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Abstract

The Model Unspecific Search in CMS (MUSiC) is an approach to analyse the data taken
with the CMS detector at the Large Hadron Collider at CERN. This thesis uses the MUSiC
code developed for the analysis of the measurements performed at a centre of mass energy
of 13TeV. In contrast to dedicated analyses, MUSiC does not pursue a search strategy
which is optimised for a certain theory prediction beyond the Standard Model of particle
physics.
One of the final outcomes of the MUSiC analysis is a global comparison between the
deviations between measurement and Standard Model Monte Carlo simulations and the
statistically expected deviations expected from the Standard Model only hypothesis, the
p̃-distribution. The aim of this thesis is to conduct a sensitivity study by investigating the
effects an injected signal instead of observed data has on the distribution. The examined
signal samples originate from Monte Carlo simulations on the basis of an R-parity-violating
Supersymmetry model with a specific choice of supersymmetrical couplings constants.
The effects of scenarios with different tau-sneutrino masses are considered. It appears
that MUSiC is principally sensitive to the model in question, but the extent of deviation
depends strongly on the choice of tau-sneutrino masses as parameters. The achieved
sensitivity is compared to the sensitivity of the dedicated analysis [9] with the result that
the sensitivities of both approaches are similar for the considered model.
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1 The Standard Model of Particle Physics

1.1 Introduction

The Standard Model (SM) is the currently most widely spread theory in particle physics.
Describing the elementary particles and the most important interactions between them, it
is in good accordance with the experimental data taken at modern particle accelerators [1].
However, there are also some shortcomings and open questions which motivate research
activities like the analysis of the CMS-data with a model unspecific approach considered
in this thesis.
This chapter gives a brief summary of the Standard Model and a discussion of its short-
comings and open questions.

Figure 1: An overview over all SM-particles including their properties mass, charge and
spin. [2].

1.2 Elementary Particles

According to the Standard Model, all physical processes can be described by seventeen
elementary (meaning not further divisible) particles with different properties and dynamics
(an overview is provided in figure 1). It contains five particles with integer spin called
bosons, and twelve particles with half integer spin known as fermions. For each particle an
antiparticle as counterpart with opposite sign in all charge-like quantum numbers exists.
However, this does not increase the total number of particles by a factor of two, since
some of the particles are their own antiparticles (e.g. the photon). For neutrinos it is not
yet known whether particle and antiparticle coincide. In this case one would speak of
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Majorana-fermions.
What we usually refer to as matter, turns out to be build up of fermions, whereas the role
of bosons is to mediate the forces between those matter-particles.
Fermions are further divided into quarks and leptons, whereby charged (e, µ, τ) and
uncharged (neutrinos νe, νµ, ντ ) leptons exist. The difference between quarks and leptons is
that only the former interact strongly. All fermions can be organised in three generations
as portrayed in figure 1.
Bosons on the other hand are further divided into gauge and scalar bosons (spin 1, respec-
tively 0 1). While there is only one scalar boson in the Standard Model (the Higgs Boson
which gives the particles mass), there are four types of gauge bosons: gluons mediating
the strong force, the photon mediating the electromagnetic force and W- and Z-boson
mediating the weak force.

1.3 Shortcomings and Open Questions

Since the Standard Model does not include gravity as elementary force, it cannot be
regarded as a complete theory, but even the described interactions (electromagnetic,
strong, weak) are not unified to a single one like one might possibly desire. Instead, only
electromagnetic and weak interaction are combined to the so-called electroweak force,
whereas the strong interaction remains completely ununified.
Another deficit is that the predictive power of the Standard Model is reduced by the fact
that it still contains a certain number of free parameters (at least 19 according to [4]).
Even though meanwhile all parameters relevant for collider physics have been determined
in experiments, a theory with less degrees of freedom is to prefer because of its more
precise way of description.
Moreover, the Standard Model is in contradiction to recent observations of neutrino-
oscillations: for the existence of those, at least one non vanishing neutrino mass is
necessary [5], but the model presumes all masses of neutrinos to be zero.
It additionally fails to explain the observed asymmetry between matter and antimatter in
the universe as well as the existence of dark energy discovered with astronomical methods.
Furthermore it does not provide a proper candidate for a weakly interacting massive
particle (WIMP) to explain the indirect detection of dark matter.
In the current version of the Standard Model the hierarchy problem dealing with the mass
of the Higgs-Boson likewise remains unsolved.

1.4 New Physics

The depicted difficulties should be motivation enough to initiate a search for physics
beyond the Standard Model - usually referred to as “BSM“ or “new physics“. There are
diverse approaches dealing with this issue; R-parity violating supersymmetry is one of
them.

1Note that this is in accordance to the definition of bosons as particles with integer spins.

2



2 Supersymmetry

2.1 General Idea

While there are several types of supersymmetrical theories (e.g. Minimal Supersymmetric
Standard Model (MSSM), Next to Minimal Supersymmetric Standard Model (NMSSM);
R-Parity-conserving, R-parity-violating), the general and most basic concept of supersym-
metry (SUSY) stays the same for all of them: the particle content of the Standard Model
is extended by the introduction of so-called superpartners with differing spin.
For each fermion the existence of a corresponding boson is postulated and vice versa.
This procedure is illustrated in figure 2. To create SUSY as a self-consistent theory the
introduction of at least one further Higgs-doublet (with a corresponding superpartner) is
additionally required.

Figure 2: To every Standard Model particle a Supersymmetry particle with differing spin
is assigned. [6].

The common notation convention is to put an “s“ in front of the name to obtain a SUSY-
boson name from a SM-fermion name (e.g. electron → selectron) or to add an “-ino“ in
the end of it to obtain a SUSY-fermion name from a SM-boson name (e.g. W → Wino).
However, this is more of a rough rule of thumb than a strict law, since for example the
superpartner of the photon is called photino and not photonino like one might assume
because of the convention2.

2The convention additionally is ambiguous for double-names like top-quark or tau-neutrino, because it is
-in these cases- unclear where to put the “s“ exactly. Surprisingly, the superpartner of the tau-neutrino
is called a tau-sneutrino, but the one of the top-quark a stop-squark.
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2.2 R-Parity and R-Parity-Violation

In case of the actual existence of supersymmetrical particles, the question arises, which
types of processes with SUSY-particles in the initial and SM-particles in the final state
can occur and vice versa. Especially the potential decay of supersymmetrical particles is
to consider, since knowledge thereover would provide pieces of information about their
stability, which is of interest in the context of dark matter. Introducing supersymmetrical
particles also means introducing additional potential decay products for Standard Model
particles. Since the stability of the proton (lifetime τ > 1031 years [7]) is an experimental
fact, one has to provide a reason that it can however still not decay.
The question about the possibility of certain processes like the described ones can be
traced back to the question about the conservation of a quantity, which is called R-parity
and defined in a way, such that all SM-particles are of R-parity +1 and all SUSY-particles
of R-parity −1:

R := (−1)3B+L+2S (1)

Hereby B denotes the baryon number, L the lepton number and S the spin. Because
all of these quantities are additive quantum numbers, it follows that R is multiplicative
3. This implies that, if R-Parity is conserved, SUSY-particles can only be created and
destroyed in pairs. In this case the lightest supersymmetrical particle (LSP) is trivially
stable, since it can neither decay into SM-particles due to the conservation of R-parity nor
in SUSY-particles due to the conservation of energy.
Even though there is no experimental proof of a possible violation of the conservation of
baryon and lepton number, there is also no symmetry associated with these artificially
introduced quantum numbers like for energy, momentum and angular momentum. It is
therefore not certain whether baryon and lepton number are indeed conserved.
This consideration motivates the construction of SUSY-theories, which take R-parity-
violating 4 (RPV) scenarios into account as well. Signal samples of such a type produced
with the aid of Monte Carlo simulation techniques are used in this analysis.

2.3 Accomplishments of and Experimental Evidence for SUSY

Supersymmetry is a popular5 extension of the Standard Model, because its theoretical
formulation brings some solutions to open questions with it.
First off, many SUSY-theories change the running of coupling constants as portrayed in
figure 3 and accomplish the desired unification of electroweak and strong interaction.
Furthermore SUSY provides a solution to the hierarchy problem. Theories with R-parity-
conservation can additionally explain the existence of dark matter with the LSP as

3Proof: consider the process X+Y → XY and define A := 3B +L+ 2S (only for reasons of convenience).
Since B, L and S are additive, A is as well. Therefore:
RXY = (−1)AXY = (−1)AX +AY = (−1)AX · (−1)AY = RX ·RY

4This name may sound a little misleading, since actually R-parity-conservation and not R-parity is what
is violated (or not).

5The 2014 edition of the Review of Particle Physics [1] by the Particle Data Group involves more than
120 papers dealing with SUSY.
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WIMP-candidate. SUSY-versions with RPV-approaches do not necessarily do so, because
in such scenarios the stability of the LSP is not granted.

Figure 3: A comparison between the dependency of the different coupling constants αi
of the energy scale in the Standard Model and the MSSM as an example for a
SUSY model (with a certain choice of parameters). Different colours (/indices)
mark different forces: Blue - electromagnetic, red - weak, green - strong. The
MSSM achieves a unification. [8].

In spite of all benefits, until now no supersymmetrical particles have been found in any
experiment. This indisputable flaw might however merely be due to the fact that the masses
of SUSY-particles could be higher than those which were already excluded experimentally
(for exclusion limits see [9] for example). That the masses of the SM-particles and their
superpartners apparently do not equal each other is unlike the difference in spin no
byproduct of the construction of SUSY, but (in case of the validity of Supersymmetry)
an experimental discovery, which means that the corresponding symmetry needs to be
broken. Details of particular RPV-SUSY-theories like its mass hierarchy depend on the
chosen breaking mechanism.

2.4 Details of the Discussed model

The particular RPV-SUSY-model considered in this analysis is adapted from [9]. The
strengths of couplings between SM- and SUSY-particles are described by the coupling
constants λijk and λ

′
ijk as parameters of the model with i, j, k ∈ {1, 2, 3}. The indices

mark the generation and the prime indicates a production, whereas an unprimed lambda
refers to a decay.
While all other supersymmetrical coupling constants remain 0, λ132, λ231 and λ

′
311 are

simultaneously set to a certain value (e.g. all are set to 0.01). Due to this choice of
coupling constants (and correspondingly possible vertices) only lepton number and not
also baryon number conservation is violated. This guarantees the experimentally verified
stability of the proton.
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The breaking mechanism is chosen in such a way that the SUSY mass hierarchy contains
the tau-sneutrino as the LSP. Figure 4 gives an example of a process with a virtual particle
of this kind. Note that the baryon number is conserved, whereas the conservation of lepton
number is violated at both vertices.

d

d

ν̃τ

e

µ

311λ' 132λ

Figure 4: Feynman diagram showing the resonant production of a tau-sneutrino in the
annihilation of a down quark with an anti down quark as well as its subsequent
decay into an electron and antimuon. [9], modified.

As the model allows the tau-sneutrino to decay into an eµ̄-pair, one expects to observe a
resonant signal production in the invariant mass distribution of the corresponding final
state in Monte Carlo simulations of the model.
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3 The Large Hadron Collider

One method of validating the Standard Model is conducting scattering experiments.
Particles are accelerated to velocities close to the velocity of light and a collision at this
speed is provoked. The thus achieved energies make the observation of rapidly decaying
particles with rather high masses possible. The biggest facility dealing with these types of
experiments in the world is the Large Hadron Collider (LHC) at CERN (Conseil Européen
pour la Recherche Nucléaire) located near Geneva close to the border between Switzerland
and France. As a proton-proton-accelerator with a circular geometry it requires two beam
pipes under the influence of oppositely poled magnetic fields to keep the particles on their
tracks. Currently a centre of mass energy of

√
s=13TeV is achieved.

The LHC offers four spots for the observation of a crossing of beams called interaction
points. At each of these points a detector is installed leading to four different autonomous
experiments: A Large Ion Collider Experiment (ALICE) with the purpose to produce
situations similar to those extremely shortly after the Big Bang [10], the Large Hadron
Collider beauty (LHCb) specialized for processes involving bottom-quarks and aiming at a
better understanding of the asymmetry between matter and antimatter in the universe [11]
as well as ATLAS [12] and the Compact Muon Solenoid (CMS) [13], both constructed for
collisions at extremely high energies [14]. An overview of the detectors and their positions
relative to each other can be found in figure 5.

Figure 5: The LHC with its detectors ALICE, LHCb, ATLAS and CMS. [15].
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4 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is the detector of the LHC which produces the data
analysed by the MUSiC-framework (this explains the “C“ in MUSiC which is the acronym
for “Model Unspecific Search in CMS“). It has a cylindrical form with a diameter of
14.6m and a total length of 21.6m [13]. Figure 6 shows a photo which gives an impression
of these remarkable size dimensions.

Figure 6: A picture of the CMS-detector before closure. The yellow vehicle and the human
head in the lower left corner indicate the size of the solenoid. [17].

There are several detector components with different functions ordered around the beam
centrically (the barrel) and at the ends of the cylinder (endcaps). Figure 7 shows the struc-
ture of the barrel and the way different types of particles behave in it. A superconducting
solenoid generates a magnetic field to bend tracks of charged particles and thus enable a
determination of the momentum and electric charge out of curvature radii. These radii
are measured in the silicon tracker as the innermost component of the detector. Tracks
are reconstructed by connecting single hits which are produced as electron-hole pairs in
the active material.
To further characterise the particles both an electromagnetic and a hadron calorimeter
(ECAL and HCAL) are installed between tracker and superconducting solenoid. Photons
and electrons generate a shower of particles in the ECAL and hadrons in the HCAL. These
showers cause the production of scintillation light which is then measured to obtain the
energy deposit and thus the energy of the particles before traversing the detector. In com-
bination with the depicted record of curvature radii a differentiation between photons and
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electrons as well as charged and uncharged hadrons is possible. Both of the calorimeters
are sufficiently large to cover so many radiation lengths that virtually all corresponding
particles are stopped. The ECAL as the inner calorimeter additionally needs to have a
long radiation length regarding hadrons so that hadrons are not already stopped there. It
consists of lead tungstate crystals [13] which fulfil this requirement.

1 m 2 m 3 m 4 m 5 m 6 m 7 m 0 m 

2T 

4T 

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed 
with Muon chambers 

Key: 

Photon 

Electron Charged Hadron (e.g. Pion) Muon 

Neutral Hadron (e.g. Neutron) 

Figure 7: An overview of the diverse components of the barrel and the way different
particles are detected. [18].

Muons and neutrinos however pass both calorimeters. While muons can bet tracked in the
muon chambers which are embedded in the iron return yoke as the detector’s outermost
component, neutrinos stay completely undetected. Their appearance can only be concluded
from the observation of missing transversal energy /ET .
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5 Model Unspecific Search in CMS

The MUSiC-analysis has been developed in order to search for new physics (beyond the
Standard Model of particle physics) in CMS data without an optimised search strategy
for a specific BSM model. The latter circumstance is already included in the name, since
the abbreviation “MUSiC“ stands for “Model Unspecific Search in CMS“ .
This chapter summarises the way the analysis works - in the following referred to as “the
MUSiC-Workflow“ .
But first off a short motivation for a model unspecific search is provided.

5.1 Motivation

The usual approach to deal with CMS data pursued by dedicated analyses is to examine a
certain proposal for new physics by taking a close look at the few final states in which the
deviation is predicted to be the largest and to optimise the event selection to obtain a
signal/background ratio which is as favorable as possible. However, this procedure comes
with the disadvantage that plenty of experimental data is not taken into account at all,
since only a fraction of all final states is considered. To focus on a specific theory of
physics beyond the Standard Model directly from the start on additionally poses the risk
to become blind for new physics scenarios not yet thought of.
The MUSiC approach on the other hand covers a wide range of final states which might
lead to finding a global excess of deviations from the Standard Model expectation, even
though the found deviations in single final states are not significant on their own. Even
the experimental manifestations of theories not yet imagined might possibly be detected.
These advantages are however accompanied by the disadvantage that conceivably only a
smaller sensitivity can be achieved, because without a prediction the algorithm does not
have any specific pattern to search for.

5.2 Initial Analysis Steps

In the beginning of the procedure, the measured data are firstly triggered to sort out very
common processes and thus reduce the event rate. MUSiC uses single and double electron
triggers as well as single and double muon triggers for this purpose.
Subsequently, the entirety of signals measured by the several components of the CMS-
detector has to be associated with physical information, meaning the final states of all
events in the accelerator have to be reconstructed. A rudimentary form of this object
reconstruction has already been performed for triggering, but now a more sophisticated
approach is pursued. As depicted in detail later, the analysis also requires pseudo-data
generated by means of Monte Carlo Simulations according to the Standard Model to
compare to the observed data. Only the availability of both pseudo- and observed data
enables the algorithm to find potential deviations between the Standard Model and the
experimental results at the LHC.
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Before any data -be it recorded or simulated - can be analysed, its filesize has to be reduced
so that it can be handled in a proper way with the available computer resources. This
process is known as “skimming“ .
The occurrence of errors during the beforehand performed event reconstruction cannot
be excluded which causes so-called fakes: particles being interpreted as different particles
than they actually are. One can however apply object selection criteria to reduce these
effects in a further step. This gain in purity has the disadvantage of a lower efficiency
meaning less statistics, because events with relatively uncertain final states are sorted
out completely. MUSiC chooses its object selection criteria in a way which attaches more
importance to the purity than the efficiency. Selection requirements such as the track
quality for muons and the shower shape for electrons and photons are used for the intended
fake rejection. The investigated phase space is determined by the choice of “acceptance
cuts“, which are listed in table 1.

Table 1: Acceptance Cuts

Object pT
GeV

η

e > 25 0 < |η| < 1.4442; 1.566 < |η| < 2.5

µ > 25 |η| < 2.4

γ > 25 0 < |η| < 1.4442

jets > 50 |η| < 2.4

/ET > 100 |η| < 9999

Note that missing transversal energy is regarded as a separate object in case it exceeds a
threshold of 100GeV. Furthermore MUSiC does not make a distinction between particles
such as electron and positron (instead of e− and e+ there is only e). For the electron,
values of |η| around 1.5 are excluded. The purpose of this exclusion is to sort out objects
which were detected close to the boundary between barrel and endcap.

5.3 Classification

To sort the reconstructed and skimmed events according to their final states, a so-called
“classification“ is run: The events are assigned to both exclusive and inclusive event classes
(exclusive: e.g. 1e + 1µ ; inclusive: e.g. 1e + 1µ + X). Exclusive classes are only filled
with events whose particles in the final state coincide exactly with the explicitly stated
class components whereas the explicitly mentioned particles in the class definition of
inclusive classes only need to be a subset of the particles in the final state to divide the
corresponding event into the class.
Besides these two types of event classes, there is one further type: the jet-inclusive classes
(e.g. 1e+ 1µ+Njets). These are similar to simple inclusive classes with the difference
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that the complement of the set of explicitly class defining particles and the set of particles
in the final state of an event may only contain jets to assign the event to the class and not
arbitrary objects.
An example for the procedure of classification is given in figure 8.

1e+1jet+X 1e+X

1µ+X2µ+X

1e
2µ
1jet

1e+2µ+1jet

1µ+1jet+X 1e+2µ+X

1e+1µ+1jet+X1e+2µ+1jet+X

1e+1µ+X2µ+1jet+X

1e+2µ+Njet 1e+2µ+1jet+Njet

exclusive
event classjet-inclusive

event class

inclusive
event class

Figure 8: An example for a classification [23]: The event in question (red) has one electron,
two muons and one jet in its final state. It is assigned to exactly one exclusive
event class (green), two jet inclusive event classes (orange) and 10 (purely)
inclusive event classes (blue). A generally valid relation between the number of
exclusive classes Nex, the number of jet inclusive classes Njet and the number of
(purely) inclusive classes Nin, one event is assigned to, is:
1 = Nex ≤ Njet ≤ Nin.

5.4 Kinematic Distributions and RoI-Scanner

In addition to the types of particles in the final state (e, µ, etc.), some of their reconstructed
properties such as their momentum are at the disposal of the analyser. This information is
used to calculate certain kinematic variables characteristic of the examined final state: the
invariant mass Minv, the sum of transversal momenta ∑ |pT | and the missing transversal
energy /ET . Note that the sums in the definitions of these variables only go over the
explicitly mentioned particles in the class definition. In case that more objects of a type
are present than stated in a (jet) inclusive event class name, these objects are ordered by
pT and the one(s) with the highest pT are used for the summation.
Another subtlety is that for event classes with /ET -objects the invariant mass Minv cannot
be calculated. This problem originates from the fact that one does not know the momenta
of the constituents of the colliding protons as incoming particles in the direction of the
beam sufficiently exact, but only the parton distribution function (pdf) describing their
statistical behaviour. However, in the case of no /ET -objects one can calculate Minv out of
the measured parameters in the final state. This is nonetheless not possible if there is a
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/ET -object, for the corresponding momentum including its direction is unknown. Instead
of the invariant mass Minv the transversal mass MT is therefore used as kinematic variable
in such a case. Moreover, this case ( /ET -object in the final state) is the only situation in
which the distribution of /ET is investigated, because for low values of missing transversal
energy unwanted phenomenons like detector effects gain the upper hand.
In the further course of the analysis the deviation between real and simulated data is
examined by taking a closer look at the distributions of the mentioned kinematic variables
for a given class. Those distributions are binned according to the resolution with a
minimum width of 10GeV 6. In such a histogram all possible connected regions of bins
are investigated separately with one constraint: As for ∑ |pT | and /ET new physics are
expected to show up in a rather broad deviation compared to Minv/T , in these cases areas
containing less than three bins are excluded.
The so-called “RoI-Scanner“ (“RoI “ for “Region of Interest“) finds out in which region
the deviation is least probable (see 9 for a visualisation). This probability is quantitatively
expressed by a p-value which is defined in the following section - the smaller the p-value,
the bigger the deviations and the more unlikely they are due to statistical fluctuations.

RoI-Scanner

Figure 9: Exemplary kinematic distribution and functionality of the RoI-Scanner. For
each class and each considered kinematic variable a distribution of the portrayed
type is calculated. The RoI-Scanner finds the area with the largest deviation
between data (points) and SM Monte Carlo (bins), the “Region of Interest“(RoI).
[24], modified.

6For details see [14].
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5.5 p-value

A p-value generally describes the probability to measure a certain value of an observable
or a more extremely from a given theory expectation varying one under the assumption
that this theory is correct. In the case investigated here the given theory is the Standard
Model and the p-value is the probability to find the observed number of events Nobs or a
higher (/lower) yield in a given region, given that the observed number is higher (/lower)
than the (SM) expectation µ. Since considering the number of events means conducting a
counting experiment, one might firstly assume a simple Poisson distribution:

ppreliminary =



∞∑
N=Nobs

e−µµN

N ! if Nobs ≥ µ

Nobs∑
N=0

e−µµN

N ! if Nobs < µ

(2)

However, there is no exact expectation value µ, because µ is obtained from SM Monte Carlo
simulations which vary within their systematic uncertainties. The distribution function
for µ can be approximated as a Gaussian function, which however has to be truncated at
zero to account for the fact, that µ is non-negative. Its mean value is denoted by NSM and
the systematical uncertainty by σSM (for details on systematics see 5.8). To obtain a final
result for p, the Gaussian function is convoluted with the Poisson distribution (the factor
C has to be introduced to ensure normalisation):

p =



∞∑
N=Nobs

C ·
∞∫
0
dµ exp

(
−(µ−NSM)2

2σ2
SM

)
· e
−µµN

N ! if Nobs ≥ NSM

Nobs∑
N=0

C ·
∞∫
0
dµ exp

(
−(µ−NSM)2

2σ2
SM

)
· e
−µµN

N ! if Nobs < NSM

(3)

For every region a p-value is calculated, but only the smallest one (determined by the
RoI-Scanner) is used in the further course of the analysis, to avoid correlation, since the
regions partly overlap.

5.6 p̃-value

With increasing number of contemplable areas it becomes more and more probable, that
the scanner finds one with a low p-value (this phenomenon is known as “Look-elsewhere-
effect“). To nevertheless obtain a meaningful result for the degree of deviation from the
expectation, one has to take this effect into account. This is done by converting the p-value
into a p̃-value, which is basically nothing else than a corrected version of the p-value.
For this purpose so-called pseudo-experiments are conducted: MUSiC dices the SM Monte
Carlo sample (for details on dicing see section 5.8). The resulting distribution is then used
in the above described way as if it was the data input. This procedure enables MUSiC to
get an impression of how small p-values get merely due to statistical fluctuations, since
basically the same samples are compared. A preferably big number of pseudo-experiments
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is conducted- each yielding one final p-value which is then called ppseudo.
The information generated in this way is subsequently used to correct the original p-value
(for reasons of differentiation now called pdata) to the p̃-value:

p̃ = #ppseudo : ppseudo ≤ pdata
#ppseudo

(4)

Note that p̃ can be interpreted as a p-value in the above defined sense, because if the
Standard Model is correct, data- und pseudo-experiment-sample resemble each other
so that an average p-data-value is the expectation for the p-pseudo-value. In case of
sufficiently high #ppseudo, the right hand side of the stated formula predicts the probability
that a single p-pseudo-value is equally small or smaller than p-data. But this is just the
“probability to measure a certain value of an observable or a more extremely [...] varying
one“ from the p-value definition, because a smaller p-value always means a more extreme
deviation. However, the formula is not correct in case no ppseudo is smaller than pdata
(or equally small), because the quantity which should be described by the formula has
characteristics of a p-value and can therefore never reach zero, since the probability to
measure something at least as or more extreme does actually never vanish, but at most
become arbitrarily small. This circumstance is included in the MUSiC analysis in the
following way: in case the formula gives 0, p̃ is artificially set to 1

#ppseudo
. This value is

more of an upper boundary for the actual p̃, which is preferred over a lower boundary,
which 0 would be, because the deviations are thus made smaller instead of bigger. The
error of seeing no deviation, even though there is one, is thus chosen as more favorable
than the error of seeing a deviation, even though there is none.
A schematic illustration of the construction of p̃ is shown in figure 10. The x-axis shows
the negative decadic logarithm of ppseudo which stays positive because of p ≤ 1. Since
−log is strictly monotonically decreasing, ppseudo decreases from the left to the right. The
logarithmic scale is chosen in order to provide more horizontal space to the lowest p-values,
because these are the ones caused by the strongest deviations and therefore of the highest
interest. The y-axis is scaled logarithmically as well, in this case to make a clearly visible
illustration of the event numbers of all different ppseudo-regimes possible, even though they
differ by several orders of magnitude.
With the described method one finally obtains one p̃-value for each class.

5.7 p̃-distribution

Similar to avoiding the bias of particularly choosing the region with the lowest p-value
without accounting for the effect that in many regions the occurrence of some small
p-values is expected which motivated the step p→ p̃, another statistical caveat needs to
be considered: Because there are typically very many classes (O(100)), it is expected to
observe some classes with rather low p̃-values. It is therefore necessary to take a multitude
of classes into consideration, which is however what was planned anyway in order to be
sensitive to small deviations in many final states.
One possibility is to only make use of all exclusive classes. This is however problematic,
because some processes have known issues with the description of jet multiplicity, since
higher order QCD effects gain importance for increasing jet number. All exclusive classes
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pseudo

pseudo

Figure 10: Graphical interpretation of the construction of p̃: p̃ can be calculated as the
number of events in the shaded regime divided by the total number of events
(=number of events in the whole regime). [22], modified.

with more than five jets are therefore replaced by the one inclusive class 6jets+X. The
set of classes obtained on this way is referred to as the “exclusive variant“ in the further
course of this thesis.
The p̃-values of the stated classes are now plotted in a single histogram (data vs. MC). To
enable a comparison the whole workflow is also run with a SM Monte Carlo sample as data
input yielding a second histogram (MC vs. MC). There is however an arbitrary number of
SM Monte Carlo distributions at the disposal of the analyser (these distributions already
had to be diced to obtain the ppseudo-values). MUSiC therefore creates a multitude of
MC vs. MC histograms. All of these are combined to a single one with bars by applying
the following method: In a given bin the algorithm firstly computes the median of all
bin heights coming from the different dicing rounds. In order to build intervals with a
meaning similar to the one of a one sigma environment, both above and below the median
34% of the outcomes for different dicing rounds are determined, yielding 68% in total.
Bars are drawn between the thus found highest and lowest numbers of classes per dicing
round. This procedure is repeated for every bin and also conducted with an interval of
95%. Due to the stated construction rule the bars do not necessarily have to be symmetric,
because the event numbers for different signal dicing rounds might be concentrated more
densely above the median than below (or vice versa). The mean value is additionally
indicated, but the bars refer to the median. MC vs. MC therefore includes two graphs:
mean pseudo rounds and median pseudo rounds. Both of them are plotted in one figure as
well as the stated environments and the data vs. MC histogram. An example of such a
p̃-distribution can be found in 11 . The scaling of the axes is chosen like in figure 10 for
the same reasons.
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Figure 11: An example for a p̃-distribution. Such a plot is produced for each considered
kinematic variable. This one contains schematic results for ∑ pT .

Under the assumption that the null hypothesis is correct, p-values follow a uniform
distribution between 0 and 1. One therefore expects that the MC vs. MC histogram
resembles such a distribution, since using MC as input of a comparison with MC corresponds
to having a correct null hypothesis. To verify this expectation, a uniform distribution is
additionally plotted into the figure. Because of the scaling of axes the bins of the uniform
distribution are of different sizes: The number of classes against p̃ itself would give a
histogram with same sized bins, but the logarithmic scaling of the x-axis causes that
p̃-regimes with different widths are taken together to −log(p̃)-regimes of same widths. The
total number of classes therefore becomes dependent on the considered bin. This yields
the shown graph with the shape of stairs.
As a further feature the p̃-distribution includes several vertical dotted lines with the
following meaning: It is expected that 68% of all classes yield a p̃-value which is smaller
than the one marked by the 1σ line. Correspondingly, about 95.5% should give a p̃ which
is smaller than the one marked by the 2σ line and so on.
Besides the stated exclusive version as choice of the considered event classes, a further
possibility is to make use of inclusive event classes. This leads to correlation effects,
because most events are assigned to more than one inclusive class (see 8), so that the
events in differing inclusive classes partly overlap. However, this does not really cause
a problem, since the correlation enters the analysis in both data vs. MC and MC vs.
MC, which is why it is automatically accounted for in the final outcome. This choice of
considered event classes is called “inclusive variant“ in the further course of this thesis.
The issue with final states containing many jets is treated in a similar way like in the
exclusive variant.
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5.8 Systematics and Dicing

The number of events in a bin as a physical variable has various systematic error sources
which can be divided into experimental and theoretical ones. The error on the luminosity
is an example for the former kind, the error on the cross section is of the latter type. In
a pseudo-experiment all quantities qi with influence on the number of events in a bin
are shifted within their (experimental or theoretical) uncertainties. This process is called
“dicing“, because the shift parameter is determined by coincidence. MUSiC uses a normal
distribution (µ = 0; σ = 1) as its probability density function. In every pseudo-experiment
(or equivalently dicing-round) one shift factor αi is diced for every qi and then applied to
all bins. The bins are thus assumed to be fully correlated. The systematic uncertainty
σqi on each qi leads to a systematic uncertainty ni on the number of events. Unlike the
shift factor αi both of these quantities can differ in different bins. The values of αi and ni
are multiplied to obtain the additive correction on the mean of event numbers in a bin
stemming from the quantity qi. Taking all error sources into consideration and marking
the dependency of bins with the additional index j, this consideration yields the following
formula for the relation of the number of events before (Nj,old) and after (Nj,new) the
dicing-round in the bin indexed with j:

Nj,new = Nj,old +
#qi∑
i=1

αi · ni,j (5)

The obtained result represents a situation in which a certain systematic shift has been
performed and is now fixed. The final number of events in a bin can however still vary due
to statistics. To incorporate statistical effects, each Nj,new is regarded as mean value of a
Poisson distribution. A statistical dicing is performed according to this distribution function.
Unlike the systematical dicing, for which the diced parameters αi were independent of the
bin-index j, the statistical dicing is performed individually in each bin.
Dicing distributions from Monte Carlo samples is a common method in the MUSiC analysis.
It is used both in the already depicted workflow and in the features added for sensitivity
studies which are described in the next section.
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6 Signal Studies

6.1 Motivation

Assuming that a certain BSM model is actually realised in nature and therefore also valid
in the range of the CMS experiment, it is still first off unclear, if -and if yes, in how
far- the discrepancy between this model and the Standard Model becomes visible in the
p̃-distribution as the final outcome of the MUSiC analysis.
The aim of this thesis is to investigate this question by conducting a sensitivity study:
Instead of actually observed data, known signals (merged with the SM background) are
used as data input. This procedure makes it possible to gain knowledge about what
properties a signal must have in order to be clearly visible in the p̃-distribution.

6.2 Adaptations of the p̃-distribution for Signal Studies

Using an artificially produced signal (merged with the SM background) as data input
instead of actually observed data introduces some new possibilities in the context of the
p̃-distribution. Since the signal is the product of a Monte Carlo simulation, it can be diced
like the SM samples used in the MUSiC-workflow. This makes it possible to obtain an
arbitrary number of p̃-distributions out of one signal sample. One can therefore include
bars for the signal by combining these distributions to a single one with the same method
used for MC vs. MC and described in 5.7. There is however the difference that only an
environment containing 68% of dicing rounds is drawn and not also an environment with
95%. Additionally, the environment is plotted differently (more in the style of an errorbar,
even if the environments are no errorbars in a real sense) and the cases “mean signal
rounds“ and “median signal rounds“ are separated into two different p̃-plots. In each of
these the bars are then constructed based on the result for the corresponding quantity
(mean or median). Note that an interval construction for the mean analogously to the one
depicted above for the median is not always possible, since it is not granted that the mean
lies at a point in the set of class numbers so that both above and below it at least 34%
of the values for different dicing rounds are positioned. However, in the cases considered
here no problems occur.

6.3 Used Signal Samples

As announced in the introductory section about Supersymmetry, the used signal samples
are based on the RPV model adapted from [9]. One might possibly wonder about if this
does not contradict the concept of MUSiC as a model unspecific approach, because the
sensitivity is now only tested for a particular model.
Even though the signal sample as data input is based on a new physics theory, the workflow
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itself is still run completely independent of a BSM model. In addition, some of the results
might also allow conclusions on the sensitivity of MUSiC for models which in principle
differ a lot from the RPV model, but show similar signals in the kinematic distributions
for certain final states. Even if the final state with a similar deviation is a different one,
the sensitivity should be comparable, because all considered classes are taken into account
equally in the p̃-plot by yielding exactly one p̃-value.
The exact names of the used samples can be found in the appendix. In all considered
cases (Minv /∑ pT , median /mean, exclusive variant /inclusive variant) 200 signal and
50000 pseudo dicing rounds are conducted. The parameters of the RPV model are treated
in the following way: for coupling constants fixed at λ132 = λ231 = λ

′
311 = 0.01 the mass

of the tau-sneutrino (Mν̃τ ) is varied: Mass points of 500GeV, 700GeV and 1000GeV are
investigated, each yielding a separate histogram.

6.4 Final Plot and Qualitative Discussion of the Sensitivity
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Figure 12: The final outcome for the adapted p̃-distribution with the mean value as
considered statistical quantity, Minv as kinematic variable and the exclusive
variant as choice of event classes.

Figure 12 shows the final outcome for the p̃-plot with the exclusive variant, Minv as
kinematic variable and the mean value used for the combining of different signal rounds.
For all considered tau-sneutrinos masses a clear deviation between Standard Model and
RPV theory becomes visible. The corresponding RPV bins on the right side are higher
which means that there are more classes with small p̃-values and therefore larger deviations
in the kinematic distributions than for MC vs. MC. However, the difference of the signal
and pseudo rounds histograms only seem so extreme because of the scaling of the y-axis.
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In all three cases the last bin actually only differs by less than one class and the bins
on the right side taken together still contain few classes with noticeably smaller p̃. This
behaviour nonetheless corresponds exactly to the expectation, because one suspects to
find large deviations merely in few final states, since only few couplings between SM and
SUSY particles are set to values unlike zero. This way also a little number of vertices and
therefore beforehand impossible processes becomes possible. As indicated in section 2.4
such a process is for example the resonant signal production expected in the exclusive class
e+ µ (remember that MUSiC makes no difference between µ and µ̄). Many final states
nevertheless remain more or less untouched by the introduction of the few supersymmetrical
couplings.
Even though the introduction of supersymmetrical couplings thus only effects few classes,
the deviation becomes clearly visible in the p̃-distribution for sufficiently low masses Mν̃τ .
For MUSiC is able to find the deviations in the few final states, it is clearly sensitive for
the total deviation caused by such a type of BSM model with such a choice of parameters.
For increasing Mν̃τ the deviations in the kinematic variables of the affected classes decrease
and MUSiC becomes more and more insensitive: the histograms signal vs. MC and MC
vs. MC near each other.
The exclusion limit for the tau-sneutrino mass achieved by the authors of paper [9] is
1000GeV. According to this, MUSiC achieves an equally high sensitivity regarding the
considered RPV model, because even 1000GeV as the highest mass considered shows
a visible deviation in the p̃-plot, even if it is small compared to the ones obtained for
lower masses. Note however that the workflow of dedicated analyses is specialised on a
particular BSM theory, which is why MUSiC cannot achieve comparable sensitivities in
general. An advantage of MUSiC on the other hand becomes clear when considering the
following scenario: data observed at CMS corresponds to a certain new physics model,
but this model has not been proposed by theorists yet. Since the signals caused by it
are different from those caused by the models investigated by dedicated analyses, these
analyses are not able to find a significant deviation from the Standard Model. In case
the experimental ramifications of the BSM scenario are however sufficiently large, the
p̃-distribution of MUSiC might possibly show a visible deviation in total. A problem could
be that it however would then first off be completely unclear, where this deviation comes
from and how the theory causing it might look like. But one could at least find out the
classes with the lowest p̃ and thus gain some hints what to look for exactly. This “writing
back“ of event classes is discussed in section 6.7.

6.5 Mean or median

Figure 13 shows the final outcome for the p̃-plot with Minv as kinematic variable and the
median used for the combining of different signal rounds. The plots with both mean and
median are considered because it was first off unclear which of these quantities is better
applicable for the purpose of the analysis.
A major difference between median and mean value is that the outliers of a sample do not
influence the median at all, since building the median means picking out the most central
value (or the mean of the two most central values in case of an even sample size). This
property has both disadvantages and advantages: On the one hand, plenty of information is
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Figure 13: The final outcome for the adapted p̃-distribution with the median as considered
statistical quantity, Minv as kinematic variable and the exclusive variant as
choice of event classes.

lost, because the majority of values in the sample only enters the calculation by influencing
the order of values and thus which particular value is finally picked. It does not make any
difference for the median, if the biggest value is 100 or 10000000007.
On the other hand, it is sometimes preferable not to take the outliers into consideration.
Especially in case of extremely unsymmetrical distributions with outliers the mean value
loses much of its expressiveness. For example in case of a sample size of 100 with 99 times
0 as result and one time 10000 the mean value is 100 and therefore not really close to any
of the 100 given values.
A further difference is the following: because all single results are numbers of classes and
therefore natural numbers (or zero), the median can only be a natural number (or zero)
as well (or additionally a natural number minus 0.5 in case of an even sample size). In
every case the possible values of the median are highly discrete, whereas the mean value
can take arbitrary positive real numbers (including zero). Especially in the case of very
small values in the sample (e.g. most of them being 0 and 1) the median can suddenly
change extremely compared to the values of the sample by just a little change of the set of
values (e.g. 0, 0, 0, 1, 1⇒ median = 0; 0, 0, 1, 1, 1⇒ median = 1). Such a sudden change
however becomes increasingly improbable for bigger sample sizes.
The mean on the other hand is not that sensitive to such little changes of the set of values
(in the example the mean value changes from 0.4 to 0.6). Since a case like the stated
one (only small numbers in the sample) can occur in the MUSiC analysis, namely in the
rightmost bin of the p̃-plot for example, this effect is to consider. A disadvantage of the

7At least in case of a sample size bigger than two, which can (and is) always achieved by the choice of
both signal and pseudo dicing rounds.
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mean is however that (in the very probable case it is not an integer) it could never be the
result of a single dicing round, but is more of an artificially constructed value. In case of
an odd number of sample sizes, it is granted that the median could also be the outcome of
a single dicing round (and in the considered case it is also very probable for even numbers
of sample sizes).

6.6 Quantitative Discussion of the Sensitivity

In order to obtain some kind of measure for the extent of deviation for the different mass
points, a χ2 test is performed. As input variables the median (or mean respectively) of the
number of classes for signal rounds Si and for pseudo rounds Pi in the bin indexed with i
are used (for pseudo rounds always the median is chosen). Since one has to account for
the fact that the σ environments are not symmetric like depicted above, the half length Ii
of the constructed whole interval is plugged in the denominator, whereby the intervals for
the pseudo rounds are chosen:

χ2 =
N∑
i=1

(Si − Pi)2

I2
i

(6)

The upper summation limit N is the number of bins (“bins“ with a height of zero are not
regarded as such). To avoid a strong dependency of the binning, χ2 is additionally divided
by N . Calculation yields the results presented in the tables 2 and 3.

Table 2: χ2

N
for the mean with Minv as kinematic variable and the exclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.329 0.332 0.278

Table 3: χ2

N
for the median with Minv as kinematic variable and the exclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.118 0.052 0.048

The results roughly correspond to the expectation and observation in the p̃-plot that the
deviation between signal vs. MC and MC vs. MC decreases for increasing masses. For
values of χ2

N
in different cases (e.g. Sum of transversal momenta in the inclusive variant)

consult the appendix.
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6.7 Writing Back of the Most Significant Event Classes

Determining the classes with the lowest p̃-values yields the final states with the highest
deviations. Both the class e+ µ in the exclusive variant and the class e+ µ+X in the
inclusive variant belong to the most significant ones. This corresponds to the assumption
uttered in section 2.4 because of the fact that a tau-sneutrino can decay into such a final
state. Due to this decay mode it is expected to observe the tau-sneutrino in the invariant
mass spectrum of the stated final state as a resonance. In order to demonstrate the thus
caused deviation between RPV theory and Standard Model the invariant mass distribution
is plotted for the exclusive class e+ µ for each of the three different masses in the figures
14, 15 and 16. The RPV signals (dark grey) are clearly positioned at the respective values
of the tau-sneutrino mass.
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Figure 14: Invariant mass distribution of the exclusive event class e+ µ, Mν̄τ = 500GeV
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Figure 15: Invariant mass distribution of the exclusive event class e+ µ, Mν̄τ = 700GeV
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Figure 16: Invariant mass distribution of the exclusive event class e+ µ, Mν̄τ = 1000GeV
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7 Conclusion and Outlook

The analysis performed in this thesis has shown that MUSiC is principally sensitive to a
model of the considered type. For the specific RPV theory the tau-sneutrino mass needs
to be below a certain threshold to obtain a clear deviation in the p̃-plot and the deviation
appears more and more clear with decreasing mass. All considered masses show a visible
deviation, but it becomes clear that these deviations get smaller for increasing masses. As
expected, the deviations become best visible in the invariant mass distribution and one of
the most significant classes is e+ µ.

After future changes of MUSiC-programs one will be able to perform a similar study
again and compare the results to the ones provided here in order to validate whether
the sensitivity has changed. One might also consider models with different effects on
the kinematic distributions (e.g. no resonant signal production). A further possibility to
expand the workflow is to include even more sophisticated statistical methods to combine
the results of the RoI-Scanner from all classes.
The further taking of data at the LHC will increase the recorded integrated luminosity of
the CMS experiment so that the statistical uncertainties will continually decrease. An
observation of a significant deviation from the Standard Model thus becomes more and
more probable.
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Appendix

A) List of used Signal Samples

RPVresonantToEMu_M-500_LLE_LQD-001_TuneCUETP8M1_13TeV-calchep-
pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM_reHLT_80X_
mcRun2_asymptotic_v14-v1/MINIAODSIM

RPVresonantToEMu_M-700_LLE_LQD-001_TuneCUETP8M1_13TeV-calchep-
pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM_reHLT_80X_
mcRun2_asymptotic_v14-v1/MINIAODSIM

RPVresonantToEMu_M-1000_LLE_LQD-001_TuneCUETP8M1_13TeV-calchep-
pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM_reHLT_80X_
mcRun2_asymptotic_v14-v1/MINIAODSIM

29



B) Further p-tilde-plots with corresponding χ2
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Figure 17: Mean, invariant Mass, inclusive variant
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Figure 18: Median, invariant Mass, inclusive variant
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Figure 19: Mean, sum of transversal momenta, exclusive variant
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Figure 20: Median, sum of transversal momenta, exclusive variant
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Figure 21: Mean, sum of transversal momenta, inclusive variant
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Figure 22: Median, sum of transversal momenta, inclusive variant
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Table 4: χ2

N
for the mean with Minv as kinematic variable and the inclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.349 0.305 0.308

Table 5: χ2

N
for the median with Minv as kinematic variable and the inclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.047 0.032 0.024

Table 6: χ2

N
for the mean with ∑ pT as kinematic variable and the exclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.583 0.764 0.601

Table 7: χ2

N
for the median with ∑ pT as kinematic variable and the exclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.220 0.255 0.269

Table 8: χ2

N
for the mean with ∑ pT as kinematic variable and the inclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.573 0.789 0.675

Table 9: χ2

N
for the median with ∑ pT as kinematic variable and the inclusive variant

Mν̃τ 500GeV 700GeV 1000GeV
χ2

N
0.127 0.175 0.167
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