate the branching ratios. Since BR(Z ′ → xy) = Γ xy/ΓZ′ , we need to calculate the partial

decay widths Γ xy and the total decay width ΓZ′ . Let us therefore now discuss all possible decay

channels of a heavy Z ′ into SM particles. We will present this discussion in full generality first,

and then determine the relevant terms subsequently.
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4.4.2 Interactions with SM bosons

In addition to the couplings of the Z ′ to SM fermions and to DM discussed above, we now also

consider terms in the Lagrangian that represent couplings to SM gauge bosons and the Higgs:

LZ′ = LZ′DM + LZ′
ff̄

+ LZ′gauge + LZ′H . (4.36)

Neglecting non-renormalisable operators and CP -violating terms (see e.g. Refs. [223, 224] for

a more complete discussion) the couplings of a general vector mediator R to SM gauge fields can

be written as

LRgauge =gRWW1[[RW+W−]]1 + gRWW2[[RW+W−]]2

+ gRZWW1((RZW+W−)) + gRγWW1((RγW+W−))

+ gRZZ [[RZZ]]ε + gRZγ [[RZγ]]ε + gRWW3[[RW+W−]]ε

+ gRZWW2ε
µνρσRµZνW

+
ρ W

−
σ + gRγWW2ε

µνρσRµγνW
+
ρ W

−
σ , (4.37)

where

[[RW+W−]]1 ≡ i
[
(∂µW+

ν − ∂νW+
µ )Wµ−Rν − (∂µW−ν − ∂νW−µ )Wµ+Rν

]
,

[[RW+W−]]2 ≡
i

2(∂µRν − ∂νRµ)(Wµ+W ν− −Wµ−W ν+) ,

[[RV1V2]]ε ≡ εµνρσ(V1µ∂ρV2ν − ∂ρV1µV2ν)Rσ ,

((RVW+W−)) ≡ 2RµV µW−ν W
ν+ −RµWµ+VνW

ν− −RµWµ−VνW
ν+ (4.38)

for appropriate combinations of Vi = {γ, Z,W+,W−}. The operators in the first two lines of

Eq. (4.37) conserve C and P separately, while the operators in the last two lines are CP even but

violate parity. The operators in the second and fourth line lead to decays into three gauge bosons.

For comparable couplings these decays are suppressed compared to diboson final states due to

smaller available phase space [225]. We will therefore neglect triboson decays in the following.

Couplings of R to the SM Higgs are of the form

LRH = gRZHRµZ
µH + gRZHHRµZ

µH2 . (4.39)

Again, we expect decays into ZHH to be significantly suppressed compared to decays into ZH

so we neglect them from now on. Since H is a real scalar and terms proportional to ∂µRµ are
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Fig. 4.3. The couplings g2
u (solid lines) and g2

d (dashed lines) as a function of mZ′ for ε = 0.01
(green), ε = 0.1 (blue) and ε = 1 (purple). In the left plot, interactions are induced by kinetic
mixing only via the Lagrangian given in Eq. (4.12), while in the right plot we have included a
mass mixing of δm = mZ/2.

CP violating we do not consider decays of R into HH [223].

Let us now return to the case of a Z ′ with mixing. In terms of the mixing matrix in Eq. (4.5),

the couplings of Z ′ to SM bosons are given by [209]

gZ
′

WW1 = gZ
′

WW2 = ĝN23 , gZ
′

ZH = v

2(ĝ′N12 − ĝN22)(ĝ′N13 − ĝN23) . (4.40)

Note that, since P -violating couplings of gauge bosons are absent in the SM, the corresponding

couplings of the Z ′ cannot be introduced by mixing alone.

4.4.3 Experimental constraints

Using the results from Sec. 4.2, we can calculate all couplings of the Z ′ as a function of mZ′ , δm,

sin ε and fV
χ . As an example, we show the couplings gu,d, which determine the Z ′ production cross

section, in Fig. 4.3 as a function of mZ′ for different values of the kinetic mixing parameter ε and

the mass mixing parameter δm. The partial decay widths in terms of the various couplings are

summarised in Appendix A.6. For example, we are now in the position to calculate the invisible

branching ratio of the Z ′, which is given by BR(Z ′ → inv) = (Γχχ̄+Γ νν̄)/ΓZ′ . Although invisible

Z ′ decays are not directly observable, one can obtain monojet events if the Z ′ is produced in

association with a jet (j = q, g), which can result for example from ISR (see Sec. 2.3).

To derive constraints on such invisible decays — and therefore on fV
χ — we use the monojet
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search from CMS based on an integrated luminosity of 5.0 fb−1 at
√
s = 7 TeV [125]. CMS

considered events with /ET > 350 GeV, provided there was a primary jet (j1) with transverse

momentum pT > 110 GeV and pseudorapidity |η| < 2.4. A secondary jet (j2) with pT > 30 GeV

was also permitted if the two jets are not back-to-back: |∆φ(j1, j2)| < 2.5. Events with high-pT

tertiary jets, electrons or muons were vetoed. This null result excludes new contributions to the

production cross section in excess of 32 fb at 95% CL. The corresponding ATLAS search [126]

employs very similar cuts and finds a comparable bound on the cross section.

We compare this experimental bound with the predicted monojet signal from the invisible

decays of a Z ′ simulated at parton-level using CalcHEP [226]. Since the experimental searches

impose a cut on the number of additional jets, including parton showering and hadronisation

typically leads to a slight reduction in the predicted cross sections even after including next-to-

leading order (NLO) corrections [227]. For our purposes, however, these effects can be neglected.

We have also checked explicitly that using the ATLAS data instead of the CMS data does not

modify our results within errors.

In a similar way, one can constrain invisible decays of the Z ′ using searches for monophoton

events, where instead of a jet a single photon is produced from ISR. The recoil of this photon

against the invisible decay products of the Z ′ then leads to large amounts of /ET . Monophoton

searches were first performed at LEP [228] and subsequently at the LHC by ATLAS [229] and

CMS [230]. These searches are particularly interesting for a leptophilic Z ′ [130, 231]. If the Z ′

has comparable couplings to quarks and to leptons, however, monojet searches typically provide

stronger constraints on the invisible branching ratio of the Z ′, since the ISR of a photon is

suppressed compared to a jet.

In addition to monojet and monophoton searches, there are three further interesting search

channels at the LHC: Dilepton resonances, WW resonances and ZH production. A summary

of the experimental searches is given in Table 4.1. The resulting bounds directly constrain the

mixing parameters ε and ξ. For fixed mass mixing and fixed direct couplings, these constraints

can thus be interpreted as bounds on sin ε as a function of mZ′ , which in turn can be translated

into bounds on the DM direct detection cross section using Eqs. (2.12) and (4.9). Our results

are presented in Fig. 4.4. Note that we do not consider values of sin ε larger than 0.8.

For fVχ = 0.1 and δm = 0, the LHC gives strong constraints on the direct detection cross
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Channel (Exp) L [fb−1] Mass range Couplings Reference

pp→ j j (CMS) 4.0 (8 TeV) 1000− 4000 gq [232]

pp→ j j (CMS) 0.13 (7 TeV) 600− 1000 gq [233]

pp→ j j (CDF) 1.13 (1.96 TeV) 250− 1400 gq [234]

pp→ t t̄ (CMS) 19.7 (8 TeV) 500− 3000 gq gt [235]

pp→ `` (ATLAS) 20 (8 TeV) 200− 3500 gq g` [236]

pp→ ττ (CMS) 4.9 (7 TeV) 350− 1700 gq gτ [237]

pp→ j + /ET (CMS) 5.0 (7 TeV) ∗ gq gχ [125]

pp→ j + /ET (ATLAS) 4.7 (7 TeV) ∗ gq gχ [126]

pp→ j + /ET (CDF) 1.0 (1.96 TeV) ∗ gq gχ [124]

pp→ γ + /ET (CMS) 5.0 (7 TeV) ∗ gq gχ , gq g
R
Zγ [230]

pp→ Z Z (ATLAS) 7.2 (8 TeV) 300− 2000 gq g
R
ZZ [238]

pp→ Z Z (CMS) 19.8 (8 TeV) 600− 2500 gq g
R
ZZ [239]

pp→W W (ATLAS) 4.7 (7 TeV) 300− 1500 gq g
R
WW [240]

pp→W W (CMS) 19.8 (8 TeV) 800− 2500 gq g
R
WW [241]

pp→ ZH (ATLAS) 4.7 (7 TeV)
20.3 (8 TeV) ∗ gq g

R
ZH [242]

Table 4.1. Collider searches for various final states that constrain the couplings of a vector
mediator. For resonance searches the mass range of the search is given, other searches are marked
with a ∗. These searches can be applied to a wide range of mediator masses. In the case of scalar
DM gχ should be replaced by gφ.

section, comparable to the best bounds from current direct detection experiments. In fact,

searches for dilepton resonances are even more constraining than the EWPT discussed in Sec. 4.3.

This conclusion does not change significantly, if we include a mass mixing term (see lower-left

panel of Fig. 4.4). However, such a mass mixing will enhance ξ compared to ε, so the bound

from WW resonance searches becomes stronger compared to the bound from dileptons and

monojets. In fact, the limit from WW searches becomes very constraining for large mZ′ , because

the interaction between the gauge bosons involves a derivative and is therefore enhanced for
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Fig. 4.4. Upper row: Bounds on the mixing parameter sin ε and the direct detection cross
section σp for fVχ = 0.1 and δm = 0. Lower row: Bounds on the direct detection cross section
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large masses.1

Increasing fVχ relaxes all bounds from the LHC since now smaller quark couplings — and

therefore smaller mixing parameters — are sufficient to obtain similar direct detection cross

section. At the same time the invisible partial width of Z ′ is increased so that decays of Z ′

into SM particles are additionally suppressed. Monojet searches, on the other hand, become

significantly more constraining. Thus, even for fVχ = 1, direct detection cross section above

10−41 cm2 are excluded by dilepton and monojet searches as well as EWPT. Clearly, it is very

difficult in this context to achieve direct detection cross sections large enough to explain recent

experimental anomalies and impossible to do so if also imposing fn/fp = −0.7.

1Note, however, that for small kinetic mixing, the coupling of Z′ to quarks and leptons is proportional to
cξ tε ≈ ε, while the coupling of Z′ to WW is proportional to sξ ≈ ε sin θWM2

Z/m
2
R. Thus, the partial width

ΓWW picks up an additional factor of m4
Z/m

4
Z′ which reduces the enhancement from the derivative interaction.
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4.5 LHC and Tevatron bounds for general vector mediators

As we have seen above, there are strong constraints on a heavy spin-1 mediator that obtains its

couplings to SM particles from kinetic mixing and mass mixing due to its interactions with SM

leptons and gauge bosons. However, none of these interactions are actually required to obtain

large DM scattering cross sections, and the direct couplings of the mediator to SM quarks are not

very strongly constrained by collider searches. In this section, we will therefore study how much

the constraints discussed above can be weakened if we consider less restrictive models, where the

couplings to different types of particles can be varied independently. To make this change of

perspective explicit, we will go back to denoting the spin-1 mediator by R rather than Z ′.

We are particularly interested in the case where R has large couplings to SM quarks. We allow

for the ratio y ≡ gVuR/gVdR to take arbitrary values, so that fn/fp = (y + 2)/(2y + 1) can differ

significantly from the coupling ratio for Z exchange. A possible example for such a mediator is

a new resonance associated with a strongly interacting extension of the SM [243, 244], e.g. an

analogue of the neutral isospin zero ω resonance in QCD. Another possibility (although without

isospin violation) would be a baryonic Z ′ as discussed in Ref. [245]. We will show that, in spite

of the very general treatment, it is still possible to constrain the direct detection cross section in

a model independent way by combining the limits from all relevant collider searches.

The key assumption that we have to make is that R decays either directly into SM particles

or into new states that remain invisible, i.e. escape the detector without decaying into visible

particles. In other words, decays into other hidden sector states are either kinematically forbidden

or give a negligible contribution to the total width. This assumption is necessary because if we

were to allow decays into new states that give complicated (and hence unobservable) experimental

signatures, we could make ΓR arbitrarily large and thereby completely hide the resonance at the

LHC. Instead, making use of our assumption, we can write

ΓR = Γχχ̄ +
∑
q

Γ qq̄ +
∑
`

Γ `
¯̀ +

∑
ν

Γ νν̄ + ΓWW + ΓZZ + Γ γZ + ΓZH . (4.41)

The formulae for the partial widths in terms of the couplings are given in Appendix A.6.
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From Eq. (2.12) we obtain

σp ' (2y + 1)2 µ
2
χn

π

(
gVdR

)2 (
gVχR

)2

m4
R

≤ (2y + 1)2 µ
2
χn

π

g2
d g

2
χ

m4
R

, (4.42)

where we have introduced g2
f ≡

(
gVfR

)2
+
(
gAfR

)2
. For mχ � mR we can use the formula for Γχχ̄

given in Eq. (A.33) to express g2
χ in terms of the partial decay width:

σp ≤ 12 (2y + 1)2 µ
2
χn

m5
R

g2
d Γ

χχ̄ . (4.43)

We can then use the fact that Γχχ̄ ≤ ΓR · BR(R→ inv) to obtain

σp ≤ 12 (2y + 1)2 µ
2
χn ΓR

m5
R

g2
d · BR(R→ inv) . (4.44)

As discussed in Sec. 4.4, monojet and monophoton searches at the LHC provide a limit on the

combination g2
q · BR(R→ inv). Consequently, if we can constrain ΓR, Eq. (4.44) gives a bound

on the direct detection cross section as a function of mR.

In order to obtain such a bound, let us assume that we can constrain g2
q · BR(R→ xy) ≤ sxy

for all possible final states. We can then sum these bounds to obtain an upper limit

g2
q ≤ stot =

∑
xy

sxy , (4.45)

since the branching ratios must sum to unity. In other words, for g2
q > stot the total number of

R produced would be so large that its decays would have to leave an observable signal in at least

one search channel. As we will now show, it is indeed possible to combine the information from

a large number of different LHC searches to make sure that R has no place to hide.

We have already discussed a number of possible decay channels in the context of a Z ′ with

mixing. Now that we allow for arbitrary couplings, we also need to constrain the remaining

decay channels, in particular decays into quarks. Searches for resonances in the invariant mass

distribution of dijet events have been carried out at Tevatron [234] and at the LHC [232, 233, 246].

For invariant masses below 600 GeV, the sensitivity of the LHC is compromised by large QCD

backgrounds. We therefore use the CDF limit [234] for 300 GeV < mR < 600 GeV. Above

1000 GeV, we use the most recent full analysis from CMS [232]. The intermediate range from

600GeV to 1000 GeV has been studied by CMS using a dedicated search based on an alternative

analysis strategy with modified triggers [233]. The comparison of all these bounds is shown
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Fig. 4.6. Limit on g2
q · BR(R → tt̄) from

CMS [235]. Note that CMS studies different
topologies for mR < 1 TeV and mR > 1 TeV.

in Fig. 4.5. The bounds from the CMS searches are shown as bands, reflecting how the limit

changes depending on the precise width and shape of the resonance. We take the upper end of

both bands shown in Fig. 4.5 as a conservative bound for all widths.

Searches for dijet resonances constrain the decays of R into the five lightest quarks. To

constrain g2
q · BR(R → tt̄) independently, we use the dedicated CMS searches [235] for tt̄

resonances. The resulting bounds are shown in Fig. 4.6. For family independent couplings and

assuming mR > 2mt one can use a bound on g2
q ·BR(R→ jj) to infer a bound on g2

q ·BR(R→ tt̄)

via the relation

BR(R→ tt̄) =

√
1− 4m2

t /m
2
R

2 + 3g2
d/g

2
u

· BR(R→ jj) . (4.46)

For gu ∼ gd, the resulting bound on g2
q · BR(R→ tt̄) inferred from the dijet limit is comparable

to the direct bound from top pair searches. As expected, for gu � gd, the inferred bound on

g2
q · BR(R→ tt̄) is much stronger than the direct one, while for gu � gd, we can actually invert

the equation above to obtain a bound on g2
q · BR(R→ jj) from the bounds on g2

q · BR(R→ tt̄).

Finally, we also need to constrain decays of R into ZZ and Zγ, which were absent for the Z ′

because of their parity violating nature. The former decay is strongly constrained by searches

for ZZ resonances [238, 239]. For the latter decay, there are no dedicated searches, but we can

obtain a sufficiently strong constraint from monophoton searches. We have previously discussed

monophoton searches in the context of constraining invisible decays of R. However, another way
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Fig. 4.7. Bounds on g2
q · BR(R→ xy) as a function of mR, with xy being SM gauge bosons or

ZH (upper panel) or SM fermions or DM particles (lower panel).

to obtain a single photon in association with /ET is D-Y production of R followed by the direct

decay of R into Zγ, with subsequent decay of Z to neutrinos σ(pp→ R→ γZ → γ νν̄). Note,

however, that such monophoton searches are only sensitive to these decays if mR/2 is sufficiently

larger than any cut on /ET or the photon pT. We use the data from CMS [230] and CalcHEP for

the signal prediction. Note that the limits on the direct decay R → Zγ have been calculated

without including the contribution of invisible decays of R together with a photon from ISR. For

sizeable invisible branching of R the bounds would therefore become even stronger.

A summary of all limits is shown in Fig. 4.7. We observe that there is indeed a bound for every

decay channel mentioned in Eq. (4.41). We are therefore in the position to sum all experimental

bounds in order to infer a bound on g2
q using Eq. (4.45). The result is shown in Fig. 4.8. The final

step in order to constrain direct detection cross sections, is now to extract an upper bound on

ΓR. However, it is not necessarily true that maximising g2
q will also maximise ΓR. In particular,
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Fig. 4.9. Limit on ΓR from the combination
of all experimental bounds.

if the quark couplings satisfy g2
q < sxy for one particular channel with final state xy, we can

increase the couplings of R to xy — and thereby the width ΓR — arbitrarily without being

excluded experimentally. By similar reasoning, if g2
q < stot − sqq we can simultaneously increase

all couplings of R apart from its coupling to quarks without violating experimental constraints.

We observe from Fig. 4.7, however, that of all possible decay channels, the branching into

dijets is least tightly constrained. Consequently, stot ≈ sqq and therefore stot − sqq � stot.

The case g2
q < stot − sqq would therefore lead to a scenario similar to the one discussed in the

previous section, where R has large couplings to DM, but strongly suppressed couplings to SM

quarks. Since we have already discussed this case in detail, we will here focus on the case where

direct quark couplings are large, i.e. we assume that g2
q > stot − sqq. In this case, ΓR is indeed

maximised by pushing gq, as well as all other couplings of R, to their experimental limit. The

total width must then satisfy

ΓR ≤ Γ qq̄max
stot
sqq̄

, (4.47)

where Γ qq̄max is the partial width obtained setting g2
q = stot and assuming family independent

couplings. The resulting bounds are shown in Fig. 4.9.

We observe that up to mR ∼ 1100 GeV, ΓR/mR is constrained to be so small that the NWA

stays valid, which is an important consistency requirement for our treatment. We can therefore

use the limit on ΓR from Fig. 4.9 together with Eq. (4.44) to calculate an upper bound on

the direct detection cross section. The resulting bounds on the direct detection cross section



88 Phenomenology and collider constraints for vector mediators

1000500300 700
10-42

10-41

10-40

10-39

10-38

mR @GeVD

Σ
p

@cm
2 D

fn� fp = 1

DAMA

CoGeNT

1 3 10 30
10-45

10-44

10-43

10-42

10-41

10-40

10-39

10-38

mΧ @GeVD

Σ
p

@cm
2 D 300 £ mR � GeV £ 1100

Contact operator bound
LHC combined bound
CDMS Ge low
XENON100
DAMA
CoGeNT

Fig. 4.10. Left: Bound from LHC data on the direct detection cross section as a function of
the mediator mass mR with the DM mass mχ = 10 GeV. Right: Bound on the direct detection
cross section from LHC limits as a function of the DM mass mχ compared to the results from
various direct detection experiments. The width of the blue line corresponds to the change of the
bound as the mediator mass is varied between 300 and 1100 GeV. For larger or smaller mediator
masses, the bound would become weaker. As an example, we show the bound obtained from the
contact operator that would arise from integrating out the mediator (see Sec. 2.4).

both as a function of mediator mass and as a function of DM mass are shown in Fig. 4.10. We

observe that we can exclude a cross section of σp = 2 × 10−40 cm2 over the full mass range

300 GeV ≤ mR . 1100 GeV, as long as mχ � mR.

So far, we have only considered standard SI interactions of DM. For different interactions, such

as SD interactions, momentum-dependent interactions, inelastic DM or effective couplings with

fn 6= fp, scattering in the non-relativistic limit is typically strongly suppressed, while the results

from LHC searches are not significantly affected (see Secs. 2.4 and 3.3). As a result, in most of

these cases the LHC bounds will become much stronger compared to any exclusion limits (or

claimed signals) from direct detection experiments. To illustrate this point, we show in Fig. 4.11

the LHC bounds for SD interactions, as well as SI interactions with fn/fp = −0.7.

Finally, we discuss how our results would change for complex scalar DM (e.g. a scalar

technibaryon [40, 243, 244, 247]). In fact, all the experimental limits can be applied in complete

analogy, the only difference being that for identical couplings the partial width for decays into

scalar DM is smaller by a factor of 4, see Appendix A.6. As a consequence, the bounds on the

direct detection cross section will be weaker by a factor of 4, excluding σp > 8× 10−40 cm2 for

mχ � mR and 300 GeV < mR < 1100 GeV.
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Fig. 4.11. Left: Bound on the SD direct detection cross section from LHC limits as a function
of the mediator mass mR with the DM mass fixed to mχ = 10 GeV. Right: Same but for SI
interactions with the isospin-violating couplings fn/fp = −0.7.

To conclude this section, we would like to emphasise once more that it is possible to suppress

these collider constraints by making the DM coupling very large compared to the quark couplings.

In addition, we have made a number of further assumptions for our analysis. First of all, the

DM particle has been assumed to have a mass mχ � mR. When mχ becomes larger than mR/2,

R can no longer decay into DM particles and therefore monojet signals can only arise when the

mediator is produced off-shell. Hence bounds from monojets become much weaker. We do not

consider this case further, as LHC bounds on the interactions of heavy DM are significantly less

stringent than those obtained from direct detection experiments.

Second, we have assumed family independent fermion couplings (but we allow differences

between up-quark and down-quark couplings, and between charged lepton and neutrino couplings).

Coupling the mediator predominantly to the third generation would slightly relax the bound

from dileptons, but make the already quite strong bound on top quarks even stronger. At the

same time, doing so would strongly suppress the direct detection cross section. Consequently,

allowing family-dependent couplings would not relax our final constraints.

Third, we have only considered the contribution from D-Y production of R. For large mR,

however, the coupling of R to WW is not well constrained, so it could in general be possible

to enhance the cross section of VBF production. By neglecting additional contributions to the

production of R we give a more conservative bound.

Finally, and most importantly, we have assumed that we can treat R as a narrow resonance and
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we make extensive use of the NWA to separate the production of R from the subsequent decays.

This factorisation is not valid for broad resonances, where we expect a significant contribution

from off-shell mediators (see Ref. [222] for a discussion). Moreover, many bounds only apply for

a narrow resonance. For example, dijet resonance searches have only been performed for peaks

with Γ/m . 0.3.

We observe that formR < 1100GeV, present experimental results give the constraint ΓR/mR <

0.3. For these values, we expect the NWA to be accurate within a few percent. As mR increases,

the bounds on the individual coupling constants — and therefore the bound on ΓR — become

weaker. For mR > 1TeV, couplings can be of order unity and the width can become so large that

neither the experimental limits nor the formalism presented in this chapter can be applied. With

increasing energy at the LHC we expect to be able to extend our treatment to larger mediator

masses, while at the same time obtaining stronger bounds on the direct detection cross section.



CHAPTER 5

The importance of heavy-quark loops for LHC monojet searches

We have seen in the previous chapter that monojet searches can provide interesting constraints

on the DM direct detection cross section, in particular for light DM. How strong these constraints

are depends very much on whether the DM interactions lead to SI or SD scattering in direct

detection experiments (see Figs. 4.10 and 4.11). In the former case, direct detection experiments

are typically more sensitive because of the coherent enhancement proportional to the square of

the nucleus mass and monojet searches are only beginning to probe the interesting parameter

region. For interactions that are either SD or momentum suppressed, on the other hand, direct

detection constraints on the scattering cross section are weakened by many orders of magnitude.

In this case LHC bounds are very strong and — at least for heavy mediators — seem to rule out

all of the parameter region probed by direct detection.

In this chapter we will look at the comparison between monojet searches and direct detection

experiments in more detail and point out that a tree-level calculation is not always sufficient for

this purpose. In Sec. 5.1 we consider the exchange of a new heavy scalar or pseudoscalar mediator

with Yukawa-like couplings to quarks. In this case, LHC monojet searches give only weak

constraints on the DM-proton scattering cross section if only tree-level processes are included

in the analysis. The inclusion of heavy-quark loops, however, leads to a dramatic increase in

the predicted monojet cross section and therefore a significant improvement of the bounds from

LHC searches.

In Sec. 5.2, we study the converse situation, namely the case where LHC monojet searches

give very strong bounds at tree level, because direct detection cross sections are SD. We show

that loop contributions can significantly boost direct detection bounds whenever they induce
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SI interactions. In fact, a rigorous classification of DM-nucleon interactions into SI and SD (or

momentum suppressed) is not possible in general, as such a distinction is unstable under radiative

corrections. This effect is most striking for tensor and pseudotensor interactions, which induce

magnetic and electric dipole moments at loop level. For axialvector and anapole interactions a

relevant contribution to direct detection signals arises from loop-induced Yukawa-like couplings

between DM and quarks.

We have demonstrated in the previous chapter that it is quite difficult to compare monojet

searches with direct detection experiments if the mediator of the interaction can be produced

on-shell at the LHC so that monojet cross sections benefit from a resonant enhancement. In

this chapter, we want to avoid such complications in order to focus on the effects of heavy-quark

loops. We will therefore assume for simplicity that the mediator of the interactions is sufficiently

heavy to be integrated out, so that one obtains an effective higher-dimensional operator that

describes the low-energy interactions between DM and SM states (see Sec. 2.4). Although this

approach has a limited range of applicability, we will argue that the effects discussed here will

remain equally important once the mediator of the interaction is reinstated as an active degree

of freedom.

5.1 Yukawa-like interactions

In this section, our focus will be on the scalar and pseudoscalar operator introduced in Eq. (2.20),

which have the special property that the interactions between DM and quarks are proportional

to the SM Yukawa couplings. For these operators the DM pair production proceeds through

tree-level diagrams like those shown in the upper row of Fig. 5.1. Using these diagrams alone, the

suppression scale Λ in Eq. (2.20) is very difficult to constrain with LHC monojet searches [127–

130, 137, 150, 153, 248] since the initial state contains (apart from gluons) only light quarks,

which by assumption have small couplings to DM. The situation changes dramatically beyond tree

level, since now loop graphs involving virtual top quarks give rise to a j + /ET signal. Examples

of such Feynman diagrams are displayed in the lower row of Fig. 5.1.
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Fig. 5.1. Typical tree-level (upper row) and loop-level (lower row) diagrams leading to monojet
events. The black squares denote insertions of four-fermion operators.

5.1.1 Limits from monojet searches

To determine the magnitude of this effect, we again use the results from the CMS monojet search

(see Sec. 4.4.3). To calculate the predicted monojet cross section for the operators introduced

above we have implemented each of them in FeynArts [249] and performed the computations

with FormCalc and LoopTools [250]. Furthermore, as an independent cross-check, we have

verified our findings with MCFM [251], modifying the process p + p → H (A) + j → τ+τ− + j,

which is based on the analytical results of Ref. [252] for the scalar Higgs case and Ref. [253]

for the pseudoscalar Higgs case. Both computations utilise MSTW2008LO PDFs [254]. As before,

we do not consider the effects of parton showering and hadronisation or the contribution of

additional jets.

Our results are displayed in Fig. 5.2 for the case where DM is either a Dirac fermion or a

complex scalar. For Majorana fermion or real scalar DM, the predicted cross sections are larger by

a factor of 2 and so the bounds on Λ are stronger by roughly 12%. For the scalar (pseudoscalar)

operators we find that including the loop-level processes in the calculation increases the predicted

monojet cross sections by a factor of around 500 (900), the precise value depending on the DM

mass and the choices of renormalisation (µR) and factorisation (µF ) scales. These numbers

translate into an increase of the bounds on Λ by a factor of 2.8 (3.1). Note that the limit on

ΛS that we obtain from tree-level processes alone is already stronger than the one reported in
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Fig. 5.2. LHC monojet bounds on the scale Λ at tree-level (red) and loop-level (green) for the
effective operators OS (upper-left panel), OP (upper-right panel), and OφS (lower panel). The
black dashed curves indicate the requirement for the correct relic density. Values of Λ above this
curve imply an overproduction of DM in the early universe, while values below are not excluded,
leading to allowed parameter regions for large DM masses (indicated by a light blue shading).
The width of the bands reflect the scale uncertainties. See text for details.

Ref. [126] by about 25%, because we include bottom quarks in the initial state, which we find to

give the dominant contribution.

An important question to address is whether the above results could have been obtained

without performing a loop calculation, by simply taking the large top-quark mass limit. In this

approximation, the effect of heavy-quark loops for the operator OS can be described by the

effective operator

OG ≡
αs

4Λ3
G
GaµνG

aµν χ̄χ . (5.1)

The corresponding operator induced by OP is obtained by replacing GaµνGaµν with GaµνG̃aµν ,

where G̃aµν = εµνρσGaρσ, and χ̄χ by χ̄γ5χ. For scalar DM, one can simply replace χ̄χ with

φ∗φ. Effective interactions like Eq. (5.1) have been studied previously in the context of monojet

searches [128, 129, 153, 248].

For mt →∞ bounds on these operators can be translated into limits on OS,P and OφS by the
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simple identifications ΛS = ΛG/(3π)1/3 and ΛP = ΛG/(2π)1/3. The scales involved in j + /ET

production (i.e. the pT and the DM mass) are, however, not necessarily small compared to the

top-quark mass, which implies that the infinite mass limit is not a good approximation [255].

Numerically, we find that applying the mt →∞ limit overestimates the monojet cross sections

by a factor of around 3 for small DM mass and that the quality of the approximation rapidly

degrades with increasing pT cut and DM mass, resulting in errors of up to a factor of 40. These

numbers imply that the corresponding limits on Λ would be too strong by a factor of 1.2 (1.9) in

the best (worst) case. This consideration clearly shows that one cannot use OG (or analogous

operators) to infer faithful bounds on the quark-DM contact operators.

To assess the theoretical errors in our analysis, we have studied the scale ambiguities of our

results. We find the scale µ which determines αs(µ) dynamically, i.e. we define µ = ξ pT = µR =

µF and evaluate it on an event-by-event basis. Following common practice, we have varied ξ

in the range [1
2 , 2]. We find that the predictions of the tree-level and loop-level monojet cross

sections calculated in this way vary by around ±20% and ±50%, respectively. The resulting

uncertainties on Λ stay below ±2 GeV and ±15 GeV. They are reflected by the width of the

coloured bands in Fig. 5.2.

The pronounced scale ambiguity of the loop-level result indicates that NLO corrections might

be large. Indeed, the K-factor, representing the ratio between the NLO and LO cross sections

of p+ p→ H + j evaluated in the mt →∞ limit, varies between 1.2 and 1.8 depending on the

kinematic region and choice of PDFs [256–258]. Using MCFM, we explicitly verified that the same

range of K-factors also applies to the monojet signal, although the imposed pT cut is significantly

higher than in the case of Higgs + jet production. Including parton showering and imposing a

veto on the number of jets, however, is expected to reduce this K-factor significantly. Including

these effects, it was found [227] that the K-factor for the effective gluon operator in Eq. (5.1) is

only K ≈ 1.1.

Nevertheless, the inclusion of NLO corrections and of two-jet events is expected to strengthen

the bounds on Λ somewhat. However, it is difficult to estimate the magnitude of this effect in

the full calculation with resolved top-quark loops (in particular, for high pT cut and large DM

mass), so we prefer not to include these effects in our results and give a conservative bound.

Clearly, a more careful analysis of finite top-quark mass effects at O(α4
s) (along the lines of the
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recent Higgs + jet study [259]) is required to make a more quantitative statement. This study is

left for future work.

Finally, we note that the values of Λ that we can exclude with the current data are low

compared to typical LHC energies. To discuss the validity of the effective field theory (EFT)

approach, let us consider the simplest UV completion, where Eq. (2.20) arises from the full

theory after integrating out a mediator Φ with couplings

L ⊃ gS
χ χ̄χΦ+

gS
q mq

v
q̄q Φ or L ⊃ gP

χ χ̄γ
5χΦ+

gP
q mq

v
q̄γ5q Φ , (5.2)

see also Sec. 2.4. We anticipate that the new scalar or pseudoscalar mediator may be produced

on-shell in pp collisions, unless the couplings gq and gχ are large (see Refs. [129, 142, 153]). In

this case the analysis becomes more model-dependent, because the predictions now depend on gq

and gχ as well as the mass MΦ and the decay width ΓΦ of the mediator (see Chapter 4).

The main features of the full theory calculation are captured by including a Breit-Wigner

propagator for Φ in the monojet cross section [129]. In particular, the j + /ET signal is enhanced

relative to the EFT result if the s-channel mediator can be produced on-shell. In this case, using

an EFT gives a lower bound on the expected monojet cross section. Only if the propagator is

forced to be off-shell (because MΦ . 2mχ) will the full theory predictions be reduced compared

to the EFT. More precisely, for the /ET and pT cuts that we employ and mχ = 100 GeV, we

find that the EFT calculation underestimates the full theory cross section if MΦ & 280 GeV

(MΦ & 420GeV) for a decay width ΓΦ = MΦ/(8π) (ΓΦ = MΦ/3). Such values of MΦ are perfectly

viable (in the sense that the couplings gq and gχ are perturbative) given our bounds on ΛS and

the relation M2
Φ = gqgχΛ

3
S/v. For lighter mediators, on the other hand, the full theory including

the Breit-Wigner propagator predicts an essentially constant cross section. The EFT calculation

therefore overestimates the result and can no longer be used to give a conservative estimate of

the monojet production cross section.

In summary, as long as we focus on low-mass DM particles with 2mχ � Λ, the EFT is a

good approximation that enables us to calculate lower bounds on the j + /ET cross section. We

find that the ratio between loop-level and tree-level cross sections calculated in the full theory

is largely insensitive to the precise values of gq, gχ, MΦ and ΓΦ. In other words, including

the contributions of virtual top-quark loops gives an enhancement of more than two orders of
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magnitude irrespectively of whether the computation is done in the effective or full theory.

5.1.2 Bounds from relic density and direct searches

The suppression scale Λ which can be constrained through monojet searches also enters in the

DM annihilation cross section and the DM-proton scattering cross section. Consequently, limits

on Λ can also be inferred from measurements of the relic density and DM direct detection

experiments. Here we compare these results with the bounds derived in the previous section.

Two different annihilation channels contribute to the total annihilation cross section. Tree-level

annihilation into quarks will be dominant for mχ > mt, while annihilation into gluons via

heavy-quark loops can give a relevant contribution for lower DM masses. At leading order in

the DM velocity v, the annihilation cross sections into quarks for the three operators discussed

above are given by (see e.g. Ref. [137])

(
σSv

)
χ̄χ→q̄q =

3v2m4
χ

8πΛ6
S

∑
q

zq (1− zq)3/2 ,

(
σPv

)
χ̄χ→q̄q =

3m4
χ

2πΛ6
P

∑
q

zq (1− zq)1/2 , (5.3)

(
σφSv

)
φφ→q̄q =

3m2
χ

4πΛ4
S

∑
q

zq (1− zq)3/2 ,

where zq = m2
q/m

2
χ and the sum includes the quarks with zq < 1. The corresponding cross

section for annihilation into gluons take the form (see e.g. Ref. [260])

(
σSv

)
χ̄χ→gg =

v2α2
sm

4
χ

18π3Λ6
S

∑
q

|FS(zq)|2 ,

(
σPv

)
χ̄χ→gg =

α2
sm

4
χ

2π3Λ6
P

∑
q

|FP(zq)|2 , (5.4)

(
σφSv

)
φφ→gg =

α2
sm

2
χ

9π3Λ4
S

∑
q

|FS(zq)|2 ,

where the sum is over all quarks, including those with zq > 1, and

FS(z) = 3z
2

[
1 + (1− z) arctan2

( 1√
z − 1

)]
, (5.5)

FP(z) = z arctan2
( 1√

z − 1

)
(5.6)

are the well-known form factors for fermion loops [261]. These form factors are normalised so
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that FS(∞) = FP(∞) = 1 in the limit of infinitely heavy quarks.

If we assume that the interactions between the DM particle and SM quarks are the dominant

ones at freeze-out, we can determine Λ as a function of mχ by the requirement that the observed

DM relic abundance Ωχh2 ≈ 0.12 [15] is reproduced (see Sec. 1.3). We use Eq. (1.12) and

indicate the values of Λ that give the correct relic density by black dashed curves in Fig. 5.2.

Larger values of Λ corresponds to DM overproduction in the early universe, smaller values imply

underproduction. Since the former is experimentally excluded, we obtain the following lower

bounds on the DM mass from the intersections of the monojet bounds and the relic density

constraints:

OS : mχ > 129 (149) GeV ,

OP : mχ > 44 (55) GeV ,

OφS : mφ > 1.4 (1.5) GeV .

(5.7)

Here the values in brackets apply if DM is a Majorana fermion or a real scalar instead of a

Dirac fermion or a complex scalar. It should be noted that these bounds can be weakened if

the DM has large annihilation cross sections to other SM states or new hidden sector states.

Such additional annihilation channels can in principle significantly reduce the tension between

relic density constraints and results from DM searches. Underproduction is generally acceptable,

assuming that the particle considered here accounts for only a fraction of the total DM abundance.

Moreover, the parameter space that leads to DM underproduction in standard freeze-out can still

give the observed relic abundance if the hidden sector carries an particle-antiparticle asymmetry

similar to the one in the visible sector (see Sec. 1.4). Since the presence of any asymmetric

component necessarily leads to a larger relic density compared to the purely symmetric case, the

constraints in Eq. (5.7) provide lower bounds on the DM mass in models of ADM.

For the scalar operators OS and OφS , the DM direct detection cross section is given by

σN = f2
N

µ2
Nχm

2
N

π Λ6
S

, σφN = f2
N

µ2
Nφm

2
N

π Λ4
Sm

2
φ

, (5.8)

where N = p, n and fn ≈ fp ≈ 0.28 (see Appendix A.5). The scattering cross sections for

Majorana or real scalar DM are larger by a factor of 4. Utilising Eq. (5.8), the monojet bounds

on Λ can be translated into limits on σn, which in turn can be compared to the exclusion limits



5.1 Yukawa-like interactions 99

1 10 100 1000
10-45

10-44

10-43

10-42

10-41

10-40

10-39

10-38

mΧ @GeVD

Σ
n

@cm
2 D

CDMS-II Ge

Xenon100

CoGeNT

DAMA

Heavy top quark

Loop-level bound

Tree-level bound

Fig. 5.3. LHC monojet bounds on the DM-proton cross section for the operator OS at tree-level
(red) and loop-level (green) compared to various results from DM direct detection experiments.
While the tree-level monojet bound is too weak to constrain the parameter regions favoured by
DAMA and CoGeNT, the loop-level bound clearly excludes these regions.

obtained from XENON100 and CDMS-II as well as to the best-fit regions obtained from DAMA

and CoGeNT (see Appendix A.2).

Our final results are shown in Fig. 5.3 for the case where the DM particle is a Dirac fermion. All

shown bounds and best-fit regions represent 95% CL ranges. For large values of mχ, as indicated

by the relic density constraints, direct detection experiments give stronger bounds than monojet

searches. For mχ ≈ 10 GeV, the bounds become comparable, while below this value the bounds

from LHC searches are far superior. We observe that the inclusion of loop-level processes gives a

pertinent improvement of the monojet bounds, in particular because it independently excludes

the possibility that the CoGeNT excess or the DAMA modulation arise from the interactions of

a heavy scalar mediator with Yukawa-like couplings.

For the pseudoscalar operators the DM direct detection cross section is SD and suppressed by

q4/m4
p, so that no relevant bounds on ΛP can be obtained from direct detection experiments.

Consequently, the bounds shown in the upper-right panel of Fig. 5.2 are presently the strongest

limit on the new-physics scale ΛP. It is evident from the figure that including loop contributions

improves the bound on mχ inferred from the relic abundance by a factor of about 15.



100 The importance of heavy-quark loops for LHC monojet searches

5.2 Spin-dependent and momentum-suppressed interactions

In this section, we discuss two types of effective operators that lead to either SD or momentum

suppressed interactions at tree level, but induce SI interactions once loop contributions are

included. For operators with tensor or pseudotensor structure, i.e. OT and OPT as defined in

Eq. (2.21), we show that such contributions lead to a magnetic or electric dipole moment of

the DM particle, respectively. In other words, the virtual exchange of heavy quarks leads to

the effective DM-photon interactions parameterised by OM and OE in Eq. (2.23). While the

tree-level interactions are SD or momentum suppressed and therefore pose a challenge for direct

detection experiments, the loop-induced interactions lead to an SI part in the differential cross

section that is additionally enhanced in the infrared due to the photon pole. This feature makes

DM with dipole-type interactions relatively easy to detect in low-energy scattering. For the

case of the axialvector and anapole operators defined in Eqs. (2.17) and (2.18), respectively, we

consider loop diagrams involving two operator insertions. The resulting corrections generally

give rise to SI interactions between DM and quarks. We also discuss the impact of our findings

in the context of relic density constraints and existing anomalies in the DM sector.

5.2.1 Tensor and pseudotensor operators

We consider the one-loop diagram shown on the left in Fig. 5.4. A straightforward calculation

(outlined in Appendix A.7) shows that the insertion of OT into this graph induces a contribution

to OM with a magnetic dipole moment (in units Λ2
T) that is approximately given by

CM '
3eQt
4π2 mt ln Λ

2
T

m2
t

, (5.9)

where Qt = 2/3 and mt ≈ 163 GeV are the electric charge and mass of the top quark and we

have assumed that ΛT > mt. Due to the chiral invariance of QED and QCD the above result

also holds for the coefficient CE that results from the mixing of OPT into OE. Bottom- and

charm-quark loops with an insertion of OT and OPT will also induce dipole moments. The

corresponding expressions for CM and CE are obtained from Eq. (5.9) by the simple replacements

Qt → Qb,c and mt → mb,c. These findings agree with the discussion of loop-induced DM dipole

moments in the context of leptophilic DM [231].
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Fig. 5.4. Left: One-loop diagram with a closed top-quark loop that leads to a dipole-type
operator. Right: Feynman diagram for elastic DM scattering on a nucleus with electric charge Z.
The black squares in both graphs denote an operator insertion.

Direct detection bounds on dipole moments

For the dipole-type operators Eq. (2.23) the scattering in direct detection experiments proceeds

through the exchange of a photon, as shown on the right side of Fig. 5.4. In the non-relativistic

limit the corresponding differential cross sections are [146, 147]

dσM
dER

= 4αC2
M

Λ4
T

[
Z2
(

1
ER
− 1
mχv2 −

1
2mNv2

)
|Fc(ER)|2

+ 2 (J + 1)
3J

(
µNA

µB

)2 1
2mNv2 |Fs(ER)|2

]
, (5.10)

dσE
dER

= 4αC2
E

Λ4
PT

Z2

v2ER
|Fc(ER)|2 . (5.11)

Here α ≈ 1/137 is the fine-structure constant of electromagnetism, J is the spin of the target

nucleus and µN/µB is its magnetic moment in units of the Bohr magneton µB = e/(2mn). The

form factors Fs(ER) and Fc(ER) reflect the distribution of spin and charge in the nucleus as a

function of the recoil energy ER, and we adopt the parameterisations introduced in Ref. [147]

to model these functions. Since most collisions have a momentum transfer small compared to

the inverse nuclear radius, uncertainties in the form factors have a negligible effect on our final

results. We observe that all terms in the expression for dσM/ dER are suppressed compared to

dσE/ dER either by a factor of v2, by a factor of ER/mχ or by a factor of ER/mN , which are all

typically O(10−6). Consequently, effective operators that induce an electric dipole moment are

in general the most severely bounded.

Substituting Eq. (5.10) into Eq. (2.1) and calculating the velocity integral (see e.g. Ref. [146] for
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details), we can translate bounds on the differential event rate from direct detection experiments

into bounds on the magnetic and electric dipole moments CM/Λ
2
T and CE/Λ

2
PT. Using Eq. (5.9)

for CM and an analogous equation for CE, we can further convert these bounds into limits on the

new-physics scale Λ entering the definition of the operators OT and OPT. In our analysis we

constrain the suppression scale using results from XENON100, CDMS-II, CRESST-I [262] and

PICASSO [263] (see Appendix A.2).

Hadron collider bounds

In order to determine the cross section for a j + /ET signal associated to the operators in

Eq. (2.21), we have implemented each of them in FeynRules [264]. The actual computations

have been performed at leading order with MadGraph 5 [265] utilising CTEQ6L1 PDFs [266]. We

adopt the cuts from the ATLAS monojet search with an integrated luminosity of 4.7 fb−1 at
√
s = 7 TeV [126]. For the signal region 4, comprising events with /ET , pT (j1) > 500 GeV, the

ATLAS results exclude new contributions to the production cross section in excess of 6.9 fb at

95%CL.

While we do include secondary jets in our computation of the signal prediction, we do not

consider the effects of parton showering and hadronisation for simplicity, as they do not change

our main conclusions qualitatively. In order to assess the theoretical errors in our analysis, we

again study the scale ambiguities of our results (see Sec. 5.1). We find that the uncertainties

amount to about ±30% at the cross section level.

Results

Our results are displayed in Fig. 5.5. The constraints on the DM dipole moments from direct

detection experiments enable us to probe and exclude suppression scales Λ in the range of around

[1.7, 3.7] TeV for the tensor operator (upper panel) and in the range of [66, 159] TeV for the

pseudotensor operator (lower panel). The black solid curves and grey bands in the two figures

correspond to the 95%CL limits from the ATLAS 4.7 fb−1 [126] search for a j + /ET signal. For

DM masses mχ & 10 GeV the resulting bounds are clearly weaker than the constraints obtained

from direct detection experiments.
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Fig. 5.5. Bounds on the scale Λ suppressing the effective operator OT (upper panel) and OPT
(lower panel) inferred from constraints on the DM magnetic dipole moment and LHC searches for
j + /ET . The orange (long dashed) curve indicates the requirement for the correct relic density.
The width of the collider limit indicates scale uncertainties. Note the change of scale between
the two panels.

Relic density requirements

Further restrictions on the DM parameter space can be derived by calculating the thermal relic

density. As discussed in Sec. 1.3, we can obtain an estimate for Ωχ by expanding the annihilation

cross section in powers of v2, see Eq. (1.12). For the effective tensor OT and pseudotensor OPT

interactions, we find the s-wave coefficients

aT =
6m2

χ

πΛ4

∑
f

√
1− zf (1 + 2zf ) , aPT =

6m2
χ

πΛ4

∑
f

(1− zf )3/2 , (5.12)

where the sum extends over all quark flavours f with a mass mf < mχ and zf ≡ m2
f/m

2
χ. The

above results agree with the expressions presented in Ref. [137].
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If the interactions due to OT and OPT are the only ones at freeze-out, one can determine

the suppression scale Λ for fixed mχ by the requirement to obtain the observed DM relic

abundance Ωχh2 ≈ 0.12 [15]. The values of Λ that fulfil this constraint are indicated by the

orange dashed curves in Fig. 5.5. The parameter space above (below) this curves corresponds to

DM overproduction (underproduction). Combining the direct detection with the relic density

constraints then yields a lower bound on the DM mass. We find

OT : mχ & 160 GeV , OPT : mχ & 23 TeV . (5.13)

An interesting question in this context is whether the tensor or pseudotensor operator induce

observable annihilation into mono-energetic γ-rays at the loop level. If the predicted γ-ray flux

is sufficiently large, one could hope to obtain interesting constraints from Fermi-LAT [108], or

potentially even to provide an explanation for the claimed observation of a signal at around

130GeV [267, 268]. However, in order to obtain a visible signal, the suppression scale Λ typically

has to be around 400GeV or smaller [145], which is well below our bounds. In fact, as was pointed

out in Refs. [269–271], such a scenario is already excluded just from limits on the diffuse γ-ray

emission [109]. Furthermore, it turns out that for the specific case of tensor and pseudotensor

operators, the one-loop contribution for annihilation into γ-rays vanishes identically [145] (see

also Ref. [272] for a discussion in a non-DM context). The leading contributions to χ̄χ → γγ

then arise at two loops from one-particle reducible diagrams involving two insertions of OM or

OE. As a result the associated fluxes of mono-energetic γ-rays are suppressed by two powers of

Eq. (5.9), rendering them undetectably small.

Direct detection bounds on SD interactions

To conclude the discussion, we want to compare the loop-induced bounds from direct detection

experiments to the ones obtained from tree-level scattering. For this purpose we translate

the constraints on OT derived above into bounds on the SD DM-nucleon cross section using

Eq. (2.22). Taking the values for ∆q(N) from Eq. (2.15) we find ap ≈ an ≈ 0.32. We can then

compare these ‘indirect’ bounds on σSDN with the conventional constraints on SD interactions

from direct detection experiments with an odd number of protons or neutrons in the target

atoms. Such direct constraints stem from XENON100, CRESST-I, PICASSO, SIMPLE [273],
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Fig. 5.6. Bounds on the SD DM-nucleon cross section from direct detection experiments
compared to the constraints on the operator OT resulting from loop-induced DM dipole moments
and LHC searches for j + /ET . The width of the collider limit indicates scale uncertainties, while
the corresponding uncertainties for the dipole moments are not shown.

COUPP [274] and KIMS [275] (see Appendix A.2 for details).

The resulting bounds and best-fit regions are shown in Fig. 5.6. The solid red curve indicates

the combined bound from loop-induced SI interactions. As expected, if DM interactions proceed

via the operator OT, experiments sensitive for SD interactions cannot currently probe the

parameter region allowed by LHC monojet searches. Our central observation is, however, that

even if we neglect the bounds from the LHC, the accessible parameter region is already excluded

by constraints on the DM magnetic dipole moment unless mχ < 5 GeV. In other words, for

mχ ≥ 5GeV there is no need for target nuclei with spin in order to constrain OT. We do not show

the corresponding plot for the pseudotensor operator, because in this case tree-level scattering is

momentum suppressed and therefore the corresponding bounds from direct detection experiments

do not give any interesting constraint. In other words, all relevant bounds for OPT are already

shown in Fig. 5.5. Note that, in particular, the effective interactions OT and OPT cannot provide

an explanation for the DAMA modulation.

To conclude this section, let us consider the contribution of bottom and charm quarks to DM

dipole moments separately. These contributions are suppressed compared to the one from top

quarks because of the smaller quark masses, but they will receive larger logarithmic corrections.

For the tensor operator OT, we find numerically that the resulting bounds on Λ are weaker
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Fig. 5.7. One-loop contributions to the DM-quark scattering amplitude induced by the
operators OAX and OAN. The black squares represent operator insertions.

compared to the ones obtained above by a factor of approximately 0.14 for bottom quarks and a

factor of approximately 0.12 for charm quarks. For the pseudotensor operator OPT the limits

are weaker by a factor of 0.12 and 0.10, respectively. Thus, in the latter case both bottom- and

charm-quark loops alone lead to bounds that significantly exceed the constraints from the LHC.

5.2.2 Axialvector and anapole operators

We now turn to the discussion of the axialvector operator OAX and the anapole operator OAN. In

both cases we consider the one-loop diagrams shown in Fig. 5.7. As has been observed previously

in the literature [231, 276–278], the matrix element resulting from two insertions of the operator

OAX leads to SI scattering, which can be described by the operator OS defined in Eq. (2.20).1

Assuming for definiteness mχ < mt, the induced coefficient reads (see Appendix A.7 for details)

CS ' −
1

2π2
mχ

ΛAX
ln Λ

2
AX
m2
χ

(5.14)

for q = u, d, s, c, b while for q = t the argument of the logarithm is Λ2/m2
t . The same result

(though with opposite overall sign) holds for two insertions of OAN instead of OAX.

Bounds on the new-physics scale

Inserting the conventional bounds on σSIN from various direct detection experiments (see Ap-

pendix A.2) into Eq. (5.8) one can constrain CS and therefore, using Eq. (5.14), the scale Λ

appearing in OAX and OAN.2 Our results are shown in Fig. 5.8. For DM masses between 10GeV

1The Feynman diagrams in Fig. 5.7 also lead to a loop-suppressed contribution to OAX, but the corrections
to the vector operator OV cancel exactly.

2Note that, since we find Λ < mt, it would be inconsistent to include the contribution to the DM-nucleon
couplings that arises from integrating out the top quark. Consequently, following Appendix A.5, we take fp ≈
fn ≈ 0.21, which is somewhat smaller than the value used above.
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Fig. 5.8. Bounds on the scale Λ suppressing the effective operators OAX (upper panel) and
OAN (lower panel) inferred from LHC monojet searches and constraints on the SI DM-nucleon
cross section. The orange (long dashed) curve in each plot indicates the requirement for the
correct relic density. The width of the collider limit indicates scale uncertainties.

and 100GeV, we find bounds in the range of [50, 100] GeV. For smaller values of mχ, the bounds

are suppressed due to the multiplicative factor mχ in Eq. (5.14), while for larger values the limits

deteriorate because mχ approaches Λ and consequently the logarithm in Eq. (5.14) tends to

zero. In practice, we only show bounds that satisfy Λ2/m2
χ > 2. Comparing these results to

the constraints from LHC searches, we find that the latter give far superior bounds, requiring

Λ & 700 GeV.

As before we also calculate the thermal-averaged annihilation cross section into quarks. For

the axialvector operator OAX we find that s-wave annihilation into pairs of quarks is helicity

suppressed, so that one has to include the contribution from p-wave annihilation. Explicitly, we
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get

aAX = 3
2πΛ4

AX

∑
f

m2
f

√
1− zf , bAX =

3m2
χ

2πΛ4
AX

∑
f

√
1− zf

8− 22zf + 17z2
f

24 (1− zf ) . (5.15)

In the case of the anapole operator OAN the annihilation can only proceed via p-wave. The

corresponding coefficients are given by

aAN = 0 , bAN =
m2
χ

4πΛ4
AN

∑
f

√
1− zf (2 + zf ) . (5.16)

Our results in Eqs. (5.15) and (5.16) agree with those given in Ref. [137]. Since annihilation

is suppressed for both operators, Λ has to be significantly smaller than for the tensor and

pseudotensor operator in order to reproduce the observed relic density. LHC bounds then imply

that the required DM density can only be achieved for mχ & 93 GeV for both the axialvector

and the anapole operator.

Because of the helicity suppression for the axialvector operator and the velocity suppression

for the anapole operator, constraints from indirect detection are very weak. To calculate these

constraints accurately, one would have to take into account both loop-induced annihilation into

monoenergetic γ-rays as well as photons arising from the process χ̄χ→ q̄qV , where V is a SM

gauge boson (see e.g. Ref. [279]). We do not perform such a calculation here, because the resulting

bounds turn out to be much weaker than existing collider constraints [145, 151]. Moreover, for

the anapole operator, the one-loop contribution to annihilation into γ-rays vanishes.1

Bounds on the DM scattering cross section

Even though Fig. 5.8 seems to indicate that loop-induced SI scattering cross sections do not

lead to relevant constraints on the scale Λ, it is interesting to consider cases where the bounds

from LHC searches and the relic density requirement do not apply, for example low-mass ADM

interacting with the SM via a mediator that is light compared to LHC scales [137]. In this

case, only direct detection experiments can give relevant lower limits on Λ. In this section, we

will therefore directly compare the limits from loop-induced SI interactions with the bounds

from tree-level SD interactions (for the axialvector operator OAX) and momentum suppressed

1This finding is in line with the explicit calculation performed in Ref. [272] but disagrees with the results
presented in Ref. [145], where a bound on the anapole operator has been inferred using Fermi-LAT data.
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Fig. 5.9. Upper panel: bounds on the SD scattering cross section from tree-level processes
compared to the bound from loop-induced SI interactions (solid red curve) for the axialvector
operator OAX. Lower panel: corresponding limits on the SI reference cross section for the anapole
operator OAN.

interactions (for the anapole operator OAN) to determine which contribution gives the most

stringent constraint.

For the axialvector operator OAX, the constraints on ΛAX derived above can be translated into

bounds on the SD scattering cross section using Eq. (2.13). Our results are shown in the upper

panel of Fig. 5.9. As before, the bounds are cut off at large DM masses, because we require

Λ2/m2
χ > 2. Because of the small Yukawa couplings appearing in Eq. (5.14) these constraints are

relatively weak compared to the constraints from SD direct detection experiments. Nevertheless,

for some targets with limited sensitivity to SD interactions, such as oxygen, silicon or germanium,
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the event rate resulting from loop-induced processes becomes comparable to tree-level scattering.

Consequently, these effects should be included in a complete analysis of SD interactions.

Let us now turn to the anapole operator OAN. The differential scattering cross section is given

by [139]
dσSI
dER

= 1
2π

mN

Λ4
AN

Z2

v2

[
v2 + q2

2m2
N

(
1− m2

N

2µ2
Nχ

)]
. (5.17)

While this cross section is suppressed by powers of v2 and q2/m2
N , there is an enhancement

proportional to Z2 from coherence. Consequently, it is possible to directly constrain Λ for the

anapole operator using tree-level scattering in direct detection experiments.

Again, the resulting constraints can be compared to the indirect bounds from loop-induced SI

interactions. The resulting bounds in terms of the reference cross section σref = µ2
Nχ/(π Λ4

AN) are

shown in the lower panel of Fig. 5.9. We observe that, in contrast to the case of the axialvector

operator OAX, the loop-induced limits for OAN are comparable to the bounds obtained from

tree-level interactions. In fact, the loop contributions dominate for small DM masses because

tree-level interactions are suppressed for small momentum transfer. In other words, in cases

where the LHC bounds do not apply, loop-induced processes give the strongest bounds on the

DM interactions in this specific region of parameter space.

Our study clearly demonstrates the remarkable complementarity of the different search

strategies for DM. For many of the operators we consider, we find that direct detection and

collider searches provide comparable bounds, and that different searches dominate for different

values of the DM mass. Even in cases where one strategy seems to be inferior to the other when

considering interactions only at tree level, loop contributions can change this picture drastically.

Consequently, detailed studies of such loop effects will play an essential part in combining the

virtues of all different search strategies in order to solve the DM problem.



CHAPTER 6

Conclusions

Good tests kill flawed theories; we remain alive to guess again.

(Karl Popper)

There is clear observational evidence that DM is about five times more abundant in the

Universe than ordinary baryonic matter. As we have argued in Chapter 1, DM is likely to be

made of new stable particles, implying that there is new BSM physics to be discovered. In fact,

there are many viable particle candidates, for example WIMPs, which obtain the appropriate

relic density from the freeze-out mechanism. To establish the nature of DM is therefore a key

challenge for modern astroparticle physics. Indeed, a large number of experiments now pursue

various different strategies to search for WIMPs and similar particles. In Chapter 2, we have

presented the wide range of potential experimental signatures and search channels. The topic

of this thesis has been to develop new techniques to compare several DM experiments and to

exploit the complementarity between different search strategies.

In Chapter 3 our focus has been on direct detection experiments and in particular on the

uncertainties arising from the need to assume a DM velocity distribution. We find that contrary to

the common expectation, these uncertainties cannot entirely account for disagreements between

individual experiments. The key observation is that all nuclear recoil detectors probe the same

velocity integral g(vmin), although possibly for different values of vmin. Both measurements of

and constraints on the differential event rate can thus be converted into vmin-space to obtain

information on g(vmin) and compare experiments without any assumptions on astrophysics.
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By applying this technique, we have shown that the signals reported by DAMA, CoGeNT and

CRESST-II can be brought into agreement by considering a non-standard halo with anisotropy

and allowing for a large modulation fraction. Nevertheless, the tension with experimental null

results cannot be resolved by varying astrophysical parameters. This conclusion also holds for

the tension between CDMS-Si and XENON10/100, which we have examined in more detail,

including a discussion of experimental uncertainties related to the ionisation yield in liquid xenon.

On the other hand, CDMS-Si and XENON10/100 can be brought into agreement when making

different assumptions on the nature of DM scattering, such as different couplings to protons and

neutrons (isospin-violating DM) or down-scattering from an excited DM state (exothermic DM).

In recent years, the idea of studying the velocity integral g(vmin) in order to gain an un-

derstanding of the compatibility or otherwise between different experiments has received an

increasing amount of attention. In the present work, we have extended this method to study

targets with several different materials and to include annual modulations, and we have proposed

a way to constrain the modulation fraction. Recently, the framework has been further extended

to include inelastic DM [280], exothermic DM [281] and models with non-standard velocity

dependence [282, 283], as well as methods for unbinned analyses [178]. Additional ways to

constrain the modulation fraction have been proposed in Refs. [284, 285].

It still remains a major drawback of the method that it is very difficult to quantify the

disagreement between two experiments in a statistically meaningful way. To make progress in

this regard we have developed a method which enables us to find the best-fit velocity integral for

a given set of data. This method can be used very efficiently to determine the DM parameters

(such as mχ and the coupling ratio fn/fp) that bring several experiments into agreement and

construct confidence regions in a halo-independent way. It is not yet clear, however, how to

perform a goodness-of-fit estimate using this method.

Since the completion of Chapter 3, several direct detection experiments have published new

results, which affect some of our conclusions. First of all, CoGeNT has published an update

of their search for an annual modulation based on more than three years of data [286]. While

some evidence for modulation remains, the significance has not grown compared to the previous

analysis. Moreover, due to a better understanding of backgrounds from surface events, CoGeNT

has significantly reduced its estimate of the absolute rate, so that a modulation fraction between
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35% and 62% is needed in order to explain the signal [170], in significant tension with the

expectation (see Sec. 3.1.4). In fact, it has been argued [287] that when taking into account

uncertainties in the fraction of surface events, no significant evidence for a DM signal in the

absolute rate remains. Similarly, the CRESST-II collaboration has recently presented new

data [288], which no longer show an excess at low energies, ruling out the DM interpretation of

their previous results.

At the same time LUX [81] and SuperCDMS [97] have recently published new bounds, which

are considerably stronger than the previous ones from XENON10 and XENON100. The tension

between these constraints and CDMS-Si now is so large that none of the modifications proposed

in Sec. 3.3 is sufficient to bring all experiments into agreement [289]. Exothermic scattering no

longer relaxes the constraints on the CDMS-Si best-fit region because of the very low energy

threshold of SuperCDMS. Similarly, since LUX and SuperCDMS employ different target materials

(namely xenon and germanium), it is not possible to tune the ratio fn/fp in such a way that

bounds from both experiments are sufficiently suppressed (although a marginal compatibility can

still be achieved for fn/fp = −0.7). Only the rather unattractive combination of both exothermic

and isospin-violating DM (with fn/fp ≈ −0.8 to suppress SuperCDMS) can fully reconcile all

three experiments [290].

In summary, both the experimental sensitivity and the theoretical understanding of direct

detection experiments have made significant progress over the past years. As a result, the case

for low-mass DM is significantly weaker now than it was in 2011. New experiments with lower

backgrounds and larger target masses, on the other hand, will soon begin to probe completely

unexplored regions of parameter space. The challenge to interpret upcoming experimental data

independently of astrophysical uncertainties and to compare them with results from other search

strategies remains as important as ever and it will be of crucial importance to develop appropriate

tools. At the same time it is essential that theoretical predictions for non-standard models of

DM are explored systematically in order to ensure that the complementarity of different target

materials is exploited in the best possible way.

Another idea that has gained considerable momentum over the past few years is the idea of

using the LHC, in particular monojet searches, to constrain the DM production cross section.

Traditionally, these searches have been interpreted in terms of tree-level production of DM via
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effective operators. Nevertheless, it has become clear to the community that the range of validity

of the effective operator approach is limited and consequently there is a need for more refined

treatments based on simplified models with explicit s-channel and t-channel mediators (see

e.g. Refs. [141, 291, 292]).

In Chapter 4, we have considered one particular example for an s-channel mediator, namely a

vector mediator coupling to DM and SM particles. Specifically, we have considered the case of a

massive Z ′ arising from a new U(1) gauge group, which couples directly to DM and picks up

couplings to SM particles from mixing with the neutral SM gauge bosons. In such a model, DM

direct detection cross sections can be large, and negative values for fn/fp occur naturally. For

Z ′ masses of a few GeV, the strongest constraints arise from EWPT and Υ decays. For heavier

mediators, LHC resonance searches (in particular searches for dilepton resonances) become very

constraining. Ongoing and forthcoming searches for Z ′ gauge bosons at collider experiments will

make the bounds on these couplings even tighter. Indeed, recent searches for hidden photons at

BABAR [293] already exclude the benchmark parameters considered in Sec. 4.3. To evade these

constraints, it is necessary to move to smaller mixing parameters and smaller Z ′ masses.

We have also considered a more general setup, where we allow for arbitrary couplings between

the vector mediator and SM particles. The constraints from LHC searches can be significantly

relaxed if the mediator couples more strongly to quarks than to leptons and SM gauge bosons.

Using a wide range of LHC searches, in particular monojet searches and dijet resonance searches, it

is nevertheless possible to constrain all relevant decay channels for such a general vector mediator

and obtain relevant constraints on the DM scattering cross section. Upcoming experimental

searches for long-lived hidden sector states and broad resonances will allow us to further relax

our assumptions and extend the validity of our analysis.

Another important shortcoming of the conventional analyses of LHC monojet searches is that

only tree-level processes have been included in the calculation of both the DM production and

the DM scattering cross section. In Chapter 5 we have shown that loop effects, in particular

heavy-quark loops, can give important contributions to these cross sections. We have found

that for DM-quark interactions arising from the exchange of a new heavy scalar or pseudoscalar

mediator with Yukawa-like couplings, the sensitivity of LHC searches has been significantly

underestimated. The improvements we find are particularly important for light DM and for the
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pseudoscalar operator, both of which cannot be constrained by direct detection experiments.

On the other hand, it is not necessarily true that direct detection experiments cannot compete

with LHC searches for interactions that lead to SD or momentum suppressed scattering in the

non-relativistic limit, because SI interactions may be induced at loop level. In some cases, for

example for loop-induced DM dipole moments, the resulting constraints from direct detection

experiments are not only superior to the ones obtained from tree-level processes, but may in fact

even surpass the constraints from the LHC. This result is an impressive demonstration both of

the power of direct detection experiments as well as of the importance of loop contributions in

calculating the expected scattering cross sections.

With increasing centre-of-mass energy and luminosity, the LHC will considerably improve the

sensitivity of monojet searches in the future. Moreover, there are many other search channels

that the LHC has just begun to explore. Clearly, LHC searches for DM are one of the most

exciting aspects of the upcoming run of the LHC and offer bright prospects for the near-term

future of the search for DM. The methods outlined in this thesis will be important for further

advances in constraining the parameter space of DM-quark interactions and we are looking

forward to their implementation in future LHC analyses.

Our analysis of various effective operators and possible UV completions clearly demonstrates

the remarkable complementarity of the different search strategies for DM. For many of the

operators we consider, we find that direct detection and collider searches provide comparable

bounds, and that different searches dominate for different values of the DM mass. Even in cases

where one strategy seems to be inferior to the other when considering interactions only at tree

level, loop contributions can change this picture drastically. Consequently, detailed studies of

such effects will play an essential part in combining the virtues of all different search strategies

in order to solve the DM problem.

So far the interactions of DM remain invisible — but the search is gathering speed. With the

projected impressive increase in sensitivity in upcoming experiments, we can expect putative

signals in the near future rather than just exclusion limits. For an unambiguous detection of DM

it will be essential to combine DM signals from more than one type of experiment. Understanding

the complementarity and interplay of different search strategies will be the key to drawing robust

conclusions of fundamental importance.
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A.1 Various descriptions of the Galactic dark matter halo

In this appendix we present the velocity distributions considered in Secs. 2.1 and 3.1 and provide

the parameter choices used for Figs. 2.2 and 3.2 — for further details we refer to the references.

First, we discuss isotropic velocity distributions, where f(v) depends only on |v| and there is

no preferred direction for DM velocities at the position of the Earth. Then we consider models

where the anisotropy parameter [294]

β(r) ≡ 1−
〈v2
θ〉+ 〈v2

φ〉
2〈v2

r 〉
(A.1)

is non-zero, motivated by numerical simulations, which favour radially biased orbits with β = 0.1–

0.4 at the position of the Earth [295]. Finally, we discuss additional non-halo contributions to

the local DM density.

A.1.1 Isotropic models

Standard Halo Model

In the SHM, the velocity distribution function is given by

f(v) =


1
N

[
exp(−v2/v2

0)− exp(−v2
esc/v

2
0)
]
, |v| < vesc

0 , |v| ≥ vesc
, (A.2)

where N is a normalisation constant. Possible values for the velocity dispersion v0 range from

180 km s−1 to 280 km s−1, while vesc can vary between 450 km s−1 and 650 km s−1 [86] (see also

the left panel of Fig. 2.2). Unless explicitly stated otherwise, we will always assume the standard

values v0 = 220 km s−1 and vesc = 544 km s−1.
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King models

The cut-off at vesc is introduced by hand in the SHM, which would otherwise predict particles

with infinitely high velocities and an infinite mass for the Galaxy. This problem is addressed

in the King model, which provides a cut-off in a self-consistent manner [294]. The velocity

distribution is obtained from the distribution function

f(E) =


1
N

[
exp

(
E/σ2)− 1

]
, E > 0

0 , E ≤ 0
, (A.3)

where E ≡ Ψ(x) − v2/2 and Ψ(x) is the relative gravitational potential. The local escape

velocity at a position x is given by vesc =
√

2Ψ(x). At the position of the Earth f(v) can be

parameterised in the same way as the SHM but the parameter σ is not directly linked to the

velocity dispersion and can therefore take values that are much larger than in the SHM [296].

Nevertheless, because of their similarity to the SHM we will not discuss King models further.

Double power-law profiles

A simple modification of the SHM was proposed in Ref. [297]. For double power-law density

profiles such as the Navarro-Frenk-White (NFW) profile [298], the following ansatz for the

velocity distribution provides a better approximation for the behaviour at high velocities:

f(v) =


1
N

[
exp

(
v2
esc−v2

kv2
0

)
− 1

]k
, |v| < vesc

0 , |v| ≥ vesc
. (A.4)

Setting the power-law index k equal to 1 recovers the SHM. The choice 1.5 ≤ k ≤ 3.5 however is

found to give a better fit to velocity distributions extracted from N -body simulations. We use

k = 2.5 throughout.

Tsallis model

It was argued in Ref. [299] that the velocity distribution of DM particles in numerical simulations

including baryons can be well described by

f(v) =


1
N

[
1− (1− q) v2

v2
0

]1/(1−q)
, |v| < vesc

0 , |v| ≥ vesc
, (A.5)
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see also Ref. [300]. We adopt the parameters q = 0.773, v0 = 267.2km s−1 and vesc = 560.8km s−1

from Ref. [299].

A.1.2 Anisotropic models

Numerical simulations

A simple anisotropic model has been proposed in Ref. [76] to describe the data from numerical

N -body simulations such as Via Lactea [301, 302], GHALO [303] or Aquarius [304]:

f(v) =


1
N

[
exp

(
−(v2

r/v
2
r)αr

)
exp

(
−(v2

t /v
2
t )αt

)]
, |v| < vesc

0 , |v| ≥ vesc
, (A.6)

where vt =
√
v2
θ + v2

φ. For the figures we take the best-fit parameters for the Via Lactea II

simulation, namely vr = 202.4 km s−1, vt = 128.9 km s−1, αr = 0.934 and αt = 0.642 [76], but we

also show the velocity integral and modulation fraction observed in the GHALOs simulation.

Logarithmic ellipsoidal model

The simplest triaxial generalisation of the velocity distributions considered above was discussed

in Refs. [159, 305, 306]. We allow a different velocity dispersion in all three directions, giving

f(v) =


1
N

[
exp

(
−v2

r/v
2
r − v2

φ/v
2
φ − v2

z/v
2
z

)]
, |v| < vesc

0 , |v| ≥ vesc
. (A.7)

The three parameters vr, vφ and vz depend on two constants p and q that describe the density

distribution and the isotropy parameter γ (as well as v0). Following Ref. [159], we take p = 0.9,

q = 0.8 and γ = −1.33 and calculate vr, vφ and vz under the assumption that the Earth is on

the major axis.

Distribution functions with β = 0.5

For a constant anisotropy of β = 0.5, it is possible to calculate the velocity distribution from a

given density profile. In Ref. [307] this was done for centrally cusped density profiles of the form

ρ ∝ ab−2

r(r + a)b−1 . (A.8)
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For b = 4, corresponding to the Hernquist density profile [308], the resulting velocity distribution

is given by

f(v) =


1
N

1
vesc
√
v2
x+v2

y

(
1− v2

x+v2
y+v2

z

v2
esc

)2
, |v| < vesc

0 , |v| ≥ vesc
. (A.9)

In the plots shown we adopt a = 10 kpc. For b = 3, corresponding to the NFW profile, an

analytical expression of the velocity distribution does not exist, but it is straightforward to

numerically calculate the velocity distribution from the density profile.

A.1.3 Additional contributions to the local dark matter density

Our discussion of g̃(vmin) is quite independent of the origin of the local DM density. Nevertheless,

in order to predict the velocity integral (Fig. 2.2) and the modulation amplitude (Fig. 3.2) we

have assumed that the local DM density is completely dominated by the contribution from the

Galactic DM halo. In general there may be other significant contributions to the local DM

density, e.g. from DM streams and a dark disk (see also Fig. 3.12 and Fig. 3.18). We will now

briefly discuss how these can alter the theoretical predictions of g(vmin) and A(vmin).

Streams

N -body simulations show that the DM velocity distribution is not a smooth function but instead

has a significant amount of sub-structure [309] due to the presence of tidal streams. Such streams

can have large velocities relative to the local standard of rest and can therefore contribute to

g(vmin) at large values of vmin. The result is an edge in the velocity integral (see Fig. 2.1) as

well as a significant increase in the modulation fraction [104, 310]. Nevertheless, the bound on

the modulation fraction derived in Sec. 3.1.4 remains valid. In other words, a large modulation

fraction is always visible as a steep decrease in the velocity integral and can therefore be probed

by measuring the differential event rate (see also Ref. [311] for a discussion on how to constrain

DM streams with CoGeNT).
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Debris flows

A related possibility is the presence of a flow of debris particles, which have been tidally stripped

from subhalos falling into the Milky Way. It was suggested [312, 313] that the contribution of

such debris flows to the velocity integral can be written as

g(vmin) = (1− α) g(vmin)halo + α×


1

vflow
, vmin < (vflow − vE)

vflow+vE−vmin
2 vflow vE , (vflow − vE) < vmin < (vflow + vE)

0 , vmin > (vflow + vE)

,

(A.10)

where vflow is the velocity of the flow in the Galactic rest frame and α is the contribution of the

debris to the local DM density. For Fig. 3.12 we have chosen α = 0.2 and vflow = 400 km s−1.

Dark disk

Most N -body simulations of the Galactic DM halo neglect the effect of baryons. Baryonic

matter can potentially effect the formation of a DM disk that can contribute a similar amount

to the local DM density as the halo [197, 299]. Such a dark disk is expected to have a much

smaller velocity dispersion than the Galactic halo and to be co-rotating with only a small lag.

Consequently, a dark disk will contribute to g̃(vmin) only for vmin ≤ 250 km s−1 — a region that

is irrelevant in the context of light DM [161, 162, 314]. For DM particles with mχ > 50GeV, one

can however expect a significant increase in both the velocity integral and the modulation fraction

at low energies. The velocity distribution of DM particles in the dark disk can be modelled

approximately by a M-B distribution, i.e. the parameterisation is formally identical to the one

for the SHM. We take v0 = 50 km s−1 for the velocity dispersion and vlag = (0, 50, 0) km s−1 as

the lag velocity that replaces the circular velocity of the Sun.

A.2 Overview of direct detection experiments

In this appendix, we discuss the direct detection experiments that we consider for our analysis

and state the assumptions that we make. For definitiveness we limit ourselves to experimental

results that have appeared before August 2013. A discussion of how more recent results change

our conclusions is provided in Chapter 6.
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To derive constraints from XENON100, XENON10, CDMS-Ge, CDMS-Si and CRESST-II

we employ the ‘maximum gap method’ [175], for all other bounds we use the ‘binned Poisson’

method [74, 176]. For a discussion of these methods, we refer to Ref. [315]. For the CDMS-Si

best-fit region we employ the extended maximum likelihood method [174], discussed in detail

in Appendix A.3. The other best-fit regions are calculated using a χ2 parameter estimation

method.1

XENON100

We take the data based on an exposure of 20.9kg yr [80], combined with the recent measurements

of Leff [177]. We calculate the energy resolution under the assumption that it is dominated by

Poisson fluctuations in the number of photoelectrons.

XENON10

We consider the S2-only analysis presented in Ref. [98]. Unless otherwise specified, we adopt

the original choice of Qy from Ref. [98], i.e. we assume that Qy vanishes for ER < 1.4 keV.

Moreover, we take a flat detector acceptance of 0.94 and assume that the energy resolution is

given by ∆ER = ER/
√
ERQy(ER). It has been suggested that the XENON10 data be analysed

by converting recoil spectra to photoelectrons and using Poisson statistics to model the detector

response [169]. We find that this procedure gives significantly weaker bounds at low DM mass.

Therefore we assume Gaussian fluctuations in order to enable fair comparison with other results

in the literature.

CDMS-Si

For our analysis we assume an energy resolution of ∆ER = 0.3 keV [316] and use the detector

acceptance from Ref. [92]. To determine the best-fit region, we take the normalised background

distributions from Ref. [317] and rescale the individual contributions in such a way that 0.41,

0.13 and 0.08 events are expected from surface events, neutrons and 206Pb, respectively. We

find that varying the normalisation of the background within the range suggested in Ref. [92]

while keeping its shape fixed does not sensitively affect the significance of the background+DM
1For CRESST-II we use eq. (13) from Ref. [160] to calculate the best-fit parameter region.
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Bin [keVee] Event rate Error
in (day kg keVee)−1 in (day kg keVee)−1

0.50 – 0.61 12.8 1.0
0.61 – 0.72 10.1 0.9
0.72 – 0.85 6.7 0.8
0.85 – 1.00 5.5 0.8
1.00 – 1.15 4.5 0.7

Bin [keVee] Modulation amplitude Error
in (day kg keVee)−1 in (day kg keVee)−1

0.5 – 1.0 0.75 0.54
1.0 – 2.0 0.51 0.30
2.0 – 3.2 0.26 0.16

Table A.1. The CoGeNT event rate and its modulation: the modulation amplitude has been
obtained by fitting a cosine with period fixed to 365 days and the phase fixed to t0 = 146 days.

hypothesis, nor the shape of the best-fit region. Note that we do not perform a background

subtraction when using the CDMS-Si data to obtain a bound.

CDMS-Ge

We consider the dedicated low-threshold analysis of the CDMS-Ge data [96] using only the data

of the most constraining detector, T1Z5. For our analysis, we adopt an energy resolution of

∆ER = 0.2 (ER · keV)1/2 [318].

CoGeNT

We analyse the publicly available data from the CoGeNT experiment taken over the course of

1.2 years [94]. To determine the total event rate, we subtract the L-shell EC contribution and a

constant background. We do not attempt to make the subtraction of surface events suggested in

Ref. [90]. We use the Lindhard quenching factor and the (corrected) detector resolution from

Ref. [319]. The efficiency curve was provided by J. Collar (private communication).

To determine the modulation, we fix the peak date to t0 = 146 days, which is the best-fit value

for the DAMA modulation. The bins considered and the resulting event rates and modulation

amplitudes are given in Table A.1. Note that the binning of the event rate is chosen in such a

way that the corresponding bins in vmin-space are equally sized.
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DAMA

We use the combined observed event rates from DAMA/NaI and DAMA/LIBRA [93] for the

8 bins spanning the energy range 2–6 keVee. No significant modulation is observed at higher

energies. We assume a quenching factor of 0.3 for Na and 0.09 for I (other values are discussed

in Refs. [103, 104]) and no contribution from channelling [320].

CRESST-II

We use the recent results from 730 kg days of data taking [91]. We estimate that the acceptance

region corresponds to 86% acceptance for oxygen, 89% for tungsten and 90% for calcium. We

take the energy resolution to be ∆ER = 0.3 keV for each detector. To extract the DM signal,

we read off the total number of measured events and the expected background from fig. 11 of

Ref. [91] and use the Feldman-Cousins approach [179].

Depending on the application, we bin the CRESST-II data in different ways. In order to

calculate best-fit parameter regions, we consider a bin width of 3 keV, rather than a bin width of

1 keV as presented in Ref. [91]. However, if we want to calculate g̃(vmin) using Method 1 from

Appendix A.4.2, we have to make sure that the detector efficiency does not vary strongly within

a single bin due to the onset of additional detector modules. This condition is fulfilled for the

three bins [13 keV – 15 keV], [16 keV – 19 keV] and [19 keV – 22 keV]. Finally, to apply Method

2 from Appendix A.4.2, we need to bin the data in a special way depending on the DM mass.

The resulting number of events is shown in Table A.2.

Finally, we also consider the improved constraint from the CRESST-II commissioning run

presented in Ref. [321] using the detector efficiencies given there.

CRESST-I

To constrain very low DM masses, we analyse the experimental data from Ref. [262], taking the

detector resolution to be ∆E =
√

(0.22 keV)2 + (0.017ER)2.
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Bin [keV] Total events Expected background Signal (min) Signal (max)
10 – 13 9 3.2 3.2 9.6
13 – 16 15 6.1 5.3 13.3
16 – 19 11 7.0 1.2 7.8
19 – 22 8 6.3 0.2 5.0
22 – 25 4 5.2 0 1.8
25 – 28 4 4.6 0 2.2
28 – 31 4 4.3 0 2.5
31 – 34 3 4.0 0 1.5
34 – 37 4 3.7 0 3.0
37 – 40 5 3.5 0.2 4.3
13 – 15 11 3.8 4.0 11.0
16 – 19 11 7.0 1.2 7.8
19 – 22 8 6.3 0.2 5.0
10 – 14 18 5.4 8.4 17.4
12 – 15 19 5.7 9.1 18.1
15 – 21 19 13.7 1.7 10.1
16 – 20 13 9.4 0.9 7.9
17 – 24 17 14.1 0.5 7.7

Table A.2. Data from the CRESST-II experiment: total number of events, expected number of
background events and 1σ confidence interval for the signal using a Feldman-Cousins approach.

SIMPLE

We do not attempt to combine the results from Stage 1 [322] and Stage 2 [273] but instead

consider only the latter. Since the recoil energy is not measured, the experiment can place only

an upper limit on the total event rate above the detector threshold of 8 keV. We take the cut

acceptance and nucleation efficiency from Ref. [273].

PICASSO

We take the experimental data from Ref. [263] and use P (ER, Eth) = 1− exp [5(1− ER/Eth)]

for the threshold function.

COUPP

We use the results from Ref. [274] and assume a step function for the nucleation threshold.
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KIMS

We calculate our bounds based on the data from Ref. [275], using the detector efficiency from

Ref. [323] as suggested in Ref. [68].

A.3 The extended maximum likelihood method

This appendix reviews the extended maximum likelihood method [174], which we use to analyse

the data from CDMS-Si. The advantage of this method is that it allows for a parameter estimation

without the need to bin the experimental data. The disadvantage (compared to e.g. the standard

χ2 parameter estimation) is that there is no straightforward estimate for the goodness of fit of

the best-fit point [324]. Nevertheless, under certain conditions it is still possible to estimate the

signal significance using a likelihood ratio [325].

For an experiment with k observed events at energies E1, . . . , Ek we define the extended

likelihood function by

logL ≡
k∑
i=1

log
( dR(x)

dER

∣∣∣
Ei

+ dB
dER

∣∣∣
Ei

)
−
∫ ( dR(x)

dER
+ dB

dER

)
dER , (A.11)

where dR(x)/dER is the expected recoil spectrum for a DM signal, depending on a set of

assumed DM parameters x, and dB/dER is the known background distribution. We can then

determine the best-fit values for the assumed DM parameters, x̂, by minimising logL.

To determine the allowed parameter region, we can define the test statistic

q(x) ≡ −2 (logL(x)− logL(x̂)) . (A.12)

For the true DM parameters of nature (called x′), the test statistic q(x′) is expected to follow a χ2-

distribution with m degrees of freedom, where m is the number of DM parameters. Consequently,

given a set of experimental data we can estimate the p-value for a hypothetical value of x as

p(x) = 1− F (q(x),m) , (A.13)

where F (x,m) is the cumulative distribution function for the χ2-distribution with m degrees of

freedom. In other words, assuming that x are the true parameters of nature, the probability to

find q(x) larger than the observed value is given by p(x). The allowed parameter region at a
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confidence level of α is then given by all sets of parameters that satisfy

α > 1− p(x) = F (q(x),m) . (A.14)

In addition we would like to quantify how well the best-fit DM model describes the observed

data, i.e. we want to determine how strongly the signal+background hypothesis is preferred

over the background-only hypothesis. For this purpose it is convenient to take one of the

DM parameters to be the DM-nucleon scattering cross section σN . The likelihood of the

background-only hypothesis can then be obtained by simply setting σN = 0. We can therefore

define

q0 = −2 (logL(σN = 0)− logL(σ̂N )) , (A.15)

which, if the background-only hypothesis is correct, should have a p-value of

p0 = 1− F (q0, 1) . (A.16)

This value corresponds to the probability that an observed signal is just an upward fluctuation

of the background. Consequently, 1− p0 is often quoted as the significance of the signal.

This approach works well if we look for an excess over a large but well-known background

distribution. If, on the other hand, the shape of the background distribution is such that very

few background events are expected in the signal region the assumption of a χ2-distribution

becomes problematic. To illustrate this problem, let us assume that the signal region is chosen

in such a way that the number of expected background events is significantly smaller than 1.

Repeating the experiment many times, we would — in the absence of DM interactions — expect

most of the data sets to contain no signal-like events. Any such data set will give σ̂N = 0, since

increasing σN will only reduce the likelihood. Consequently, in all of these cases q0 is exactly

zero. If, on the other hand, a signal-like event is observed, this will give very strong evidence for

non-zero σN and clearly disfavour the background-only hypothesis. In other words, with a small

probability q0 will be very large. Intermediate values, on the other hand, are typically absent.

Clearly, for such an experiment q0 does not follow a χ2-distribution. In practice, it is therefore

often necessary to determine the distribution of q0 from Monte Carlo simulations of the expected

background. For CDMS-Si we find that assuming a χ2-distribution somewhat overestimates the
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probability of large fluctuations in q0 and consequently underestimates p0.

A.4 Studying the velocity integral with multiple-element targets

Many experiments, for example SIMPLE and CRESST-II, employ a combination of different

elements as target. In this case, a nuclear recoil of a given energy corresponds to different values

of vmin depending on the recoiling nucleus. In this appendix, we discuss how to disentangle the

arising ambiguities. Note that these considerations may also be important for targets consisting of

different isotopes of a single element, especially when considering isospin-dependent interactions.

A.4.1 Constraining the velocity integral

First, we discuss how an upper bound can be placed on the velocity integral for a null result

from an experiment consisting of more than one element. The most obvious example is the

SIMPLE experiment, consisting of C2ClF5. To make progress, we apply the method presented in

Sec. 3.1.2 separately to each element (or isotope) by requiring that the number of recoil events

expected for this element alone does not significantly exceed the total number of events observed.

For each element we thus obtain a bound g̃max
i (vmin) on the rescaled velocity integral. In order

to obtain a total bound, we can then combine these bounds according to

1
g̃max(vmin) =

∑
i

1
g̃max
i (vmin) . (A.17)

This procedure is illustrated in Fig. A.1.

In fact, it is sufficient to calculate g̃max
i (vmin) for only one of the elements in the target, as

we can use this bound to infer the bounds for all other elements. Suppose we have determined

the bound g̃(vmin) < g̃max
1 (vmin) for vmin = v̂1 for an isotope with charge Z1, mass number A1

and form factor F1. For a different isotope, we can now infer the value of the rescaled velocity

integral at the minimum velocity v̂2, which satisfies E(1)
R (v̂1) = E

(2)
R (v̂2), meaning that the two

velocities correspond to the same maximum recoil energy on the respective nuclei. The bound

from the second isotope is then given by

g̃max
2 (v̂2) = c1C

2
T(Z1, A1)F1(E(1)

R (v̂1))2

c2C2
T(Z2, A2)F2(E(2)

R (v̂2))2
g̃max

1 (v̂1) , (A.18)

where c1,2 are the respective mass fractions of the isotopes.
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Fig. A.1. The individual bounds on g̃(vmin) for the different elements and isotopes present in
the target of the SIMPLE experiment as well as the total bound from the combination of these
constraints.

A.4.2 Measuring the velocity integral

We now turn to the more difficult task of inferring information on g̃(vmin) from a potential DM

signal in an experiment consisting of several different elements. The obvious application is the

CRESST-II experiment, which we will use here for illustration. We consider only the contribution

from calcium and oxygen, because for DM masses of 15GeV and less, nuclear recoils on tungsten

have recoil energies well below the threshold of the detector.

The differential event rate in CRESST-II is given by the sum of the differential event rates for

the individual elements, i.e.( dR
dER

)tot
=
( dR
dER

)(O)
+
( dR
dER

)(Ca)
. (A.19)

To cause a recoil of energy ER, a DM particle must have a minimum velocity of v(O)
min(ER) for

scattering off oxygen and v(Ca)min (ER) for calcium. Consequently, if we measure the differential

event rate at the energy ER, we simultaneously probe the rescaled velocity integral at both of

these velocities. Therefore, we can only extract information on g̃(v(O)
min(ER)) if we know the ratio

of the differential event rates for scattering off oxygen and calcium

(dR/dER)(O)

(dR/dER)(Ca)
= C2

T(Z(O), A(O)) · F (O)(ER)2 · g(v(O)
min(ER))

C2
T(Z(Ca), A(Ca)) · F (Ca)(ER)2 · g(v(Ca)min (ER))

. (A.20)

We present two different methods to determine this ratio. The first makes use of the fact

that the rescaled velocity integral is a decreasing function of vmin to place a lower bound on the
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contribution from oxygen. The second method requires a special binning of the data in such a

way that the contribution of calcium can actually be determined from the combined information

of several bins. Once we have an estimate of the differential event rate from oxygen alone, we

can use the procedure described in Sec. 3.1.1 to obtain the corresponding values of g̃(vmin).

Method 1

Since calcium is the heavier nucleus, v(Ca)min > v
(O)
min for the same recoil energy. We know that g̃(vmin)

must decrease as vmin increases, so g(v(Ca)min (ER)) < g(v(O)
min(ER)). Substituting this expression

into Eq. (A.20), it is possible to place a lower bound on the contribution of oxygen( dR
dER

)(O)
>

C2
T(Z(O), A(O)) · F (O)(ER)2

C2
T(Z(Ca), A(Ca)) · F (Ca)(ER)2

( dR
dER

)(Ca)
≡ S(O,Ca)(ER)

( dR
dER

)(Ca)
. (A.21)

If the differential event rate (dR/dER)tot is known, we can make use of this inequality and

Eq. (A.19) to infer that ( dR
dER

)(O)
>

( dR
dER

)tot S(O,Ca)(ER)
1 + S(O,Ca)(ER)

. (A.22)

In practice, additional factors like the target composition and the acceptance for each nuclear

recoil need to be included in S(O,Ca)(ER). In the case of CRESST-II, the minimum contribution

of oxygen in the relevant energy region is approximately 20%. Note, that this method only

constrains but does not actually determine the ratio of oxygen to calcium scatters in each bin.

To reflect our ignorance of the true ratio, we do not show central values for the measurements of

g̃(vmin) obtained with this method.

Method 2

In order to combine information from several bins, it is useful to construct energy bins of different

sizes according to the following rule: Starting from an arbitrary bin [E1, E2], we use the heavier

target (assumed to be calcium) to convert the boundaries into vmin-space and then the lighter

target (oxygen) to convert the velocities back into energy space. This way, we obtain a new

energy bin
[
E

(O)
R (v(Ca)min (E1)), E(O)

R (v(Ca)min (E2))
]
. The two bins thus constructed have the property

that calcium recoils with energies in bin 1 probe the same region of vmin-space as oxygen recoils

with energies in bin 2. We can repeat this procedure recursively to obtain additional bins with
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Fig. A.2. An illustration of the method used to construct bins for CRESST-II. The two energy
bins constructed in this way have the property that calcium recoils with energies in bin 1 probe
the same region of vmin-space as oxygen recoils with energies in bin 2. For this plot, we have
assumed mχ = 9 GeV.

increasing bin size (see Fig. A.2). It is always possible to choose the first bin in such a way that

the different bins do not overlap.

We only wish to consider bins where a significant excess of signal over expected background

is observed, meaning that we abort the iteration as soon as we obtain a bin where the signal

is compatible with the background estimate. To give a concrete example, for mχ = 9 GeV the

energy conversion factor between oxygen and calcium is

mCa
µ2
Ca

µ2
O

mO
= 1.50 , (A.23)

so a possible construction for an experiment like CRESST-II would be [8 – 12], [12 – 18], [18 – 27]

(all energies in keV). Unfortunately, the current CRESST-II data reaches down only to 10 keV

and we cannot bin the data arbitrarily so we will use only the two bins [10 keV – 14 keV] and

[15 keV – 21 keV] here. For different values of mχ the conversion factor will also change, so

different bins must be considered. We present possible choices for different DM masses in

Table A.3.

The basic idea is to start by evaluating the highest bin and then work backwards towards

bin 1. In the highest bin we can reasonably assume that the observed event rate is completely

dominated by the lightest element in the target, because we expect events in this bin to arise

from DM particles close to the escape velocity. Under this assumption we can calculate g̃(vmin)
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mχ [GeV] Conversion factor Bin 1 [keV] Bin 2 [keV]
6 1.72 10–14 17–24
9 1.50 10–14 15–21
12 1.34 12–15 16–20
15 1.22 11.5–14 14–17

Table A.3. The energy conversion factors between oxygen recoils and calcium recoils for
constant vmin and different choices of the DM mass mχ. The third and fourth column give
possible choices for two bins that are related by this conversion factor.

for the highest bin in the same way as described in Sec. 3.1.1 for a target consisting of a single

element. Now we can exploit the fact that we have constructed the bins in a special way and use

the inferred value of g̃(vmin) to predict the number of calcium events in the next lower bin.

We can then subtract the predicted number of calcium events in the next lower bin to obtain

the number of events that is due to oxygen scatters alone. Again, we are left with a number of

events that correspond to scattering of the lightest element alone. We can use this number to

calculate g̃(vmin) in the region of vmin-space corresponding to the second to highest bin. Using

this measurement to predict the calcium scatters in the next lower bin, we can recursively extract

g̃(vmin) for all bins. Compared to the previous method, the advantage is clearly a much more

accurate prediction of g̃(vmin). The disadvantage is that we are forced to bin the data in a certain

way, which is inconvenient if the energy of each event is not publicly available.

A.5 Scattering cross sections for the scalar operator

In this appendix, we calculate the DM scattering cross section for the operator

Oq = Cq(µ)mq χ̄χ q̄q , (A.24)

where we allow for a scale dependence of the Wilson coefficient Cq. We evolve this coefficient

from the scale Λ, where the operator is generated, down to mt, where we integrate out the top

quark. Removing the heavy quark as an active degree of freedom gives rise to a finite threshold

correction to the Wilson coefficient of the operator

OG = CG χ̄χGa,µνGaµν , (A.25)
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where Ga,µν denotes the field strength tensor of QCD. The corresponding matching is captured

by the simple replacement [326]

mt χ̄χ t̄t Ct(mt)→ χ̄χGa,µνGaµν CG(mt) , (A.26)

with CG given by

CG(µ) = −αs(µ)
12π Ct(mt) . (A.27)

At the scales mb and mc, the bottom and charm quarks are integrated out, which again results

in finite matching corrections to CG in full analogy to Eq. (A.27).

At the scale relevant for direct detection, µ = mN ≈ 0.939 GeV, we now have to evaluate the

matrix elements of the operators Oq and OG between nucleon states N . Following the standard

procedure in the DM literature [327], we evaluate these contributions at tree level to obtain

〈N |Oq|N〉 ' mN f
N
Tq Cq(mN ) , (A.28)

where q = u, d, s and the scalar form factor fNTq is defined via mNf
N
Tq = 〈N |mq q̄q|N〉. Further-

more, using the classic tree-level result of Ref. [326] for the operator OG, one obtains

〈N |OG|N〉 ' −
8π

9αs(mN ) mN f
N
TG CG(mN ) , (A.29)

where we have introduced the expression fNTG = 1−∑q f
N
Tq for the gluon form factor.

The zero-momentum scattering cross section for N = p, n can then be written as

σN =
µ2
χN m

2
N

π

(
fN
)2

, (A.30)

where, combining Eqs. (A.29) and (A.27) one obtains1

mN f
N =

∑
q

〈N |Oχq |N〉+ 〈N |OχG|N〉

= mN

 ∑
q=u,d,s

fNTq Cq(mN ) + 2
27 f

N
TG

∑
q=c,b,t

Cq(mq)

 . (A.31)

The light-quark matrix elements fNTq can either be determined phenomenologically from baryon

masses and meson-baryon scattering data or computed within lattice QCD (see Ref. [278] for a

1Note that in contrast to the dimensionless coupling fN , the coefficient fN introduced here carries dimen-
sion GeV−3.
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concise review). We adopt the values

fpTu ≈ 0.023 , fpTd ≈ 0.034 , fpTs ≈ 0.013

fnTu ≈ 0.019 , fnTd ≈ 0.041 , fnTs ≈ 0.013 . (A.32)

The numbers for fNTu and fNTd have been taken from Ref. [278], whereas fNTs has been taken from

a recent lattice QCD study in Ref. [328]. Compared to older values of typically fNTs ≈ 0.14 [278]

the number given in Eq. (A.32) is notably smaller.

If the dependence of Cq on the energy scale µ is negligible, we find fp ≈ fn ≈ 0.28 Cq. For

Λ < mt, the contribution of the top quark is absent, leading to fp ≈ fn ≈ 0.21 Cq.

A.6 Decay widths of a vector mediator

In this appendix we present the partial decay widths of a vector mediator R coupling to DM

and SM particles, as introduced in Chapter 4:

Γ (R→ χχ̄) = mR

12π

√
1−

4m2
χ

m2
R

[(gVχ )2 + (gAχ )2 +
m2
χ

m2
R

(2(gVχ )2 − 4(gAχ )2)] , (A.33)

Γ (R→ φφ∗) = mR

48π

√√√√1−
4m2

φ

m2
R

g2
Rφ , (A.34)

Γ (R→ ff̄) = mRNc

12π

√√√√1−
4m2

f

m2
R

[(gVf )2 + (gAf )2 +
m2
f

m2
R

(2(gVf )2 − 4(gAf )2)] , (A.35)

Γ (R→W+W−) = 1
192π mR

(
mR

mW

)4
(

1− 4m
2
W

m2
R

)1/2

×
(

(gRWW1)2
[
4m

2
W

m2
R

− 4m
4
W

m4
R

− 48m
6
W

m6
R

]

+ gRWW1 g
R
WW2

[
12m

2
W

m2
R

− 48m
4
W

m4
R

]
+ (gRWW2)2

[
1− 16m

4
W

m4
R

]

+ (gRWW3)2
[
4m

2
W

m2
R

− 32m
4
W

m4
R

+ 64m
6
W

m6
R

])
, (A.36)
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Γ (R→ ZZ) = (gRZZ)2

96π mR
m2
R

m2
Z

(
1− 4m

2
Z

m2
R

)3/2 [
1− 6m

2
Z

m2
R

]
, (A.37)

Γ (R→ Zγ) =
(gRZγ)2

96π mR
m2
R

m2
Z

(
1− m2

Z

m2
R

)3

, (A.38)

Γ (R→ ZH) = (gRZH)2

192πm2
Z

mR

√
λ(1, xZ , xH) (λ(1, xZ , xH) + 12xZ) , (A.39)

where xZ = (mZ/mR)2, xH = (mH/mR)2, and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.

A.7 Calculation of one-loop amplitudes

In this appendix we present explicit calculations for the one-loop diagrams in Fig. 5.4 and Fig. 5.7.

For an insertion of OT, the graph with a closed top-quark loop shown on the left in Fig. 5.4

yields the amplitude

A = − i

(2π)4
NceQt
Λ2

T
(χ̄σµνχ) µ4−d

∫
ddl

texttr
[
σµν

(
/l − /q +mt

)
/ε
(
/l +mt

)]
(

(l − q)2 −m2
t

) (
l2 −m2

t

) , (A.40)

where we have used dimensional regularisation. The factor Nc = 3 arises from the trace over

colours, µ is the renormalisation scale, while qµ and εµ denote the momentum and the polarisation

vector of the photon, respectively. The Dirac trace evaluates to

tr
[
σµν

(
/l − /q +mt

)
/ε
(
/l +mt

)]
= 4imt (qµεν − qνεµ) . (A.41)

We hence find

A = i

4π4
3eQt
Λ2

T
mt (χ̄σµνχ) (qµεν − εµqν)

∫
ddl

µ4−d(
(l − q)2 −m2

t

) (
l2 −m2

t

) . (A.42)

In order to extract the contribution AM to the magnetic dipole operator, we expand the integrand

in powers of q2 and obtain

AM = i

4π4
3eQt
Λ2

T
mt (χ̄σµνχ) (qµεν − εµqν)

∫
ddl

µ4−d(
l2 −m2

t

)2 . (A.43)
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The loop integral in Eq. (A.43) is readily evaluated as a power series in ε ≡ (4 − d)/2. For

energies too low to resolve the four-fermion tensor interactions, there is a UV 1/ε pole. We

regularise this singularity by the simple replacement

1
ε

+ ln µ2

m2
t

→ ln Λ
2
T

m2
t

. (A.44)

After this replacement and keeping only the logarithmically enhanced terms, we arrive at

AM = −3eQt
4π2

mt

Λ2
T

(χ̄σµνχ) (qµεν − εµqν) ln Λ
2
T

m2
t

. (A.45)

The result Eq. (5.9) is then obtained by replacing (qµεν − εµqν) with Fµν . The calculation of the

OPT insertion proceeds in exactly the same way as described above,1 and leads to an analogous

result.

We now turn to the computation of the two diagrams in Fig. 5.7. In this case we can

immediately neglect all external momenta. For the axialvector operator OAX the sum of the two

graphs gives

A = − 1
(2π)4

1
Λ4

AX
µ4−d

∫
ddl

[(
χ̄γµγ5

(
/l +mχ

)
γνγ5χ

) (
q̄γµγ5

(
−/l +mq

)
γνγ5q

)(
l2 −m2

χ

) (
l2 −m2

q

) (A.46)

+
(
χ̄γµγ5

(
/l +mχ

)
γνγ5χ

) (
q̄γνγ5

(
/l +mq

)
γµγ5q

)(
l2 −m2

χ

) (
l2 −m2

q

) ]
. (A.47)

After some Dirac algebra, we obtain for the contribution AS of this amplitude proportional to

OS the result

AS = − d

8π4
mqmχ

Λ4
AX

(χ̄χ) (q̄q)
∫
ddl

µ4−d(
l2 −m2

χ

) (
l2 −m2

q

) . (A.48)

Expanding the resulting expression in ε and keeping only the UV pole, we find

AS = − i

2π2
mqmχ

Λ4
AX

(χ̄χ) (q̄q) 1
ε
. (A.49)

Identifying the singularity with the corresponding logarithm, we finally obtain Eq. (5.14). In the

case of OAN the quark Dirac lines in Eq. (A.46) do not contain γ5 matrices, and in consequence

the final result Eq. (A.49) receives the opposite overall sign.

1Note that σµνγ5 = i
2 ε
µνρσσρσ.
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