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Sensitivität von Flüssig-Xenon-Detektoren für Leichte Dunkle
Materie
Experimente zum direkten Nachweis von dunkler Materie auf der Basis von
Flüssig-Xenon-Detektoren zählen zu den vielversprechendsten Strategien um
die Eigenschaften der dunklen Materie zu ergründen. In dieser Arbeit erörtern
wir die Sensitivität solcher Detektoren für Kernrückstöße mit einer Energie
unter 10 keV, wie man sie für Dunkle-Materie-Teilchen mit einer Masse von
weniger als 10 GeV erwartet. Das Interesse an leichter dunkler Materie rührt
her von der angeblichen Beobachtung eines entsprechenden Signals in den
beiden Experimenten DAMA und CoGeNT. In dieser Diplomarbeit zeigen wir,
dass auch Flüssig-Xenon-Detektoren wie XENON100 in der Lage sein sollten,
solche leichte dunkle Materie zu beobachten, und somit die laufende Diskussion
beilegen können. Zuerst betrachten wir die Detektorauflösung und bestimmen
die Akzeptanz von Flüssig-Xenon-Detektoren im Bereich niedriger Energien.
Anschließend beschäftigen wir uns mit der Produktion und dem Nachweis
von Szintillationslicht in flüssigem Xenon und berechnen dazu die relative
Szintillationseffizienz. Außerdem führen wir Monte Carlo Simulationen durch,
um die Lichtsammeleffizienz eines vorgegebenen Detektors vorherzusagen. Zum
Abschluss diskutieren wir die Phänomenologie für den direkten Nachweis von
fermionischer dunkler Materie. Dazu berechnen wir die Wirkungsquerschnitte
für die Streuung von dunkler Materie an Atomkernen in verschiedenen Modellen
und bestimmen die resultierenden Ausschlussbereiche aktueller Experimente.

Sensitivity of Liquid Xenon Detectors for Low Mass Dark Matter
Dark matter direct detection experiments based on liquid xenon detectors are
one of the most promising strategies to determine the nature of dark matter.
In this thesis, we discuss the sensitivity of such detectors for nuclear recoils
with energy below 10 keV corresponding to dark matter particles with a mass
of less than 10 GeV. The interest in low mass dark matter has been roused by
the claimed observation of a corresponding signal in the experiments DAMA
and CoGeNT. We demonstrate that liquid xenon detectors like XENON100
should also be able to observe such low mass dark matter particles and can
consequently settle the present discussion. First, we discuss the detector
resolution and determine the acceptance of liquid xenon detectors in the low
energy region. Next, we analyze the production and detection of scintillation
light in liquid xenon, calculating the relative scintillation efficiency. Moreover,
we perform Monte Carlo simulations to predict the light collection efficiency
for a given detector. Finally, we discuss the phenomenology of direct detection
for fermionic dark matter. We calculate the cross sections for the interaction
between dark matter and nuclei in different models and give the corresponding
exclusion limits of recent experiments.





Contents

Acknowledgments ix

1 Introduction 1
1.1 The standard model of cosmology . . . . . . . . . . . . . . . . . . . . 2
1.2 Observational evidence for dark matter . . . . . . . . . . . . . . . . . 3
1.3 Theory of dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Relic densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Dark matter properties . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Candidates for dark matter . . . . . . . . . . . . . . . . . . . 7

1.4 Motivation and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Detection of dark matter 10
2.1 Direct detection of dark matter . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Differential event rates . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 The dark matter velocity distribution . . . . . . . . . . . . . . 12
2.1.3 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Dark matter spectra . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Astrophysical uncertainties . . . . . . . . . . . . . . . . . . . . 15

2.2 Direct detection experiments . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Evidence for dark matter? . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The XENON100 experiment . . . . . . . . . . . . . . . . . . . . . . . 18

3 Detector performance at low energies 23
3.1 Detector resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 S1 fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 S2 fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Simulation of the nuclear recoil band . . . . . . . . . . . . . . . . . . 26
3.3 Cut acceptances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Single scatter cut . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Nuclear recoil cut . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The total acceptance function . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



4 The effective scintillation yield of liquid xenon 40
4.1 Production of scintillation light in liquid xenon . . . . . . . . . . . . . 41
4.2 Stopping powers of liquid xenon . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Electronic stopping power . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Nuclear stopping power . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Total electronic excitation . . . . . . . . . . . . . . . . . . . . 46

4.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Calculation of the relative scintillation efficiency . . . . . . . . . . . . 50
4.5 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Predicted sensitivity of future liquid xenon experiments 55
5.1 Large liquid xenon detectors . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Estimated energy thresholds . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Light collection maps . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Light collection efficiency . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Predicted exclusion limits . . . . . . . . . . . . . . . . . . . . 62

5.3 Proposed design changes . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Oblate detectors . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 4pi QUPID coverage . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Estimated background rates . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Internal electron recoil background . . . . . . . . . . . . . . . 67
5.4.2 Cut efficiencies and position resolution . . . . . . . . . . . . . 68
5.4.3 Background rates for alternative detector designs . . . . . . . 70
5.4.4 Intrinsic background . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Analysis of matrix elements for fermionic dark matter 74
6.1 Spin-independent interactions . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Spin-dependent interactions . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Momentum and velocity dependence in matrix elements . . . . . . . . 81
6.4 General analysis of four-fermion interactions . . . . . . . . . . . . . . 83

6.4.1 Scalar interactions . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.2 Vector interactions . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.3 Tensor interactions . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Matching and form factors . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Summary and conclusions 92

A The Dirac equation 97

B Calculation of exclusion limits 99



C Coulomb correction to electronic stopping 100

D Details on the Monte Carlo simulations with Geant4 103
D.1 Detector design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.2 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.2.1 QUPIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
D.2.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . 104
D.2.3 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

D.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
D.3.1 Simulation of scintillation light . . . . . . . . . . . . . . . . . 106
D.3.2 Simulation of radioactivity . . . . . . . . . . . . . . . . . . . . 106

Bibliography 109

Index 117





Poets say science takes away from the beauty of the stars — mere
globs of gas atoms. I too can see the stars on a desert night, and
feel them. But do I see less or more? The vastness of the heavens
stretches my imagination — stuck on this carousel my little eye can
catch one-million-year-old light. A vast pattern — of which I am a
part... What is the pattern, or the meaning, or the why? It does
not do harm to the mystery to know a little about it. For far more
marvelous is the truth than any artists of the past imagined it.

(Richard Feynman)
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CHAPTER 1
Introduction

To observe the motion of astrophysical objects and understand the laws that describe
their trajectories has traditionally been one of the central interests of physicists. It
has led to the discovery of the laws of gravitation, the confirmation of the theory of
general relativity, and to our present understanding of the universe. At the same
time, such observations still raise questions that we cannot yet answer. In 1933,
Zwicky observed that the velocity distribution of galaxies in the Coma cluster cannot
be explained by the gravitational potential inferred from the luminous matter alone.
The observation that large amounts of non-luminous matter, so-called dark matter ,
must be present in the universe has been confirmed many times since then — but
our understanding of the nature of this dark matter has made only little progress.
Today, the central strategy of astrophysics is the spectral analysis of radiation

from different kinds of sources. This strategy has led to the discovery of Hubble’s law
of the expansion of the universe and to the understanding of the Cosmic Microwave
Background (CMB). Together, these observations build the foundations of our modern
understanding of cosmology, the so-called Big Bang scenario. We now have a highly
sophisticated model, called ΛCDM, that can explain a large variety of astrophysical
observations with only six parameters.

The parameters of ΛCDM can be determined from a global analysis of experimental
data. The results imply that baryons, the constituents of ordinary matter, contribute
only 4–5% to the energy density of the universe. Dark matter, in fact, is far more
abundant, accounting for approximately 23% of the energy density. The remaining
72% are not matter at all but vacuum energy, also known as dark energy. On the
one hand, these results strongly confirm the observation that dark matter must be
present in the universe. On the other hand, we must admit that the great success of
ΛCDM implies that we only understand a tiny fraction of the content of the universe.
The remainder is dark, meaning that it eludes conventional detection techniques.

Over the past few decades, the puzzle of dark matter has gained more and more
interest. The reason is that dark matter turns out to be closely related to central
problems of particle physics. In fact, the most promising models that extend the
Standard Model of particle physics in order to solve the hierarchy problem, namely
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supersymmetry and extra dimensions, naturally predict a good candidate for the dark
matter particle. This connection between modern cosmology and modern particle
physics makes the nature of dark matter such a fascinating and important problem.
In this chapter, we will give a general introduction to the topic of this thesis. In

section 1.1 we introduce the relevant preliminaries from cosmology and discuss the
ΛCDM model. An account of the experimental evidence for dark matter will be
given in section 1.2. We will summarize our present knowledge about dark matter
and discuss possible models in section 1.3. Finally, in section 1.4, we will connect
these general considerations with the topic of this thesis, giving a motivation for and
an outline of the following chapters. For a more detailed introduction to the topic of
dark matter, we refer to [1–3].

1.1 The standard model of cosmology

Today, most cosmologists agree that the universe has evolved from a singular state,
called the Big Bang. Therefore, the universe was extremely dense initially, but
has expanded since, and is expected to continue this expansion. In the process,
it has undergone various transitions, which we can still trace today, for example
nucleosynthesis and recombination. All these observations are well described by the
ΛCDM model. The name of the model indicates the necessary ingredients: Vacuum
energy (described by a cosmological constant Λ) and Cold Dark Matter.1 Only if
both of these contribute significantly to the total energy density, we are able to
explain the observed history of the universe.
To describe the expansion of the universe since the Big Bang, one introduces a

scale factor a(t) with the present value a0 = 1. The rate of expansion is given by the
Hubble parameter

H(t) ≡ ȧ(t)
a(t) , (1.1)

whose present value (also called the Hubble constant) is H0 = 73± 3 km s−1 Mpc−1.
This value can be obtained from Hubble’s law by measuring the cosmological redshift z,
defined by 1 + z = a0/a, for nearby galaxies. Note that H0 is often quoted in
dimensionless form: h = H0/100 km s−1 Mpc−1 = 0.73± 0.03.

The time evolution of H is given by the Friedmann equations, which describe the
expansion of an isotropic and homogeneous universe as a function of its total energy
density ρtot:

H2 + k

a2 = 8πG
3 ρtot . (1.2)

1We shall explain what cold means in this context in section 1.3.
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Here, G is the gravitational constant and k is the spatial curvature, which can be
k = −1, 0, or 1, corresponding to an open, flat, or closed universe, respectively. If
the energy density is equal to the critical value

ρtot = ρc ≡
3H2

0
8πG , (1.3)

the Friedmann equations describe a flat universe with k = 0.
In general, we distinguish different contributions to the total energy density which

may have different equations of state. An equation of state relates the density ρi
and the pressure pi of a substance i. Usually, it has the form pi = wρi, leading to
a time evolution of the density given by ρi ∝ a−3(1+w) [4]. For matter, w = 0, so
that ρm ∝ a−3. Radiation has w = 1/3, so that ρr ∝ a−4 and its density is negligible
today. Finally, we include a vacuum energy induced by a cosmological constant Λ,
which has w = −1 and consequently a density ρΛ independent of time. It will be
convenient to express each density relative to the critical energy density given in
equation (1.3), so we define

Ωi = ρi
ρc
. (1.4)

Equation (1.2) can then be written as
(
H

H0

)2
= Ωm

(
a

a0

)3
+Ωk

(
a

a0

)2
+ΩΛ , (1.5)

where Ωk = −k/a2
0H

2
0 and ΩΛ = Λ/3H2

0 . The matter energy density Ωm can be
split into two parts, Ωm = Ωb +ΩCDM, where Ωb is the baryon density and ΩCDM
is the cold dark matter density. In the following section, we shall see that ΩCDM
contributes significantly (in fact dominantly) to the total amount of matter.

1.2 Observational evidence for dark matter

In general, there are two ways to explain a discrepancy between the expected and
the observed trajectories of gravitationally interacting objects: We can either change
the amount of gravitating matter by introducing dark matter, or we can modify the
laws of gravity. The second approach, known as Modified Newtonian Dynamics, has
repeatedly been suggested as an alternative to dark matter. The idea is to introduce
a new large scale, above which the gravitational force deviates from its known form.
However, evidence for dark matter can be observed at very different scales, so it is
difficult to explain all observations with a single new scale. Without striving for
completeness, we will review the most important of these observations, starting at
the smallest scale, the scale of galaxies.
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Figure 1.1: Rotation curve of
NGC 6503. The dotted, dashed,
and dash-dotted lines are the
contributions of gas, disk, and
dark matter, respectively. Fig-
ure taken from [5].

Figure 1.2: The Bullet Cluster 1E0657-558 — a
collision of two clusters. The colored picture is
an x-ray image of the visible matter, the green
contours show the distribution of the total mass
inferred from gravitational lensing. One observes
a clear discrepancy between visible and gravitat-
ing matter. Figure taken from [6].

The most convincing evidence for dark matter on galactic scales comes from the
observation that the outer regions of galaxies are rotating faster than expected from
the laws of gravitation. According to Newtonian dynamics, one would expect that

vrot(r) =
√
GM(r)

r
, (1.6)

where M(r) is the integral of the galaxy’s mass density from 0 to r. Without
dark matter, M(r) should be constant beyond the optical disc, and consequently
v(r) ∝ r−1/2 for large r. However, systematic measurements of rotation curves,
meaning the velocities of stars and gas as a function of their radial distance from the
galactic center, give a quite different picture. One observes a constant v(r) at large
distances [5], indicating that the mass density M(r) must increase proportional to r
even in regions where no luminous matter is observed (see figure 1.1).

The conclusion of this observation is that galaxies must have a non-luminous mass
component having ρ(r) ∝ r−2 at large distances. This component is often referred to
as the dark matter halo of a galaxy. While evidence for dark matter halos has been
collected for a large number of galaxies, including elliptical galaxies, dwarf spheroidal
galaxies, and spiral galaxy satellites (see [1] for further references), their precise form
and density distribution is still unknown and subject to intense discussion.
Similar observations can be made on the scale of galaxy clusters, for example

by comparing the temperature of a cluster with the observed amount of luminous
mass. Another very impressive piece of evidence comes from gravitational lensing
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data, which determine the mass of a cluster from the distortion of the images of
background objects. Such measurements allow to demonstrate clearly the mismatch
between the distribution of visible and gravitating matter (see figure 1.2).

Nevertheless, the observations discussed so far do not allow for a determination of
the total amount of dark matter in the universe, namely ΩCDM. This quantity, as well
as the other contributions to the total energy density can, however, be measured on
cosmological scales. The most precise results come from the analysis of the Cosmic
Microwave Background. The most recent measurements of the Wilkinson Microwave
Anisotropy Probe (WMAP7) give [7]

ΩΛ = 0.734± 0.029 (1.7)
ΩCDM = 0.222± 0.026 (1.8)

Ωb = 0.0448± 0.0028 . (1.9)

Note that these results imply that Ωm + ΩΛ ≈ 1 and Ωk ≈ 0, meaning that we
appear to live in a spatially flat universe. We conclude that only about a quarter
of the total energy density of the universe is due to matter. And again less than a
quarter of the total matter content of the universe is baryonic. A similar value for
Ωb is independently obtained from Big Bang nucleosynthesis. We have to conclude
that most of the matter in the universe is made out of particles that we have not yet
been able to observe.

1.3 Theory of dark matter

In spite of the strong evidence for dark matter at very different scales, the nature
of the dark matter particle remains unknown. In this section, we summarize our
present knowledge about the properties that any candidate for the dark matter
particle must possess. The most important requirement is that a sufficiently large
abundance of the particle is produced in the early universe so that it can account
for the observed dark matter density. From this consideration, it turns out that
none of the known particles of the Standard Model can form the main constituent of
dark matter. Consequently, we have to look at possible new particles which arise in
extensions of the Standard Model.

1.3.1 Relic densities

In the early universe, all particle species are expected to be in thermal equilibrium,
meaning that the number density neq of a particle with mass mχ and g degrees of
freedom is given by

neq = g
(
mχT

2π

)3/2
e−mχ/T , (1.10)
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where T is the temperature. As the universe expands and cools down, T drops
below mχ. At this point, the number of particles becomes Boltzmann suppressed,
so that annihilations of particles of this species become less likely. As soon as the
interaction rate of the particle species becomes smaller than the expansion rate of
the universe, it will fall out of local thermodynamic equilibrium. It will decouple and
form a thermal relic. The temperature at which this decoupling happens is called
the freeze-out temperature TF.

We can calculate the density of such a thermal relic starting from the Boltzmann
equation, which reads in this case

dn
dt + 3Hn = −〈σv〉

(
n2 − (neq)2

)
, (1.11)

where 〈σv〉 is the thermal average of the total annihilation cross section of the particle
multiplied by its velocity. For heavy particles, 〈σv〉 can be expanded in powers of v2

to give

〈σv〉 = a+ b〈v2〉+O(〈v4〉) . (1.12)

Without going through the details of the calculation, we give the final result for
the relic density:

Ωχh
2 ≈ 1.07 · 109 GeV−1

MPl

xF√
g∗(a+ 3b/xF) . (1.13)

Here, xF = mχ/TF, MPl is the Planck mass and g∗ counts the number of relativistic
degrees of freedom at T = TF. xF is not easy to determine exactly, but in most
cases roughly given by xF ≈ 20. In [1], the authors give a simplified version of
equation (1.13):

Ωχh
2 ≈ 3 · 10−27 cm3 s−1

〈σv〉
. (1.14)

For any proposed dark matter candidate, we can use this formula to see whether Ωχ

matches with the expected value for ΩCDM. However, there are more requirements
besides the correct abundance that a dark matter candidate must fulfill.

1.3.2 Dark matter properties

First of all, we know from the CMB that most of dark matter must be non-baryonic.
Baryonic dark objects, usually called Massive Compact Halo Objects (MACHOs), for
example brown dwarf stars or large gas giants like Jupiter, are known to exist, but
contribute only a small fraction to the total amount of dark matter. From primordial
nucleosynthesis and the Lyman alpha forest, we can also exclude diffuse baryons as
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the main constituent of dark matter.
Moreover, we know that dark matter should be collisionless (for example to

explain the observation of the Bullet Cluster in figure 1.2). Finally, to account for
the observed abundance, it must either be stable or have a lifetime that is large
compared to the age of the universe.

From these considerations, neutrinos may seem like the perfect candidate for dark
matter, since we know that they are massive and interact only weakly. Clearly,
neutrinos do contribute to the total amount of dark matter. However, there are
two problems with neutrinos. First, it turns out that they are simply not abundant
enough to be the dominant component of dark matter, unless there is a different
mechanism to produce them. The greater problem is that, because of their low
mass, neutrinos were still relativistic when they decoupled from thermal equilibrium.
Such relativistic dark matter particles are referred to as hot dark matter . Large
amounts of hot dark matter tend to erase local density fluctuations in the universe
and therefore prevent the formation of small-scale structures. Therefore, we know
that light neutrinos cannot account for all of the dark matter.

1.3.3 Candidates for dark matter

Whatever is the dominant component of dark matter, it must be cold (meaning
non-relativistic), collisionless, stable and non-baryonic [8]. Excellent candidates
for dark matter are so-called Weakly Interacting Massive Particles (WIMPs). Like
neutrinos, these particles have only weak interactions with ordinary matter but
their mass is much larger. In fact, it would be natural for such a particle to have a
mass around the electroweak scale, meaning mχ ≈ 100− 1000 GeV. On dimensional
grounds, the cross section of such a particle should then be

〈σv〉 ≈ g4
weak

16π2m2
χ

. (1.15)

Substituting this expression into equation (1.14), we indeed get the correct order of
magnitude for Ωχ. Weak-scale particles automatically have the correct relic density
and consequently make excellent candidates for dark matter. This observation is
known as the WIMP miracle.
The second reason for the great popularity of WIMP candidates for dark matter

is that they arise naturally in extensions of the Standard Model. Almost all theories
that attempt to solve the gauge hierarchy problem introduce new particles at the
electroweak scale. If one of these particles can be made stable, it is automatically a
good candidate for dark matter. In supersymmetric extensions of the Standard Model,
this particle would be the lightest supersymmetric particle, which is usually expected
to be the neutralino. In models with universal extra dimensions one similarly obtains
a stable heavy particle, the lightest Kaluza-Klein particle.
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However, it is certainly not necessary that the dark matter particle is a WIMP.
Viable candidates, which are well motivated by extensions of the Standard Model,
include gravitinos, axions and sterile neutrinos. These candidates have in common
that they all have much smaller masses and much weaker interactions than WIMPs
and are consequently extremely difficult to detect experimentally. Of course, many
more candidates for dark matter have been proposed and it is beyond the scope of
this thesis to mention all of them. Nevertheless, the point we wish to make is that
although WIMPs are the most attractive candidates for dark matter, one should be
open-minded towards alternatives.

1.4 Motivation and outline

The identity of dark matter is one of the central problems of modern physics. Many
experiments have been performed, are currently running or will be built to solve
it. So far, most experiments have only given null results, allowing to exclude some
dark matter candidates and set strong bounds on others. Those experiments, which
actually have observed a signal that may be due to dark matter, give a contradictory
and even more puzzling picture (see chapter 2.3). Recent observations indicate that
the dark matter mass may be much smaller than the weak scale — in conflict with
the WIMP idea. It will be the task of present and future dark matter experiments
to confirm or refute this observation, and the task of theoretical physicists to refine
existing models or propose new ones to consistently interpret experimental data.

In this thesis, we want to discuss and examine possible ways to shed light on the
mysteries of dark matter. If the dark matter particle is a WIMP, direct detection
experiments based on liquid xenon have a good chance to detect it. We want to
demonstrate that — in contrast to recent claims [9] — they are also highly competitive
for the detection of dark matter with lower mass. Consequently, it is reasonable to
expect that within the near future, liquid xenon detectors will either observe a dark
matter signal or exclude current experimental claims with high significance.

In chapter 2, we discuss experimental strategies to detect dark matter. The focus of
this thesis is on direct detection experiments, which attempt to observe dark matter
interactions in low background underground detectors. We discuss the expected
experimental signatures and how they depend on the dark matter properties and
astrophysical input. Moreover, we give an overview over present direct detection
experiments and recent notable results, with a special emphasis on the XENON
experiment.
Then, in chapter 3, we go into more detail on the expected performance of

XENON100. This performance depends crucially on the sensitivity of the detector
at low energies. Consequently, we discuss the low energy threshold and the energy
resolution of the detector. We also estimate the fluctuations of the expected signals,
and determine the detector acceptance at low recoil energies.
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Another important open question related to the performance of the XENON100
experiment concerns the relative scintillation efficiency of nuclear recoils in liquid
xenon. Experiments currently disagree on the behavior of this quantity at low
energies. In chapter 4, we first review existing theoretical models for the processes
that lead to the production of scintillation light, and then present our own calculation
of the relative scintillation efficiency.

In chapter 5, we turn to future experiments based on the liquid xenon technology.
Our goal is to estimate the sensitivity of such experiments, again with a special focus
on the low energy region. Using Monte Carlo simulations, we can determine the light
yield for different potential detector designs and calculate the low energy thresholds.
To investigate whether the expected sensitivity is limited by radioactive background,
we also perform Monte Carlo simulations of internal background from γ-rays.

We return to more theoretical questions in chapter 6, investigating different models
for dark matter to see how the signatures in direct detection experiments may change.
Our goal is to present a systematic analysis of all possible interactions between
fermionic dark matter and quarks and calculate the resulting cross sections for
non-relativistic scattering of dark matter on nuclei. Such an analysis will allow to
develop a general understanding of whether the results from different direct detection
experiments are in conflict or not.

Finally, a summary and our conclusions, as well as suggestions for further work, will
be given in chapter 7. In the appendices, we summarize the notation and conventions
used in this thesis and provide additional details on the calculations and the Monte
Carlo simulations.

A comment on units

Given that this thesis comprises both theoretical and experimental approaches to
dark matter detection, we have to deal with the different systems of units in the
two fields. For the microscopic descriptions of particle interactions, we use natural
units, setting c = ~ = kB = 1. For example, we use eV for both masses and
energies. Nevertheless, we prefer to give distances in m, using the conversion factor
~c = 197 MeV fm = 1. Note that, for simplicity, we refrain from using atomic units
in chapter 4. Consequently, the Bohr radius is a0 = 53 pm, the Bohr velocity is
v0 = α = 1/137 and the electron charge is given by e2 = α~c = 1.44 MeV fm.

For macroscopic quantities, as they appear in the context of liquid xenon detectors
(for example the fiducial mass, the detector dimensions or the runtime of an experi-
ment), we use SI units. Also, it is conventional to use the unit km/s for astrophysical
velocities, for instance the galactic escape velocity. We stick to this convention, but
assume implicitly that these velocities are divided by cSI = 3 · 105 km/s when using
them in the context of particle interactions.



CHAPTER 2
Detection of dark matter

In the previous chapter, we have presented substantial evidence that dark matter
contributes significantly to the energy density of the universe. From such observations
we can also infer some basic properties of dark matter, for example that it must be
mostly non-baryonic. Nevertheless, many central questions concerning the particles
that constitute dark matter, especially regarding their mass, their spin or their
interactions with visible matter, cannot be answered this way.
To learn more about the nature of dark matter particles, we must find a way to

actually detect them experimentally. For this purpose, many collaborations around
the world have developed experimental strategies and built various kinds of detectors.
There are three different experimental strategies for solving the dark matter puzzle:
Direct detection experiments, indirect detection experiments and collider experiments.
Most likely, only a combination of these strategies will allow to solve all problems
related to dark matter.
Direct detection experiments attempt to observe dark matter particles as they

pass through the Earth. Even though dark matter is expected to have only very
scarce interactions, its density in the galactic halo of the Milky Way should be
sufficiently large that scattering processes with nuclei do occur occasionally. The
resulting nuclear recoils can be measured with dedicated low background detectors.
Indirect detection experiments aim to observe the products of dark matter annihi-

lations, which occur in regions of high dark matter density — such as the center of
the galaxy or the core of the sun. The annihilation products could include neutri-
nos, positrons, anti-protons and γ-rays, which would have a characteristic energy
spectrum. These particles could then be observed with many ground-based and
space-based telescopes.
Collider experiments, finally, attempt to actually produce dark matter by colliding

Standard Model particles at high energies. The goal is to invert the annihilation
process that occurs in the early universe, or to produce other new heavy particles
that subsequently decay into the dark matter particle. However, since dark matter
particles are long-lived and neutral, they will appear in the detectors only as missing
momentum and energy, making an actual identification very difficult.
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In this thesis, we will focus on direct detection experiments. We present the
calculation of the direct detection event rate in section 2.1 and also discuss the
astrophysical input and related uncertainties. In section 2.2, we will describe how to
extract possible signals and give an overview of the existing direct detection experi-
ments. Section 2.3 discusses some recent experimental results and the implications
of these findings for future experiments. To conclude this chapter, we will discuss in
section 2.4 in detail the XENON experiment, which will be the central topic for the
rest of this thesis.

2.1 Direct detection of dark matter

As dark matter particles pass through the Earth, they will occasionally undergo
elastic collisions with nuclei. Direct detection experiments attempt to measure the
energy (called Enr) that is transferred to the recoiling nucleus in such a scattering
process. In this section, we want to calculate and discuss the probability distribution
of nuclear recoil energies, or said differently, the energy spectrum that we expect to
see in a detector for such scattering events.

2.1.1 Differential event rates

The central quantity relevant for the direct detection of dark matter is the differential
event rate dR/ dEnr. The unit of the differential event rate is the number of events
per kg detector mass per day runtime per keV energy, which is often called differential
rate unit (dru). One obtains the total event rate R (in events per kg per day) by
integrating the differential event rate from the lower to the upper energy threshold
of the detector. To obtain the total number of expected events, we must multiply
the total event rate with the exposure of the experiment, which is the product of
detector mass and runtime of the experiment. For more details on the calculation of
event rates, we refer to appendix B.
We shall denote the mass of the dark matter particle with mχ and the mass

of the nuclei in the target with mN. We furthermore introduce the reduced mass
µN = mχmN/(mχ +mN). Analogously, the quantities mp and µp refer to the mass
and the reduced mass of a single proton. The number density of dark matter
particles is equal to ρ0/mχ, where the local energy density of dark matter is given by
ρ0 = (0.30± 0.05) GeV cm−3 [10]. To obtain the dark matter flux, we must multiply
the number density with the dark matter velocity v. This velocity, however, is not
the same for all dark matter particles. Instead, we have a distribution of velocities
described by a function f(v), which we will discuss in section 2.1.2.
The differential event rate is given by the product of the dark matter flux, the

density of target nuclei and the differential interaction cross section, integrated over
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all contributing dark matter velocities:

dR
dEnr

= ρ0

mNmχ

∞∫
vmin

vf(v) dσ
dEnr

(v, Enr) dv . (2.1)

To determine, which velocities can contribute to a given nuclear recoil energy, we
must look at the kinematics of the collision between dark matter particle and nucleus.
Since all velocities are non-relativistic, we can easily express the nuclear recoil energy
in terms of the dark matter velocity and the scattering angle θ in the center-of-mass
frame

Enr = µ2
Nv

2(1− cos θ)/mN . (2.2)

Consequently, to obtain a recoil energy of Enr, the dark matter velocity must at least
be

vmin =
√
mNEnr

2µ2
N

. (2.3)

2.1.2 The dark matter velocity distribution

In the standard halo model, the distribution of dark matter velocities is described by
an isotropic Gaussian distribution

f̃(v) d3v = 1
(πv2

c )3/2 exp
(
−v

2

v2
c

)
d3v , (2.4)

where vc = (220 ± 20) km s−1 is the local circular velocity. Strictly speaking, the
velocity that appears in equation (2.4) is the velocity in the Galactic rest frame.
Since we are interested in the distribution of velocities relative to the Earth, we must
replace v by v + vE, where the motion of the Earth is given by [11]

vE = |vE| = vc

[
1.05 + 0.07 cos

(
2π(t− tp)

1 yr

)]
, (2.5)

with tp = June2nd± 1.3 days (for more details, see [12]). Consequently, we get

∫
f̃(v) d3v =

∫ 1
(πv2

c )3/2 exp
(
−|v + vE|2

v2
c

)
d3v

=
∫ v√

πvcvE

[
exp

(
−(v − vE)

v2
c

)
− exp

(
−(v + vE)

v2
c

)]
dv (2.6)

≡
∫
f(v) dv .
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Another correction to the velocity distribution comes from the fact that no dark mat-
ter particles with a velocity above the galactic escape velocity vesc = (544±50) km s−1

can be bound in the galactic halo. Consequently we must modify equation (2.6) in
such a way that f(v) = 0 for v > vesc [13]:

f(v) dv = 1
k

[
exp

(
−(v − vE)

v2
c

)
− exp

(
−(v + vE)

v2
c

)]
Θ (vesc − |v + vE|) dv , (2.7)

where

k = (πvc)3/2
[
Erf

(
vesc

vc

)
− 2√

π
vescvc exp

(
−v

2
esc
v2

c

)]
(2.8)

ensures that
∫∞
0 f(v) dv = 1.

2.1.3 Cross sections

The differential cross section dσ/ dEnr in equation (2.1) contains the input from
particle physics to the differential event rate. It depends fundamentally on the
interaction between dark matter and quarks, which result from the underlying
particle physics model. We will discuss in chapter 6 how to calculate the cross section
for a large number of models. In this section, we will only state the results that are
necessary for us to calculate the differential event rate. It turns out that we can
distinguish between interactions that are independent of the nuclear spin (so-called
SI interactions) and interactions that depend on it (so-called SD interactions). In
this chapter, as well as for chapters 3 to 5, we will only consider SI interactions.
In this case, we can separate the energy and velocity dependence of the cross

section by writing(
dσ

dEnr

)
SI

= mNσ0F
2(Enr)

2µ2
Nv

2 . (2.9)

Here, F 2(Enr) is the nuclear form factor, which reflects the loss of coherence with
increasing momentum transfer. It corresponds essentially to the Fourier transform of
the nucleon density. One usually assumes the parameterization

F 2(q) =
(

3j1(qR1)
qR1

)2

exp
(
−q2s2

)
, (2.10)

where q =
√

2mNEnr is the momentum transfer and j1 is a spherical Bessel function.
The parameters s and R1 describe the size and the form of the nucleus. They are
usually taken to be s ≈ 1 fm and R1 =

√
R2 − 5s2 with R ≈ 1.2 fm

√
A, where A is

the mass number of the target nucleus.
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In the most simple cases, the fundamental cross section σ0 does not depend on
the momentum transfer and the velocity. It depends only on the couplings of dark
matter to protons and neutrons, called fp and fN, respectively. We can write [14]

σ0 = [Zfp + (A− Z)fN]2

f 2
p

µ2
N
µ2

p
σSI

p , (2.11)

where Z is the atomic number of the target nucleus and σSI
p is the dark matter proton

cross section. fp and fN can in principle be calculated from quark couplings to dark
matter and the quark content of the nucleons. However, for most cases, one obtains
fp ≈ fN, so that equation (2.11) simplifies to

σ0 = A2µ
2
N
µ2

p
σSI

p . (2.12)

2.1.4 Dark matter spectra

Substituting equation (2.12) and equation (2.9) into equation (2.1), we get

dR
dEnr

= ρ0A
2

2µ2
pmχ

σSI
p F

2(Enr)
∞∫

vmin

f(v)
v

dv . (2.13)

With f(v) from equation (2.7), the integral can be performed analytically (see for
instance [15]) to give a function g(vmin). Figure 2.1 shows some typical differential
event rates. We make the following observations:

• The differential event rate decreases exponentially with increasing recoil energy.
This decrease is partly due to a decreasing nuclear form factor F (Enr), reflecting
the loss of coherence, and partly due to a decreasing velocity integral g(vmin)
reflecting the smaller number of dark matter particles that have a sufficiently
large velocity to contribute.

• The differential event rate is proportional to A2, so that scattering at low recoil
energies is strongly enhanced for targets with high mass number. At the same
time, the differential event rate falls more steeply for heavier targets, because
the nuclear form factor F (Enr) decreases more quickly.

• Similarly, for lower dark matter mass, the differential event rates will be larger
at low recoil energy because of the overall factor m−1

χ and smaller at high recoil
energy, because vmin grows more quickly if mχ is small.

In fact, for mχ � mN we have µN ≈ mχ and thus vmin =
√
mNEnr/2m2

χ. Since we
have g(vmin) = 0 for vmin > vesc + vE, the velocity cutoff at vesc implies an energy
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(a) A xenon target with mN = 131.3 u.
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(b) A germanium target with mN = 72.6 u.

Figure 2.1: Differential event rate for various dark matter masses and different target
materials. In each case, we have set σSI

p = 10−41 cm2, which is rather large for dark
matter.

cutoff for the differential event rate. For mχ � mN, we obtain

dR
dEnr

= 0 for Enr >
2m2

χ(vesc + vE)2

mN
. (2.14)

This bound becomes stronger as the dark matter mass decreases, so that all events
occur at very low recoil energy. This fact makes the experimental observation of low
mass dark matter very difficult (see chapter 3).

2.1.5 Astrophysical uncertainties

To conclude this section, we would like to point out that large uncertainties are
present in the differential event rates shown in figure 2.1. All astrophysical input,
meaning the dark matter density ρ0, the circular velocity vc and the escape velocity
vesc are known with 10% accuracy at best. Moreover, the velocity distribution
might not be purely Gaussian. These uncertainties persist in all conclusions drawn
from direct detection experiments. To be able to compare results from different
experiments, it is generally agreed to use the above values for the astrophysical
quantities. Nevertheless, the conclusions drawn from such a comparison (for example
whether different experiments are compatible or not) may still depend on these
choices. For a discussion of related problems, see [15, 16].



16 Detection of dark matter

2.2 Direct detection experiments

We now turn to the discussion of experimental strategies for the direct detection of
dark matter. First of all, note that the differential event rates are extremely small.
For a dark matter particle with σSI

p < 10−42 cm2 we expect less than one event per
day per kg for common target materials. Consequently, one needs experiments with
an extremely low background in order to be able to observe a dark matter signal at
all. Nevertheless, the differential event rate in equation (2.13) has three characteristic
features that offer the possibility to identify dark matter experimentally: energy
dependence, material dependence and the time dependence of vE.

The most obvious feature of the differential event rate is the exponential suppression
with higher recoil energy. To observe this characteristic spectrum, we must have a
detector that can accurately measure the nuclear recoil energy down to a threshold of
only a few keV. Doing so with detectors of different target materials would also allow
to identify the second important signature, namely that the event rate is proportional
to A2 (the so-called material dependence).

Many different collaborations worldwide follow this approach. The most challenging
task for each experiment is to reject background from particles that scatter elastically
with electrons. The presently strongest constraints for the proton cross section σSI

p
come from CDMS-II [17] and XENON10 [18]. CDMS-II uses germanium and silicon
detectors cooled to less than 50 mK, while XENON10 employs a liquid xenon dual-
phase time projection chamber. While both experiments have not seen a conclusive
dark matter signal, the CoGeNT collaboration, also using a germanium detector, has
recently presented some noteworthy results, which may indicate the observation of
dark matter [19]. We will discuss these results in more detail in section 2.3.
Furthermore, KIMS [20], using a CsI(Tl) target, COUPP [21], using CF3I, and

PICASSO [22], using a C4F10 target, give the best bounds on spin-dependent in-
teractions. The experiments ZEPLIN-III [23], using a liquid xenon target, and
CRESST-II [24], employing CaWO4, strongly constrain inelastic dark matter [25].
Since we will not go into more detail on these models for the moment, we shall not
discuss these experiments further and refer to [14] for a detailed analysis.1

A very different approach to direct detection of dark matter comes from noting that
the differential event rate is time-dependent, because f(v) depends on vE(t) — see
equation (2.5). Consequently, both the energy spectrum and the total event rate are
expected to vary over the course of the year. One can try to search experimentally for
such a modulation of the signal. The advantage of this method is that background
rejection is less important, because a constant background should not spoil the
modulation.

This approach has been pursued by the DAMA collaboration with the experiments
1Note that we have not mentioned experiments that are currently running or close to com-

pletion and are expected to give competitive results in the near future. Also, we have neglected
experiments that have been competitive in the past but are no more.
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DAMA/NaI and DAMA/LIBRA [26], both using NaI(Tl) scintillators. In fact, the
collaboration observes clear evidence for an annual modulation of the signal. The
origin of this modulation, however, is unclear. The interpretation of these results
will be the topic of the following section.

2.3 Evidence for dark matter?

As we have mentioned in the previous section, two collaborations claim to have
observed a dark matter signal: CoGeNT and DAMA. The CoGeNT collaboration
observes a large number of events close to the low energy threshold of their detector,
which is the lowest threshold achieved by any dark matter experiment. Although the
observed spectrum is compatible with an exponentially falling background, it has
not been possible to identify a source for such a background. Consequently, one may
treat the signal as originating from dark matter. Because of the steep decrease of
the observed signal, the corresponding dark matter particle would have to be light,
meaning mχ ≈ 10 GeV.

The DAMA collaboration observes an annual modulation of their signal with 8.2σ
significance. Moreover, the measured phase agrees with the phase expected from the
motion of the Earth around the sun. Although many suggestions have been made
concerning the possible origins of such modulations and the presented evidence has
not been able to convince all critics, it is tempting to interpret this modulation signal
as an observation of dark matter. Since the modulation is observed only at low recoil
energies, the data again points towards a dark matter particle with low mass.
Nevertheless, with standard assumptions, the results from CoGeNT and DAMA

are not compatible with each other, because they favor different parameter regions.
What is worse, the results are also in conflict with the data presented by CDMS
and XENON. If either of the signals observed by CoGeNT or DAMA were due to
standard SI interaction of dark matter, both CDMS and XENON should most likely
have observed a signal. The parameter regions favored by CoGeNT and DAMA and
the regions excluded by CDMS and XENON are shown in figure 2.2.
It turns out that, there is a marginal compatibility between CoGeNT and the

combined data from CDMS and XENON, while a naive interpretation of the DAMA
signal in terms of SI interactions of dark matter is ruled out. Of course, one could
think of more complicated models or try to vary the astrophysical input in order to
reduce this tension. Also, a different interpretation of the experimental data might
improve the compatibility (see for example the ongoing discussion on channeling in
DAMA [27]). For an exhaustive discussion of these questions, we refer to [28].
In this thesis, we do not want to take a position on the question whether the

signals observed by CoGeNT and DAMA are due to dark matter or not. The point
we wish to make is that it is desirable to be able to check the parameter region
preferred by CoGeNT and DAMA with a higher statistical significance in order to
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Figure 2.2: The parameter regions favored at 3σ confidence by DAMA and CoGeNT.
The region above the blue line is excluded by the combined results from XENON and
CDMS with 3σ significance. One observes a marginal compatibility with CoGeNT,
while the DAMA results are excluded. For details on how to calculate exclusion
limits, we refer to appendix B.

confirm or rule out the dark matter hypothesis. We believe that the most promising
detector for this purpose is XENON100, followed possibly by even larger liquid xenon
detectors. For this reason, we will now turn to a detailed description of the liquid
xenon technology and the design of the XENON100 detector. The following chapters
will then be devoted to an analysis of the sensitivity of such detectors for low mass
dark matter.

2.4 The XENON100 experiment

XENON100 is an ultra-low background detector, filled with 161 kg of extremely pure
liquid xenon, currently taking data at the Gran Sasso Underground Laboratory in
Italy. While being conceptually very similar to XENON10, the new detector employs
a much larger detector mass. In this section, we will discuss the detector’s principle
of operation and introduce the terminology relevant for the rest of this thesis. A
more detailed description of the liquid xenon technology can be found in [3, 29].
There are several reasons why liquid xenon is extremely useful for the direct
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Figure 2.3: A typical distribution of background
events in the liquid xenon sensitive volume.
Events that are identified as nuclear recoils are
marked with a red circle. The dashed line in-
dicates the 40 kg fiducial volume. Figure taken
from [30].

Figure 2.4: A typical scattering
event in a liquid xenon detector.
Ed and Eg denote the electric
fields used to drift the electrons
and extract them into the gas
phase, respectively. Figure cour-
tesy of the XENON Collaboration.

detection of dark matter. First of all, it is an excellent scintillator and offers a high
ionization yield as response to energy deposition. In fact, liquid xenon has the highest
scintillation and ionization yield of all liquid noble gases and moreover does not require
wave-length shifters. One can detect both light and charge simultaneously to give
very good background rejection (see below). Moreover, liquid xenon is comparably
inexpensive, so the detector can easily be scaled to larger masses. Finally, because
of its large atomic mass (Z = 54, A = 131.3), liquid xenon benefits from the factor
A2 that appears in the differential event rate for dark matter and also has a strong
self-shielding, meaning a high stopping power for γ-rays.
The most important property of dark matter detectors is an efficient rejection of

background. Because of the strong self-shielding of liquid xenon, most background
events occur close to the surface of the sensitive volume (see figure 2.3). If we are able
to reconstruct the position of each primary event in three dimensions, we can reduce
the background by employing a fiducial volume cut. For this reason, the XENON100
detector is a dual-phase time projection chamber (TPC) that is monitored by two
arrays of photomultiplier tubes (PMTs).
An interaction in the sensitive liquid xenon (LXe) volume leads to two distinct

signals. The first signal, called S1, results from the primary scintillation of liquid
xenon at the position of the interaction. To measure the ionization signal as well,
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one applies a high voltage electric field that extracts the electrons into the gas phase.
In the gaseous xenon (GXe) the charge cloud then produces a secondary scintillation
signal, called S2, via the proportional scintillation mechanism (see figure 2.4). The
z-position1 of the primary event can be inferred from the delay of the S2 signal due
to the drift velocity of the electrons, while the x- and y-position can be reconstructed
from the PMT hit pattern of the S2 signal.

The S1 signal, on the other hand, is used for the reconstruction of the primary recoil
energy. For scattering events that produce a recoiling electron (such as Compton
scattering of γ-rays), the electron recoil energy is given by

Eer = S1
Ly · See

. (2.15)

Here S1 is given in photoelectrons (phe) and Ly is the light yield of the detector,
obtained from calibration with γ-rays. See is a quenching factor that reflects the
suppression of scintillation light in the presence of an electric field. For XENON100, it
is See = 0.58 [30]. Note that Ly itself depends on Eer, so equation (2.15) can only be
solved numerically. For example, Ly = 2.2 phe/keV for Eer = 122 keV (corresponding
to the energy of γ-rays from the decay of 57Co).

For nuclear recoils (from neutron scattering or, in fact, dark matter interactions),
the reconstruction of the energy scale is more involved. The reason is that in this
case scintillation light is strongly suppressed due to nuclear quenching (see chapter 4).
One usually defines the so-called relative scintillation efficiency, Leff , as the ratio of
the scintillation yield for nuclear recoils and the scintillation yield for electron recoils
with an energy of 122 keV at zero electric field. We can then write

Enr = S1
Leff · Ly

See

Snr
, (2.16)

where Snr = 0.95 is the quenching factor for nuclear recoils in an electric field [29].
The relative scintillation efficiency Leff is energy dependent, but unfortunately not
very well known. We show different measurements of Leff as well as a global fit
in figure 2.5. Unless stated otherwise, we shall from now on use the lower 90%
confidence contour (referred to as the conservative choice) for Leff . In chapter 4,
however, we will also develop a theoretical model to predict Leff .

One must keep in mind that both Eer and Enr are reconstructed energies. Not only
do they depend on our assumptions for the light yield and the quenching factors,
but they are also affected by the energy resolution of the detector. Moreover, the
reconstruction will be completely wrong if we misidentify an electron recoil as a
nuclear recoil or vice versa. Consequently, reconstructed energies are no more than
the best guess for the actual recoil energy. To emphasize this fact, we will denote

1The z-axis is by convention the symmetry axis of the TPC.
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Figure 2.5: Experimental data for the relative scintillation efficiency Leff . The thick
blue line indicates the global fit, while the thin blue lines indicate the upper and
lower 90% confidence contour. Dashed lines indicate possible extrapolations for
Enr < 4 keV, where no measurements are available. Figure taken from [30].

reconstructed energies with keVee for electron recoils and keVnr for nuclear recoils,
while reserving the unit keV for true physical recoil energies.

We have already mentioned the fiducial volume cut that is used to drastically
reduce the background level. However, to achieve yet a stronger background rejection,
the XENON100 detector employs several additional techniques. First of all, there is
an active veto, composed of an additional layer of liquid xenon, which is optically
separated from the sensitive volume and monitored by additional PMTs. This veto
allows to effectively reduce background from external sources such as cosmic ray
muons.

What remains as the dominant contribution to the background are radioactive con-
taminations of the detector materials as well as intrinsic background (see chapter 5.4).
Since γ-rays scatter mostly off electrons, while dark matter almost exclusively inter-
acts with nuclei, we must find a way to distinguish electron recoils and nuclear recoils.
For liquid xenon detectors this distinction is made by comparing the magnitude of
the S1 and the S2 signal. Calibration data from γ-ray and neutron sources shows
that the ratio S2/S1 is much larger for electron recoils than it is for nuclear recoils
(see figure 2.6).1 Consequently, we can effectively reject background from electron
scattering by requiring that log10 (S2/S1) < f(S1), where the function f(S1) is
referred to as the nuclear recoil cut. This cut will be the topic of chapter 3.3.2.

Background from neutron scattering, finally, can be reduced by applying a single
scatter cut. Neutrons are likely to scatter more than once inside the sensitive volume,

1This surprising observation is believed to be due to the different track structure for nuclear
recoils, leading to different recombination rates.
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Figure 2.6: Electronic (top) and nuclear (bottom) recoil bands. The data points
are from 60Co and AmBe calibration, respectively. For the x-axis, the S1 signal has
been converted to nuclear recoil energy, using equation (2.16). The blue and red
lines correspond to the median of the electronic and nuclear recoil band, respectively.
The vertical dashed lines indicate the S1 search window 4 phe ≤ S1 ≤ 20 phe, while
the long dashed line shows the S2 threshold S2 > 300 phe. Figure taken from [30].

while dark matter particles will never have more than one interaction. Thus, we can
effectively reject neutrons by requiring that we observe only one S2 signal above a
given threshold. We will discuss this cut again in chapters 3.3.1 and 5.4.

Unless the XENON100 detector actually observes a significant number of nuclear
recoil events in the search region 4 ≤ S1 ≤ 20, it will strongly improve the exclusion
limits for SI interactions. In fact, at mχ ≈ 50 GeV, XENON100 will be sensitive to
cross sections as low as σSI

p ≈ 2 · 10−45 cm2. The sensitivity of the experiment for
mχ ≤ 10 GeV, however, is highly controversial (see for example [31]). It depends on
many factors such as the detector resolution, the cut acceptance and the effective
scintillation yield. In the following chapters, we will examine each of these problems
and demonstrate that liquid xenon detectors are indeed capable of checking the
parameter region preferred by CoGeNT and DAMA.



CHAPTER 3
Detector performance at low energies

In the following two chapters we will discuss the performance of liquid xenon detectors
for low energy nuclear recoils, meaning Enr ≈ 1− 10 keV. For any dark matter direct
detection experiment a high sensitivity at these energies is very important. The
reason is that the dark matter spectrum decreases exponentially with increasing
recoil energy, so the expected total event rate in a detector will increase significantly
if the low energy sensitivity can be improved. If the dark matter particle is heavy,
the recoil spectrum decreases only slowly with energy (see figure 2.1), so a lower
acceptance can still be compensated by a larger exposure. For light dark matter,
however, all events occur at very low recoil energies, so an insufficient sensitivity in
this region will render the detector essentially blind for such particles.
As we have mentioned in chapter 2, there have recently been some experimental

indications that dark matter might be lighter than generally expected, possibly of
order 10 GeV. Clearly, one would like to probe this parameter region with liquid xenon
detectors in order to confirm or exclude these observations. However, to illustrate
the difficulty related to this task, we can make a simple estimate of the maximum
recoil energy that such a light dark matter particle would deposit in the detector.
Using equation (2.14) and substituting mχ = 10 GeV, we get Emax

nr ≈ 11 keV.
The XENON100 experiment employs a threshold of S1 ≥ 4 phe, corresponding

to an energy threshold of roughly 10 keVnr (see figure 2.6). From the calculation
above, we would naively draw the conclusion that the XENON100 experiment —
and all upcoming liquid xenon experiments with a similar threshold — are almost
completely insensitive to dark matter particles with mχ < 10 GeV. Fortunately, we
have neglected a very important property of liquid xenon detectors: the detector
resolution. At recoil energies where only few photoelectrons are observed, we must
expect large relative fluctuations in the S1 signal. Because of such fluctuations, a
nuclear recoil that would on average produce only two or three photoelectrons has a
significant probability to pass the S1 ≥ 4 phe threshold. The detector resolution is
consequently very important for the low energy sensitivity of liquid xenon detectors.
Clearly, to calculate exclusion bounds from the XENON experiment, we need to

quantify the probability distribution of S1 signals for a given recoil energy. We will
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discuss the relevant statistics and propose a model to describe these fluctuations in
section 3.1, also discussing the fluctuations of the S2 signal. In section 3.2 we will
propose a method to test this model using Monte Carlo simulations of the nuclear
recoil band. From such simulations, we can also learn a lot about the acceptance of
the detector at low energies. Consequently, we will discuss the different cuts used
in the XENON100 experiment and try to estimate their acceptance in section 3.3.
Finally, we will put all the pieces together and present an novel framework to
calculate exclusion limits in section 3.4. In this context we will also discuss, how
inhomogeneities inside the detector can further increase fluctuations.

To avoid confusion, note that we are not concerned with possible improvements of
the detector sensitivity in this chapter — our purpose is to determine the sensitivity
for a given detector. Although our discussion can be applied to a large variety of
detectors, we will use the properties of the XENON100 detector for concreteness.
A discussion of ways to improve the low energy sensitivity in future liquid xenon
detectors will be left for chapter 5.

3.1 Detector resolution

3.1.1 S1 fluctuations

Writing down equation (2.16), we have pretended that there is a one-to-one relation
between nuclear recoil energies and the produced number of S1 photoelectrons. The
finite detector resolution, however, leads to fluctuations in the number of photoelec-
trons even for a fixed recoil energy. Consequently, S1 cannot be expressed simply as
a function of the nuclear recoil energy, but rather as a probability distribution with
an expectation value µS1 that depends on Enr:

p(S1 = n1) = p1(n1, µS1(Enr)) . (3.1)

It should be clear from the discussion above, that in order to determine the
sensitivity of a liquid xenon detector for low energy nuclear recoils, we need to
know the probability distribution p1(n1, µS1(Enr)). To determine p1, we need to look
carefully at the detection process of scintillation light.

The idea is that the number of photons produced initially is much larger than the
number of photoelectrons actually detected. For a nuclear recoil energy of 10 keV we
expect roughly 60 photons to be produced at the position of the scattering event
(see chapter 4), but only about 4 photoelectrons will be detected.

This strong reduction comes mostly from the light collection efficiency of the
detector and the quantum efficiency of the PMTs. For XENON100, the light
collection efficiency is LCE ≈ 0.25 meaning that only one out of four photons
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produced initially will actually hit a PMT.1 The PMTs used in XENON100, on the
other hand, have a quantum efficiency of QE ≈ 0.25, meaning that only one out
of four photons that hit a PMT actually produce a photoelectron. Consequently,
the probability that a photon produces a photoelectron is only about 6%. This
probability applies independently to each photon, so the production of photoelectrons
essentially corresponds to a Bernoulli trial.
From these considerations, we expect the number of photoelectrons to follow

Binomial statistics, meaning that

p1(n1, µS1(Enr)) =
Nph

n1

 pn1(1− p)Nph−n1 , (3.2)

where Nph is the number of photons produced initially and p = QE · LCE is the
probability to produce a photoelectron. Note that Nph depends on µS1, because we
require that p ·Nph = µS1(Enr).2 For small p and large Nph the Binomial distribution
can be well approximated by the Poisson distribution, which is much more convenient
for actual calculations:

p1(n1, µS1(Enr)) = µS1(Enr)n1 e−µS1(Enr)

n1!
. (3.3)

In the derivation of p1, we have not considered the production process of scintillation
photons. Nevertheless, for very small numbers of photoelectrons, the detection
process gives the dominant contribution to fluctuations, details of the production
process turn out to be subdominant. Thus, we will assume in the following, that
S1 fluctuations can be well described by a Poisson distribution. We will consider in
detail subdominant contributions to S1 fluctuations in section 3.4 and show that
even the tails of the S1 distribution are well described by Poisson statistics. In
addition, we show in section 3.2 that our assumption reproduces the shape of the
nuclear recoil band with good agreement.

3.1.2 S2 fluctuations

Having discussed the statistics that describe fluctuations of the S1 signal, we now
turn to the analogous discussion for the S2 signal. In general, the S2 signal is
much larger than the S1 signal, because every electron extracted into the gas phase
produces about 20 photoelectrons. Consequently, the S2 signal does not limit the
sensitivity of liquid xenon detectors in the low energy region. Nevertheless, we will
need a proper description of S2 fluctuations for a simulation of the nuclear recoil

1We will discuss the light collection efficiency in more detail in section 3.4 and chapter 5.
2The value obtained for Nph will not necessarily be an integer. However, as Nph � 1, round-

ing should not give a large error.
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band, as we shall see in section 3.2.
We will assume that S1 and S2 fluctuations are uncorrelated. This assumption

does not hold strictly, because one observes experimentally an anticorrelation of the
two signals. The explanation is that the number of electron-ion pairs that recombine
to produce a scintillation photon changes from event to event. However, while the
anticorrelation of the two signals is large for electron recoils, it is observed to be
much smaller for nuclear recoils, because a large fraction of the scintillation light
does not originate from recombination but from direct excitations (see chapter 4.3).

In contrast to the S1 signal, the S2 signal is amplified, meaning that the number
of produced photoelectrons n is much larger than the number of initially produced
electrons Nq. Consequently, the fluctuations in the production process, which
we could neglect for the S1 signal, will dominate the distribution of S2 signals.
Unfortunately, while we understand the detection process quite well, the distribution
describing the production of electrons is not very well known.
The most reasonable assumption is that the fluctuations of Nq can again be

described by Poisson statistics:

pq(Nq, µq(Enr)) = µq(Enr)Nq e−µq(Enr)

Nq! , (3.4)

where µq(Enr) is determined from measurements of the ionization yield of liquid
xenon (see figure 3.2). If each electron produces r photoelectrons in the amplification
process, the distribution of photoelectrons is then roughly a normal distribution with
mean µS2 = rµq and standard deviation σS2 = r

√
µq = √rµS2:

p2(n2, Enr) = 1√
2πrµS2(Enr)

exp
(
−(n2 − µS2(Enr))2

2rµS2(Enr)

)
. (3.5)

For the XENON100 experiment, the amplification factor r has been determined from
calibration data to equal r = 17.6 phe/e− [32].

3.2 Simulation of the nuclear recoil band

Equation (3.3) and equation (3.5) as well as the assumption that the two signals
are uncorrelated summarize our model for the distribution functions that describe
the fluctuations of S1 and S2 signals. To test our model and check the underlying
assumptions, we would like to make predictions that can be compared to experimental
data. What we want to predict is the shape of the nuclear recoil band, which can be
determined experimentally from calibration with AmBe (see figure 2.6).
Monte Carlo simulations of the nuclear recoil band are a difficult task, because

we must be careful to precisely reproduce the experimental conditions. First of all,
we need to know the energy spectrum of neutron recoils expected for calibration
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Figure 3.1: The neutron recoil energy spectrum for single scatters obtained from
Geant4 simulations of the XENON100 detector.

with AmBe. Such an energy spectrum can be extracted from the Geant4 simulations
performed by the XENON100 collaboration (see figure 3.1).1 From these simulations,
we can also obtain additional information for each event, for example the number of
energy deposition steps and the position of each scattering process.2

To reproduce actual signals in the detector, we must convert the energy spectrum
into S1 and S2 signals. First, we calculate the expectation values µS1 and µS2 using
the best-fit choice for Leff from figure 2.5 and the ionization yield measured by
Manzur et al. [33] (see figure 3.2). Then, we randomly generate S1 and S2 signals
according to the respective distribution functions. An additional Gaussian smearing
with σ = 1 is applied to both signals to account for the finite PMT resolution.

Next, we need to make sure that we correctly treat the time and position resolution
of the detector. In an event with more than one scattering process, the detector
cannot distinguish the different S1 signals, because it cannot resolve the time between
two scattering processes. Consequently, to compare simulated signals to experimental
ones, we must add up all S1 signals occurring in one event, carefully taking into
account the position dependence of the light collection efficiency. On the other hand,
the S2 signals can be distinguished if the z-position is separated by at least 3 mm,
so we add up S2 signals only for neutron recoils that occur very close to each other.
As it is done in the analysis of the experimental data, if there remains more than
one S2 signal, we keep only the largest one.3

1The relevant data files were kindly provided by Alexander Kish.
2Note that the term “event” refers to the propagation of one neutron through the detector.

Consequently one event may comprise more than one scattering process.
3In the experimental analysis, events with more than one S2 signal are usually removed by the

single scatter cut (see section 3.3.2). However, we do not impose such a cut because we do not
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Figure 3.2: The adapted fit for the ionization yield Qy in electrons produced per
nuclear recoil energy (violet line). The data points are taken from [33]. Note that
most measurements have been performed at stronger electric field than the one
employed by XENON100 (E = 0.5 kV/cm).

In the next step, we need to make sure that we include only events in our simulation
that would also be recorded during a calibration run. We require that the largest
S2 signal must be greater than 300 phe and lie inside the 40 kg fiducial volume (see
figure 2.3). Note that we do not impose any restrictions on the magnitude of the
S1-signal, so we include events with S1 < 4 phe. In this region, the acceptance of the
detector is expected to be pretty low (because the signal can hardly be distinguished
from noise), but this problem should not affect the shape of the nuclear recoil band.
We will come back to the discussion of the acceptance in section 3.3.

For all simulated events we plot log10 (S2/S1) versus S1. We take the logarithm
because for normally distributed S1 and S2, the quotient S2/S1 is similar to a log-
normal distribution, so log10 (S2/S1) should be approximately normally distributed.
Therefore, we can use the median and the upper and lower 15.87% and 2.27%
quantiles to approximate the mean and the 1σ and 2σ region of the nuclear recoil
band for each S1 bin. The resulting plot is shown in figure 3.3. We indeed obtain
good agreement with experimental data in the absolute position of the nuclear recoil
band, which is essentially determined by our choice of the scintillation yield and the
ionization yield, and the width of the band, which is essentially determined by our
assumptions on the distribution of S1 and S2 signals.

Only at large values of S1, we observe a deviation between the experimental and
the simulated nuclear recoil band. The most likely explanation is that we have
chosen slightly too small values for Qy. Also note that the 2σ region of the nuclear

want to reduce the number of events without necessity.
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Figure 3.3: A Monte Carlo simulation of the nuclear recoil band. The yellow solid
line corresponds to the median value, the green and blue solid lines indicate the 1σ
and 2σ region respectively (more precisely, the upper and lower 15.87% and 2.27%
quantiles). The dashed lines show the corresponding values for experimental data.

recoil band is somewhat broader in the experimental data than in the simulation.
The reason is that one observes experimentally a small number of anomalous events
leading to non-Gaussian tails in the nuclear recoil band that broaden the 2σ region.
The most likely explanation for these events is that they happen close to the surface
of the detector and suffer from incomplete collection of photons and electrons.
The simulated nuclear recoil band would look quite different had we taken the

conservative choice of Leff instead of the best-fit one. This observation is a first hint
that the relative scintillation efficiency does not decrease at very low recoil energies
but rather remains constant. We will come back to this question in the next chapter,
but we will stick to the conservative choice for Leff in this chapter nevertheless to
give a conservative estimate of the detector sensitivity. The central information that
we wanted to obtain from the simulation of the nuclear recoil band is that indeed
our model for the distribution functions of S1 and S2 signals is very accurate.

3.3 Cut acceptances

As we have pointed out in section 3.2, not every scattering process with sufficiently
large S1 and S2 signals will indeed be accepted as a valid event. The reason is
that we must require every signal to fulfill certain conditions in order to ensure data
quality and reject noise. For example, to prevent signals from PMT dark counts, we
require a two-fold coincidence for every S1 signal, meaning that we accept an event
only if two PMTs observe an S1 signal simultaneously. While such a cut is necessary
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Figure 3.4: Comparison of the S1 spectra obtained from the projection of the nuclear
recoil band on the x-axis. The red histogram shows the results from Monte Carlo
simulations, while the blue histogram shows the corresponding S1 spectrum from
calibration data. We have chosen the normalization in such a way that the two
spectra agree approximately for large values of S1.

to obtain meaningful data, there is a certain risk that it also removes valid events.
We define the acceptance of a cut as the probability that the cut accepts a valid

event and the efficiency of a cut as the probability that it rejects an invalid event.
Clearly, we can increase the efficiency of a cut by making the cut more stringent,
but doing so will reduce its acceptance and vice versa. In general, the acceptance
will be a function of S1, which we denote by acut(S1). If acut(S1) is very small at
small S1, the sensitivity of the detector in the low energy region will be reduced.

Problems with noise and data quality are not present in Monte Carlo simulations.
We can therefore use the simulations discussed in section 3.2 to determine the
cut acceptance of the detector. For this purpose, we want to make a quantitative
comparison of experimental and simulated data rather than a qualitative one as in
figure 3.3. To do so, we project the nuclear recoil band on the x-axis and calculate
the number of events in each S1 bin (called the S1 spectrum).
Figure 3.4 shows the S1 spectra for calibration data and the data obtained from

Monte Carlo simulations. The relative scale of the two spectra is arbitrary and
has been chosen in such a way that the two spectra match approximately for large
S1. We can see that both spectra show a similar behavior, with a maximum at
about S1 = 3 phe. The decrease for larger values of S1 results from the exponential
decrease of the neutron recoil spectrum (see figure 3.1). The decrease for smaller
values of S1, on the other hand, does not have a physical reason, but is due to the
cuts that we apply to the data.

The key observation is that the two spectra agree quite well at large energies, but
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Figure 3.5: Determination of the cut acceptance acut(S1) from Monte Carlo sim-
ulations. The histogram is calculated by dividing the experimental S1 spectrum
shown in figure 3.4 by the simulated one. The blue line indicates the published
results for the acceptance function from reference [30]. Note that the normalization
of the histogram is arbitrary, so we have chosen it in such a way that acut = 0.9 for
S1 = 20 phe.

begin to deviate as S1 decreases below 10 phe. This deviation is the result of the cut
acceptance of the detector. For the Monte Carlo simulation, the only relevant cut
is the requirement S2 > 300. For the experimental data, the number of S1 signals
is reduced further by the acceptance of the data quality cuts. We can quantify
the acceptance function acut by dividing the S1 spectrum from calibration data by
the simulated spectrum. Again, since we do not know the relative scale of the two
spectra, we cannot determine the normalization of the acceptance function.

We present our result for the acceptance function in figure 3.5. The normalization
has been chosen arbitrarily so that acut = 0.9 at S1 = 20 phe. For comparison,
we also plot the acceptance function that has been published together with the
first results of the XENON100 experiment [30]. The two functions indeed agree
remarkably well. Only in the region above S1 = 20 phe, we observe that the ratio of
experimental S1 signals and simulated S1 signals continues to increase, although
we would expect the acceptance function to be more or less constant. This increase
could either point to shortcomings of the neutron energy spectrum that we take
from Geant4 simulations, or to the presence of anomalous events in the calibration
data. In fact, the non-Gaussian tails that we have observed already in figure 3.3,
may also account for the slower decrease of the experimental S1 spectrum towards
larger recoil energies. Because we are only interested in the region 4 ≤ S1 ≤ 20, we
will use the published values for acut for all calculations in the following.

So far, we have only considered the cuts that are needed to reject noise and ensure
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data quality. However, for the dark matter search we must apply two additional cuts
in order to reject background from neutrons and γ-rays (see chapter 2.4). These cuts
are the single scatter cut, which is used to identify and remove neutrons, and the
nuclear recoil cut, which distinguishes between electron recoils and nuclear recoils in
order to reject background from γ-rays. However, the acceptance for these two cuts
is difficult to determine and presently unknown. In the remainder of this section, we
will discuss the related difficulties.

3.3.1 Single scatter cut

Neutrons typically scatter more than once inside the active volume. We can therefore
effectively remove background from neutrons by requiring that there should be only
one S2 peak in a valid event. Unfortunately, it turns out that even valid single scatter
events sometimes have more than one S2 peak due to noise or delayed electrons.
Removing all events with more than one S2 peak would therefore dramatically reduce
the cut acceptance for valid single scatter events.
To maintain a high acceptance for single scatters, one usually relaxes the single

scatter cut and removes only those events that have a second S2 peak above 300 phe.
Of course, doing so will also reduce the rejection efficiency for multiple scatters. In
consequence, we must expect a larger number of background events. Moreover, what
is even worse, if we cannot efficiently reject multiple scatters, the nuclear recoil band
from AmBe calibration will be distorted. The reason is that we cannot distinguish the
different S1 signals of multiple scatters but measure only their sum (see section 3.2).
Thus, if we cannot reject all multiple scatters, we will get a number of events that
have a large S1 signal compared to their S2 signal. For these events log10(S2/S1)
will be comparably small, so the nuclear recoil band for multiple scatters lies below
the nuclear recoil band for single scatters (see figure 3.6).
This effect would not be a problem if the number of single scatters were much

larger than the number of multiple scatters that are not rejected. Unfortunately,
because of the exponentially falling neutron spectrum (see figure 3.1), we must expect
large numbers of multiple scatters with only one S2 peak above 300 phe. In fact, we
obtain from Monte Carlo simulations, that the number of multiple scatter events,
which pass the relaxed single scatter cut, is almost as big as the number of true single
scatters (in figure 3.6, there are 8.0 · 104 multiple scatters compared to 9.1 · 104 single
scatters). Consequently, the contribution of multiple scatters will effect a significant
distortion of the nuclear recoil band.
This distortion is a serious problem because it means that we cannot easily infer

the nuclear recoil band for true single scatter from calibration with neutrons. To
mitigate this problem, one could consider to apply a stronger single scatter cut, for
example by requiring that any additional S2 peak must be smaller than 100 phe. For
this modified cut, multiple scatters contribute only about 20% to the total number of
events. Moreover, scattering processes with an S2 signal below 100 phe will in most
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Figure 3.6: A Monte Carlo simulation of the nuclear recoil band. The black dots
are true single scatters, while the red dots are multiple scatters that pass the single
scatter cut (only one S2 signal above 300 phe). Solid lines indicate the median
(yellow), as well as the 1σ (green) and 2σ (blue) region for true single scatters. The
dashed lines show the corresponding values for multiple scatter events.

cases give only a negligible contribution to the sum of S1 signals. Consequently, we
can hope for a much smaller distortion of the nuclear recoil band. At the same time,
however, the modification reduces the acceptance of the single scatter cut, which
will affect the sensitivity of the detector.

To understand the acceptance and the rejection efficiency of the single scatter
cut and determine the nuclear recoil band for true single scatters is certainly one
of the most important open problems for the data analysis of XENON100. As it is
not yet clear, which single scatter cut the XENON collaboration will decide to use,
we cannot at this point determine the corresponding acceptance function. We will
assume in the following, however, that the acceptance of the single scatter cut does
not limit the sensitivity of XENON100 in the low energy region.

3.3.2 Nuclear recoil cut

We can discriminate electron recoils and nuclear recoils, because for comparable S1
signals the former have much larger S2 signals. Consequently, to reject electron
recoils, we discard all events that have a large ratio of S2/S1. To achieve a sufficiently
high rejection efficiency,1 one in fact removes all events that lie above the median
of the nuclear recoil band (the yellow line in figure 3.3). By construction, this cut
will also remove 50% of all nuclear recoils and consequently reduce dramatically the

1As we shall see in chapter 5, the rejection efficiency must be 99% or better.
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(a) µS1 = 10 and µS2 = 1400 (b) µS1 = 3 and µS2 = 500

Figure 3.7: Distribution of events in the log10 (S2/S1) versus S1 plane for fixed
expectation values of S1 and S2. The red line indicates the nuclear recoil cut.
The green shaded area corresponds to the acceptance region after the requirement
4 ≤ S1 ≤ 20 and the nuclear recoil cut have been applied.

acceptance of the detector.
Naively, we could try to include this cut by simply multiplying the cut acceptance

from figure 3.5 with 0.5. However, at this point we encounter a very fundamental
problem related to the determination of cut acceptances. As Sorensen first pointed
out in [34], if we apply several cuts to our data set, the acceptance probabilities
of the different cuts may not be independent, so we cannot simply multiply them.
To make this statement more precise, we shall rephrase it in mathematical terms.
If p(c1) is the probability that an event passes cut 1 and p(c2) is the probability
that this event passes cut 2, then we can express the probability that is passes both
cuts as p(c1 ∧ c2) = p(c2|c1) · p(c1), where p(c2|c1) is the conditional probability
that the event passes cut 2 if it has already passed cut 1. Consequently, the naive
multiplication of cut acceptances, such as p(c1∧ c2) = p(c2) · p(c1), will only be valid
if p(c2|c1) = p(c2). In the following, we will give a simple example for two cuts, which
are not independent, so that p(c2|c1) 6= p(c2). Therefore, a simple multiplication of
cut acceptances will not do in this case.1
The cuts that we want to consider are the nuclear recoil cut (nr cut) and the

requirement 4 ≤ S1 ≤ 20. In the following, we want to demonstrate that

anr ≡ p(nr cut|4 ≤ S1 ≤ 20) 6= p(nr cut) = 0.5 . (3.6)

To understand why these two cuts are not independent, remember that, because of
the poor energy resolution of the detector, nuclear recoils with a fixed energy will

1In fact, this problem occurs whenever a cut depends not only on S1, but also on S2.
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scatter widely in the log10 (S2/S1) versus S1 plane. As an example, we show in
figure 3.7a a large number of events that have been generated using the distributions
from section 3.1 with µS1 = 10 and µS2 = 1400. If we only consider events inside the
S1 search window, we observe that some of them fall above and others below the
nuclear recoil cut. In this case, the nuclear recoil cut effectively reduces the number
of accepted events, so anr < 1.

However, if we now make the same plot for the choices µS1 = 3 and µS2 = 500, we
get a somewhat different picture (see figure 3.7b). Almost all events that pass the
S1 ≥ 4 requirement, automatically pass the nuclear recoil cut as well. The reason
is obvious: The events that we have simulated here produce on average less than 4
photoelectrons. If 4 or more photoelectrons are produced due to fluctuations, the S1
signal will be large compared to the S2 signal (remember that we assume S1 and S2
fluctuations to be independent). Consequently, such an event will have a low value of
log10 (S2/S1). In this case, the nuclear recoil cut is almost without effect - all recoils
with large value of log10 (S2/S1) are already removed by the S1 cut. Consequently,
in this case anr ≈ 1.

For this reason, the nuclear recoil cut acceptance depends on the recoil energy and
can in fact be much larger than 50% towards lower energies. In order to properly
calculate the cut acceptance, we must take into account the probability distributions
for S1 and S2 signals. If we define a function f(S1) to parameterize the nuclear
recoil cut, meaning that we require log10 (S2/S1) < f(S1), we can translate this
inequality into

S2 < S1 · 10f(S1) ≡ g(S1) . (3.7)

Using p(c2|c1) = p(c1 ∧ c2)/p(c1), the nuclear recoil cut acceptance anr(Enr) is
given by:

anr(Enr) =

20∑
n1=4

p1(n1, µS1(Enr)) ·
g(n1)∑
n2=300

p2(n2, µS2(Enr))
20∑

n1=4
p1(n1, µS1(Enr))

. (3.8)

Again, we cannot presently calculate anr(Enr), because the nuclear recoil band
for single scatters and therefore g(S1) has not yet been extracted from calibration
data (see the discussion in the previous section). Until the cuts have been finalized
and we have a proper description of the nuclear recoil band, we must use the simple
approximation that the nuclear recoil cut acceptance is 50% for all recoil energies.
Since we expect that anr(Enr) > 0.5 at low recoil energies, taking anr = 0.5 everywhere
should give a conservative estimate of the acceptance in this region. On the other
hand, a constant nuclear recoil cut acceptance will overestimate the acceptance for
high recoil energies, but here only few events are expected anyways.
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3.4 The total acceptance function

In this section, we will put all the pieces together and introduce a convenient
framework to discuss the sensitivity of liquid xenon detectors. The idea is to split
the calculation of exclusion limits into two parts: The first part contains everything
related to the performance of the detector and the second part contains the actual
physics of dark matter. In fact, all relevant detector properties can be summarized
in one simple function which we will call the total acceptance function A(Enr). For a
given nuclear recoil energy Enr, A(Enr) gives the probability that a nuclear recoil
with this energy leads to a signal within the search window (meaning within a
given range of photoelectrons). Multiplying the total acceptance function with the
differential WIMP spectrum dR/ dEnr then gives the actual differential event rate
in the detector (see also appendix B).
The question is how to obtain A(Enr). Neglecting fluctuations, we could simply

convert Enr into photoelectrons by inverting equation (2.16). The function A(Enr)
would then equal 1 if S1(Enr) lies within the search window, S1min ≤ S1 ≤ S1max,
and 0 otherwise. However, in section 3.3, we have seen that the acceptance of
the detector is smaller than 1 even inside the search window because of the cuts
that we apply to ensure data quality and reject background (acut from figure 3.5).
Consequently, A(Enr) = acut(S1(Enr)) if S1(Enr) lies within the search window and
0 otherwise (see the green line in figure 3.8).
Because of fluctuations, as discussed in section 3.1, we cannot express S1 as a

function of the nuclear recoil energy. Consequently, we must use the probability
distribution from equation (3.3) to calculate A(Enr):

A(Enr) =
S1max∑

n1=S1min

p1(n1, µS1(Enr)) · acut(n1) . (3.9)

As a result, there will be a smearing of the total acceptance function: Recoil energies
that would be rejected in the absence of fluctuations have a non-zero chance to
produce a sufficient number of photoelectrons. At the same time, events inside the
acceptance window will — with a certain chance — produce too few or too many
photoelectrons to give a detectable signal. The result of this smearing is indicated
by the blue line in figure 3.8. As expected, the inclusion of fluctuations leads to a
dramatic increase of the acceptance for events with a low recoil energy. For recoil
energies just slightly below the threshold, acceptance is indeed larger than 30% and
even at a recoil energy of 5 keV, the acceptance is still about 1%.
Considering that we will multiply the total acceptance function A(Enr) with an

exponentially decreasing dark matter spectrum, the precise form of the acceptance
function at very low energies will be extremely important. One could be worried, that
here our approximation of Poisson statistics will break down. It is therefore advisable
to calculate A(Enr) for both, a Poisson distribution and a Binomial distribution of
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Figure 3.8: The total acceptance function A(Enr). The green (dashed) line corre-
sponds to the total acceptance function neglecting fluctuations. The red (solid) line
and the blue (dotted) line correspond to fluctuations described by Binomial and
Poisson statistics respectively.

S1 signals, to see whether the two agree and our approximation is actually valid.
In order to calculate A(Enr), we will use Monte Carlo simulations.1 For a given

recoil energy, we calculate µ(Enr) using the conservative choice of Leff shown in
figure 2.5, and calculate Nph = µ(Enr)/(QE · LCE) with LCE = QE = 0.25. Now
we use Binomial statistics (with probability LCE) to randomly determine the number
of photons that hit a PMT and again Binomial statistics (with probability QE) to
determine the number of photoelectrons produced. Repeating this process for a
very large number of events will give the probability distribution for the number of
photoelectrons produced by a nuclear recoil with energy Enr. We can then substitute
this distribution for p1 into equation (3.9) to calculate A(Enr).
The result of this calculation is shown as the red line in figure 3.8. A compari-

son between the results obtained from assuming Poisson statistics and the Monte
Carlo simulation based on Binomial statistics reveal that indeed Poisson statistics
approximate the Binomial distribution very well.

To conclude this chapter, we will turn to a discussion of additional contributions
to S1 fluctuations that may further reduce the resolution of the detector and thus
improve the detector sensitivity. However, it will turn out that we have already
captured the main contribution to fluctuations and all additional effects will give
only minor, in fact negligible, corrections. In this context, the framework of an
acceptance function will be very convenient, because A(Enr) can be understood
much more intuitively than an exclusion plot. Moreover, the large disadvantage of
exclusion plots is, that they depend on various parameters from particle physics and

1The calculations presented here could be done analytically as well. However, when we want
to include the light collection efficiency, Monte Carlo simulations will be necessary.



38 Detector performance at low energies

astrophysics and consequently are much harder to reproduce and compare.
A possible contribution to S1 fluctuations could come from the production mecha-

nism of scintillation photons. So far, we have assumed that Nph is fixed for a given
recoil energy, but of course the emission of scintillation light is also a statistical
process, so we should expect a varying number of photons even for fixed recoil energy.
Again, Poisson statistics are appropriate to describe the production process.1 From
the discussion above, we know that Nph ≈ 16n, so

∆Nph

Nph
= 1√

Nph
≈ 1

4
√
n

= 1
4
∆n

n
. (3.10)

The fluctuations that occur in the production process are a factor of 4 smaller than
the fluctuations in the detection process. We therefore expect that only the detection
process is relevant for the detector resolution. We can easily confirm this expectation
by extending the Monte Carlo simulations from above to include fluctuations of the
initial number of photons in an additional step (see figure 3.9a).
Another possible contribution to fluctuations is more difficult to treat. So far we

have considered the detector to be homogeneous so that we could neglect the position
of the primary event. However, in a more realistic description, the light collection
efficiency (LCE) will depend on the position of the primary event: Events close to
the PMT arrays will have a larger LCE than those in the center of the detector (see
chapter 5.2 and figure 5.3). This inhomogeneity effects a variation of the number of
produced photoelectrons even in the absence of other statistical processes.
Again, Monte Carlo simulations allow to quickly estimate the magnitude of this

effect. This time the position of each event is set randomly within the 40 kg fiducial
volume from figure 2.3. The actual light collection efficiency for each position is
then taken from calibration data of the detector [32]. We can see in figure 3.9b that
at low energies, the total acceptance function is still completely dominated by the
Poisson fluctuations of the detection process and including LCE variations gives
almost no improvement. Nevertheless, the sensitivity above the upper threshold
improves significantly by including LCE variations.
This result is intuitively clear, because ∆LCE/LCE is a detector property and

independent of the recoil energy, so the variation of the light collection efficiency
will only be important if ∆n/n is sufficiently small. However, since only few events
are expected at high recoil energies, exclusion limits will not change significantly
by including the variation of light collection efficiency. At best, including LCE
variations may slightly improve the sensitivity for heavy dark matter.

1In principle the width of the distribution could be modified by a Fano factor. If this factor
is much smaller than one, we can certainly neglect fluctuations of Nph. Consequently, we assume
here that the Fano factor is approximately equal to one.
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(a) Varying photon number (b) Varying light collection efficiency

Figure 3.9: The total acceptance function A(Enr). Again, the green (dashed) line
corresponds to the total acceptance function neglecting fluctuations and the blue
(dotted) line corresponds to fluctuations described by Poisson statistics. The red
(solid) line includes different subdominant contributions to the fluctuations of the S1
signal. As expected, no significant improvement of the total acceptance function is
obtained in the low energy region.

3.5 Summary of results

In this chapter, we have provided good arguments that Poisson statistics are appro-
priate to describe S1 fluctuations, while an additional amplification factor r must be
included to describe the fluctuations of the S2 signal. A more detailed description of
the various processes involved in the production and detection of scintillation light
do not change this conclusion significantly. We have checked our model using Monte
Carlo simulations, which do not only confirm our assumptions, but also allow to
determine the acceptance of the detector for low energy recoils. We obtain that the
acceptance of the data quality cuts is greater than 60% for S1 ≥ 4 phe, in agreement
with previously published results.

In conclusion, liquid xenon detectors possess a significant sensitivity even in the
energy region that is naively below the lower threshold of the detector. Of course,
all our calculations in this chapter rely on the assumption that indeed a sufficient
amount of scintillation light is produced even at very low recoil energies. The critical
review of this assumption will be the topic of the following chapter. Once we have
obtained a prediction for the effective scintillation yield at low recoil energies, we
can use the results from this chapter to calculate the expected sensitivity for the
XENON100 experiment (see chapter 4.5).



CHAPTER 4
The effective scintillation yield of liquid xenon

In this chapter we will discuss the effective scintillation yield for liquid xenon, a
quantity that is both essential for calculating exclusion limits and highly controversial.
At least, we know that scintillation light is strongly suppressed for nuclear recoils
compared to electron recoils. The reason is that a recoiling nucleus can effectively
loose its energy through elastic collisions with other nuclei in the detector. Most of
the initial recoil energy is thus transferred, eventually, to heat. Recoiling electrons,
in contrast, cannot transfer any significant amount of their energy to nuclei because
of the huge difference in mass. They will transfer all their energy into electronic
excitations, and thus produce a larger amount of scintillation light.
Conventionally, the effective scintillation yield of nuclear recoils is described by

the dimensionless quantity Leff , called relative scintillation efficiency. It relates the
S1 scintillation signal to the physical recoil energy of the nucleus Enr as

Enr = S1
Ly · Leff

· See

Snr
. (4.1)

Ly is the light yield for 122 keV electron recoils in the presence of an electric field
and See,nr are the electric field quenching factors for electronic and nuclear recoils
(see chapter 2.4). Thus, Leff quantifies the suppression of scintillation for nuclear
recoils compared to 122 keV electron recoils at zero electric field.
It is generally agreed that the relative scintillation efficiency will depend on the

nuclear recoil energy. How this dependence should look like is presently unclear
from both experimental and theoretical point of view. Many measurements of
the relative scintillation efficiency have been carried out, giving a wide range of
(partly contradictory) results (see [33, 35–41] as well as figure 2.5). However, most
measurements imply at least a slight decrease of the relative scintillation efficiency
with decreasing energy.

On the theoretical side the problem is to understand the production of scintillation
light for a slow moving xenon atom. This problem can be roughly divided into
three parts. First we need to know the ionization and excitation probabilities for
individual collisions of xenon atoms. Then we must simulate the propagation of
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recoiling atoms to determine the total amount of electronic excitations, and finally
we must understand the recombination rate for the produced free electrons and ions.
At the end, a theoretical treatment of the problem should produce predictions for
both the scintillation and the ionization signals produced in the detector.

In section 4.1 we review the process of generation of scintillation light and ionization
in liquid xenon. We introduce the notion of the nuclear and electronic stopping
powers in section 4.2 in order to perform an analysis of individual xenon scattering
events. From the results we calculate the total energy in the electronic excitations.
In section 4.3, we then analyze the recombination process. In section 4.4 all the
results are collected and translated into the ionization and scintillation yields and
compared with the experimental data.

4.1 Production of scintillation light in liquid xenon

A large variety of effects must be taken into account to describe all physical processes
that lead from the initial recoil to the production of scintillation light in liquid xenon.
Specifically, we expect the following steps [42]:

• In an interaction with a dark matter particle, an energy of 1–100 keV is
transferred to the nucleus. As the corresponding recoil velocity is well below
the Fermi velocity of the most loosely bound electrons, we expect the atom to
remain neutral in the scattering process.

• The recoiling atom will scatter off neighboring nuclei. While most scattering
events are expected to be elastic, there will occasionally be inelastic collisions
leading to excitation or ionization of either (or both) of the atoms.

• After each scattering process, both atoms will continue their propagation with
a fraction of the initial recoil energy. Consequently, both can again scatter
elastically or inelastically off other atoms.

• During the process of thermalization, the recoiling xenon atoms will leave
behind a large number of ionized or excited xenon atoms — distributed along
many branches of the initial track.

• The free electrons will now either recombine with surrounding ions to form
excited xenon atoms or escape from recombination. The fraction of escaping
electrons will depend on the strength of the applied electric drift field, but
some electrons will escape even in the absence of a field.

• Excited xenon atoms are free initially, but will soon be self-trapped and form
excimers. These excimers emit vuv scintillation light on the transition to the
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ground state. In a simplified picture, the process is

Xe∗ + Xe→ Xe∗2 (4.2)
Xe∗2 → 2Xe + hν (4.3)

• In some cases, especially at high excitation density, two exited xenon atoms
will combine to produce only one scintillation photon. This process, known as
biexcitonic quenching, will effectively reduce the scintillation yield.

At first sight, the large number of steps makes it very hard to disentangle possible
ambiguities. A decrease of scintillation efficiency at low recoil energies could be
equally attributed to a decreasing cross section for inelastic scattering (for example
due to threshold effects), a different track structure, an increasing fraction of escaping
electrons or a stronger quenching mechanism. This ambiguity can be lifted at least
partially by considering not only the relative scintillation efficiency of nuclear recoils,
but also the ionization yield. This quantity is much better determined experimentally
(because free electrons can be extracted with high efficiency and the signal can be
strongly amplified in the gas phase), but has been — to the best of our knowledge —
ignored in all previous attempts to give a theoretical model for the scattering processes
in liquid xenon.
The sum of ionization and scintillation, which we will refer to as the total elec-

tronic excitation, should correspond to the total energy lost in inelastic collisions.
Consequently, it should only depend on the scattering cross sections and not on
the processes occurring later, such as recombination, which will only lead to a
redistribution between ionization and scintillation. Thus, if both signals showed
a similar energy dependence, this would suggest a general suppression of inelastic
scattering at low energies — which is what one might naively expect. However, what
is actually observed experimentally, is a strong increase of the ionization yield at low
energies. This observation indicates that the suppression of the scintillation signal at
low energies does not result from the actual inelastic scattering processes, but from
the large number of escaping electrons.

4.2 Stopping powers of liquid xenon

In this section we will describe the interactions of neutral xenon atoms and discuss
possible scattering processes at energies of a few keV. The quantities we are interested
in are the rate at which energy is transferred to recoiling nuclei by elastic collisions
and the rate at which electrons are excited by inelastic collisions. These quantities
are often called nuclear stopping power and electronic stopping power.
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4.2.1 Electronic stopping power

The electronic stopping power is defined as the average energy which an atom loses
to electronic excitations per distance traveled through the detector:

Se = dE
dx . (4.4)

In a “semiclassical” approach, an electron is excited when it collides with a nucleus.1
The stopping power should therefore be proportional to the electron mass density
n0, their velocity vF, the momentum transfer cross section σtr(vF), and the velocity
of the incoming particle v. In fact, electronic stopping is often described by [43–47]

Se = n0vvFσtr(vF) . (4.5)

We should take a moment to discuss the validity of such a semiclassical approach.
Equation (4.5) is in fact based on several assumptions:

• Instead of describing the atomic system by a many-particle wavefunction, we
claim that only the electron density is relevant to the problem, and we ignore
the modification of the electron density during the atomic collision.

• Collisions between electrons and nuclei are treated like classical point like
interactions.

• Electrons are assumed to be free. Consequently, no minimal energy transfer is
required for an excitation.

For a uniform electron gas the electronic stopping power is proportional to the
velocity of the incoming particle, a result that has been derived by Lindhard et
al. [48]. The authors obtain

Se =
√

8πe2a0ζ0ZN ·
v

v0
, (4.6)

where a0 and v0 are Bohr radius and Bohr velocity respectively and ζ0 is an empirical
parameter, often2 set to ζ0 = Z1/6. Finally, N = 13.76 nm−3 is the number density
of xenon atoms.
This formula is in principle even applicable for the case of small nuclear recoil

velocities, meaning vnr < v0 (or Enr < 1 MeV). However, it is not clear that we
can assume a velocity proportional stopping power all the way down to vnr = 0.
In fact, at very low velocities, departures from velocity-proportionality have been

1Note that, for the energies we are concerned with, electrons are much faster than the recoiling
nucleus.

2In an independent derivation, Firsov obtained the same formula with ζ0 ≈ 1.63 [49].
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observed [44]. Also, there are several arguments in favor of a more rapid drop of Se
for v < v0. The two most important ones are threshold effects and Coulomb effects.

The argument for threshold effects essentially goes as follows: In an elastic collision
between a nucleus and a free electron, only a fraction me/mN of the nucleus energy
can be transferred to the electron. For nuclei with energies in the keV range, the
resulting electron energy is at most a few eV – so we can no longer ignore gap energies
or the work function of xenon. There has been a long and intense discussion on
whether such threshold effects are present or not (see for example [50]). However,
many experiments and theoretical considerations report electronic excitations far
below the naive threshold [51, 52].
An effect from Coulomb repulsion is expected, because at low relative velocities

colliding nuclei will not penetrate the electron clouds of each other strongly. Con-
sequently, with decreasing energy the recoiling nucleus will probe only regions of
lower electron density [53]. We discuss a possible way to include this correction in
appendix C, but come to the conclusion that it contradicts experimental data.
Both of these arguments fail, because they continue to exploit the point-like

interaction of the nucleus with the electron. However, for low nuclear velocity the
electron cloud itself rearranges during the collision (or, in a more semiclassical
language, the electron makes several rotations in the combined electric field of the
two colliding atoms). This effect leads to a much more complicated non-perturbative
mechanism of the energy transfer to the electron. An analysis of such collisions was
performed fully for the case of simple atoms [52]. The authors observe that ionization
occurs even at energies far below the naive threshold. Lacking a similar calculation
for xenon atoms, we will continue to use equation (4.6) even for low energies.

To conclude this section, we provide dimensionless quantities instead of Se, which
are usually preferred in the literature. Therefore, we define

ε = a

2e2Z2E , (4.7)

ρ = Nπa2x , (4.8)

se = dε
dρ = Se

2πe2aZ2N
= a0ζ0

a

√
8ε

e2amN

, (4.9)

where a = 0.626a0Z
−1/3 is the Thomas-Fermi screening length. For liquid xenon,

the reduced energy ε, which we will use throughout the rest of the chapter, can be
expressed as ε = 1.05 · 10−3Enr/ keV.

4.2.2 Nuclear stopping power

The second quantity needed to calculate the amount of energy lost to electronic
excitations is the nuclear stopping power, corresponding to the probability for elastic
scattering of two xenon atoms. To calculate the cross section, we approximate the
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Figure 4.1: Comparison of different choices for the screening function and the
corresponding nuclear stopping powers.

electron wave functions by the electron density, and ignore modifications of the
electron clouds during the collision. The energy transfer in such a collision depends
in general on the energy Enr of the projectile and the scattering angle θ. However, it
turns out that due to scaling properties all relevant functions depend only on the
combined variable [54]

η = ε sin θ2 , (4.10)

where ε again denotes the reduced energy.
The differential cross section for elastic scattering can then be written as

dσ
dη = πa2f(η)

η2 , (4.11)

where a is again the screening radius. The function f(η) depends on the screening
function that we adopt to describe the charge density. For a large number of screening
functions, f(η) can approximately be written as [55]

f(η) ≈ λη1−2m(
1 + [2λη2(1−m)]q

)1/q . (4.12)

From f(η) we can obtain the dimensionless nuclear stopping power sn(ε):

sn(ε) = 1
ε

ε∫
0

dηf(η) . (4.13)
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Both quantities, f(η) and sn(ε) have been calculated by various authors with
differing results. The large uncertainties, especially for the low energy region, are
due to different approximations for the screening function. Lindhard et al. favor
the Thomas-Fermi screening function corresponding to (m = 0.333, q = 0.667,
λ = 1.309). However, today it is generally agreed that the Thomas-Fermi screening
function overestimates the potential at large distances and therefore gives too large
stopping powers at low energies [54]. One therefore often prefers the Molière or the
Lenz-Jensen screening functions that show better agreement with experimental data.
They correspond to the parameter choices (m = 0.216, q = 0.570, λ = 2.37) and
(m = 0.191, q = 0.512, λ = 2.92), respectively. For a comparison of the different
screening functions, see figure 4.1.

Ziegler et al. [56] have confronted the different screening functions with experimen-
tal data and numerical results from Hartree-Fock methods. They find yet another
(so-called universal) screening function given by the following expression:1

sn(εZ) = ln(1 + 1.1383εZ)
2 [εZ + 0.01321ε0.21226

Z + 0.19593ε0.5Z ] . (4.14)

From this, f(η) can be calculated using f(x) = d
dx [xsn(x)].

While the universal screening function from Ziegler et al. appears to be the
most reliable, the advantage of the simpler screening functions is that f(η) can be
approximated by a power law for very small values of η (i.e. η < 10−4):

f(η) ' λη1−2m . (4.15)

In the following we will use the universal screening function unless stated otherwise.

4.2.3 Total electronic excitation

In this section we will combine the nuclear stopping power sn(ε) from equation (4.14)
and the electronic stopping power se(ε) from equation (4.5) in order to predict what
amount of the initial recoil energy is transferred to electronic excitations. We will
denote the total energy in electronic excitations by κ(ε) and also define the quotient

ξ(ε) = se(ε)
sn(ε) . (4.16)

First of all, we should discuss the general tendencies which we expect for κ(ε) and
ξ(ε). At energies above 1 MeV, inelastic collisions will dominate because the electronic
stopping power grows proportional to

√
E, while the nuclear stopping power decreases

1It is important to notice that Ziegler et al. use a slightly different definition for the reduced
energy, because they assume a different screening length. For xenon, the conversion factor is
εZ = 1.068ε.
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Figure 4.2: The function ξ(ε) for different choices of the nuclear stopping power.

after reaching its maximum around 100 keV (see figure 4.1). Consequently, κ(ε) ≈ ε
in this energy region. At energies of 10 keV and below, on the other hand, the nuclear
stopping power is much larger than the electronic stopping power. Consequently, we
expect κ(ε)� ε and ξ(ε)� 1.
In the low energy region, a first estimate for κ(ε) is given by

κ(ε) = ε · se(ε)
sn(ε) + se(ε)

≈ ε · ξ(ε) . (4.17)

Making this estimate, we have included only electronic excitations produced by the
primary recoiling nucleus. We expect, however, that at least some recoiling nuclei
from secondary elastic collisions still have enough energy to inelastically excite other
atoms. Thus, part of the energy lost in elastic collisions can still be transferred to
electronic excitations.
To take this effect into account, one could try to perform numerical simulations.

In [57], however, Lindhard et al. have derived an integral equation to determine
κ(ε). Under the approximation that most electronic excitations occur at large impact
parameter and have only small energy transfer, the authors show that for ξ(ε)� 1,
κ(ε) ∝ ε · ξ(ε). The constant of proportionality can be calculated analytically, if ξ(ε)
can be described by a power law. Here, we do not want to restrict ourselves to this
case, so we will keep the constant of proportionality as a free parameter, writing

κ(ε) = αεξ(ε) . (4.18)

For α = 1 we recover the simple estimate in equation (4.17) which is supposed to
underestimate κ, so we expect α > 1, but still of order 1, for consistency.
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For Thomas-Fermi screening, we obtain from equation (4.15) that ξ(ε) ∝ ε0.17

and therefore κ(ε) ∝ ε1.17. In other words, Lindhard’s theory predicts an increasing
fraction of electronic excitations as the nuclear recoil energy increases from 1 keV
to 100 keV. This result has often been quoted as a possible explanation for the
energy dependence of the scintillation yield in liquid xenon. However, we understand
now that this result strongly depends on the choice for the screening function. As
argued in section 4.2.2, choosing a Thomas-Fermi screening function will tend to
overestimate the nuclear stopping power at low energies. Consequently, we must
expect to underestimate ξ(ε). It appears much more reasonable to choose a nuclear
stopping power that agrees better with experimental data. In fact, choosing the
universal stopping power from Ziegler et al. which is still closest to Thomas-Fermi,
already changes the behavior of ξ(ε) considerably (see figure 4.2). Now, ξ(ε) is
no longer increasing monotonically, but develops a minimum around a few keV,
remaining almost constant in most of the region we are interested in.
As we have seen, the uncertainties concerning the fraction of energy deposited

in electronic excitations remains quite large. Although Lindhard’s theory has been
quoted frequently in the context of the effective scintillation yield, it appears difficult
to obtain even a general tendency from this theory. We believe that some conclusions
drawn from it, especially concerning the energy dependence, depend on quite weak
assumptions. Moreover, we will show below, that a much more reasonable agreement
with experimental data is achieved for an almost constant ξ(ε).

4.3 Recombination

Now that we have an estimate of the total energy in electronic excitations, we need
to determine how this energy is distributed between ionization and scintillation.
This distribution depends not only on the number of excited and ionized atoms
produced initially, but especially on the recombination rate. Recombination will
occur, whenever an electron and an ion produced in a nuclear recoil process approach
sufficiently close. The recombination rate should be proportional to the ionization
density, which in turn is roughly proportional to the electronic stopping power se(ε).
Thus, we expect a higher ionization density and a higher recombination rate, at
higher recoil energies. In this section, we follow closely the Ph.D. thesis of Dahl [58].
As discussed in section 4.1, after all recoiling atoms have thermalized, we are

left with a certain number of excitons, called Nex, and a certain number of ionized
atoms, Ni. We expect that a fraction r of the ionized atoms will recombine with
free electrons, forming excitons that will eventually emit scintillation photons. The
number of photons produced should consequently be given by

Nph = Nex + r ·Ni = Ni

(
r + Nex

Ni

)
. (4.19)
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We assume that the fraction Nex/Ni is energy independent (see [59] for a discussion),
although it may depend on the nature of the recoiling particle.1 The simulations from
[58] are in agreement with this assumption. For a discussion on ways to determine
Nex/Ni experimentally, we refer to [63]. Consequently, an energy dependence can
only be introduced by the recombination fraction r. For later uses, we also define
the number of electrons produced,

Nq = (1− r) ·Ni . (4.20)

Nex and Ni are presently unknown. However, they should both be proportional
to κ(ε), which in turn was determined to be proportional to εξ(ε). As we kept the
constant of proportionality undetermined, we can do the same thing for Nex +Ni,
writing simply

Ni +Nex = Ni

(
1 + Nex

Ni

)
= βεξ(ε) . (4.21)

Thus, we can calculate Nex and Ni from κ(ε) once we have determined Nex/Ni and
β. If we also know the recombination fraction r(ε), we can then infer Nph.
The present task is therefore to determine Nex/Ni and r(ε). Of course, it would

be desirable to derive these quantities from an analytical model. In fact, various
theories describing recombination exist (for a review, see [64]). The basic idea is to
introduce a critical radius, called Onsager radius, which is defined by

e2

rc
= kT . (4.22)

If the distance between electron and ion is larger than rc, thermal fluctuations will
prevent recombination, while for smaller distances, recombination will occur. In
order to calculate the recombination rate, one needs to describe diffusion processes
for electrons and ions. A calculation by Thomas and Imel [65] gives

Nq

Ni
= 1− r = 4

χNi
ln
(

1 + χNi

4

)
, (4.23)

where χ is a free parameter of the theory.2
In order to determine χ, Dahl has performed Monte Carlo simulations [58] of

nuclear recoils at different recoil energies. For each recoil energy, the simulation

1For example, we expect Nex/Ni to be larger for the collision of two xenon atoms than for
electron recoils, because the xenon atoms can temporarily form molecular orbitals that enhance
the probability for excitations [60–62].

2In fact, χ can be expressed in terms of the mobility of the charge carries, µ, the drift velocity,
v, and the typical size of the track, a: χ = 4πµ/a2v. However, as these parameters are unknown,
we may just as well take χ as the parameter of the theory.
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Figure 4.3: Recombination fraction r as a function of the number of ionized atoms.

provides Nq, the number of free electrons remaining after recombination. Now χ
can be determined by fitting the theory to the data. Note that Nq depends not only
on r but also on the total number of ionized atoms produced, so the fit will also
determine the previously unknown parameter Nex/Ni.
Monte Carlo simulations have been performed for different values of the electric

field and show, as expected, a decrease of recombination with increasing field strength.
As Nex/Ni should not depend on the electric field, only χ is allowed to vary. Since
we are interested in the limit of zero electric field, we take the value of χ for the
lowest drift field available, which is 60 V/cm, being much smaller than electric fields
usually applied in experiments. The results are

Nex

Ni
≈ 0.9 , (4.24)

χ ≈ 0.039 . (4.25)

The recombination fraction r is shown in figure 4.3. As expected, it increases with
the total number of produced ions corresponding to higher recoil energies.

4.4 Calculation of the relative scintillation efficiency

Having calculated the total energy in electronic excitations and the recombination
fraction, we are now able to predict both the ionization and the scintillation yield.
However, one free parameter still remains in our theory: the proportionality factor β,
which we introduced in equation (4.21). Combining this equation with equation (4.23),
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we can write

Nq(ε) = Ni(ε)
4

χNi(ε)
ln
(

1 + χNi(ε)
4

)
, (4.26)

Ni(ε) = βξ(ε)
1 +Nex/Ni

. (4.27)

Nq(ε) has been measured experimentally (most recently in [33]), so we can de-
termine β from fitting equation (4.26) to the available data. Instead of Nq(ε), one
conventionally plots the ionization yield, which is defined as Qy(Enr) = Nq(Enr)/Enr
and measured in e−/keVnr. Of course, it is not possible experimentally to measure the
ionization yield at zero electric field, so we must change the value for χ accordingly.
We will use the experimental data taken at E = 1 kV/cm and take the value χ = 0.03
determined by Dahl [58] for E = 0.88± 0.04 kV/cm. Although there is only one free
parameter, a reasonable fit can be obtained setting β = (1.2± 0.1) · 105 (see the red
line in figure 4.4a), which indicate that our description is sufficient.1

We are now in the position to predict the relative scintillation efficiency. The value
of Nph can be obtained directly from Nq because Nq + Nph = Nex + Ni = βεξ(ε)
and this sum is known once we have determined β. In order to obtain Leff , we need
to divide Nph by the number of photons produced by the reference electron recoil
at 122 keV. This value can be determined from the Wph value for xenon, which
is the energy that an electron recoil must on average deposit in the detector to
produce a scintillation photon. From [29], we take Wph = 21.6 eV and infer that
N ref

ph = 46 phe/keVee.
Before giving our result for Leff we need to include one more process, that has

been neglected so far. As mentioned in section 4.1, the number of excitons can be
reduced by biexcitonic quenching (see [42, 66, 67]). The idea is that in collisions of
two excited atoms, only one scintillation photon is produced. Several authors have
suggested a parameterization of this process in terms of Birk’s saturation law [67–69].
They introduce an energy dependent quenching factor qel given by

qel = 1
1 + k · se(ε)

, (4.28)

where k is called Birk’s constant and has been determined by [68] to be k =
2.015 · 10−3 g/MeV cm2 = 21.4 in reduced units. The value suggested in [69] is
smaller by about 15 %. One can see from equation (4.28) that at very low recoil
energies, when only few excited atoms are produced, biexcitonic collisions are rare
and cease to reduce the photon yield.

1The reason why β is so large is that κ(ε) is a reduced energy.
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Figure 4.4: Predictions for the ionization yield Qy and the relative scintillation
efficiency Leff compared to the experimental data presented in [33] (and further
references therein). The lines with different colors correspond to different choices of
the function ξ(ε): The blue line corresponds to the original function ξ(ε) obtained
from Lindhard’s theory (nuclear stopping power based on Thomas-Fermi screening).
The red line, which we consider as the best description, corresponds to our proposal
to modify Lindhard’s theory by using the universal nuclear stopping power from
Ziegler et al. (see also figure 4.2). The purple line has been obtained by assuming
a threshold effect at 5 keV that reduces the electronic excitations and consequently
acts like a smooth cut-off for ξ(ε). The ionization yield becomes clearly inconsistent
with data, thus limiting the scintillation efficiency from below. For the orange
line, finally, we have included an enhancement of the electronic stopping power at
low energies to obtain better agreement with the ionization yield. For all plots we
have used β = 1.2 · 105. For our prediction of Qy we assume an electric field of
E = 0.88± 0.04 kV/cm.
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Now we can write down our final result for Leff :

Leff = Nph(Enr)
Enr ·N ref

ph
· qel(Enr) . (4.29)

All parameters appearing in this equation have either been measured or were fixed
previously. Consequently, we can now plot Leff and compare it to available data (see
the red curve in figure 4.4b). Our model predicts a flat Leff at low recoil energies,
giving roughly Leff = 0.11 at Enr = 2 keV. This prediction agrees well with the values
measured by Aprile et al. Also, good agreement in both Qy and Leff is found between
our results and the results that Sorensen obtained from Monte Carlo simulations of
the nuclear recoil band [34].
We would like to emphasize that the Lindhard factor, meaning ξ(ε), is still

the dominating uncertainty of our model. In fact, we are under the impression,
that this uncertainty has been often underestimated previously, as not even the
general tendency (suppression or enhancement) of electronic excitations at low recoil
energies is quite clear. However, the point we wish to make is that making different
assumptions for the nuclear and electronic stopping powers will necessarily affect the
predictions for both, ionization yield and relative scintillation efficiency.

We show different curves corresponding to different assumptions on ξ(ε) in figure
4.4. All choices of ξ(ε) give predictions for Leff that are compatible with experimental
data. However, if ξ(ε) decreases with decreasing recoil energy (as one would expect
in the presence of threshold effects or Coulomb effects), one cannot account for the
increasing ionization yield that we observe experimentally.
Our central observation is therefore that any model attempting to explain the

scintillation yield of liquid xenon, must at the same time explain the ionization
yield. Consequently, a general suppression of electronic excitations at low recoil
energies is clearly incompatible with experiments. In contrast, an energy dependent
recombination fraction can clearly accommodate (and even predict) the opposing
trends seen in scintillation and ionization yield. The red line in figure 4.4b is not only
well motivated theoretically but also provides a good description of both ionization
yield and relative scintillation efficiency.

Our results rely on the assumption that the ratio Nex/Ni does not vary strongly
with energy. If we allow for an arbitrary energy dependence of this quantity and
simultaneously vary ξ(ε), we could obviously fit any measurement for the ionization
yield and the relative scintillation efficiency. However, from all available data, such
an energy dependence is not expected. Moreover, to suppress scintillation and
enhance ionization at low energies, Nex/Ni would have to decrease, implying that
excitation becomes less likely compared to ionization. Such a behavior would most
likely contradict the fact that less energy is required to excite a xenon atom than to
ionize it.
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Figure 4.5: Expected performance of the XENON100 experiment. For the exclusion
limits, we have assumed a runtime of 100 days. See text for further assumptions.

4.5 Summary of results

Combining our prediction for the relative scintillation efficiency (the red line in
figure 4.4b) with our results from chapter 3, we can calculate the total acceptance
function for XENON100. We assume S1 fluctuations to be described by Poisson
statistics, as in equation (3.3), and include in addition the effect from variations
of the light collection efficiency as discussed in chapter 3.4. We take the published
values for the cut acceptance acut (see figure 3.5) and calculate the total acceptance
function using equation (3.9). We assume that the acceptance of the single scatter
cut is close to 100% and the nuclear recoil cut is defined in such a way that its
acceptance is nearly constant in S1. Consequently, we include this cut by simply
multiplying the total acceptance function with 0.5.
From the total acceptance function shown in figure 4.5a, we can calculate the

expected exclusion limit for XENON100 for a runtime of 100 days. Our result is
shown in figure 4.5b. Clearly, the upcoming data from XENON100 should be able
to settle the discussion about the dark matter observations by CoGeNT and DAMA
by either observing a similar signal or ruling out the preferred parameter regions.



CHAPTER 5
Predicted sensitivity of future liquid xenon experiments

Having discussed in detail the sensitivity of the XENON100 detector, we will now
turn to future experiments based on liquid xenon. It is clear that larger detectors
will be needed in the future, either to increase the sensitivity if nothing is found at
XENON100, or to confirm a possible signal with larger statistics so that one can
reconstruct the spectrum and determine the dark matter mass. The possibility of
upscaling is one of the greatest virtues of the dual-phase liquid xenon technology.
In fact, the XENON Collaboration has already made the first step from XENON10
to XENON100 with great success and the next generation detector XENON1T
is currently being planned [70]. Even larger liquid xenon detectors have been
suggested [71], with a fiducial mass of up to 10 tons.

Certainly, no liquid xenon detector with 10 tons fiducial mass or more will be built
within the next ten years. Nevertheless, it is worthwhile to discuss in general the
advantages and difficulties connected to such an increase of the fiducial volume for
two reasons. First, understanding the most challenging problems of future dark
matter detectors is a valuable guideline for present research and development. And
second, we can look for alternative detector designs that offer better sensitivity or
suffer from less problems.
In this chapter we will denote the detector diameter and height by d and h,

respectively. Unless explicitly stated otherwise, we will assume that d = h to
optimize the ratio of volume to surface. The position of an event is specified by the
coordinates (x, y, z), where

√
x2 + y2 = r ≤ d/2 and −h ≤ z ≤ 0, so that z = 0

corresponds to the liquid surface. Unless explicitly stated otherwise, we shall assume
a fiducial volume cut of 10 cm as proposed for XENON1T, meaning that the fiducial
volume is given by r < d/2− 10 cm and −h+ 10 cm ≤ z ≤ −10 cm.

In section 5.1 we will discuss why liquid xenon detectors are especially well suited for
upscaling and what difficulties we must expect. The low energy threshold, which turns
out to be the greatest challenge, will be the topic of section 5.2. Alternative detector
designs with an especially low threshold are the topic of section 5.3. Section 5.4
is dedicated to a discussion of the background from radioactivity. Most of the
results presented in this chapter are based on Monte Carlo simulations with Geant4.
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Appendix D provides more information on the detector design and the materials
used in the simulation and the general structure of the code.

5.1 Large liquid xenon detectors

In principle, it is not obvious that an increase of fiducial mass will improve the
sensitivity of a detector. In fact, almost all current direct detection experiments
observe a number of background events, and this number will rise if the size of the
detector is increased. At the end of the day, the background still limits the sensitivity
of the detector — so little is gained from increasing the fiducial mass. It is the great
virtue of liquid xenon detectors that they observe only very little background, so the
sensitivity can indeed be improved substantially by increasing the detector volume.
Increasing the size of a liquid xenon detector will bring even further advantages.

First, the strong self-shielding of liquid xenon will lead to a region with extremely
low background in the center of the detector. Second, the ratio of volume to surface
will improve, so the fiducial volume cut will remove a much smaller fraction of the
liquid xenon. Also, major sources of radioactivity (such as the photo-sensors) scale
proportional to the surface, so they will contribute less to the background rate.
And finally, as the size of the detector increases, neutron background will also be
suppressed, because the chance decreases that a neutron scatters only once inside
the active volume, so the background rejection is more efficient.
Nevertheless, there are difficulties related to increasing the detector dimensions.

These difficulties are mostly connected to the magnitude and quality of the S1 and
S2 signals. As we pointed out in chapter 3.1.1, the S1 signal limits the detector
sensitivity in the low energy region. If the light yield of the detector decreases,
meaning fewer photoelectrons are produced per keV energy deposition, the low
energy threshold increases and the detector sensitivity is reduced. For this reason,
it is unclear from the beginning whether an increase of fiducial volume will at all
improve the sensitivity in the low energy region. We will address this question in
section 5.2.
The S2 signal comes with additional problems. First of all, the electron drift

length increases with the detector height. Thus, in order to keep the loss of charge
under control, we must increase the electron lifetime in liquid xenon, while keeping
the drift velocity constant. The first demand requires electronegative impurities to
be strongly reduced, while the second demand implies that the electric field has to
remain constant. Thus, the high voltage (HV) applied to the grids in the TPC must
increase with the detector size.1 This problem is a great challenges for upscaling
and may in fact require a significant change of the detector design (see section 5.3).
However, we assume for now that another factor of five in the HV is achievable and

1The term grids is used frequently in the context of liquid xenon detectors to refer to the
stainless steel meshes that provide the electric field.
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the known technology remains viable for larger detectors.
Still, even for constant drift velocity of the electrons there will be a longer drift

time, leading to larger diffusion of the charge cloud. Consequently, we expect the
position resolution of the detector to deteriorate, reducing the efficiency of the single
scatter cut because two events that occur close to each other can no longer be
discriminated. This problem may significantly increase the background rate, so we
discuss it in detail in section 5.4. Finally, note that a longer drift time also increases
the risk that two events interfere with each other, because a second event may happen
before the electrons of the first event have reached the cathode.

5.2 Estimated energy thresholds

As we emphasized in chapter 3, it is extremely important for every dark matter
detector to achieve a high sensitivity in the low energy region. If we assume that
future liquid xenon detectors will also require S1 ≥ 4 phe, the energy threshold is
determined by the light yield Ly of the detector according to

Emin
nr = 4

Ly · Leff
· See

Snr
. (5.1)

The light yield is the product of the number of photons produced per keV in an
electron recoil, the light collection efficiency (LCE) and the quantum efficiency (QE)
of the photo-sensors. For constant drift field, the only quantity that depends on the
detector geometry is LCE. Consequently, we can write

Emin
nr ∝ LCE−1 , (5.2)

where the constant of proportionality can be estimated from the XENON100 detector
to be roughly 2.5 keV.
Clearly, with increasing detector dimensions, photons will have to travel larger

distances, so they are more likely to be absorbed before they hit a photo-sensor.
Consequently, the light collection efficiency decreases, leading to a rise of the detector
threshold and a loss of sensitivity in the low energy region. In this section we will
carefully analyze the process of light collection in order to understand whether we
can still gain sensitivity from increasing the fiducial volume.

5.2.1 Light collection maps

To determine the light collection efficiency for a given detector layout, Monte Carlo
simulations are almost unavoidable. Simple geometrical considerations fail, because
the large number of scattering and reflection processes lead to complicated photon
tracks. We have performed such Monte Carlo simulations for different detector
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Figure 5.1: A typical result from the Monte Carlo simulation of scintillation photons.
For this plot, we used a detector with d = h = 2.0 m. In each event, 500 scintillation
photons were generated at the center of the detector.

sizes and designs (see appendix D). Ultimately we are interested in the change of
light collection efficiency with increasing detector size, but first of all we need to
understand the light collection properties for a given detector. Clearly, it is not
trivial to quantify the light collection efficiency by a single number only, because it
varies with the position of the primary event. A nuclear recoil close to the bottom
QUPID1 array will appear brighter than a recoil near the detector wall or in the
center of the active volume.
For primary events2 with a fixed position, the number of scintillation photons

that reach the QUPIDs follows a Gaussian distribution (see Figure 5.1). This
observation is also true for the top and the bottom QUPID array separately. Note
that fluctuations of the total number of detected photons is smaller than expected
from simply adding the top and bottom signal. The reason is that the two signals
are anticorrelated, because the more photons reach the top QUPID array, the less
photons are observed at the bottom. We define the light collection efficiency of
a given position as the average number of detected photons divided by the total
number of scintillation photons produced initially. With this definition, we can now
study how the light collection efficiency varies over the volume of the detector.

1In all our simulations, we employ QUPIDs (see appendix D.2.1) as photo-sensors.
2A primary event means in this case a keV γ-ray that instantly produces a large number of
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Figure 5.2: Dependence of the number of detected photons on the position of the
primary event. For this plot a detector with d = h = 2.0 m was used. Only the
z-position was varied, keeping x = y = 0 cm. In each event, 500 primary scintillation
photons were generated.

Let us first look at the top and bottom QUPID array separately (see figure 5.2).
As expected, moving the position of the primary event towards the top of the detector
will increase the light collection efficiency for the top QUPID array and reduce it
for the bottom QUPID array. On average less photons reach the top QUPID array
than the bottom one, because of total internal reflection on the liquid surface. As
a consequence, the position with lowest total light collection efficiency lies slightly
above the center of the detector. The results of extensive Monte Carlo simulations
of scintillation light for varying position of the primary event in a detector with
d = h = 2.0 m are summarized in figure 5.3. As expected, the light collection
efficiency of the detector is best near the symmetry axis r = 0 and close to the
bottom, and worst at the outer radius slightly above the center.

5.2.2 Light collection efficiency

Certainly, a plot like the one in figure 5.3 would be the best way to describe the
light collection efficiency of a given detector. However, in order to compare detectors
of different sizes, we must find a simpler description. In fact, we do not need to
know where the region of highest LCE lies, but only how large it is. What we
therefore need is a function m(LCE) giving the size (or the mass) of the detector
region with a given LCE. From the light collection map in 5.3 we can guess how
such a function would look: There is a large region with more or less constant and
rather low light collection efficiency and small regions at the bottom and top where

scintillation photons.
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Figure 5.3: The light collection map of a detector with d = h = 2.0 m. We have set
x = 0 cm everywhere, but of course, the plot would look the same for y = 0 cm and
varying x.

the light collection efficiency reaches large values. Thus, m(LCE) should have a
peak at small values and a long tail towards higher values.

Indeed Monte Carlo simulations confirm our expectation (see figure 5.4). The light
collection efficiency can roughly be described by the function

m(LCE) = N · exp
(
−a(LCE − b) + e−a(LCE−b)

2

)
, (5.3)

where a and b are parameters that we determine by a fit to the simulated data and N
is an appropriate normalization factor. In the end, we are interested in the average
light collection efficiency LCE and its standard deviation ∆LCE, which we can
calculate from a and b.
We have determined the parameters a and b for different detector sizes and

calculated the corresponding light collection efficiencies. For each detector, we
include only events inside the fiducial volume. Our results are summarized in
figure 5.5. We observe an exponential decrease of the mean light collection efficiency
and its variation with growing detector size.1 We obtain

LCE = (0.53± 0.01) · exp
[
−(0.29± 0.01) m−1 · x

]
,

∆LCE = (0.28± 0.01) · exp
[
−(0.55± 0.02) m−1 · x

]
. (5.4)

1From the data points shown in figure 5.5 one could also assume a linear decrease. However,
simulating the mean light collection efficiency for much larger values of d and h we could confirm
that an exponential gives the correct extrapolation.
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Figure 5.4: The function m(LCE) for a detector with d = h = 2.0 m. One can
clearly see that the largest contribution comes from the region with LCE ≈ 25%.
The corresponding fit parameters are a = 38.8± 0.4 and b = 0.2628± 0.0004, giving
LCE = 0.295± 0.001 and ∆LCE = 0.091± 0.001.

Note that ∆LCE/LCE decreases with increasing detector size. Thus, the variation
of light collection efficiency, which we already deemed irrelevant at low energies for
XENON100 (see chapter 3.4), will be even less important for larger detectors.

Before we can turn to discussing the implications of our results, we should address
one more issue: the absorption length of liquid xenon. Liquid xenon itself does not
absorb its own scintillation light, but many impurities such as H2O do. For the
simulations above, we have used an absorption length of α = 10 m (which is also the
value assumed in [70]). Naively, we would expect LCE ∝ exp(−d/α), so our results
should not depend on α as long as α � d. However, the actual distance traveled
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shown.
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by a photon can be many times larger than the detector diameter due to multiple
reflection and Rayleigh scattering. As a consequence, a strong dependence of the
LCE on the absorption length is observed even for α� d (see figure 5.6).
Clearly, a large absorption length is highly desirable in order to maximize the

light collection efficiency. Consequently, increasing the liquid xenon purity will be
another central challenges for the upscaling of the liquid xenon technology. Currently,
absorption lengths of 5 m have been achieved, so assuming α > 10 m may seem overly
optimistic. In the following we will always assume α = 10 m.1

5.2.3 Predicted exclusion limits

We can now calculate the low energy threshold using equation (5.4) and equation (5.1)
to obtain the expected exclusion limits for future detectors of various sizes. Of course,
we do not know the total acceptance function for future experiments, but we expect
it to be similar to the one from XENON100. We therefore assume Poisson statistics
for the S1 signal and take the function shown in figure 3.5 for the cut acceptance
acut(S1). Moreover, we assume a flat 50% nuclear recoil cut acceptance and the
conservative choice of Leff . The resulting curves are shown in figure 5.7.

One can see that the sensitivity for heavy dark matter particles increases strongly
with increasing detector size. In contrast, the sensitivity in the low mass region
shows only very slight improvements. This result is not surprising, because as the
fiducial mass is increased only the regions with low light collection efficiency grow —
and these regions are essentially blind for low mass dark matter. One way to increase

1This choice is also the reason why the light collection efficiency we obtain from our simula-
tions is much better than the light collection efficiency observed in XENON100.
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Figure 5.7: 90% exclusion limits for multi-ton liquid xenon experiments. The four
curves correspond to d =1.0, 1.3, 1.7 and 2.2 m from red to blue. The duration of the
experiment is 100 days in each case. We have used standard assumptions, meaning
the conservative choice of Leff and flat 50% acceptance for the nuclear recoil cut.

the sensitivity for low mass dark matter would be to strive for a larger absorption
length of liquid xenon. Alternatively, we can think about possible design changes.

5.3 Proposed design changes

As we have seen in the previous section, an increase of the detector size does not
significantly improve the sensitivity in the low energy region. Consequently, very large
liquid xenon detectors are of little help in searching for low mass dark matter. For this
purpose, different detector designs should be considered. Such novel designs usually
rely on a larger number of photo-sensors in order to increase the light collection
efficiency. In this section, we will propose and discuss two possible concepts for future
liquid xenon detectors: Oblate detectors and detectors with 4π QUPID coverage.

5.3.1 Oblate detectors

Oblate detectors are detectors with d > h (see figure D.1 in appendix D). Traditionally,
they are disfavored because their volume to surface ratio is worse than for detectors
with d = h and consequently they offer a smaller fiducial mass for the same total
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Figure 5.8: Sensitivity of multi-ton liquid xenon experiments with oblate detectors.
Note that the detector height varies with the detector diameter, so that the total
liquid xenon mass remains constant at 2.35 t. The 90% exclusion limits have been
calculated with the same assumptions as in figure 5.7.

liquid xenon mass. However, in this section our aim is not to maximize the fiducial
volume but instead to improve the light yield, so we dare to deviate from this
tradition. We shall take a detector with d = h = 1.0 m (corresponding to 2.35 t total
and 1.2 t fiducial mass) as the starting point and then determine how the sensitivity
of the detector changes as we increase d and reduce h in such a way that the total
liquid xenon mass remains constant.

First, we notice that the resulting loss in fiducial mass is not as bad as one might
expect. In fact, even for h = 0.5 m and d = 1.41 m we get a fiducial mass of 1.04 t,
a reduction of only about 15% compared to the case where d = h. At the same
time, the number of QUPIDs grows from 242 to 508 — an increase of 110%. We can
therefore reasonably hope that sensitivity is gained rather than lost as we increase d.

Using Monte Carlo simulations, we have determined the light collection efficiency
of different detectors with a total liquid xenon mass of 2.35 t but a diameter varying
between 1.0 m and 1.41 m (corresponding to h varying between 1.0 m and 0.5 m).
Our results are presented in figure 5.8a. The light collection efficiency indeed rises
significantly as the detector diameter increases and its height decreases. Figure 5.8b
shows the corresponding exclusion limits. Although we have reduced the fiducial
volume, the sensitivity increases in the low mass region while remaining almost
constant for larger dark matter mass.

In summary, oblate detectors are an attractive option for future experiments based
on liquid xenon with an emphasis on observing light dark matter. In fact a detector
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Figure 5.9: An example for a
liquid xenon detector with 4π
QUPID coverage.
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Figure 5.10: The expected 90% exclusion limit
for a 4π detector and d = h = 1.0 m (blue
line) compared to a conventional detector of
the same size (red line). We use the same
assumptions as in figure 5.7, except that we
take 4 ≤ S1 ≤ 50 for the 4π detector.1

with d > h has even further advantages. The comparably small height alleviates
many of the problems associated with the electron drift length (see section 5.1). Most
notably, the position resolution improves and the high voltage can be reduced. On
the other hand, QUPIDs are among the most expensive components of the detector,
so increasing their number will significantly raise the total cost of the experiment.

5.3.2 4π QUPID coverage

A more radical (and certainly more expensive) approach would be to place QUPIDs
on all detector walls. A typical design of such a detector is shown in figure 5.9. Of
course, besides the enormous cost of such a detector, such a severe design change is
likely to cause major technical difficulties. For example, it is presently unclear how
a strong homogeneous drift field in the active volume can be maintained without
affecting the performance of the QUPIDs. Another problem is data acquisition,
which will be much more complicated for such a large number of channels.

Nevertheless, the light collection efficiency will indeed increase strongly. Monte
Carlo simulations of detectors with 4π QUPID coverage demonstrate that a light

1If we kept the requirement S1 ≤ 20 for the detector with 4π QUPID coverage, we would only
be sensitive to recoil energies up to about 9 keV, because of the very high light collection efficiency.
Consequently, a large number of events would fall above the search region, which would artificially
reduce the sensitivity of the detector for heavy dark matter particles.
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collection efficiency of LCE = 80% can be achieved for a detector with d = h = 1.0 m,
leading to an energy threshold as low as 3 keV. Moreover, the light collection efficiency
decreases only slowly with increasing detector diameter, remaining above 70% even
for d = h = 2.4 m. Consequently, exclusion limits in the low mass region will improve
significantly, as we show in figure 5.10.

However, there is another major problem related an increasing number of QUPIDs,
that we have not discussed yet. QUPIDs contribute significantly to the background
level, which may limit the sensitivity of both oblate detectors and detectors with 4π
QUPID coverage. To find out whether the design changes proposed in this section
are feasible at all, we thus need to perform Monte Carlo simulations of the estimated
background from radioactivity.

5.4 Estimated background rates

In the previous two sections, we have discussed the expected sensitivities for different
future liquid xenon detectors, giving exclusion limits for various detector designs
(see figures 5.7, 5.8b and 5.10). However, our results rely on the assumption that the
radioactive contamination of the detector materials is low enough that we will not
observe any background events. The presence of background events will inevitably
reduce the sensitivity of a detector [72]. Consequently, we will explore in this section
whether it is possible to maintain the great virtue of liquid xenon detectors, the
extremely low background level, even for future detectors.
A distinction is made between electron recoil background, which results mostly

from beta- and gamma-decays, and nuclear recoil background, which originates from
neutrons produced by spontaneous fission, (α, n) reactions and muon spallation. One
further distinguishes internal background, which comes from the detector components,
intrinsic background, which originates from the liquid xenon and its impurities, and
external background, which comes from environmental radioactivity and cosmic rays.
Here we will limit ourselves to the electron recoil background, because the sim-

ulation of neutrons in the low energy region is very involved and computationally
extensive. This limitation implies another simplification: We do not have to worry
about external background, because γ-rays from rock and concrete radioactivity
can be absorbed effectively with a water shield and contribute negligibly to the
background level.
In this section we will address the following questions: How does the internal

electron recoil background change with the size of the detector if the radiopurity
of the materials remains constant? How do the fiducial volume cut and the single
scatter cut affect the background rates? What internal background rates must we
expect from the alternative detector designs proposed in section 5.3? And finally,
what intrinsic contributions are there to the electron recoil background and how will
they ultimately limit our sensitivity?
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Figure 5.11: Contribution to the total background from the various detector compo-
nents as a function of the detector diameter. The number of events correspond to a
runtime of one year. We have applied a fiducial volume cut of 10 cm, a single scatter
cut with a position resolution 3 mm and considered only events in the relevant energy
window 4 ≤ S1 ≤ 20. The solid lines correspond to parabolas f(d) = a · d2.

5.4.1 Internal electron recoil background

We can use a similar Geant4 code as in sections 5.2 and 5.3 to simulate background
from radioactivity. In the following, we consider only the four most relevant radioac-
tive contaminants, namely 238U, 232Th, 40K and 60Co as well as the daughter isotopes
from the decay chains of 238U and 232Th. For details on the assumed radioactivity
of the materials and the simulation procedure, we refer to appendix D. We shall
refer to the total number of events in a given period of time as the background level
(or the total background), while using the term background rate for the normalized
quantity in events per ton per year.
The simulation allows us to determine the number of background events that

we expect inside the fiducial volume over a runtime of one year for each detector
component and each contaminant separately. We present the results of our simulations
in figure 5.11 for the case of a conventional detector with d = h. The greatest
contribution to the total background comes from the QUPID arrays. The PTFE
panels and the titanium cryostat contribute much less, while the contribution from
the copper holders is nearly negligible. We can describe the total background level
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Diameter Fiducial mass Background events Background rate
in meters in tons in events (ton year)−1

1.0 1.2 92± 12 0.381± 0.012
1.2 2.4 123± 14 0.261± 0.014
1.4 4.1 173± 16 0.212± 0.013
1.6 6.5 243± 20 0.188± 0.014
1.8 9.7 307 ± 22 0.159± 0.018

Table 5.1: The total number of background events (see figure 5.11) and the result-
ing background level from Monte Carlo simulations of the internal electron recoil
background in detectors of various sizes.

by a function B(d) = (91.7± 1.9 m−2) · d2, in agreement with our expectation that
the number of background events should be proportional to the surface area of the
detector.
To obtain the background rate in events (ton year)−1 we must divide the total

number of events by the exposure. Moreover, we must consider, that only a very
small fraction of electron recoils will pass the nuclear recoil cut (see chapter 2.4).
We assume a rejection efficiency of 99.5%, meaning that only 0.5% of the electron
recoils will have a sufficiently small S2 signal to imitate dark matter signals. Our
results are summarized in table 5.1. For comparison, note that a dark matter particle
with mχ = 100 GeV and σSI

p = 10−47 cm2 would lead to an event rate of about
0.44 events (ton year)−1.
First of all, we note that the background rate decreases with increasing detector

dimensions. The reason is that the number of background events grows proportional
to d2, while the fiducial volume grows even more quickly than d3, because we loose a
smaller fraction of the total liquid xenon mass to the fiducial volume cut as the volume
increases. Nevertheless, we would hope to gain a factor of about 8 in sensitivity as we
increase the detector diameter from 1.0 m to 1.8 m, while the background rate drops
only by a factor of 2.4. Thus, we must worry about the influence of the background
on the detector performance. We shall return to this question in section 5.5.

5.4.2 Cut efficiencies and position resolution

The nuclear recoil cut allows to suppress background from γ-rays with high efficiency.
However, we want to demonstrate in this section that we also need the single scatter
cut and the fiducial volume cut to achieve an acceptable background level. In fact, we
have already applied these cuts in the simulations above to obtain realistic predictions.
Moreover, we have assumed that the position resolution of the detector remains
constant at 3 mm for all detector sizes. In reality, it will inevitably deteriorate,
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Figure 5.13: Dependence of the back-
ground level on the fiducial volume cut
for a detector with d = h = 1.4 m. All
other cuts are the same as in figure 5.11.
The solid line shows an exponential fit.

because a longer electron drift length leads to a larger diffusion of the charge cloud.
A worse position resolution reduces the efficiency of the single scatter cut, because
we cannot resolve all scattering events. In this section we will estimate, how the
background level changes if the position resolution deteriorates and how a stronger
fiducial volume cut may compensate for this change.
We observe in figure 5.12, that the background level indeed rises significantly as

the position resolution deteriorates. First of all, this observation confirms that the
single scatter cut is indeed very useful to suppress background from γ-rays. On the
other hand, we conclude that we should not ignore the change in position resolution
when simulating the background rate. For example, if we assume that the position
resolution changes from 3 mm for d = 1.0 m to 5 mm for d = 1.8 m, we must expect
the background level to rise by about 8% compared to the value in table 5.1 for
d = 1.8 m.

The dependence of the background level on the fiducial volume cut is very strong
(see figure 5.13). The reason is the strong self-shielding of liquid xenon, which ensures
that all background events from γ-rays occur close to the surface of the fiducial
volume (see figure 5.14). We observe that the background decreases by a factor of
two for every 4 cm of liquid xenon self-shielding. This observation is good news,
because it implies that we can drastically reduce the background from γ-rays by
applying a slightly stronger fiducial volume cut.

To compensate the increase of background with worse position resolution, we can
slightly increase the fiducial volume cut. In the example from above, it would suffice
to go from 10 cm to 10.5 cm as d increases from 1.0 m to 1.8 m. Thus, we do not
expect that a worse position resolution is a significant threat for future liquid xenon
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d = h = 1.0 m. We have applied the same cuts as in figure 5.11. Because of the
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detectors. Of course, this conclusion is true only as far as electron recoil background
is concerned. The single scatter cut is much more important for neutron background,
which cannot be removed effectively by the fiducial volume cut. Consequently, a
high position resolution is still very desirable for future liquid xenon detectors.

5.4.3 Background rates for alternative detector designs

We can make further use of Monte Carlo simulations to estimate the background
level for the alternative detector designs presented in section 5.3. As we have seen in
figure 5.11, QUPIDs give the dominant contribution to the background rate, so we
expect that the background level should be roughly proportional to their number.
Consequently, any attempts to improve the light collection efficiency of a detector by
increasing the number of QUPIDs will also raise the background rate, potentially
limiting the sensitivity.
A dedicated Monte Carlo simulation of an oblate detector with d = 1.41 m and

h = 0.5 m yields a background rate of 0.88± 0.08 events (ton year)−1, which is more
than two times larger than the background rate for a detector with d = h = 1.0 m.
Similarly, we obtain for a detector with d = h = 1.0 m and 4π QUPID coverage
a background rate of 1.04 ± 0.10 events (ton year)−1. Clearly, we have to expect
background events from electron recoils in both of these detectors, which will reduce
the sensitivity. We conclude that increasing the QUPID number demands additional
concessions, such as a modified fiducial volume cut.
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5.4.4 Intrinsic background

Having discussed the internal background that results from the radioactive con-
taminants of the detector components, we now turn to the intrinsic background.
Intrinsic background events are almost uniformly distributed inside the liquid xenon.
Consequently, their number grows proportional to the volume rather than the surface,
so the intrinsic background rate is independent of the detector dimensions. Even
a stronger fiducial volume cut cannot reduce this rate. We therefore expect that
the intrinsic background will become more and more important as the detector
dimensions grow, and that it will ultimately limit the sensitivity of future liquid
xenon detectors. In this section we will consider three possible sources of intrinsic
background:1 Beta-decay of 85Kr, electron scattering of solar pp-neutrinos, and
double-beta-decay of 136Xe.
Krypton contamination is always present in liquid xenon and hard to remove

completely. The XMASS Collaboration has achieved a purity of 1 ppt Kr/Xe [73],
which is also what we assume. Krypton in turn contains the beta-decaying isotope
85Kr at the level of 1.5·10−11 [74]. In spite of these tiny quantities, the continuous beta-
spectrum with end point 687 keV poses a serious intrinsic background, because 85Kr
has a relatively short half-life of only 10.76 years. Consequently, even a contamination
of 1 ppt Kr/Xe will give an activity of 0.14 mBq per ton liquid xenon.
Solar pp-neutrinos are produced in the reaction p + p → d + νe + e+ with a

continuous energy spectrum that ends at Emax
ν = 423 keV [75]. The cross section for

electron scattering of neutrinos is given by [76]

dσ
dy = G2

FmeEν
2π

[
(2 sin2 θw + 1)2 + 4 sin4 θw(1− y)2

]
, (5.5)

where GF = 1.166 · 10−5 GeV−2 is Fermi’s constant, sin2(θw) = 0.231 is the Weinberg
angle [10], Eν is the neutrino energy and y = Eν−E′ν

Eν
is the relative energy transfer.

If we denote the differential neutrino flux by F (Eν), the differential event rate in
the detector is given by

dR
dE = ρe

Emax
ν∫

Emin
ν

dσ
dEF (Eν) dEν . (5.6)

where ρe = 3.67 · 1025 kg−1 is the density of quasi-free electrons in xenon and

Emin
ν = 1

2

[
E +

√
E(E + 2me)

]
. (5.7)

1In principle, there will also be intrinsic background from 39Ar and 222Rn. However, argon can
be removed effectively from liquid xenon and 222Rn has a rather short half-life, so we assume that
future liquid xenon experiments will not be limited by these backgrounds [70].
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Figure 5.15: Contributions to the intrinsic background in liquid xenon detectors. We
have assumed a krypton contamination of 1 ppt and a 136Xe half-life of 1022yr.

Finally, natural xenon contains 8.9% of 136Xe which can undergo double-beta-
decay. Although the half-life has not yet been measured, it is expected to be close
to its current experimental limit of τ1/2 = 1022yr. We show the spectra of all three
contributions in figure 5.15.
In the dark matter search region 4 ≤ S1 ≤ 20, corresponding to roughly

2 keVee ≤ E ≤ 11 keVee, the energy spectra of 85Kr and solar pp-neutrinos are almost
constant, while the contribution from 136Xe can be neglected. At these energies, we
expect a differential event rate of 10−5 events (kg day)−1 from solar pp-neutrinos and
3 · 10−5 events (kg day)−1 from 85Kr. These values translate to a background rate
of 0.018 events (ton year)−1 for solar pp-neutrinos and 0.055 events (ton year)−1 for
85Kr, where we have again assumed a discrimination power of 99.5%.

From these observations we conclude that the intrinsic background is not negligible.
In fact, it becomes more and more important as we increase the detector dimensions
and is of the same magnitude as the internal background from γ-rays for d ≥ 1.8 m.
What is worse, it is essentially irreducible. Even if we imagine that krypton can be
removed to the level of 0.2 ppt, the solar neutrino background will remain. Unless
a better discrimination power between electron recoils and nuclear recoils can be
achieved, this background will ultimately limit the sensitivity that liquid xenon
detectors can achieve.1

1Note that nuclear recoils of solar neutrinos as discussed in [77] do not limit the sensitivity of
future liquid xenon detectors, because the maximum recoil energy is well below the threshold.
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5.5 Summary of results

To conclude this chapter, we can use the background rates that we obtained in
section 5.4 (see table 5.1) to re-examine the exclusion limits from section 5.2 (see
figure 5.7). We obtained that a detector with d = 1 m (approximately 1 t fiducial
mass) can achieve a sensitivity of σSI

p ≈ 3 · 10−47 cm2 for mχ = 50 GeV in a runtime
of one year. From the Monte Carlo simulations of radioactive contaminations we
conclude that we expect less than 0.5 events from internal electron recoil background
in such an experiment, if a rejection efficiency of the nuclear recoil cut of 99.5% can
be achieved.1 The background from intrinsic sources is even smaller, namely below
0.1 events, if 85Kr can be removed to the 1 ppt level. Consequently, electron recoil
background should not limit the sensitivity of a ton-sized experiment like XENON1T.
For a detector with d = 1.8 m (fiducial mass of about 10 t), we would expect a

maximum sensitivity of σSI
p ≈ 3 · 10−48 cm2. However, such an experiment would

observe more than 1.5 events from internal electron recoil background, unless the
fiducial volume cut is increased. In addition, more than 0.5 events are expected from
intrinsic background, which cannot be removed by the fiducial volume cut.2 Therefore,
the detector will most likely observe a number of background events.3 Clearly,
unless the radiopurity of the detector components can be improved significantly, the
background will eventually limit the sensitivity of future liquid xenon detectors.

In summary, we believe that oblate detectors offer an attractive option to increase
the detector sensitivity in the low energy region while avoiding many of the problems
that come with upscaling. A detector with d = 1.41 m and h = 0.5 m (1.04 t fiducial
mass) offers a similar sensitivity for dark matter particles with mχ < 10 GeV as a
conventional detector with 10 t fiducial mass, while having an acceptable background
level of less than 0.9 events per year from electron recoils. Detectors with 4π QUPID
coverage, on the other hand, pose great technical challenges and increase the cost
of the experiment significantly but certainly offer the best sensitivity for the entire
parameter region — if the background rate is under control. Another option would
be to aim for a significant increase of the liquid xenon absorption length, which could
have similar benefits for the light collection efficiency while avoiding many of the
problems that come with a large number of QUPIDs.

1Note that presently achieved rejection efficiencies are about 99%, so this assumption is in fact
rather optimistic.

2Moreover, in contrast to γ-rays, electrons from beta-decay always give only one S2 signal, so
the single scatter cut does not reduce the intrinsic background either.

3We still have neglected the background from neutron scattering which is expected to become
dominant for large liquid xenon detectors [70].



CHAPTER 6
Analysis of matrix elements for fermionic dark matter

So far, we have calculated all exclusion limits using the standard cross section for
spin-independent interaction between dark matter and nucleons from equation (2.9).
In this chapter, we will discuss more complicated interactions. In general, the cross
sections can depend on the spin of the dark matter particle, sχ, the spin of the
nucleus, sN , and the initial and final momentum of the nucleus, p and p′.1 Instead
of p and p′, it is convenient to use the momentum transfer q = p′ − p and the
momentum sum P = p+ p′ = 2p+ q.
In principle, the cross section can be an arbitrary scalar function of P and q.

However, the central point of this chapter is that for dimensional reasons only |q|/m
and |P |/m can appear in the cross section, wherem is a mass scale. The only available
mass scales are mχ and mN , which are both much larger than 1 GeV. The momenta
|q| and |P |, on the other hand, are at most about 100 MeV. Consequently, scattering
with momentum dependent cross sections will be suppressed. To understand this
momentum dependence, we can expand the cross sections in powers of |q|/m and
|P |/m and consider only zeroth and first order.2
In this chapter, we would like to look systematically at possible interactions

between dark matter and nuclei. For the present discussion, we limit ourselves to
the case of fermionic dark matter with spin 1/2, but many of our results can be
generalized to other models. Also, we assume for simplicity that the nucleus is also
a spin-1/2 fermion. Other cases can be obtained in complete analogy by replacing
the Pauli matrices with the correct representation of the spin algebra.
To illustrate the central concepts of this chapter, we begin with the derivation

of familiar cross sections, namely for standard spin-independent (SI) interaction in
section 6.1, and for standard spin-dependent (SD) interaction in section 6.2. We
show that the calculation of cross sections can essentially be split into two parts:
The matching of quark operators to nucleus operators and the calculation of the

1In the laboratory frame, we would have p = 0, but we prefer to work in the center-of-mass
frame, where the initial momentum of the nucleus, p, and the initial momentum of the dark
matter particle, p̃, are related by p = −p̃ = −µv with the reduced mass µ.

2There are a few examples where inverse powers of |q|/m can appear, but we will only discuss
them marginally.
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non-relativistic limit for the nucleus operators. We will discuss the latter problem
in sections 6.3 and 6.4, giving a generalization of the previous calculations. In
section 6.5, we turn to the problem of matching and form factors. In the end, we
will have all the ingredients needed to calculate cross sections for a large number of
possible models.

6.1 Spin-independent interactions

The simplest model that leads to spin-independent interaction is the exchange of a
heavy scalar boson φ, for example the Higgs boson, between quarks and dark matter.
The couplings of quarks and dark matter to this heavy scalar are given by Yukawa
terms:

L ⊃ αφχχ+ βqφqq + h.c. , (6.1)

where the sum over all quarks is implied. In general, the second term should be
βijqiqj, but we assume that β is flavor diagonal. If the mass of the scalar is large
compared to the momentum transfer, meaning mφ � 100 MeV, we can integrate out
the exchange particle.1 We then obtain the effective four-fermion interaction

L ⊃ gqχχqq , (6.2)

where gq is proportional to αβq/m2
φ.

The interaction between dark matter particles and quarks induces an interaction
between dark matter particles and nuclei that we expect to be of a similar form,
namely

M∝ χχNN , (6.3)

where N is the nucleus field. However, the matching of quark operators to nucleus
operators turns out to be rather complicated, so we must be careful to take only
one step at a time. In the end, we will in fact obtain a somewhat more difficult
expression for the dark matter-nucleus interaction.
The first step is to go from quarks to nucleons and calculate the interaction

between dark matter and individual protons and neutrons. For this purpose, we
need to know the contribution of the different quarks to the nucleon. Consequently,
we must evaluate 〈p|qq|p〉 and 〈n|qq|n〉, where p and n denote proton and neutron,
respectively. We define the coupling constants

f
(p)
Tq = 〈p|mqqq|p〉

mp

, f
(n)
Tq = 〈n|mqqq|n〉

mn

. (6.4)

1We refer to [78] for a discussion of potential difficulties that can arise during this step.
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Note that f (p) and f (n) are related by isospin symmetry, for example f (p)
Tu = f

(n)
Td

. The
operator qq is directly connected to the nucleon mass and the so-called pion-nucleon
sigma term. Therefore, one can determine the parameters f (p) and f (n) with good
accuracy from both measurement and calculation. The coupling constant for dark
matter to protons is then given by [12]

fp =
∑

q=u,d,s

mp

mq

gqf
(p)
Tq + 2

27

1−
∑

q=u,d,s
f

(p)
Tq

 ∑
q=c,b,t

gq
mp

mq

, (6.5)

and similarly for fn. Using these coefficients, we can write the matrix element as

M = fpχχpp+ fnχχnn . (6.6)

In principle, there should moreover be form factors for proton and neutron that depend
on the momentum transfer q. However, for a momentum transfer |q| < 100 MeV, it
is a good approximation to set the nucleon form factors equal to unity.
The next step is to obtain a nucleus operator from the nucleon operators. In our

case, this step is very simple, because the operators pp and nn simply count protons
and neutrons, respectively. We therefore get for the nucleus field N

M = (Zfp + (A− Z)fn)χχNNF (q2) . (6.7)

The form factor for the entire nucleus cannot be neglected. In the present case, it
essentially corresponds to the Fourier transformation of its mass density. An explicit
parameterization of F (q2) is given in equation (2.10).
Moreover, one might be worried that equation (6.7) is not complete and that

additional operators like NγµNqµ appear in the matching process. However, we will
show in section 6.5 that the operator in equation (6.7) is indeed the only one that
can occur.
We have now reached the final step of the calculation, which is to take the non-

relativistic limit of the expression in equation (6.7). To do so, we write the fermion
fields N and χ in terms of two-component spinors Nh and χh (see appendix A):1

N(p) = 1√
2mN

√p · σNh√
p · σNh

 ; χ(p̃) = 1
√2mχ

√p̃ · σχh√
p̃ · σχh

 . (6.8)

In the non-relativistic limit, we can approximate E ≈ mN and Ẽ ≈ mχ and use the
expansion [79]

√
p · σ ≈

√
mN − p · σ ≈

√
mN

(
1− p · σ2mN

)
. (6.9)

1The label h stands for heavy field.
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We then get

N(p′)N(p) = N †(p′)γ0N(p)

= 1
2mN

(
N †h
√
p′ · σ, N †h

√
p′ · σ

)0 1

1 0

√p · σNh√
p · σNh


= 1

2mN

N †h
(√

p′ · σ
√
p · σ +

√
p′ · σ√p · σ

)
Nh . (6.10)

Using the expansion from equation (6.9), we get
(√

p′ · σ
√
p · σ +

√
p′ · σ√p · σ

)
=

2mN + O(p2/m2
N) and consequently NN = N †hNh, as expected. Using N †hNh = 1,

we get the non-relativistic limit,

dσ
dq2 ∝ (Zfp + (A− Z)fn)2 F 2(q2) . (6.11)

The implications of this result for dark matter direct detection have already been
discussed in chapter 2.1. Note that the cross section has a very simple form because
the momentum transfer q appears only in the form factor.
To illustrate some of the problems that we want to discuss in this chapter, let

us consider a slight modification of the model above. Assume a mediator boson
with mass mφ ≈ |q| or even lighter. In this case, we can no longer integrate out
the mediator, so we would have to multiply our result in equation (6.11) with an
overall factor of m4

φ/(m2
φ + q2)2. This modification would introduce an additional

non-trivial momentum dependence and consequently change the differential event
rates. Experimentally, we would observe an enhancement of nuclear recoils with
small momentum transfer and a suppression of nuclear recoils with larger momentum
transfer. Consequently, much larger dark matter masses would suddenly be compati-
ble with DAMA and CoGeNT, but at the same time, the entire allowed parameter
region is excluded by XENON and CDMS (see figure 6.1a).

6.2 Spin-dependent interactions

For the model above, the cross section does not depend on the spin of the particles.
The reason is that the spin-operator σ only appears dotted into p/m, which is
suppressed in the non-relativistic limit compared to the spin-independent contribution.
However, other models exist where such a suppression is not present. For example,
consider an interaction mediated by a vector boson that couples only to the axial
currents

L ⊃ αV µχγµγ
5χ+ βqV

µqγµγ
5q + h.c. (6.12)
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Figure 6.1: Allowed regions and exclusion limits for different models that lead to
a q-dependence of the scattering cross section (compare to figure 2.2). All regions
correspond to 3σ confidence level.

Again, if mV � 100 MeV, we can integrate out the mediator to obtain an effective
interaction

L ⊃ gqχγ
µγ5χqγµγ

5q . (6.13)

In the following, we will show that this model leads to spin-dependent interactions.
Again, the first step is to replace the quark fields with nucleon fields. However, in
the present case there arises an additional problem, because the matrix element
diverges for q2 = m2

π, where mπ is the pion mass [80].1 Implementing the hypothesis
of Partially Conserved Axial Currents (PCAC), we can write

〈p|qγµγ5q|p〉 = ∆(p)
q p

(
γµγ

5 + 2mp

m2
π − q2 qµγ

5
)
p , (6.14)

where ∆(p)
q represents the fraction of the nucleon spin that is carried by quarks of

type q:

〈p|qγµγ5q|p〉 = 2s(p)
µ ∆(p)

q . (6.15)

1Note, however, that for all collisions that we consider, q2 ≈ −q2 < 0, so we need not be
worried about this divergence.
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Again, the expression for neutrons is analogous. Here we see for the first time, that
matching fundamental fields to those of composite particles can introduce additional
operators with more complicated q-dependence.

The step from nucleons to nuclei can be performed without additional contributions
at leading order [81].1 Of course, form factors, which describe the distribution of
nucleon spins inside the nucleus, will be introduced, but we will neglect them for
the moment and only include them later on. To match nucleon operators to nucleus
operators, we define

ap =
∑

q=u,d,s

gq√
2GF

∆(p)
q , an =

∑
q=u,d,s

gq√
2GF

∆(n)
q , (6.16)

and introduce Λ = (ap〈sp〉+ an〈sn〉) /J , where J is the total angular momentum of
the nucleus and 〈sp,n〉 denote the expectation value of the spin content of proton and
neutron in the nucleus, respectively. We can then write

M∝ Λχγµγ5χN

(
γµγ

5 + 2mp

m2
π − q2 qµγ

5
)
N . (6.17)

Now, we need to take the non-relativistic limit of the expressions Nγ5N and
Nγµγ

5N . For the first one, we get

N(p′)γ5N(p) = N †(p′)γ0γ5N(p)

= 1
2mN

(
N †h
√
p′ · σ, N †h

√
p′ · σ

)0 1

1 0

−1 0
0 1

√p · σNh√
p · σNh


= 1

2mN

N †h
(√

p′ · σ
√
p · σ −

√
p′ · σ√p · σ

)
Nh . (6.18)

Here, the leading-order term cancels and we get
(√

p′ · σ
√
p · σ −

√
p′ · σ√p · σ

)
=

(p− p′) · σ = −q · σ, so that

N(p′)γ5N(p) = − q

2mN

·N †hσNh . (6.19)

For the expression Nγµγ5N we get after a similar calculation

N(p′)γµγ5N(p) =
 P

2mN
·N †hσNh for µ = 0

N †hσiNh for µ = i
, (6.20)

where P = p+ p′. The operator N †hσNh, which we obtain in both cases, measures
1However, there will be a suppressed operator that corresponds to the electric dipole moment

of the nucleus (see section 6.5).
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the spin of the nucleus: N †hσNh ∝ sN .
Finally, we need to contract the non-relativistic expression for the nucleus fields

with the corresponding one for the dark matter particle, which of course has the same
form as equation (6.20), but with p̃ instead of p.1 Note that the time components
of all operators are suppressed by powers of p/m.2 Consequently, we only need to
multiply the spatial components and obtain

χγµγ5χN

(
γµγ

5 + 2mp

m2
π − q2 qµγ

5
)
N ∝ −sχ ·sN−

mp

m2
π − q2

(sχ · q)(sN · q)
mN

. (6.21)

To get the differential cross section, we must take the spin average of |M|2. Doing
so gives us a factor of q2 from both (sχ · q) and (sN · q). For example, using
1
2
∑

spins χhχ
†
h = 1 we get

1
2
∑
spins
|χ†hσiχhqi|2 = 1

2
∑
spins

(χ†hσiχhqi)(χ
†
hσjχhq

j) (6.22)

= 1
2
∑
spins

tr(χhχ†hσiχhχ
†
hσj)qiqj (6.23)

= 1
2tr(σiσj)q

iqj = δijq
iqj = q2 . (6.24)

We obtain

1
4
∑
spins
|M|2 ∝ Λ2

3 + 2 mp

m2
π − q2

q2

mN

+
(

mp

m2
π − q2

q2

mN

)2
 ≡ Λ2S(|q|) . (6.25)

In the impulse approximation, we then get [82]

dσ
dq2 = G2

F
π(2J + 1)v2

∑
spins
|M|2 = 8G2

F
πv2 Λ

2J(J + 1)S(|q|)
S(0) , (6.26)

The function S(|q|) encodes the momentum dependence of the cross section and is
conventionally parameterized by

S(|q|) = a2
0S00(|q|) + a0a1S01(|q|) + a2

1S11(|q|) , (6.27)

where a0 = ap + an and a1 = ap − an are isoscalar and isovector coupling, respec-
tively. S(|q|) can be extended to include not only the explicit q-dependence from
equation (6.25) but also the nuclear form factor, which is less important in this case.

1Of course, in the center-of-mass frame, we simply have p̃ = −p.
2Note that while the time-component of Pµ is of order mN , the time-component of qµ is

strongly suppressed, because q0 = E′ − E ≈ 1/2mN (v′2 − v2) = O(p2/m).
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Figure 6.2: Exclusion limits from various dark matter direct detection experiments
compared with the favored regions from DAMA and CoGeNT for spin-dependent
interaction. For dark matter that couples only to the neutron spin, meaning an = 1,
ap = 0, the results from DAMA and CoGeNT are clearly excluded by XENON10.
For ap = 1, an = 0, XENON10 is not very sensitive, but the experiments COUPP
and PICASSO give strong constraints. Figure taken from [14].

The parameters Sij can either be measured experimentally or calculated from nuclear
shell models (see for example [83]).
Clearly, exclusion limits for spin-dependent interactions are very different from

the spin-independent ones. First of all, there is no factor of A2, so the cross section
will no longer be enhanced for heavy nuclei. What really matters, is the spin of
the nucleus, contained in the parameter Λ. As a consequence, experiments based
on germanium are rather insensitive to spin-dependent interactions, while strong
exclusion limits are obtained from experiments that use fluorine as the target, for
example COUPP [21] and PICASSO [22]. We present typical exclusion limits in
figure 6.2.

6.3 Momentum and velocity dependence in matrix elements

We have shown above how spin-independent and spin-dependent interactions may
arise. The two interaction terms that we considered, equation (6.2) and equa-
tion (6.13), are in fact the dominant ones if the dark matter particle is a neutralino.
However, in general models it is possible that these terms are absent and other terms,
that would normally give only sub-leading contributions, become important.
To give a simple example, let us consider the modification of equation (6.1). We

replace the scalar mediator boson by a pseudoscalar, which has slightly different
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couplings [78]

L ⊃ iαφχγ5χ+ βqφqq + h.c. (6.28)

Since nothing changes in the quark sector, the matching to nucleus fields can be
performed as above, giving

M = (Zfp + (A− Z)fn)χγ5χNNF (q2) . (6.29)

However, as we take the non-relativistic limit, new structures appear. Using the
result from equation (6.19), we get

M = (Zfp + (A− Z)fn) q

2mχ

· χ†hσχhN
†
hNhF (q2) ∝ q · sχ

mχ

. (6.30)

Consequently, after taking the spin average of |M|2, the resulting cross section will
be proportional to q2/m2

χ. Consequently, scattering with small momentum transfer
will be suppressed, while scattering of light dark matter particles will be enhanced.
As a result, the differential event rate will no longer be exponentially falling, but
will rise at low recoil energies and then reach a maximum around 10 keV (see [78]).
Figure 6.1b shows how this change affects exclusion limits.

This simple example demonstrates that we can expect new experimental signatures
in the absence of unsuppressed interaction terms. Our aim for this chapter is to
calculate systematically all possible terms that can arise at next-to-leading order and
understand the resulting cross sections. Although there are quite many operators
that we can write down in the fundamental theory, the matrix elements in the
non-relativistic limit are rather simple, because they can only depend on scalar
products of the four available vectors q, P , sN and sχ, where each power of |q| or
|P | must be divided by either mN or mχ.

We will perform the calculation in three separate steps. In this section, we complete
the list of fermion bilinears and calculate the non-relativistic limit for each. In the
following section, we will discuss Lorentz invariant products of two fermion bilinears
and give the non-relativistic limit of all possible four-fermion interactions. In this
context, we will also consider the contraction of a fermion bilinear with Pµ or qµ.
Finally, in the last section of this chapter, we will return to the matching of quark
operators to nucleus operators and state all terms that can appear in the process.

We have already determined the non-relativistic limits of the scalar operator NN
in equation (6.11), the pseudoscalar operator Nγ5N in equation (6.19), and the axial
vector operator Nγµγ5N in equation (6.20). To complete the list of fermion bilinears,
we now calculate the non-relativistic limits of the vector operator NγµN , the tensor
operator NσµνN , and the pseudotensor operator Nσµνγ5N , where σµν = i

2 [γµ, γν ].

N(p′)γµN(p) = N †(p′)γ0γµN(p)
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= 1
2mN

(
N †h
√
p′ · σ, N †h

√
p′ · σ

)0 1

1 0

 0 σµ

σµ 0

√p · σNh√
p · σNh


= 1

2mN

N †h
(√

p′ · σσµ
√
p · σ +

√
p′ · σσµ√p · σ

)
Nh

=
 N †hNh for µ = 0

P i

2mN
N †hNh − iqj

2mN
εijkN †hσkNh for µ = i

, (6.31)

where we have used equation (A.6). In contrast to the axial vector bilinear, here the
time component is unsuppressed, while the spatial components are of higher order.
Similar, but more cumbersome, calculations give for the tensor operators

N(p′)σµνN(p) =


iqi

2mN
N †hNh + Pj

2mN
εijkN †hσkNh for µ = i, ν = 0

εijkN †hσkNh for µ = i, ν = j
, (6.32)

N(p′)σµνγ5N(p) =
 −iN

†
hσ

iNh µ = i, ν = 0
i

2mN
N †hP

[iσj]Nh − qk
2mN

εijkN †hNh µ = i, ν = j
, (6.33)

where P [iσj] = P iσj −P jσi. Note that both operators are anti-symmetric in µ and ν
because σµν = −σνµ. The corresponding expressions for the dark matter bilinears can
be obtained in complete analogy by replacing mN with mχ and q,P with −q,−P .

6.4 General analysis of four-fermion interactions

With the results from the previous sections, we can now calculate the non-relativistic
limit of any four-fermion interaction. In general, a four-fermion interaction is obtained
by combining two fermion bilinears with matching Lorentz structure. If the Lorentz
structure does not match, we can still combine the two bilinears by contracting all
remaining Lorentz indices with powers of qµ or P µ. Doing so essentially corresponds
to allowing higher dimensional operators with additional derivatives that result from
a more complete high energy theory. For dimensional reasons, the additional powers
of |q| and |P | must be divided by a mass scale Λ, which can be understood as the
scale of new physics. However, Λ can be at or even below the TeV-scale, so there
is no large hierarchy between Λ and mχ,N .1 Therefore, we assume that |q|/Λ and
|P |/Λ are of the same order as |q|/m and |P |/m rather than of order q2/m2 and
P 2/m2 and include them in our calculations.
First of all we observe that certain combinations lead to unsuppressed matrix

elements and cross sections that remain non-zero as |q|, |P | → 0. We have al-
ready seen in section 6.1 that the product (scalar)×(scalar) leads to unsuppressed
spin-independent interactions and in section 6.2 that (axial)×(axial) leads to un-

1In fact, in section 6.5, we will even encounter cases where Λ = mN .
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suppressed spin-dependent interactions.1 Similarly, (vector)×(vector) leads to
unsuppressed spin-independent interactions, while both, (tensor)×(tensor) and
(pseudotensor)×(pseudotensor), give unsuppressed spin-dependent interactions.2

Note, however, that the cross sections obtained in each case are not necessarily
equal. The reason is, that operators with different Lorentz structure couple to
different charges. For example, the operator qq is sensitive to all quarks in the
nucleon (including sea quarks), so the resulting coupling to the nucleus will be
proportional to the nucleus mass. The operator qγµq, on the other hand, is a
conserved current and consequently is only sensitive to valence quarks. The resulting
cross section will therefore depend on the nuclear charge.3 Also form factors will in
general be different (although in this case they are coincidentally the same, because
we observe experimentally that the distribution of mass inside a nucleus matches the
distribution of charge). We will come back to this discussion in section 6.5.

The unsuppressed operators have been discussed extensively in the literature (see
for example [14]). Only recently, various authors have begun to study suppressed
operators as well [78, 84, 85]. Physical motivation for such operators comes for
example from the idea that the dark matter particle may be composite and interact
with nuclei only through its electromagnetic dipole moment [86–89]. So far, however,
only some special models have been considered. Here, we want to discuss suppressed
operators in full generality and will therefore derive a complete list of matrix elements
that can arise at next-to-leading order from four-fermion interactions.

6.4.1 Scalar interactions

We begin with the simplest case, where the dark matter and nucleus bilinear are both
either Lorentz scalars or pseudoscalars, so that there are no free Lorentz indices. We
have already discussed the case (scalar)×(scalar), which leads to unsuppressed spin-
independent interaction, and the case (pseudoscalar)×(scalar), which depends on the
spin of the dark matter particle and the momentum transfer but not on the nuclear
spin, consequently giving suppressed spin-independent interactions. Similarly, the
case (scalar)×(pseudoscalar) has a factor of |q|/mN instead of |q|/mχ and depends
on the nuclear spin instead of the dark matter spin, therefore giving suppressed spin-
dependent interactions. The product (pseudoscalar)×(pseudoscalar) is suppressed
by two powers of |q|/m, so we neglect it completely.
Next, we can form additional Lorentz scalars and pseudoscalars by contracting

1The notation (axial)×(axial) stands for the contraction of axial dark matter bilinear and
axial nucleus bilinear.

2In fact, since σµνγ5 = i
2ε
µνκλσκλ, the product (tensor)×(tensor) is equivalent to the product

(pseudotensor)×(pseudotensor).
3Charge in this context means charge under the relevant gauge group. If the charge assign-

ments for up- and down-quark coincide with their electromagnetic charge, then nuclear charge
indeed means Z.
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Operator Interaction Non-relativistic matrix element
χχNN Unsuppressed SI 1
χγ5χNN Suppressed SI sχ · q/2mχ

χχNγ5N Suppressed SD −sN · q/2mN

χγ5χNγ5N Strongly suppressed 0
χχNγµNPµ/Λ Suppressed SI 2mN/Λ

χχNγµγ5Nqµ/Λ Suppressed SD −sN · q/Λ
χχNγµNqµ/Λ Vanishes 0
χχNγµγ5NPµ/Λ Vanishes 0
χγ5χNγµNPµ/Λ Suppressed SI 2mNsχ · q/mχΛ

χγ5χNγµγ5Nqµ/Λ Strongly suppressed 0
χγ5χNγµNqµ/Λ Vanishes 0
χγ5χNγµγ5NPµ/Λ Vanishes 0

Table 6.1: Scalar products of fermion bilinears to first order in |p|/m. The cases
where the dark matter bilinear is a (pseudo)vector are analogous to the cases where
the nucleus bilinear is a (pseudo)vector.

vectorial bilinears with qµ/Λ or P µ/Λ, meaning that we include derivative interactions.
We get up to first order:

N(p′)γµN(p)qµ
Λ

= 0 , (6.34)

N(p′)γµN(p)Pµ
Λ

= 2mN

Λ
N †hNh = 2mN

Λ
× (scalar) , (6.35)

N(p′)γµγ5N(p)qµ
Λ

= −qi
Λ
N †hσ

iNh = 2mN

Λ
× (pseudoscalar) , (6.36)

N(p′)γµγ5N(p)Pµ
Λ

= 0 , (6.37)

so that nothing new is obtained from these operators. Equations (6.34)–(6.37)
are indeed correct not only to first order in |p|/m, but to all orders. The reason
is that γµpµN(p) = mNN(p) and N(p′)γµp′µ = mNN(p′) as in equation (A.15).
Consequently, we get for example

N(p′)γµN(p)qµ = N(p′)γµ(p′µ − pµ)N(p) = N(p′)(mN −mN)N(p) = 0 . (6.38)

The complete list of possible products is given in table 6.1.
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6.4.2 Vector interactions

For the vectorial operators, something interesting happens. While the products
(vector)×(vector) and (axial)×(axial) both give unsuppressed interactions, the prod-
uct (vector)×(axial) is suppressed. The reason is that the vector current has an
unsuppressed time component and suppressed spatial components, while it is the
other way around for the axial current. In detail, we get

χγµγ5χNγµN = − P

2mχ

· χ†hσχhN
†
hNh

− χ†hσiχh
(
P i

2mN

N †hNh −
iqj

2mN

εijkN †hσkNh

)

= −
(

1
2mN

+ 1
2mχ

)
P · χ†hσχhN

†
hNh + iqj

2mN

εijkχ†hσiχhN
†
hσkNh

∝ −P · sχ2µ + iq · (sN × sχ)
2mN

. (6.39)

Taking the spin average, gives

1
4
∑
spins
|M|2 = P 2

4µ2 + 2q2

4m2
N

, (6.40)

where the additional factor of 2 arises because of εijkεilk = 2δjl .
For the first time, we obtain a cross section, that actually depends on P . To

understand the implications of this result, remember that P 2 = (p+ p′)2 = (2p+
q)2 = 4p2 + 4pq + q2. At the same time, we have in the center-of-mass frame
p2 = p′2 = (p+q)2 = p2 + 2pq+q2, and consequently, P 2 = 4p2−q2 = 4µ2v2−q2.
Therefore,

1
4
∑
spins
|M|2 = v2 − q2

4µ2 + q2

2m2
N

. (6.41)

The resulting cross section depends not only on the momentum transfer, but also
on the velocity of the dark matter particle. At equal momentum transfer, fast dark
matter particles contribute more to the differential event rate than slow ones.
As above, we can also consider the products of vectorial bilinears with other

bilinears, where free Lorentz indices are contracted with either P µ or qµ. The combi-
nations of vectorial and scalar bilinears have already been discussed in section 6.4.1,
so we limit ourselves to the combination of vectorial and tensor operators here:

N(p′)σµνN(p)qµ
Λ

=
 0 for ν = 0

qj
Λ
εijkN †hσkNh for ν = i

, (6.42)
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Operator Interaction Non-relativistic matrix element
χγµχNγµN Unsuppressed SI 1

χγµγ5χNγµγ
5N Unsuppressed SD sN · sχ

χγµγ5χNγµN Suppressed SI and SD −P ·sχ2µ + iq·(sN×sχ)
2mN

χγµχNγµγ5N Suppressed SD P ·sN
2µ −

iq·(sχ×sN )
2mχ

χγνχNσµνγ
5NP µ/Λ Suppressed SD imN

Λ

[
P ·sN
µ
− iq·(sχ×sN )

mχ

]
χγνχNσµνγ

5Nqµ/Λ Suppressed SD iq · sN/Λ
χγνχNσµνNP

µ/Λ Strongly suppressed 0
χγνχNσµνNq

µ/Λ Strongly suppressed 0
χγνγ5χNσµνNP

µ/Λ Suppressed SI isχ · q/Λ
χγνγ5χNσµνNq

µ/Λ Suppressed SD q · (sχ × sN)/Λ
χγνγ5χNσµνγ

5NP µ/Λ Suppressed SD 2imNsχ · sN/Λ
χγνγ5χNσµνγ

5Nqµ/Λ Strongly suppressed 0

Table 6.2: Vector products of fermion bilinears to first order in |p|/m. The cases
where the dark matter operator is a (pseudo)tensor are analogous to the cases where
the nucleus operator is a (pseudo)tensor.

N(p′)σµνN(p)Pµ
Λ

=
 0 for ν = 0
− iqi

Λ
N †hNh for ν = i

 = −iq
ν

Λ
× (scalar) , (6.43)

N(p′)σµνγ5N(p)qµ
Λ

=
 iqi

Λ
N †hσiNh for ν = 0

0 for ν = j
, (6.44)

N(p′)σµνγ5N(p)Pµ
Λ

=
 iP

Λ
·N †hσNh ν = 0

2imN
Λ
N †hσ

iNh ν = i

 ≈ 2imN

Λ
× (axial) . (6.45)

Equation (6.43) and equation (6.45) also follow directly from equation (A.15) and
the observation that

Pµσ
µν = i

2 (γµγν − γνγµ) (p′µ + pµ)

= i

2
(
γµ(2p′µ − qµ)γν − γνγµ(2pµ + qµ)

)
= i

(
γµp′µγ

ν − γνγµpµ
)
− i

2 (γµγν + γνγµ) qµ

= i
(
γµp′µγ

ν − γνγµpµ − qν
)

= i(/p′γν − γν/p− qν) . (6.46)

We present all possible products in table 6.2.
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Operator Interaction Non-relativistic matrix element
χσµνχNσµνN Unsuppressed SD 2sN · sχ

χσµνγ5χNσµνγ
5N Unsuppressed SD 2sN · sχ

χσµνγ5χNσµνN Suppressed SD and SI iP ·(sχ×sN )(mN−mχ)
mχmN

− q·sχ
mN
− q·sN

mχ

χσµνχNσµνγ
5N Suppressed SD and SI iP ·(sχ×sN )(mN−mχ)

mχmN
− q·sχ

mN
− q·sN

mχ

Table 6.3: Tensor products of fermion bilinears to first order in |p|/m.

6.4.3 Tensor interactions

By now there is only one combination that we have not discussed yet: the product
of tensor and pseudotensor. We get

χσµνγ5χNσµνN = − qi

mN

N †hNhχ
†
hσiχh −

qi

mχ

N †hσiNhχ
†
hχh (6.47)

+ iPi

(
1
mχ

− 1
mN

)
εijkχ†hσjχhN

†
hσkNh (6.48)

∝ iP · (sχ × sN)
(

1
mχ

− 1
mN

)
− q · sχ

mN

− q · sN
mχ

, (6.49)

which, as expected from the symmetry between tensor and pseudotensor, is invariant
under the exchange χ↔ N . We summarize the tensor operators in table 6.3.

6.5 Matching and form factors

With the results from the previous section, we can calculate cross sections once we
know the effective interaction between dark matter and nucleus. What remains is
the question how to determine the effective nucleus operator from the fundamental
Lagrangian. In the limit of zero momentum transfer, the answer is easy. If the
quark operator has the form βqqOq, where O is an arbitrary product of γ-matrices,
the corresponding nucleus operator must also be of the form gNON , because both
operators must have the same Lorentz structure and parity. The only problem that
remains in this case is how to obtain the coupling constant g from the fundamental
coupling constants βq. This problem, however, is well understood for almost all
operators — see [90] for a good review. The only exception is the operator qγ5q,
because it is not present in the Standard Model, so there is no way to determine
experimentally the coupling constants and form factors that would arise in the
process of matching this operator to the corresponding one for nuclei. Of course, it
should be possible to calculate these quantities from QCD, but to the best of our
knowledge such a calculation has not been done.
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For non-zero momentum transfer, matching becomes more difficult, because now
the resulting nucleus operator can depend on the Lorentz vectors qµ and P µ as well
as the Lorentz scalar q2 (or equivalently q2 = −q2). The first consequence is the
occurrence of form factors, so βqqOq will match to gNONF (q2) with F (0) = 1.
These form factors will, in general, be different for different operators.1 The second
consequence is that additional operators may appear in the matching process. We
have seen one example already in section 6.2 for the matching of the axial vector
bilinear. Fortunately, any new operator must have the same Lorentz structure and
parity as the original one. Let us consider all possible quark operators in turn and
determine in each case the most general nucleus operator that can be induced in the
matching process.
For the scalar operator qq, we get

qq → NNF
(s)
1 (q2) +NγµNqµF

(s)
2 (q2)

+NγµNPµF
(s)
3 (q2) +NσµνNPµqνF

(s)
4 (q2) . (6.50)

However, we have seen already in section 6.4.1 that the second term vanishes and
the third term is again proportional to NN . A similar calculation shows that the
fourth term is proportional to q2NN , so that in fact, the only remaining operator is

qq → NNF̃
(s)
1 (q2) . (6.51)

This result justifies the assumption made in section 6.1 that no additional operators
appear in the matching process for the scalar operator.
Analogously, we can write

qγ5q → Nγ5NF
(p)
1 (q2) +Nγµγ5NqµF

(p)
2 (q2)

+Nγµγ5NPµF
(p)
3 (q2) +Nσµνγ5NPµqνF

(p)
4 (q2) . (6.52)

In this case, the third term vanishes, the second one is proportional to Nγ5N and
the last one can be decomposed into a term proportional to Nγ5N and a term
proportional to q2Nγ5N . Consequently, we can write

qγ5q → Nγ5NF̃
(p)
1 (q2) . (6.53)

For the vector operator, things are more complicated. In general, five operators
1It is often argued that we only need two different form factors, one for spin-dependent and

one for spin-independent scattering. The argument is that we can take the non-relativistic limit
already for the nucleon fields. The non-relativistic matrix elements will then be independent of
the detailed Lorentz structure of the operators. Consequently, the form factors describing the
structure of the nucleus must be the same for all matrix elements that have the same dependence
on the nucleon spins. However, it is not quite clear whether we can indeed treat nucleons as
non-relativistic, so this solution is at best an approximation (see [78] for a discussion).
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could appear in the matching process:

qγµq → NγµNF
(v)
1 (q2) +NNqµF

(v)
2 (q2) +NNP µF

(v)
3 (q2)

+NσµνNqνF
(v)
4 (q2) +NσµνNPνF

(v)
5 (q2) . (6.54)

However, we know from equation (6.46), that the last term is proportional to NNqµ.
Moreover, we can use the Gordon identity, which states that

NNP µ = 2mNγµN − iNσµνqνN . (6.55)

Consequently, only three of the four remaining terms are independent, and we can
write

qγµq → NγµNF̃
(v)
1 (q2) +NNqµF̃

(v)
2 (q2) +NσµνNqνF̃

(v)
4 (q2) . (6.56)

Finally, we use the fact that qγµq is a conserved current, so any induced nucleus
operator Γ µ must satisfy the Ward identity qµΓ µ = 0. While the first and last term
in equation (6.56) automatically vanish when contracted with qµ, the second one
does not, so we must require F̃ (v)

2 (q2) = 0. Consequently, the most general form for
the nucleus operator induced from qγµq is (adapting the notation from [79])

qγµq → N

(
F1(q2)γµ + iF2(q2)

2mN

σµνqν

)
N . (6.57)

The second term can be interpreted as the contribution of the magnetic dipole
moment of the nucleus.

Normally, the first term gives the leading order contribution to the scattering cross
sections for dark matter, so the second term can be safely neglected. However, from
equation (6.31) and equation (6.42) we know that the spatial components of both
operators, NγµN and NσµνNqν/mN , are of the order |q|/mN . Consequently, if we
combine these operators with a dark matter bilinear with suppressed time component
(for example χγµγ5χ), the contribution of the vector operator will be suppressed and
both terms in equation (6.57) contribute at the same (namely next-to-leading) order.
For the axial operator, we can proceed in analogy. In general, we would have

qγµγ5q → Nγµγ5NF
(a)
1 (q2) +Nγ5NqµF

(a)
2 (q2) +Nγ5NP µF

(a)
3 (q2)

+Nσµνγ5NqνF
(a)
4 (q2) +Nσµνγ5NPνF

(a)
5 (q2) . (6.58)

Again, only three terms are independent, so we can write

qγµq → Nγµγ5NF̃
(a)
1 (q2) +Nγ5NqµF̃

(a)
2 (q2) +Nσµνγ5NqνF̃

(a)
4 (q2) . (6.59)

This time, however, there is no conserved current which allows us to eliminate the
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second term. In fact, we have seen already in section 6.2, that this term must be
present to account for the divergence at q2 = m2

π. The third term, on the other hand,
corresponds to the electric dipole moment of the nucleus.
For the tensor operator (and the pseudotensor operator), we can again use the

Gordon identity to replace N(P µqν − P νqµ)N by 2mN(γµqν − γνqµ)N , neglecting
terms that are quadratic in q. Consequently, the tensor operator will match to

qσµνq → NσµνNF
(t)
1 (q2) +N(γµqν − γνqµ)NF (t)

2 (q2)
+N(γµP ν − γνP µ)NF (t)

3 (q2) . (6.60)

6.6 Summary of results

We have now presented all the pieces needed to calculate cross sections for the
scattering of dark matter particles on nuclei from any fundamental interaction
involving fermionic dark matter. What one has to do is

1. Obtain the effective four-fermion interaction on the quark level.

2. Match the quark bilinear to the corresponding nucleus bilinear using the
formulas in this section.

3. Calculate (or measure) the effective coupling constants and the resulting form
factors.

4. Take the non-relativistic limit of the resulting matrix element using the formulas
given in section 6.4.

5. Calculate the spin average of |M|2.

Clearly, step 3 is the most difficult part and the results are known only for few simple
cases.

To conclude, we observe that while the scattering of dark matter is rather simple
at leading order, it gets more involved once leading order terms are absent. At next-
to-leading order we must worry about the interplay between various form factors
and coupling constants. The resulting cross sections can depend on the momentum
transfer, the spin of the nucleus and even the velocity of the dark matter particle.
As we have seen in chapters 3 and 4, the final results of XENON100 may exclude
the possibility that the signals from DAMA and CoGeNT are due to unsuppressed
SI interactions. In this case, it will be the next step to analyze the matrix elements
that arise at next-to-leading order to see if any of these allow for a reconciliation of
the different experiments. We leave such an analysis to future work.



CHAPTER 7
Summary and conclusions

The fact that we have compelling evidence for the existence of dark matter from
astrophysical and cosmological observations, but know only little about the particles
that constitute most of it, is one of the greatest puzzles of modern physics. Not only
do we want to understand the large abundance of dark matter in the universe, but
we also hope to obtain first clues about physics beyond the Standard Model from
the properties of the dark matter particle. Direct detection experiments, especially
liquid xenon detectors, appear to be a very promising way to observe dark matter
and finally solve this puzzle. Nevertheless, present experimental results are still far
from providing a clear picture.

The claimed observations of a dark matter signal in the direct detection experiments
DAMA and CoGeNT have led to a strong interest in dark matter particles with
low mass (mχ < 10 GeV). Liquid xenon detectors have difficulties to probe this
parameter region because of their relatively high energy threshold. In this thesis, we
have looked thoroughly at the sensitivity of liquid xenon detectors for low energy
nuclear recoils. It depends essentially on four factors: the detector resolution, the cut
acceptance, the relative scintillation efficiency of liquid xenon and the light collection
efficiency of the detector. As the central result of our work, we obtain that none of
these factors precludes the observation of low mass dark matter.
In chapter 1, we have reviewed the standard model of cosmology and the exper-

imental evidence which leads to the conclusion that there must be 4 to 5 times
more dark than visible matter in the universe. From the little we know about dark
matter, it should be cold, collisionless, stable and non-baryonic. We have argued
that Weakly Interacting Massive Particles are a good candidate for the dark matter
particle because they possess all these properties and moreover are produced with
the correct abundance in the early universe due to the WIMP-miracle.
In chapter 2, we have given an overview of experimental strategies to detect

dark matter. We have derived and discussed the differential event rate in direct
detection experiments and the characteristic signatures of a dark matter signal. The
enhancement of the event rate for heavy nuclei is the first reason for using liquid
xenon detectors. Additional advantages are the strong self-shielding and the high
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scintillation and ionization yields. We have presented the principle of operation of
the XENON100 detector and introduced the terminology relevant for the analysis of
the primary and secondary scintillation signals, S1 and S2. Also, we have pointed
out the tension between the signals observed by DAMA and CoGeNT and the null
results from XENON and CDMS.
In chapter 3, we have discussed the reason for the large fluctuations of the S1

and the S2 signal in liquid xenon detectors at low energies. For the S1 signal,
the detection process limits the detector resolution, leading in good approximation
to a Poisson smearing of the low energy threshold. The statistical nature of the
production process for photons is not important to describe S1 fluctuations, but
we must take into account the production process for electrons to give a correct
statistical description of the S2 signal. Consequently, the variance of the S2 signal
is larger than expected from Poisson statistics. We have confirmed our model of
fluctuations by performing Monte Carlo simulations of the nuclear recoil band, which
agree well with experimental data. In conclusion, the resolution of liquid xenon
detectors is rather poor at low energies. Nevertheless, the resulting smearing of the
threshold improves the sensitivity of liquid xenon detectors significantly.
The cut acceptance can also be determined from Monte Carlo simulations of the

nuclear recoil band. We find good agreement between the results of our simulations
and the published values. However, this acceptance function includes neither the
single scatter cut nor the nuclear recoil cut. We expect the single scatter cut to have
a high acceptance, but emphasize the importance of a large rejection efficiency for
multiple scatters. Otherwise, there will be the risk that a large number of multiple
scatters in calibration data distorts the nuclear recoil band. The acceptance of the
nuclear recoil cut, on the other hand, is difficult to determine, because the acceptance
probability is not independent of the other cuts which we apply. Therefore, the flat
50% acceptance, which has been assumed previously, can be only an approximation.
In fact, from a more careful treatment one obtains a higher acceptance at low recoil
energies, so assuming a flat acceptance gives a conservative estimate.
In chapter 4 we have calculated the relative scintillation efficiency for low energy

nuclear recoils in liquid xenon. Our idea was to develop a theory that predicts both,
ionization and scintillation yield. This aim was achieved by combining Lindhard’s
theory for the initial production of electronic excitations and the well motivated
assumption of energy independent partition between ionization and excitation in
the underlying collisions. Our conclusion is that scintillation and ionization are
correlated, so that a rapidly dropping Leff would imply a drop in the scintillation yield
which is incompatible with existing data. Consequently, we exclude the possibility of
threshold effects that reduce electronic excitations in the keV range.

All these considerations lead to the conclusion that liquid xenon detectors possess
an impressive sensitivity for low energy nuclear recoils corresponding to low mass
dark matter. We have calculated the acceptance function for the XENON100 detector
(see figure 4.5a) and predicted the sensitivity of the experiment after a runtime of
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100 days (see figure 4.5b). In summary, XENON100 should definitely be able to
confirm or rule out the results from CoGeNT and DAMA under the assumption of
standard spin-independent scattering.
Whether XENON100 observes a dark matter signal or not, larger liquid xenon

detectors will be built in the near future to increase the sensitivity and confirm the
results from XENON100. We have dedicated chapter 5 to a study of such future
detectors. In fact, liquid xenon detectors are very well suited for upscaling. The
three factors that we considered above, namely detector resolution, cut acceptance
and relative scintillation efficiency, remain essentially unchanged for larger detectors.
What changes significantly, however, is the fourth factor, namely the light collection
efficiency. With increasing detector dimensions, the light collection efficiency will be
reduced. Thus, the low energy threshold of future liquid xenon detectors is expected
to rise, leading to a loss of sensitivity for low mass dark matter.
To quantify this effect, we have performed Monte Carlo simulations of the light

collection efficiency in dependence of the detector size and the absorption length
of liquid xenon. We conclude that, unless the absorption length can be increased
significantly, an increase in fiducial mass will not necessarily improve the sensitivity in
the low energy region. A better sensitivity for low mass dark matter could, however,
be achieved by changing the detector design in order to increase the number of
photo-sensors. Specifically, we considered oblate detectors and detectors with 4π
QUPID coverage.

While both of these options are promising in terms of the light collection efficiency,
a serious problem is the rising background level induced by radioactive contaminants
in the photo-sensors. Indeed, Monte Carlo simulations of the internal electron recoil
background show, that the QUPIDs are the dominant source of background events.
Consequently, the background level will limit the sensitivity of detectors with a large
number of QUPIDs, unless the radiopurity can be improved. A similar observation
can be made for detectors with fiducial mass of 10 t or more. Although the internal
background from the detector components can be reduced by applying a stronger
fiducial volume cut, we cannot reduce the intrinsic background from 85Kr and solar
pp-neutrinos. Consequently, it is impossible for liquid xenon detectors to observe
dark matter with σSI

p < 10−48 cm2.
If the upcoming results from XENON100 do not confirm the observations from

DAMA and CoGeNT, there will be a strong tension between the different experiments.
For experimentalists, the challenge will be to understand the backgrounds in the
detector very well and provide a convincing analysis of the detector acceptance. For
theoretical physicists, the most interesting question will be, whether the results from
the different experiments are necessarily in contradiction with each other, or whether
the data point towards a novel interpretation of dark matter that allows to reconcile
all experiments.

As a first step in this direction, we have performed in chapter 6 a general operator
analysis of all possible interactions between fermionic dark matter particles and
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quarks. The challenge is to infer the dark matter-nucleus interaction from the
fundamental couplings and then calculate the resulting cross sections in the non-
relativistic limit. For a few cases, these calculations are well known, giving the
standard results for spin-independent and spin-dependent interactions. In many
cases, however, new operators may appear in the matching process, and for each of
these new operators we have to determine the effective coupling constants and form
factors from models of the nucleus.
We have decided to consider also subleading contributions, which are usually

neglected but lead to interesting experimental signatures if the leading order terms
are absent. For all possible four-fermion interactions of dimension four and five,
we have calculated the matrix elements in the non-relativistic limit. It turns out,
that for certain combinations of fermion bilinears, the resulting cross sections may
depend on the momentum transfer in the scattering process as well as on the velocity
of the incoming dark matter particle. Such dependences allow for example to
suppress scattering with low momentum transfer, similar to the case of inelastic dark
matter [25].

Clearly, much work remains to be done. Concerning the data analysis of XENON100,
we believe that detailed Monte Carlo simulations of the nuclear recoil band in
XENON100 will play an essential part in determining the acceptance of the sin-
gle scatter cut and the nuclear recoil cut, which will be necessary for a consistent
interpretation of the final results. In addition, such simulations may improve our
understanding of the data obtained from AmBe calibration and could even provide a
way to determine the scintillation and ionization yields (see [34]).

To check our results for Leff , it would be very helpful to perform an ab-initio
analysis of atomic collisions, including the calculation of exclusive cross sections, as
well as a Monte Carlo simulation of the recombination processes. Such an analysis
should take into account the electronic structure of the outer electron shells of
xenon (for example, using Density Functional Theory). Alternatively, the cross
sections could be determined experimentally from the collisions of individual xenon
atoms. The final confirmation of our model can of course only come from precise
measurements of the ionization yield and the relative scintillation efficiency.
Concerning the studies of future detectors, we suggest to consider thoroughly

possible design changes in order to improve the light collection efficiency or reduce
the background level. Important questions related to XENON1T will concern the
cryostat material and the choice between QUPIDs and ordinary PMTs. The code
that we developed may help to make these decisions. Moreover, to complement our
simulations of the electron recoil background, a similar study for neutron background
needs to be performed. Also, we would like to emphasize the importance of liquid
xenon purification for the sensitivity of future detectors — to increase the absorption
length and reduce the intrinsic background from 85Kr.

The next steps towards a theoretical understanding of dark matter should include
a careful evaluation of the coupling constants and form factors that appear in the
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process of matching quark operators to nucleus operators. For the step from quarks to
nucleons, these calculations will rely strongly on QCD, while the step from nucleons
to nuclei requires a precise model of the nucleus. The subsequent step will then be to
see whether any of the new operators that appear at subleading order may reconcile
all experimental observations.
In conclusion, there are exciting times ahead for the physics of dark matter. We

expect the publication of the results from XENON100 in the near future, and in
the following years the competition for the first detector of the next generation
(with a fiducial mass of more than 1 t). At the same time, the interpretation of the
experimental results will require the ingenuity of theoretical physicists to solve the
dark matter puzzle.
The increase in sensitivity that is expected for the dark matter searches within

the next decade, combined with the results from the LHC, may very well lead to an
unambiguous identification of dark matter. On the other hand, experiments may
observe nothing at all — or reveal something completely unexpected. Clearly, we
must remain open-minded for unconventional interpretations and new insights (see
figure 7.1).

(a) Typical total acceptance function for a liquid xenon detector.

(b) “It was a picture of a boa constrictor digesting an elephant.”

Figure 7.1: What will future direct detection experiments reveal about the nature of
dark matter? An interpretation of the total acceptance function of a liquid xenon
detector in the spirit of Antoine de Saint-Exupéry’s Little Prince [91].



APPENDIX A
The Dirac equation

The Dirac equation is the equation of motion for spin-1/2 particles, which are described
by four-component Dirac spinors ψ:

(iγµ∂µ −m)ψ = 0 . (A.1)

The 4× 4 matrices γµ satisfy the Clifford algebra

{γµ, γν} = 2gµν , (A.2)

where gµν is the metric tensor. We adopt the sign convention (+,−,−,−).
For the γ-matrices, we take the chiral representation,

γµ =
 0 σµ

σµ 0

 , γ5 = iγ0γ1γ2γ3 =
−1 0

0 1

 , (A.3)

with σ = (1,σ) and σ = (1,−σ). 1 is the 2× 2 identity matrix and the σi are
the Pauli matrices

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 . (A.4)

The Pauli matrices are hermitian and traceless and have the property that{
σi, σj

}
= 2δij ,

[
σi, σj

]
= 2iεijkσk , (A.5)

with the Kronecker symbol δij and the Levi-Civita symbol εijk. Consequently,

σiσj = δij + iεijkσk , (A.6)
tr
(
σiσj

)
= δij , (A.7)

(p · σ)2 = 1p2 . (A.8)
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To solve the Dirac equation for a particle with four-momentum p = (E,p) and
mass m =

√
p2, we introduce a normalized two-component spinor ξ and write

ψ(p) = 1√
2m

e−ip·x
√p · σξ√

p · σξ

 . (A.9)

With this ansatz, we get

γµ∂µψ = − i√
2m

eip·x γµpµ

√p · σξ√
p · σξ

 (A.10)

= − i√
2m

eip·x
 0 p · σ
p · σ 0

√p · σξ√
p · σξ

 (A.11)

= − i√
2m

eip·x
p · σ√p · σξ
p · σ√p · σξ

 . (A.12)

Now we use
√
p · σ
√
p · σ =

√
(1− pσ)(1 + pσ) (A.13)

=
√
12 − (pσ)2 = 1

√
1− p2 = 1

√
p2 = 1m , (A.14)

to get γµ∂µψ(p) = −imψ(p). Consequently, ψ(p) as defined in equation (A.9) satisfies
the Dirac equation. To simplify notation, we define /p ≡ γµpµ. The Dirac equation
then implies that

/pψ(p) = mψ(p) . (A.15)

To conclude this appendix, we note that the Dirac equation can be derived from a
Lorentz-invariant Lagrangian density

L = ψ (iγµ∂µ +m)ψ , (A.16)

where ψ = ψ†γ0. Note that, in contrast to [79], we have chosen the non-relativistic
normalization for ψ. Thus, in our normalization,

ψ(p)ψ(p) = 1
2m

(
ξ†
√
p · σ, ξ†

√
p · σ

)0 1
1 0

√p · σξ√
p · σξ

 (A.17)

= 1
2m

(
ξ†
√
p · σ√p · σξ + ξ†

√
p · σ
√
p · σξ

)
= ξ†ξ = 1 . (A.18)



APPENDIX B
Calculation of exclusion limits

In this appendix, we discuss how to calculate exclusion limits for dark matter direct
detection experiments. Such exclusion limits are conventionally calculated under
the assumption that no background events are observed. If the experiment does
in the end observe background events, the exclusion limits will be weaker. In this
case, one needs to use more sophisticated methods — such as the Maximum Gap
Method [72] — for the calculation.
In principle, to determine whether an experiment can exclude a choice of the

parameters σSI
p = σ0 and mχ = m0, we must calculate the total number of events

that the experiment is expected to observe for this combination. To do so, we must
calculate the differential event rate for these parameters as described in chapter 2.1.

Of course, not all dark matter scattering events will result in a detectable signal, so
we must multiply the differential event rate with the total acceptance function of the
detector, A(Enr), which we introduce in chapter 3.4. The acceptance function gives
the probability that a nuclear recoil of energy Enr leads to a signal in the detector.
It takes into account the detector resolution, the light yield and the cut acceptances
of the detector (see chapter 3 for a discussion).
Once we have determined the total acceptance function, we can obtain the total

event rate by integrating

Rtot =
∞∫
0

dR
dEnr

A(Enr) . (B.1)

Multiplying Rtot with the exposure of the experiment now gives the total number of
expected events N .
Assuming that instead of the expected number of events N , the detector will

observe no event at all, we can reject the hypothesis σSI
p = σ0 and mχ = m0, if N

is sufficiently large. If N > 2.30, we can reject the hypothesis with 90% confidence
and if N > 3.00 the hypothesis is ruled out with 95% confidence [10]. Consequently,
90% confidence exclusion limits, as shown for example in chapter 5 are obtained by
calculating all combinations of mχ and σSI

p that give N = 2.30.



APPENDIX C
Coulomb correction to electronic stopping

For a uniform electron gas the electronic stopping power is proportional to the
velocity of the ionizing particle, as stated in equation (4.5). The same result is also
valid for liquid scintillators, if the velocity of the passing atom is comparable to the
Bohr velocity. However, at very low velocities, colliding atoms do not penetrate each
other strongly because of the Coulomb repulsion. In this case, the nucleus passes
only through regions of low electron density and consequently experiences a smaller
stopping force. As a result, we expect a stronger decrease of the electronic stopping
power. This effect has been referred to as the Coulomb correction to Lindhard’s
theory [53].
It is not clear how to include this correction into the calculation of electronic

stopping powers. In reference [43], Tilinin suggested to calculate Se by integrating
dE/ dx over the volume accessible for a recoiling nucleus and multiplying the result
with the number density of xenon atoms. Following this approach, we obtain from
equation (4.5)

Se =
∫
Vacc

Nn0vvFσtr(vF) dV = Nmev
∫
Vacc

n(r)vF(r)σtr (vF(r)) dV , (C.1)

where n = n0/me is the number density of electrons. Before we can evaluate this
integral, we must determine Vacc, n(r), vF(r) and σtr(v).
To obtain the accessible volume, we need to know the interaction potential V (r)

for two xenon atoms. This potential has been calculated by Schneider [92] based
on a Density Functional Theory calculation done by Gordon and Kim [93]. In a
collision process with energy Enr, the distance of closest approach, r0(Enr), is given
by the root of the equation V (r0) = Enr. The accessible volume Vacc is then given by
all points with r ≥ r0. As expected, r0 is a function of Enr, which decreases with
increasing recoil energy, so the accessible volume will grow.

To simplify the integral in equation (C.1), we assume that the electron density is
radially symmetric. Of course, this assumption will not hold strictly, as two atoms
approach each other, but it is a good approximation at low energies, when the atoms
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stay rather far apart and most of the nuclear charge is screened by inner electrons.1
We will therefore replace n(r) by the electron density n(r) of a single xenon atom
that Ziegler et al. calculated with Hartree-Fock methods [56].

For a uniform electron gas, we can calculate the Fermi velocity from the electron
density:

vF = 1
me

3
√

3nπ2 . (C.2)

In our case, we have a non-uniform electron density, so the Fermi velocity will be
slightly larger [47]:

ṽ2
F = v2

F + 1
4 (a0n

′(r)/n(r))2
. (C.3)

We will, however, neglect this effect in the following, assuming that n′(r)� n(r)/a0
and use the approximation of a uniform electron gas.
Finally, the transport cross section σtr has been calculated by Tilinin in [94].

Consequently, we know all quantities that appear in equation (C.1) and can calculate
the electronic stopping power numerically. Under the assumption of a radially
symmetric electron distribution, we can write

Se = 4πNmev

∞∫
r0

n(r)vF(r)σtr(vF(r))r2 dr . (C.4)

For convenience, we define the dimensionless quantities x = r/a and T = σtr/πa
2

and get

Se = 4πNmev

∞∫
r0

n(r)vF(r)σtr(vF)r2 dr (C.5)

= 4π2Nmeva
5
∞∫
x0

n(x)vF(x)T (vF(x))x2 dx (C.6)

= 4π2Nme
v

v0
e2a4 1

4
√

2
3

√
9π2

2Z a0

∞∫
x0

n(x)vF(x)T (vF(x))x2 dx (C.7)

=
√

8πNe2a0
v

v0
a4π

2

2
3

√
27π
16Z

∞∫
x0

n(x)4/3T (vF(x))x2 dx (C.8)

≡
√

8πNe2a0
v

v0
τ(Enr) , (C.9)

1More precisely, radial symmetry should be a valid approximation, if r0 is greater than the
Thomas-Fermi screening length a.
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Figure C.1: The final result for the dimensionless electronic stopping power dε/dρ.

where we made use of a = 1
4
√

2
3
√

9π2

2Z a0.
The final result has been written in a way that for constant τ(Enr) we recover a

velocity proportional stopping power. In fact, for τ(Enr) ≈ 100, our result coincides
with the result from Lindhard’s theory. Such a constant value for τ(Enr) indeed
occurs for v ≥ v0, because at very small distances, the Fermi velocity is large and
the transport cross section becomes negligibly small. We present the result of our
calculation in figure C.1, again using the reduced units defined in equation (4.9).

We observe that Tilinin’s approach for the Coulomb correction predicts an electronic
stopping power that drops rapidly below 100 keV. At 10 keV the corrected stopping
power is already a factor of two smaller than the original result from Lindhard. It
should be clear from the discussion in chapter 4 that there is no way to explain a
rising ionization yield at low energies with this model.
We must conclude that the results for the electronic stopping power derived

from equation (C.1) are in contradiction with experimental data. To resolve this
contradiction, one could try a more accurate treatment and calculate the trajectories
of xenon atoms during a scattering process in order to integrate the electronic stopping
power along the path. Tilinin argues, however, that for small angle scattering, which
is the most likely to occur at low energies, the volume integral in equation (C.1)
should give the same result.

As argued in chapter 4, there appears to be no naive way to include the Coulomb
correction to the electronic stopping power. Probably, the assumption of a point-like
interaction between nucleus and electron is no longer valid at very low velocities,
because the electron cloud can rearrange during the collision. A possible way to
account for this effect may be time-dependent Density Functional Theory as described
in [95].



APPENDIX D
Details on the Monte Carlo simulations with Geant4

All simulations have been performed with MaGe [96], a Monte Carlo framework
for experiments with low background based on Geant4 [97]. The general structure
of the code, the physics list and the event generator have been adapted from the
corresponding simulations for XENON100 [32], while the detector design was changed
completely and new features were added to improve the user interface.

D.1 Detector design

The detector design employed in our simulations is based on early proposals for
XENON1T [70]. In detail it contains:

• A liquid xenon time projection chamber (TPC) that is surrounded by a teflon
(PTFE) layer for the reflection of scintillation light,

• A titanium cryostat consisting of an inner and outer vessel with vacuum
between them,

• A layer of acrylic (PMMA) that separates the cryostat vessel from the PTFE
layer,

• QUPIDs (see section D.2) on the bottom and top of the TPC, placed on a
support base made of copper,

• Stainless steel grids for the drift field and the extraction field.

Note that several simplifications have been made and some recent changes in the
design are not included.1 Since this thesis is only concerned with internal electron
recoil background, there is no need to include the water shield into the simulation.

1Most notably, the field shaping rings are not included in the simulation. Also, the XENON
collaboration has recently proposed to separate the flange for inner and outer vessel to reduce heat
transfer.
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Component Unit TPC diameter and height in meter
1.0 1.2 1.4 1.6 1.8

Liquid Xenon kg 2291 3958 6286 9383 13360
Titanium kg 337 447 573 714 870
PTFE kg 148 241 368 535 742
Copper kg 155 215 284 363 451
PMMA kg 198 273 360 459 570
QUPIDs piece 242 374 508 628 842

Table D.1: Masses of the various detector components (in kg) for different TPC sizes

The main virtue of our code is that the detector dimensions are not fixed. The
height and diameter of the TPC can be varied independently, allowing to study
larger detectors as well as detectors with a novel design (see chapter 5.3). As the
TPC dimensions are changed, the program rescales the relevant parts of the detector,
such as the size of the cryostat. Other parts remain fixed, for example the drift gap
in the gas phase. The QUPIDs also have a fixed size, but their number increases
with larger diameter. The appropriate number of QUPIDs and their placement on a
hexagonal grid is automatically determined by the code. For concreteness, we show
two examples of different detector dimensions in figure D.1 and give a list of the
component masses for some typical choices in table D.1.

D.2 Material properties

D.2.1 QUPIDs

For future experiments, the XENON Collaboration plans to use a newly developed
photo-sensor, called QUPID (Quartz Photon Intensifying Detector). The photoelec-
trons produced in a QUPID are accelerated to 6 keV and focused onto an Avalanche
PhotoDiode. QUPIDs are expected to have extremely low radioactivity, a good
transparency and a quantum efficiency of QE > 30% [98]. A schematical drawing of
the QUPID design is shown in figure D.2.

D.2.2 Optical properties

In order to determine the light collection efficiency, we need to include the optical
properties in the vacuum-ultraviolet (vuv) region for all materials. While the
refractive indices are well known, the greatest uncertainty comes from the PTFE
reflectivity, which we assumed to equal 0.95. The reflectivity for copper was assumed
to equal 0.2. Another important property is the optical transparency of the grid,
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Figure D.1: Examples of the detector design. In both cases, the detector has a
fiducial volume of 1 t. While the left one corresponds to the conventional design
with equal height and diameter, the right one has a larger diameter to increase the
number of QUPIDs and improve the light collection efficiency (see chapter 5.3).

Figure D.2: A scematical drawing of the design of a QUPID. Figure taken from [98].
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Component Unit Radioactivity in mBq/unit
238U 232Th 40K 60Co

Titanium kg 0.25 0.2 1.3 −
PTFE kg 0.31 0.16 2.2 0.11
Copper kg 0.07 0.03 0.5 0.0045
QUPIDs piece 0.49 0.4 2.4 0.21

Table D.2: Assumed radioactivity for the various components of the detector. The
radioactivity of the PMMA is negligible.

which we took to be 0.94, the value from XENON100.1 For liquid xenon, the
optical properties depend on the achieved purity and therefore we keep them as free
parameters that can be changed during the simulation.

D.2.3 Radioactivity

For the simulation of internal electron recoil background, we need to make assumptions
on the radioactivity of all materials in the detector. These materials have been
screened by the XENON Collaboration. In most cases only upper limits are known,
but we adapt these values for our simulation. Should the radioactivity turn out to
be much lower, the background level can simply be rescaled accordingly. For an
overview of the assumed radioactivities, see table D.2.

D.3 Simulation details

D.3.1 Simulation of scintillation light

To simulate scintillation light, we generate a large number of primary scintillation
photons at a given position inside the liquid xenon. The photons are traced until
they are either absorbed (by the PTFE, the copper, the grids or the liquid xenon
itself) or hit a QUPID. This process is repeated many times to determine the average
number of photons that reach the QUPID arrays. If we allow the position of the
primary scintillation photons to vary randomly, we can also determine the average
light collection efficiency of the detector.

D.3.2 Simulation of radioactivity

To simulate radioactivity, one must select a detector component, a radioactive isotope
and set a period of time. Based on the assumed radioactivity shown in table D.2,

1The XENON Collaboration aims to improve the transparency and reach 0.97 in XENON1T.
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the program calculates the expected number of decays. Each decay is simulated
by placing a radioactive atom at a random position within the selected detector
component. The decay products are simulated until their energy falls below the
simulation threshold.1 Whenever energy is deposited inside the active volume, the
event is written into a ROOT-file [99].

In a second step, we scan the ROOT-file to look for single-scatter events. This step
is very important, because events that deposit their energy in the liquid xenon in more
than one step can be easily distinguished from potential dark matter signals and do
not contribute to the background. At this point we must take the position resolution
(typically 3 mm) of the detector into account. Two events that are separated by a
distance less than the position resolution will be indistinguishable experimentally
and consequently should be treated as one event.

Finally, we apply the fiducial volume cut and select the events in the relevant energy
region. Note that due to the suppression of scintillation light for nuclear recoils, a
nuclear recoil energy of 10 keV corresponds to the same amount of scintillation light as
a 2 keV electron recoil. Consequently, the dark matter search window (4 ≤ S1 ≤ 20)
translates to roughly 2 keVee ≤ Eer ≤ 11 keVee for electron recoils.

In the end, we are left with a very small number of events: Only about one out of
a million decays will give an event that passes all selection criteria. Consequently,
we need to simulate very large numbers of decays. To obtain a reasonable estimate
of the background expected in a runtime of one year, we must generate up to 109

primary events.

1To simulate the decay chains of 238U and 232Th, the procedure is slightly more complicated:
For each event, the program chooses randomly an isotope from the decay chain and simulates its
decay products, instantly removing the daughter isotope without further decays. Consequently, to
simulate 100 decays of 238U we have to simulate (on average) 1400 decays, in order to include the
decays of the 13 daughter isotopes as well.
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