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Outline

The history of cosmic ray physics started in the beginning of the 20th century. Victor
Hess measured an increasing ionization while he was rising with a balloon through
the atmosphere whereas the opposite was expected. Another important discovery
was made by Pierre Auger and his collaborators as they observed coincident signals
on the Jungfraujoch using detectors which have been separated by several meters.
These events led to many follow-up experiments aiming to understand what the
nature of the cosmic rays is covering many magnitudes in energy and flux. The
largest so far is the Pierre Auger Observatory, located in the Pampa in western Ar-
gentina. Its data is the basis of this study. In recent years it provided many major
contributions to the field of cosmic ray physics.
In this thesis the distribution of arrival directions of cosmic rays at the highest en-
ergies (≈ 5 · 1019eV ) is examined by means of autocorrelation methods to check
if it is compatible with the isotropic expectation. One of the advantages is that
no assumptions have to be made about sources and their properties, e.g. distri-
bution and strength. This yields complementary information to the results of the
Pierre Auger Observatory regarding the correlation of Ultra High Energy Cosmic
Rays (UHECRs) with Active Galactic Nuclei (AGN), which are prominent source
candidates. However, further models exist trying to explain this observation. For
instance, Centaurus A, a strong radio galaxy, could be responsible for a large frac-
tion of UHECRs. Thus, it is reasonable to detach oneself from these assumptions
and concentrate on measured facts, the measured data.

In the first chapter a short introduction to the topic is given, followed by a more gen-
eral one on cosmic rays. Therein, models of acceleration including possible sources
and propagation are explained. The third chapter focuses on the detectors of the
Pierre Auger Observatory and the reconstruction of events at the highest energies.
In addition, special attention is paid to the monitoring of the High Elevation Auger
Telescopes (HEAT), a low energy enhancement of the observatory consisting of three
tiltable fluorescence telescopes. With the required background knowledge provided,
the next chapter starts with a detailed description of the underlying idea and motiv-
ations of the autocorrelation methods. Summarised in chapter 5 are the procedure
to generate different Monte Carlo maps and the results obtained by applying the
methods to the corresponding samples. For instance, the dependency on the level
of background is tested as well as the correlation of the methods among each other.
Afterwards, the best method is applied to the dataset comparing the two recon-
struction algorithms within the Pierre Auger Observatory. Finally, the findings are
discussed and and an outlook is given, which concludes this thesis.
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1. Introduction

Considering cosmic rays, one of the automatically raised questions is “Where do
they come from?”. Do they originate from the solar system, the milky way or
other galaxies in our local group? In contrast to photons and neutrinos, which are
only minimally deflected during their propagation through space, cosmic rays suffer
significant deflections proportional to their charge due to magnetic fields. Hence,
the arrival directions of cosmic rays and the positions of their emission in general
do not correspond. This makes it hard or even impossible to identify the sources of
cosmic rays, especially at lower energies. By increasing the energy the deflections
become smaller and a determination of the true origin is more likely. However, due
to the steep energy spectrum this leads to a significant reduction of statistic, since
the spectrum follows a power law with a spectral index γ of ∼ 3 . For instance, if
the energy is increased by one order of magnitude the flux is suppressed by a factor
of 1000.
To ensure yet a reasonable number of events in the lifetime of an experiment the
sensitive area has to be increased drastically. Therefore, all dedicated experiments
follow this demand either by using fluorescence telescopes with a large range covering
a huge volume of atmosphere and/or surface detectors instrumenting a large area
providing a sufficient rate to perform meaningful statistical tests. To identify single
sources or hot spots on the sky is still challenging but might become possible in the
near future. Of course, this depends strongly on various parameters, e.g. on the
acceleration mechanism and interactions occurring during the propagation of the
cosmic ray. Instead of focusing on all these variables, one question can be answered
without using any of these models:

“Are the arrival directions of UHECRs isotropically distributed?”

Two approaches can be considered to answer this question:

• Correlating Cosmic Rays with astrophysical objects;

• Correlating Cosmic Rays among each other.

Each one has its own assets and drawbacks. While the first one is able to give already
a good estimate on the significance with a small number of events, it depends on the
chosen catalogue and its potential inaccuracies. Although the contained objects can
be proper source candidates, in general the selection is arbitrary in the first place.
The second approach based on Autocorrelation methods (considered in this work) is
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free of this dependence, but might need more events to be conclusive. Consequently,
using these methods removes all unknown parameters from an anisotropy analysis:
The only data made use of are the arrival directions and energies, which can be con-
trolled and understood. In many experiments autocorrelation analyses have been
and are used, for example within the AGASA and the HiRes experiments. In con-
trast to them, the Pierre Auger Observatory offers the possibility to perform this
kind of analysis with higher statistics than ever before based on the larger instru-
mented area. Finally, this could add more information to the discussion regarding
anisotropy. So far the overall conclusion is unclear, since publications exist reporting
the finding of anisotropy as well as the agreement with an isotropic distribution of
arrival directions.



2. Coordinate Systems

In astronomy and astroparticle physics many coordinate systems (CS) are in use,
each one of them fitting for a special case. In this work four of them occur:

1. local,

2. equatorial,

3. galactic and

4. super-galactic.

It is standard in astronomy when a sky map is shown that the positive x-axis is
on the left side. We will, however, use the typical mathematical convention unless
stated otherwise.

2.1 Local Coordinates (LCS)

This reference frame corresponds to an earth bound CS centred in the middle of the
Pierre Auger Observatory. In general this is referred to as the Horizontal-CS. Since
it is rotating, objects on the sky not only need two angles to describe their positions
but also an additional time information. Therefore, the coordinates are the azimuth
angle φ, the zenith angle θ and time t. Per definition φ = 0◦ starts in the east going
then counter-clockwise, i.e. φ = 90◦ corresponds to the north. In addition, θ is zero
at the zenith.
The LCS can be considered the detector CS where the measurements of air showers
take place. Therefore, it can be used directly to study several detector-related phys-
ical observables. However, to access information about their origin it is easier to
handle events within a time independent coordinate system.

2.2 Equatorial Coordinates (ECS)

Precisely this one fulfils this requirement and is still geocentric, since the Earth’s
longitude and latitude are projected onto a sphere with the Earth at its center.
Hence, the equator and the poles are arranged in the same way. Coordinates are
right ascension α and declination δ, where in contrast to the LCS δ is 90◦ at the
north pole and 0◦ at the equator.
The advantage of using the Earth’s own CS is also one of its drawbacks: Due to
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nutation and precession the positions of objects are time dependent. However, this
dependency is rather weak and with time scales much larger than the daily motion
of the Earth. To avoid a continuous change of the coordinate system, epochs are
introduced. They act as a reference point in time and all celestial objects have
fixed positions relating to it. However, after several decades a new epoch has to be
introduced due to the increasing distance between true and the referenced position.
At the moment the J2000.0 is in use, while in addition B1950.0 can still be found in
some catalogues.

2.3 Galactic Coordinates (GCS)

To get rid of this last time dependence, one has to use a stable reference. In the
GCS the sun is in the center of the celestial sphere and the equator is chosen to be
collinear with the milky way. The longitude l is 0◦ at the galactic center and the
latitude b defined accordingly to declination δ in the ECS. For a detailed information
on conversion from one CS to the other see section 2.5.

2.4 Super Galactic Coordinates (SGCS)

Comparable to the GCS, the equator of the SGCS should go through the majority
of very massive galaxies in our extragalactic neighbourhood. However, the definition
of its orientation is not as straightforward as in the case of the milky way. We follow
here the suggestions made in [1] and [2]. In this way, the equator corresponds to
the super galactic plane (SGP), which contains the Virgo Cluster and the Great
Attractor for instance. In Fig. 2.1 the relative position of the GC and the SGCS is
shown including galaxies of the Veron-Cetty and Veron catalogue [3]. While close to
the equator of the SGCS several galaxies can be found, the opposite is true for the
equator of the GCS (red dashed line). This absence can be explained by the fact
that the Milky Way obscures the sight on galaxies lying behind it.
For an anisotropy analysis which depends on the reference system this is considered
a reasonable choice. Since, close to the SGP many galaxies can be found and some
of them are possible source candidates for UHECRs. This could lead to an over-
abundance of cosmic rays in the vicinity of the equator of the SGCS.

2.5 Transformation

For converting coordinates from one system into another it is necessary to have at
least the positions of two reference points in both cases. Here, we present those we
used to rotate the coordinate systems.

SGCS (L,B) GCS (l,b) ECS (α,δ)

1. Coordinate (0◦,0◦ ) (137.37◦,0◦ ) (283.5◦,59.5◦ )
2. Coordinate (0◦,90◦ ) (47.37◦,6.32◦ ) (42.3◦,15.7◦ )
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Figure 2.1: As an example galaxies contained in the Veron-Cetty and Veron are
shown in the SGCS with a redshift smaller than 0.02. Several galaxies are found in
the vicinity of the equator. The red dashed line represents the equator of the GCS
transformed into the SGCS.
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3. Cosmic Rays

In the beginning of the 20th century particle physics was mainly performed by study-
ing cosmic rays, which are defined as charged and stable particles (ionized nuclei).
First discovered by Victor Hess in 1912 [4], they offered the opportunity to invest-
igate elementary particle physics with energies exceeding the MeV regime, because
man-made particle accelerators delivering these energies were unavailable until the
1950s. In this way for example new particles were discovered like the positron in
1932 [5] and the muon in 1936 [6], both by C. D. Anderson and the latter in collab-
oration with S. H. Neddermeyer.
Over the past 100 years the measured energy range has been expanded by many
experiments, airborne as well as ground-based, from a few GeV up to 1011 GeV
covering a differential flux dΦ/dE over 30 orders of magnitude (see Fig. 3.1). In
general, dΦ/dE follows a power law E−γ with a varying spectral index γ ∈ [2.7, 3.2].
Over the complete range a few features occur where γ changes. These features are
of special interest because a change in the underlying physical processes accelerating
and affecting cosmic rays can be assumed. The best studied kink is called the knee
around 5 · 1015 eV due to the still large flux. Further discussion on this subject can
be found in chapters 3.2 and 3.3.
As one can see from Fig. 3.1, the flux is dominated by the lowest energies, which
are mainly protons with a flux of ca. 1000 m−2sr−1s−1 above the atmosphere.
Regarding the composition of cosmic rays, the same elements have been found in
cosmic rays as in our solar system with nearly the same abundance.
Direct measurements are only possible at lower energies (E . 105 GeV) with bal-
loons and satellites where the flux is sufficiently high. For higher energies one uses
extensive air showers (EAS) induced by cosmic rays to reconstruct energy, arrival
direction and composition: A primary particle, a proton for example, interacts with
the nuclei of nitrogen and/or oxygen in the Earth’s atmosphere producing secondary
particles which in turn produce further particles until the energy per particle is below
the threshold. The concept of EAS is the basis for indirect measurements explained
in more detail in chapter 3.4. By using ground based detectors covering a huge
area, the small flux can be partly compensated, which is necessary especially at the
highest energies, E ≈ 1020 eV. Then, the rate drops to a value of 1 km−2century−1.
Estimation of the correct values during the reconstruction relies on the understand-
ing of the processes happening in the atmosphere. Therefore, precision measure-
ments of accelerator experiments of cross-sections for example are essential to predict
the correct behaviour. The results are integrated into hadronic interaction programs
(EPOS [7], QGSJETII [8]). However, these measurements are limited to the ener-
gies of the order of 1 TeV in the center of mass system until now and focus on
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proton-proton collisions whereupon the targets as well as some UHECRs are nuclei.
Therefore, the obtained results must be extrapolated to higher energies and to other
processes leading to larger uncertainties. Furthermore, an interaction model alone is
not sufficient to describe an EAS. Hence, a modelling of the complete reaction chain
through simulation programs (CORSIKA [9], CONEX [10], Aires [11]) is needed
which incorporates the interaction models.
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Figure 3.1: Flux of cosmic rays for all nuclei separated by direct and indirect
measurements [12].

This applies in particular to the measurement of the composition, because the nature
of the primary particle can be estimated by studying the shower development by
means of the shower maximum Xmax where the number of particles within the
shower is maximal. The change in energy of Xmax is called the elongation rate,
dXmax/dE and is used to study the development of the composition with energy.
Thus, where a classification is possible at lower energies in elemental groups, at the
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highest a distinction in light and heavy is already more complicated. Recent results
of the Pierre Auger Observatory (PAO) regarding the composition are shown in Fig.
3.2. At energies around 1018 eV the error for the simulations is rather small and the
cosmic rays seem to be light (Z≈1). For higher energies the data tends to a heavier
composition. However, to draw a conclusion is difficult, which is in part caused by
the increased uncertainties of the models. The RMS of the Xmax distribution on the
other hand (right panel of Fig. 3.2) hints towards an interpretation of the data as
heavy, since the systematic error on the predictions is smaller and the data points
are showing a clearer trend. On the other hand, the HiRes experiment [13] reported
in 2010 their final results including an agreement of their date with a pure proton
composition. Efforts are under way to solve these discrepancies.
Although, the knowledge about cosmic rays has increased over the last years many
questions are still unresolved. Especially, the origin of cosmic rays at the highest
energies is still unknown and with it entwined the question concerning the compos-
ition. Protons would make astronomy with UHECRs possible, while in the case of
iron the deflection due to magnetic fields would be 26 times larger leading to a more
isotropic distribution of the arrival directions.
Before discussing possible source scenarios it is necessary to explain a mechanism
which could accelerate cosmic rays to the highest energies. In this way, the number
of source candidates can be narrowed down. This will be followed by sections on
propagation and extensive air showers.
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Figure 3.2: Composition Measurements of cosmic rays compared to the predic-
tions (lines) made by shower simulations. Left Panel: Xmax measurement of PAO
indicating a light composition (protons) at lower and a mixed one at higher energies.
Right Panel: RMS of Xmax measurement of PAO with a clear hint towards iron a
the highest energies. Both taken from [14].

3.1 Fermi Acceleration

In 1949 Enrico Fermi [15] published a first approach to explain the existence of cosmic
rays with very high energies based on stochastic acceleration. This theory has been
refined in the following decades and is still under investigation. New developments
for example gave rise to a more efficient mechanism accelerating cosmic rays.
In both cases that are presented in the following, a change in energy is based on a
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repeatedly encounter with a magnetic environment. Each one leads to to an increase
in energy of the amount ε on average , i.e. after n deflections the relative gain is
(1 + ε)n. To calculate the number of steps necessary to reach a designated maximal
energy one uses

n =
ln(En/E0)

ln(1 + ε)
.

Another important parameter is the observed power law for the flux. Therefore, an
acceleration mechanism claiming to be responsible for the existence of UHECRs has
to produce such a behaviour.
In this case, the mechanism can provide a power law in the end with the spectral
index being connected to the gain in energy per encounter. This can be shown
by considering the number of particles staying in a region where several successive
accelerations can take place. For one particle the chance to escape this area is
pesc per encounter with the magnetic cloud. From that we can conclude that after n
interactions the number of particles is reduced by a factor of (1−pesc)n. By summing
over n until infinity the number of particles achieving a higher energy than En is
obtained:

N(> En) = N0

∞∑

m=n

(1− pesc)m.

This is a geometric series and can be simplified towards

N(> En) = N0

(
1

1− (1− pesc)
− 1− (1− pesc)n

1− (1− pesc)

)

=
N0

pesc
· exp( ln(En/E0) · ln(1− pesc)

ln(1 + ε)
)

=
N0

pesc
·
(
En
E0

)−γ

with

γ =
ln(1/(1− pesc))

ln(1 + ε)
≈ pesc

ε

whereupon the last equality is only valid for small values of pesc and ε.

3.1.1 Second Order Fermi Acceleration

This represents the original model by Fermi [15] and considers the interaction of
interstellar magnetic clouds and relativistic cosmic rays. In this simple example
(adapted from Stanev [16]) cloud and cosmic ray are moving towards each other
colliding head-on. The particle is deflected many times inside the cloud and escapes
in the same direction from which it came. By transforming the incoming cosmic ray
with energy Es from the laboratory into the reference frame of the cloud (indicated
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by a superscript cl) and afterwards the other way round, the change in energy Ef

can be calculated. In this simple example, it is:

Ecl
s = γclEs(1 + βcl)

Ef = γclE
cl
s (1 + βcl)

with the corresponding relativistic γ- and β-factors of the cloud. Hence, one can
calculate the increase of energy ε which is depending on the cloud velocity vcl:

ε = γ2cl(1 + βcl)
2 − 1,

with βcl = |vcl|/c, γcl = (1− β2
cl)
− 1

2 and c, the speed of light.
In general, the direction of escape is isotropically distributed due to many deflection
inside the cloud giving in the end an average gain in energy of

ε ≈ 4

3
β2
cl.

From that we can conclude that the spectral index is determined among other things
by the squared velocity of the cloud in units of the speed of light. Hence, the time
to accelerate particles depends on the number of encounters with a magnetic cloud
and its velocity. Due to the variability of vcl, a prediction for γ is impossible.

3.1.2 First Order Fermi Acceleration

This kind of acceleration takes place in objects like Supernovae Remnants (SNR),
where a shock front hits the surrounding interstellar medium. Cosmic rays within
this matter are isotropic in their flying direction. In the rest frame of the shock
some cosmic rays cross the shock-front head-on with the velocity vshock and will be
accelerated according to the principle of Fermi of second order where a cosmic ray
interacts with a magnetic cloud (see the previous section). After the cosmic ray
is isotropized in the shocked medium it can cross the shock front for the second
time into the unshocked medium where it is accelerated again according to Fermi
of second order. This process can recur many times, whereupon the average gain in
energy is:

ε ≈ 4

3
βSM = βS. (3.1)

It must be noted that this is the βSM -factor of the shocked medium, which usually
is 3/4 times the shock velocity vS.
Due to its similarities to the original concept of Fermi, this mechanism is called first
order Fermi acceleration. A description of this acceleration process was published
independently by several people in the 1970’s, e.g. by Krymskii [17] as well as Bland-
ford and Ostriker [18].
As one can see from equation (3.1) the first order Fermi acceleration is more effect-
ive, since the average shock velocity within a SNR is much higher than the one of
typical interstellar molecular cloud and in addition the gain in energy is linear in
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the βS-factor of the shock.
Strong shock fronts produce in a natural way γ ≈ 2 [18] at the source. During the
propagation of cosmic rays through a galaxy, some of them escape the confinement
of the galaxy. Solving the corresponding diffusion equation, this leads to an increase
of the spectral index of 0.6 (see [16]). Further effects, which are discussed below,
change again the spectral, especially at the highest energies.

3.2 The Origin of Cosmic Rays up to the knee

Due to the magnetic fields in our galaxy cosmic rays are deflected many times so
that the complete source information is lost. The diffusive flux however can still give
hints towards a solution of the question about the origin in this case. Particularly,
changes in the spectral index are interesting and could point to a change in the
underlying processes. A good example is the kink around 5 · 105 GeV called the
knee, where the spectral index γ changes from 2.7 to 3.2. Prominent candidates for
this energy range are Supernovae in our own galaxy. Particles gain energy by means
of Fermi-acceleration of first order while passing through the shock-front many times
back and forth.
Two scenarios are discussed in the literature explaining the steepening of the flux.
The first one argues that the accelerators run out of power leading to a cut off for
each particle species with a maximum energy of E ≈ Z · 1014 eV proportional to
their charge. However, depending on the theory this value can be enlarged by up to
three orders of magnitude.
In the second scenario the galactic magnetic field B is too small to confine cosmic
rays of energy E and charge Z within so that the Larmor radius

rL = 1.08pc
E/PeV

Z ·B/µG
(3.2)

exceeds the size of the disc of the milky way and the cosmic rays can escape the
boundaries of our galaxy. Since the corresponding radius rL of a cosmic ray depends
on its charge, nuclei of higher atomic order can be kept inside the galaxy up to
higher energies than it is possible for protons. By measuring the composition and
the corresponding fluxes in the transition region this hypothesis can be verified.
At the moment one assumes that in nature a mixture of both theories is realised.

3.3 The Origin of UHECRs

Going to even higher energies, further features become apparent. To make them
clearly visible, the differential flux is multiplied by E2.7 (see Fig. 3.3). Since galactic
sources are assumed to die out at lower energies as discussed in the previous section,
extragalactic objects are held responsible for the flattening of the spectrum around
E = 3 · 1018 eV, called the ankle (cf. Fig. 3.3). In contrast to the accelerators
within a galaxy like supernovae, centres of galaxies can offer a good environment for
particle acceleration; the focus lies on the active galactic nuclei (AGN). In addition,
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more exotic objects are included in this category, e.g. fast rotating neutrons stars,
colliding galaxies and Gamma Ray Bursts (GRB) which can also be located inside
our own galaxy. In contrast to lower energies, further models exist favouring among
other theories very heavy particles based on the supersymmetric extension of the
standard model of elementary particle physics (abbreviated SUSY ) or topological
defects produced in the early universe. Through annihilation or decay UHECRs are
then produced. In general, these two approaches are distinguished into:

1. bottom-up (based on extra- and galactic objects, e.g. AGN and GRB) accel-
erating cosmic rays from moderate up to the highest energies and

2. top-down models (based on particles, e.g. decaying super heavy dark matter),
energy provided by the mass of the particle.

Both are discussed in more detail below. Many important experiments have contrib-
uted so far to this field of UHECR physics. To give a short incomplete list: Haverah
Park (1967-1987), AGASA, HiRes (1997-2006) and of course the Pierre Auger Ob-
servatory (running since 2004). Most results presented in this chapter are based on
this last experiment, because it is the largest so far delivering current measurements
with higher statistics than any experiment before.
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3.3.1 Bottom-Up Models

Within this category all macroscopic objects are combined being possible accelera-
tion sites for UHECR. All these objects have in common that they fulfil the Hillas
relation [23] based on Fermi acceleration of first order:

Emax ' 1018eV Z βS

(
R

kpc

)(
B

µG

)
, (3.3)

where Z is the charge of the particle, βS = vS
c

the shock velocity, R the size of
the accelerating region and B the magnetic field. Applied to known objects possible
source candidates are obtained. A selection can be found in Fig. 3.4 including Active
Galactic Nuclei (AGN) and Gamma Ray Bursts (GRBs).

3.3.1.1 Active Galactic Nuclei

Compared to our own, other galaxies’ most inner part is more active shining brighter
at different wavelengths (e.g. radio, infrared, gamma-ray). A possible reason for this
is the presence of an accretion disc surrounding the central super massive black hole.
This matter consisting of gas and dust is drawn into the black hole increasing pressure
and friction in the torus, whereupon heat and radiation are produced. In some cases,
further energy is released through two jets erupting back to back perpendicular to
the accretion disc along the rotation axis, whereas the jets are often asymmetric in
their shape and size. Hence, AGN have also been observed with only one jet. The
mechanism behind this phenomenon is still subject of research.
With the help of Fig. 3.5 the different parts of an AGN can be explained in more
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detail. AGN are divided into two major subclasses displayed here by a diagonal line,
radio loud and radio quiet galaxies. The significant difference is the presence of the
already mentioned jet in the first case strongly emitting in the radio band. When
looking directly into the jet the object is called a Blazar. In the radio quiet mode
the galaxy would be called a Quasar.
Further criteria of classification are based on the abundance of narrow and/or broad
optical lines in the measured photon spectra. The reason for these two types is cold
matter rotating around the black hole, the closer it is the faster it spins and thus
the larger is the difference of the matter velocities. Therefore, the Doppler shifts are
varying more and hence the emission lines are broader. In principal, both subtypes
of AGN, Seyfert galaxies of type 1 and 2, are the same, only the viewing angle is
different. While in the case of Seyfert type 2 just the narrow lines can be seen,
for type 1 both are visible. By now, the sharp partition is relaxed and a relative
nomenclature is in use, i.e. type 1 and 2 are limits and numbers in between are more
common.

Figure 3.5: Scheme of Active Galactic Nuclei. A massive black hole in the center
surrounded by an accretion disc and a gas and dust torus. Interstellar matter rotates
around the black hole producing optical narrow as well as broad lines depending on
its velocity. In the case of a radio loud galaxy a jet is emitted along the rotation
axis. (provided by NASA)

Much attention is given to these objects caused by the publication of the PAO
regarding the correlation of their 69 highest UHECRs with AGN of the Veron-Cetty
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and Veron (VCV) [3] catalogue. After two years of data taking a scan was performed
in energy E, opening angle ψ around the galaxies and redshift z to find the best values
for a prescription regarding a correlation. They are as follows:

E ≥ 56 EeV
ψ = 3.1◦

z ≤ 0.018 (≈ 75 Mpc)

With this data set a relative correlation of ρ = 57 % was obtained, whereas only 21 %
were expected for events coming from an isotropic distribution (H0-hypothesis). The
probability whether the arrival directions of the detected UHECRs are isotropically
distributed is calculated by means of the cumulative binomial distribution. In this
context, the errors of first and second kind are set to 1 % and 5 % respectively.
In this way, the prescription ends after 34 events are detected surviving the lower
energy cut. Assuming that the values found with the scan are correct, then 15 events
should be closer to an AGN than 3.1◦. Due to the small flux of UHECRs at the
highest energies, it was decided to test after the detection of a new event whether
the prescription is already fulfilled. To account for the repeated testing, the error of
first kind was reduced by a factor of four.

Figure 3.6: Shown are the 69 highest energetic PAO events in black (galactic
coordinates, Hammer projection). In addition all VCV AGN with z ≤ 0.018 are
shown as blue circles their shade proportional to the exposure. [25]

Already in 2007, the prescription passed (published in [26]), with ρ = 70 % giving a
chance probability Pchance of 0.02 % that the events are isotropic.
Shortly after the publication, the amount of correlating events dropped to an over-
all value of ca. 40 % reported in 2010 [25], which is still a factor two higher than
expected by H0-hypothesis (isotropy). The chance probability increased (Pchance =
0.3 %). In Fig. 3.6 all events of the PAO above an energy of 55 EeV are shown as
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Table 3.1: Summary of correlations within 3.1◦ between cosmic rays with E ≥
55 EeV and AGNs in the VCV catalog with redshift z ≤ 0.018. N is the number of
CRs measured. k is the number of correlating arrival directions. kiso is the number
of correlations expected by chance if the flux were isotropic. P is the cumulative
binomial probability to detect k or more correlations from an isotropic distribution.
Probabilities are not shown for data sets which include period I because parameters
were selected to optimise the correlation in that period.[25]

Period Dates Exposure N k kiso P
km2 sr y

I 1 Jan 2004 - 26 May 2006 4390 14 8 2.9 –
II 27 May 2006 - 31 Aug 2007 4500 13 9 2.7 2× 10−4

III 1 Sept 2007 - 31 Dec 2009 11480 42 12 8.8 0.15
Total 1 Jan 2004 - 31 Dec 2009 20370 69 29 14.5 –
II+III 27 May 2006 - 31 Dec 2009 15980 55 21 11.6 3× 10−3

well as all AGN from the VCV with a z ≤ 0.017. They are displayed as blue circles
with a radius of ψ and their shade proportional to the exposure in that region. An
overview about the single periods including probability and all other necessary vari-
ables is given in Tab. 3.1.
It must be noted that despite the correlation the true sources stay unidentified, since
the statistic is insufficient to relate the events to certain single objects. Crosschecks
performed with further catalogues, show a similar correlation leading to the conclu-
sion that the sources follow the matter distribution in our cosmological neighbour-
hood of 100-200 Mpc. Particularly interesting is the accumulation of events close to
a part of the super-galactic plane where lots of AGN can be found in Fig. 3.6.
However, these results are disputed by the observations of the HiRes-collaboration
[27][28], because in their data set no such correlation can be found. Two out of
their 13 events correlate with VCV galaxies using the same cuts as PAO giving an
agreement with the expected isotropic flux of 85%. One explanation for this might
be the different fields of view, since HiRes, in contrast to PAO, is located at the
northern hemisphere.

Radio Loud Galaxies
The existence of jets and thus of shock fronts makes radio loud galaxies, a subclass
of AGN, prominent source candidates. It has been proposed that such galaxies can
be responsible for the acceleration of UHECRs. The three with the strongest flux at
5 GHz at Earth within a distance of 100 Mpc according to P. Biermann [29] are Cen-
taurus A (Cen A), Virgo A (Vir A) and Fornax A (For A) (see Tab. 3.2). Especially
interesting is Cen A, because it is the closest of those three and the largest object
seen in the radio sky for an earthbound observer. Responsible for this are the two
large radio lobes expanding far into the intergalactic medium. While the moon has
a diameter of 0.5◦, Cen A spans a range of more than 10◦.
Proposed by theorists (see e.g. [30], [31]), this object may be responsible for a sig-
nificant amount of all UHECR measured by the PAO. For the HiRes experiment on
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Table 3.2: The strongest radio-loud galaxies in the vicinity of the milky way. Given
are name, distance d and the equatorial coordinates α and δ

Name d [Mpc] α [◦] δ [◦]
Cen A (NGC 5128) ca. 3.5 201.37 -43.02
Vir A (NGC 4486) 16.4 187.70 12.39
For A (NGC 1316) ca. 19.0 50.67 -37.21

the other hand Cen A is close to their exposure boundary reducing the probability
to see events from that direction.
Indeed, the PAO observes many events in its vicinity. However, Cen A is part of
the super galactic plane and several other galaxies are found in the same direction
with a distance smaller than 200 Mpc. Because of that, a clear identification as a
source is challenging. Nevertheless, the PAO has analysed a posteriori in [25] the
cumulative angular distance distribution of the events to Cen A where ψCenA is the
maximal allowed angular distance. The PAO has found a small excess at roughly
20◦ (cf. Fig. 3.7) compared to the isotropic expectation. This number seems to con-
firm the acceleration rather in the jets than in the nucleus of the galaxy. Further
statistics will shed more light on this question.
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Figure 3.7: Cumulative Distance Distribution for the highest energy events around
Cen A including the 1σ, 2σ and 3σ confidence bands for an expected isotropic flux
[25]. ψCenA is the maximal allowed angular distance between Cen A and UHECRs
detected by the PAO.
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3.3.1.2 Gamma Ray Bursts

In contrast to the long lifetime of an AGN, the lifetime τ of a GRB is only several
milliseconds up to hundreds of seconds. These GRB are classified into two groups,
long (τ>2s) and short (τ<2s) each followed by a less intense afterglow. While the
first one is believed to be the result of a collapsing massive star forming a black hole,
the second one is most likely caused by the merging of two neutron stars.
During these processes a relativistic shockwave is released into two back to back jets
hitting the surrounding interstellar matter. Mechanisms like the fireball [32],[33]
or the cannonball [34] model describe the occurring reactions in the shockwaves
accelerating charged particles, e.g. protons up to E = 1020 eV. However, it can be
argued that distant GRB cannot contribute to the flux above 1019 eV and those
which are close-by are to rare too be responsible for the measured flux of UHECRs.

3.3.2 Top-Down Models

In contrast to the concept before, Top-Down models propose a microscopic origin
of UHECRs. Many approaches are made starting from topological defects to super
heavy dark matter. All these models have in common that at the highest energies
photons contribute a significant amount to the flux of UHE particles. Therefore, by
searching the data for photon candidates these models can be directly tested.
In 2009, the PAO has published the updated results of their search for photons
pushing the upper limits of the photon fraction below the expectation for lots of those
models (cf. Fig. 3.8). Clearly disfavoured are the super heavy dark matter models
and in addition those based on topological defects. Only the Z-Burst scenario and
photons as a result of the GZK-effect (see chapter 3.3.3.1) are still consistent with
the data. A Z-burst is understood to be caused by UHE neutrinos interacting with
relic anit-neutrinos producing resonantly a Z-boson which in turn decay indirectly
into photons (of the order of 10 %).

3.3.3 Propagation

During the propagation of UHECRs through space they are deflected by many effects
mainly caused by interactions with the cosmic microwave background (CMB). The
most famous one is the GZK-effect at the highest energies leading to an immense
energy loss for the UHECRs. Another process is already active for energies of 1018

eV namely pair production of UHECRs with the CMB photons.

pUHE + γCMB −→ pUHE + e− + e+

The reason why it is not so prominent is that the protons lose just about 0.1 % of
their energy during this process with a loss length χLoss of the order of 1 Gpc. χLoss
corresponds to the average propagation distance where the particle has only 1/e of
its initial energy left.
Another effect which causes only minimal energy loss is the adiabatic expansion of
the universe. It can be neglected when only small distances up to 200 Mpc are
considered.
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Figure 3.8: Top Panel: Current Photon limits of the PAO using data of the surface
detector (SD) and the fluorescence detector with one surface detector station (HYB)
excluding super heavy dark matter and topological defect models. Only the Z-Burst
model and the predictions of the GZK effect (see chapter 3.3.3.1) are still allowed.
In addition, results of other experiments are shown, e.g. AGASA (A1, A2), AGASA-
Yakutsk (AY), Yakutsk (Y), Haverah Park (HP). (See [35] and references therein.)
Bottom Panel: Current τ -neutrino limits of PAO using only SD data assuming a
ratio of 1:1:1 among the three families. Shown are the differential upper limit on
the flux as well as the integrated one over energy, whereupon the dashed line in
the integrated case represents the most optimistic and the straight line the most
pessimistic case for systematic uncertainties. In addition, results of other mainly
neutrino-dedicated experiments are shown. (See [36] and references therein.)
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3.3.3.1 GZK-Effect

In 1966 Greisen [37] as well as Zatsepin and Kuzmin [38] described a reaction regard-
ing cosmic rays and photons of the Cosmic Microwave Background (CMB). Protons
can produce a ∆-resonance when exceeding a threshold energy of 5 · 1019 eV.

pUHE + γCMB −→ ∆+(1232) −→ p+ π0

pUHE + γCMB −→ ∆+(1232) −→ n+ π+

In this way, they lose up to 20% of their energy to the decay products of the pions
namely neutrinos, photons and charged leptons, whereas the neutral particles are
subject of further research. At the moment, current experiments are getting closer to
the predicted fluxes for those particles (cf. Fig. 3.8). The corresponding loss length
for the process mentioned above is of the order of 20 Mpc.
Furthermore, nuclei suffer from similar reactions like pair- and photoproduction de-
creasing their energy. In addition, they can sustain photodisintegration caused by
CMB photons. An estimation of the average loss length for some nuclei is shown
in Fig. 3.4. As one can see, if an experiment measures cosmic rays with energies
exceeding 1020 eV then their origin lies most likely within a distance of 100 Mpc.
However, processes have been proposed which can suppress the GZK-effect and shift
this cut-off to even higher energies including the Z-Burst scenario mentioned before
as well as Lorentz violation (for further reading regarding these and other effects, see
[39]). Current measurements from HiRes [21] and the PAO confirm the prediction
of the GZK (cf. Fig. 3.3). The flux is suppressed for energies above 4 · 1019 eV at
the level of 20σ [22]. AGASA on the other hand published their energy spectrum
of cosmic rays which continues beyond 5 · 1019 eV [40] showing no steepening of the
cosmic ray flux. One reason for these differing results might be the uncertainty re-
garding the energy scale which depends on the experiment. It has been shown that
by adjusting the energy scales of these three experiments with factors of roughly 20
% an agreement can be achieved (e.g. Fig. 12 in [12]).
Regarding the photons and neutrinos produced during the GZK process, the first
type interacts with the radio background and the second one remains mainly unaf-
fected. For both cases, predications are made regarding the resulting fluxes but no
candidate has been found so far in the data of neither the PAO nor other experi-
ments. The current limits can be seen in Fig. 3.8. However, if finally a positive
signal from photons or neutrinos is detected, this would help to identify the sources.
It must be noted that although the PAO is not a dedicated neutrino experiment, it
is capable of producing competitive results.

3.3.3.2 Magnetic Fields

In contrast to UHE photons and neutrino, cosmic rays suffer significant deflections
caused by magnetic fields, especially at lower energies. A simulation of cosmic rays
(10 protons each) of different energies flying through random magnetic fields (1nG)
with a coherence length of 1 Mpc is shown in Fig. 3.9. For an energy of 1 EeV the
complete source information is lost while for those at 100 EeV after 50 Mpc the
source could still be identified, i.e. UHECR astronomy might be possible with these
parameters.
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Figure 3.9: A simple simulation of UHECR (10 protons each) propagation with
different energies, a random magnetic field of 1 nG with a coherence length of 1
Mpc. [41]

The above used values for the intergalactic magnetic field have been set recently as
an upper limit by a study of the CMB using among other things Faraday rotation
[42]. Furthermore, a new approach has been made in 2009 using UHECR data to
measure the intergalactic magnetic field [43].
In general, it is assumed that the intergalactic magnetic field is randomly oriented,
only in areas close to large matter distributions (e.g. galaxy clusters) filamentary
structures with coherent fields are formed. Those accumulations can increase the
strength of the field by a factor of roughly 100. In general, this assumption is called
the random walk [44] model for UHECRs propagation since their deflection is leading
to a Gaussian distribution for the arrival directions around a source.
Spiral galaxies like our own are known to have a large scale coherent regular field.
This leads to more complex models of the field distributions. Two basic shapes are
proposed:

• bisymmetric (BSS);

• axissymmetric (ASS).

In a BSS spiral galaxy the field vector has the same orientation for adjacent arms,
whereupon in the ASS scenario they have the opposite sign.
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An extra component can be added by making a distinction between the part above
and below the galactic mid-plane. Are the two halves going in the same (opposite)
directions then a S (A) is appended representing a symmetric (antisymmetric) be-
haviour.
The strength of a few µG is again estimated by Faraday rotation measurements
of the plane of polarisation using pulsars in our own galaxy or extra-galactic radio
sources. While for the highest energies the influence of the galaxy is considered to be
negligible, UHECR with energies close to 1018 eV are significantly affected. These
in turn might be used to estimate the strength and reconstruct the direction of the
coherent magnetic field. This can be done for example by analysing the data in
terms of energy ordered multiplets.

3.3.4 Low Energy Anisotropy Studies

In the case of lower energies (E & 1018 eV) also anisotropy studies are possible
despite the effects of magnetic fields. The focus lies on large scale structures maybe
caused by magnetic fields or large objects in our vicinity. Therefore, one concentrates
here on multipole studies at larger angular scales, a standard method in this field of
research, and objects within our galaxy.
In this sense, the PAO has formulated a prescription regarding an excess in the
direction of our galactic center (GC) [45].
The data of a fixed period was scanned to find the parameter set which yields the
largest deviation from the isotropic expectation. Then, one has two options:

• running prescription and

• fixed exit points.

While the first type of prescription ends whenever the requested confidence level is
passed (cf. the AGN correlation study by the PAO), the second type has fixed ends.
In advance, the points of exits are defined mostly depending on the number of events
and if one of these numbers is reached, the data set is analysed using the pre-defined
parameters. Here, the second approach is chosen.
The search for an excess in the direction of the GC can be motivated by two ar-
guments. The first one is that the GC might be a lens for CR focusing them from
the center towards the spiral arms of the galaxy. The second one refers to a conver-
sion taking place within the GC. Protons are caught inside its magnetic field, com-
bine with electrons or anti-neutrinos producing neutrons and neutrinos or positrons.
This neutron can then escape the magnetic field and has enough energy to travel
far enough in the direction of the Earth before it decays into a proton so that the
deflection caused by the intergalactic magnetic field is smaller. Until now, the pre-
scription has not yet reached the needed number of events to evaluate the test.
In principle, multipole studies could also identify the GC as a source whereupon ded-
icated searches need less statistics to be conclusive especially when it comes to large
multipole coefficients l, i.e. small angular scales. Considering multipoles of lower
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order (dipole, quadrupole), large scale studies are possible to identify an anisotropy
at an early stage of an experiment. It has the advantage to be model independent,
i.e. with this method extended regions in the sky can be found without previous as-
sumptions about sources and their distributions. For example, UHECRs emitted by
a single source nearby could still carry enough information about their true origin.
Hence, this source could produce a dipole in arrival directions of detected cosmic
rays with an amplitude of a few %. A similar signal can be caused by many weak
sources and their UHECRs focused into one region of the sky by the coherent part
of the galactic magnetic field.
In addition, the Compton-Getting effect [46],[47] can cause a dipolar structure in
the arrival directions. If UHECRs are isotropic in our galaxy, then an earthbound
experiment would see an increase in the rate of cosmic rays in the direction of mo-
tion. The same consideration applies also for the motion of the earth through the
CMB rest frame resulting in an extra galactic Compton-Getting effect.
In the case of small amplitudes it is necessary to have a complete understanding of
local effects. The geomagnetic field for example deflects the charged particles in an
air shower depending on their relative orientation. This influences the energy recon-
struction for surface detectors that sample the signal at ground level. Consequently,
UHECRs of the same energy are assigned different energies by the air shower recon-
struction depending on their arrival direction relative to Earth’s B-field. This leads
to an anisotropy in local coordinates when making a sharp energy cut. In turn a di-
pole is produced with its maximum at the south pole in equatorial coordinates with
an amplitude of roughly 1%. To avoid this bias, an 1-dimensional harmonic analysis
can be performed in right ascension α because then each bin in α is affected in the
same way. A corresponding analysis by the PAO has recently been published [48]. In
this context, a procedure was applied which allowed to use air showers reconstructed
with an energy below the lower threshold of 3 · 1018 eV for the full acceptance of the
experiment. No significant amplitude has been found so far, only limits have been
set for energies larger than 0.25 ·1018 eV (see Fig. 3.10). In contrast to these results,
AGASA reported an amplitude of 4 % in one energy bin in [49]. One reason for this
discrepancy might be the different hemispheres the experiments are located.

3.3.5 Autocorrelation Studies

By adapting the concept of model-independent searches for anisotropy at the highest
energies, autocorrelation studies offer the possibility to recognize anisotropies already
in the case of low statistics. Thus, the arrival directions of UHECRs can be assessed
at the highest energies. This has the advantage of being completely free of any
assumptions or preconceived opinions about sources or at least their distributions.
In this way, new hints for the true origins can be gained.
A first approach was made by AGASA searching in their data set for a clustering
on small scales [50]. With a minimal energy of 40 · 1018 eV an over-abundance of
doublets and triplets was discovered close to the super galactic plane.
A similar study was carried out by the PAO. After the positive anisotropic signal
from the correlation analysis was obtained, further efforts were made to establish
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Figure 3.10: Upper limits on the anisotropy amplitude of first harmonic as a func-
tion of energy in right ascension. Results from EAS-TOP, AGASA, KASCADE and
KASCADE Grande experiments are displayed too. Also shown are the predictions
up to 1 EeV from two different galactic magnetic field models with different sym-
metries (A and S), the predictions for a purely galactic origin of UHECRs up to a
few tens of 1019 eV (Gal), and the expectations from the Compton- Getting effect
for an extragalactic component isotropic in the CMB rest frame (C-GXgal). [48]

a consistent result using autocorrelation methods. An a posteriori analysis in 2009
[51] showed that the optimal lower energy cut of 52 · 1018 eV for this is close to the
one obtained by the scan in the run-up to the prescription in 2006. The minimal
not penalised chance probability Pchance is 0.26 %.
As a reminder, on this topic the main focus of this work is put. Therefore a more
detailed discussion about assets and drawbacks as well as developed methods in this
context is carried out in chapter 5.

3.4 Extensive Air Showers

All the measurements of UHECRs and corresponding theories described for energies
E> 1015 eV rely on the detection of extensive air showers. Air showers consist of a
multitude of secondary particles and are initiated by primary particles interacting
with nuclei in the atmosphere. These secondary particles in turn interact with other
nuclei producing even more particles generating a cascade of reactions. Different
detector types can then measure the longitudinal and lateral shower profiles (see
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chapter 3.4.2.1 and 3.4.2.2).
Especially for detectors sampling and reconstructing the signal at ground level it
is essential to know which part of the evolving shower is detected. For example, if
two primary particles with the same energy but different arrival directions penetrate
the atmosphere and have their first interaction at different heights, the number of
particles and hence, the strength of the measured signal would be different. In this
context, Monte Carlo shower simulations are an important tool to interpret the air
shower measurements. Due to the underlying statistical processes, even showers with
the same initial properties will have a different shower development. Therefore, an
analysis on an event-by-event basis is impossible. A sufficient amount of statistics
must be gathered to draw a conclusion.
To this end, it is important to understand the underlying processes in the shower and
in addition, to know the values of involved variables, e.g. of the coupling constant of
the strong force, αS, and of the proton-Nucleus cross-section, σpN . Although, current
accelerators are running at energies of the order of 1012 eV and experiments such as
CM or ATLAS are measuring with a precision never reached before, a transfer to
the field of physics of cosmic rays poses difficulties. For instance, at the LAC mainly
proton-proton collisions are studied by means of the corresponding reaction products
flying perpendicular to the beam pipe. In contrast to that, air shower experiments
are interested in the collisions of protons and heavier nuclei (nitrogen and oxygen) as
well as in the reaction products flying nearly parallel to the beam pipe. Therefore,
a simple model predicting accurate properties of a shower is advantageous and will
be presented in the following subsections. Furthermore, we discuss two detection
techniques of extensive air showers.

3.4.1 Shower Development

In general, four components of a shower are distinguished:

1. electromagnetic component consisting of electrons, positrons and photons;

2. hadronic component consisting of mesons and baryons;

3. muonic component;

4. invisible component consisting of neutrinos.

While electromagnetic (EM) primary particles will generate pure EM showers, a
hadronic induced EAS, however, will produce all components.
We start with the simple case of an electromagnetic shower, the original Hitler model,
and continue with an adaption towards hadronic showers following the argumenta-
tion presented in [52].

3.4.1.1 Electromagnetic Shower

In the 50s of the last century Heitler developed a method to describe analytically
the development of an electromagnetic air shower in the atmosphere. Initiated by a



3.4. Extensive Air Showers 29

photon at the first interaction point, the cascade starts with the production of an
e+e−-pair transferring the complete energy equally to both particles. After a fixed
distance, also referred as slant depth d = λr ln2, they in turn emit bremsstrahlung
whereupon again the energy is divided equally between photon and e± (cf. left panel
Fig. 3.11). d depends on the radiation length λr of the particle in air. The factor
ln2 ensures that d corresponds to the typical distance after which electrons lose half
of their energy by radiation. The distance is measured in units of g cm−2 indicating
how much material per area has been traversed by the shower. Hence, d= 0 g cm−2

corresponds to the top of the atmosphere.
In the Heitler model of the cascade process, e± and photons emit bremsstrahlung
and produce e±-pairs, respectively, after each interaction step of distance d. This
increases the number of particles N by a factor of 2 after each step. Consequently,
after n steps the traversed distance is x=n· d and N=2n. These reactions continue
until the energy per particle is below the threshold energy Ethr for the processes men-
tioned above. Afterwards, losses due to collisions exceed those caused by radiation.
At that energy, the shower contains the maximal number of particles Nmax = 2nthr

with energy Ethr = E/Nmax each. This corresponds to a slant depth of

Xmax = nthrλrln2 + C = λrln(E/Ethr) + C, (3.4)

with C the height of the first interaction. With these results the simple Heitler model
makes two correct predictions regarding extensive air showers initiated by a photon:
On the one hand, the number of particles increases linearly and on the other hand
the depth of the shower maximum logarithmically with energy.
Despite the good performance, there are several points where the predictions of the
model deviate from measurements. For instance, the numbers of e± is overestimated
by roughly a factor of 10. One reason for this is the simplification in the Heitler
model assuming a straight line of flight for the electrons, whereas they in fact spread
out laterally and are attenuated while flying through the atmosphere.

3.4.1.2 Hadronic Showers

At the highest energies, however, cosmic rays are dominated by nuclei. Therefore, a
similar model was developed to analytically describe extensive air showers initiated
by hadrons. Here, we discuss the case of a proton with E = 1018 eV. The first
alteration affects the multiplicity after one interaction length (λI). In contrast to
electromagnetic showers, after each step the number of particles is increased by a
factor of approximately 10. Another important factor is related to the type of the
secondary particles: In one interaction a number of Nch charged as well as N0 neutral
pions is produced whereupon each type has the same probability. The resulting
relation of charged to neutral is Nch = 2· N0.
A π0 is very short lived even with velocities close to the speed of light in the frame
of reference of the laboratory. It decays immediately exclusively in two photons,
although a small branching ratio exist for other decay modes. The two photons start
an electromagnetic air shower each following the description from above. Charged
pions (π+ and π−), however, fly the average interaction length λI before they react
again with nuclei of nitrogen or oxygen producing more pions in the same ratio (cf.
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right panel of Fig. 3.11). Consequently, the number of pions increases with each
step, Nπ = (Nch)

n with an energy per particle of (2/3)n E.
After several similar interaction steps nπthr, the energy per charged pion drops below
a threshold Eπ

thr where the probability to decay is becoming dominant compared to
the probability to fly the whole interaction length λI . In this model, all pions decay
into muons (Nπ = Nµ) and neutrinos at this point. The formula for this energy is:

Eπ
thr = E · (3

2
Nch)

−nπthr . (3.5)

Solving the equation to obtain the number of interactions gives

nπthr =
ln(E/Eπ

thr)

ln(3
2
Nch)

. (3.6)

To assess the energy of the primary particle also the electromagnetic part has to
be included, E = Ethr · Nmax + Eπ

thr · Nµ. Both threshold energies are estimable
in principle offering the possibility to determine the total energy of the primary
particle by measuring the amount of electrons and muons at the maximal size of
the shower. Regarding the depth of the shower maximum, only the electromagnetic
component is considered. It forms the major component of a hadronic air shower
since λr < λI . Due to simplicity only the first π0 decay contributes. At the beginning
of the electromagnetic cascade the same amount of photons and charged pions is
present (π0 −→ γγ). These photons produce the fourfold amount of electrons within
two radiation lengths while the number of pions is constant. Considering the same
ratio for further interaction and radiation lengths respectively, electrons are the
dominant component of the hadronic EAS. Therefore, we can use the formula from
the pure electromagnetic case accounting for the point of the first interaction of the
proton by adding an offset C. Here it is assumed that all photons carry an energy of
E/(3Nch,thr) in total,

Xπ
max = λrln[E/(3Nch,thr)] + C, (3.7)

giving the same logarithmic dependency of the primary energy.
As before, this model is incomplete containing similar simplifications as in the elec-
tromagnetic model. For example, many more types of particles are created such as
charged and neutral kaons contributing to different parts of the shower. In addition,
the electromagnetic cascade is fed by further decays of neutral pions produced after
each interaction length.
The model can be extended to heavier nuclei which is not discussed in this work.

3.4.2 Detection Techniques of EAS

After presenting two simplified analytical models of the development of air showers,
we now discuss the techniques how to measure the shower properties to obtain the
results presented earlier in this chapter. There are two ways to determine the nature
of the primary particle by measuring:

1. the longitudinal shower profile and/or
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Figure 3.11: Schematic Extensive Air Shower development. Left Panel: An elec-
tromagnetic cascade is shown. After each interaction point n the number of particle
doubles. Right Panel: A simplified hadronic cascade; not all particles are tracked
through all interaction steps. Both taken from [52].

2. the lateral shower profile.

A sketch of the detection of air showers is shown in Fig. 3.12.

3.4.2.1 Measuring the Longitudinal Shower Profile

During an EAS, the particles travel through the atmosphere and the electrons cause
two kinds of radiation. The first one is Cerenkov light emitted by the particles when
their velocity exceeds the speed of light in the respective medium. It is emitted in
the direction of movement. Hence, due to the small flux of UHECR and the opening
angle which is very small for velocities close to c, an array of Cerenkov telescopes
would be too inefficient to observe a sufficient amount of events in a reasonable time.
In contrast to that stands the second kind, the fluorescence light, which is isotrop-
ically radiated by excited nitrogen. It offers the possibility to observe and study the
longitudinal shower development in more detail covering a huge atmospheric volume
to compensate the small flux. Since, here the atmosphere works as a calorimeter
an accurate monitoring is required. This includes among other things, temperature
and density of the air. The fluorescence yield of nitrogen depending on these factors
must be measured. Without these reference parameters a shower reconstruction for
instance leads to larger uncertainties.
A huge mirror collects the dim fluorescence light on a camera consisting of many
Photo Multiplier Tubes (PMTs). The track projected on these pixels (=PMTs, see
for an example Fig. 3.13) is used to reconstruct in the first place direction and energy.

For this purpose, on the one hand the timing information is needed to reconstruct
the direction and on the other hand the signal strength in each PMT for the energy.
The strength is proportional to the amount of fluorescence light produced at a cer-
tain slant depth X in the atmosphere which is directly connected to the number of
charged particles Ne within the shower at that position. The observed longitudinal
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Figure 3.12: Scheme of detection principles of Extensive Air Showers. A nucleus
penetrates the atmosphere and interacts with the atoms within. A cascade of sec-
ondary particles develops consisting amongst other of muons and electrons. While
traversing the atmosphere, nitrogen atoms are excited which in turn lose this energy
by emitting isotropically fluorescence light. This is detected by the corresponding
detector measuring the longitudinal shower profile. Particles reaching the ground
are used to sample the lateral shower profile. (adapted from H. Dembinski)

profile can be parametrised with the Gaisser-Hillas-function describing the devel-
opment of electron numbers from the first interaction until the shower fades out.

Ne(X) = Nmax

(
X −X0

Xmax −X0

)Xmax−X0
λI

· e
Xmax−X

λI , (3.8)

with Nmax the maximal number of shower particles reached at a slant depth of Xmax.
X0 is the slant depth of the first interaction and λI the assumed interaction length.
An example is given for one event of the PAO in Fig. 3.14 showing a good agree-
ment between model and measurement. A fit of the data with this formula yields
the energy within the shower as well as the slant depth where the shower reaches
its maximum, Xmax. The first can be deduced by integrating over the complete
range of X; it must be scaled by multiplicative factor determined by the threshold
energy of electrons in air divided by the radiation length in that very medium [53].
The determination of Xmax depends on the knowledge about the point of the first
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Figure 3.13: An example track through the pixels of fluorescence telescope of the
PAO is shown. The colour code represents the timing (purple = early, red = late).
The thin red line represents the plane which contains the air shower and a reference
point of the telescope.

interaction X0 which varies even for primary particles with the same energy coming
from the same direction. The error caused by this fluctuation is of the order of 10 %.
From the study of the corresponding distribution of Xmax, the composition can be
estimated, since Xmax(Fe) is smaller than Xmax(p) for the same energy.
Next to the listed advantages of EAS measurements, there exist also some drawbacks
for fluorescence telescopes. For example, this detection technique relies strongly on
a very small amount of background light. Hence, only moonless nights and locations
with a minimal contribution of diffuse light are allowed. Otherwise, signals caused
by UHECRs would be undetectable.
In addition, local conditions like clouds and air pollution can also restrain the meas-
urement by absorbing parts of the fluorescence light of the shower. Including all
these effects, the duty cycle is of the order of 10 %. However, experiments like
HiRes exclusively used this technique and delivered competitive results with the
PAO, for instance.

3.4.2.2 Measuring the Lateral Shower Profile

A complementary approach is the sampling of the shower particles at ground level.
To this end, a huge area has to be instrumented by many spatially separated detect-
ors. The distance between the individual stations determines the detection efficiency
and its dependence of the energy of the UHECR. For the highest energies, a spacing
of more than 1 km is appropriate. An EAS reaching the Earth is again reconstructed
using time and signal strength information in each detector.
The first approach assumes a flat shower front of secondary particles to have a first
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Figure 3.14: A Gaisser Hillas Fit to an event measured with the fluorescence
telescope of the PAO (taken from [54]).

estimate of the shower axis and hence, of the shower core. The signals are projec-
ted to a plane perpendicular to the the shower axis. After determining the shower
core in this plane, a function formulated by Nishimura, Kamata and Greisen (NKG)
describing the lateral spread density, ρ(r), of an EAS allows to estimate the total
number of particles hitting the ground. ρ depends on the distance r of the signals
in the shower plane to the shower core. An azimuthal symmetry around the shower
core is assumed.

ρ(r) =
C1(s)Ne

2πr2

(
r

r1

)s−2(
1 +

(
r

r1

))s−9/2(
1 + C2

(
r

r1

)δ)
(3.9)

Here, Ci are normalisation constants and Ne the expected number of electrons on
the ground of an air shower. r1 is the Moliere radius defined in a way that within a
radius of 2r1 95 % of the energy is deposited. Furthermore, the exponents s and δ
are estimated from simulations and have to be adjusted for each experiment.
An alternative determination of the energy is based on the particle density measured
at a fixed distance from the shower core. A reasonable choice verified by simulations
has the advantage of being independent of the nature of the primary particle. For
example, the AGASA experiment fixed this distance to 600 m. Again, this number
depends on the experiment and its properties, e.g. distance of stations relative to each
other, and altitude. An example of the lateral distribution of signal measurements
of a real event detected at the PAO is shown in Fig. 3.15. An important advantage
of this technique is the 100 % duty cycle, it is essentially independent of weather
conditions. However, the strong dependence on simulations and thus on interaction
models increases the uncertainty on the energy estimator.
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Figure 3.15: A NKG Fit to an event measured with the surface detector of the
PAO. The circles are the signals of a station with a certain distance to the shower
core. In grey shade the NKG fit including error band is shown. The red cross marks
the point in the lateral distribution used to estimate the energy here at 1000 m away
from the shower core. The signal on the y-axis is given in arbitrary units.
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4. The Pierre Auger Observatory

Until the beginning of this century solely experiments focussing on one detection
principle described in the previous chapter were and have been active :

• fluorescence telescopes (e.g. HiRes, sensitive to the longitudinal profile) and

• surface detectors (e.g. AGASA, sensitive to the lateral profile).

Therefore, a new large observatory was proposed combining both techniques. It
should exceed all predecessor experiments in size allowing to study UHECRs with a
level of precision never reached before at energies above 3 · 1018 eV.
In 2004, the Pierre Auger Observatory (PAO) close to Malargüe, Argentina, fulfilling
this requirement started data acquisition on a regular basis while still being under
construction. It is located in the Argentinian pampa at an altitude of 1400 m where
the landscape is rather flat so that the reconstruction of events is less influenced by
geographical circumstances.
Four years later it was completed covering in total an area of 3000 km2 with 1600
water Cerenkov stations forming the surface detector (SD). This area is overlooked
by the fluorescence detector (FD) consisting of four buildings called eyes. Due to the
combination of FD and SD, the PAO is defined as a hybrid detector profiting from
the possibility to cross-calibrate between the two detector types. For instance, the
uncertainty on the energy reconstruction of SD events can be reduced by calibrat-
ing it with FD which has a better energy resolution based on its direct calorimetric
measurement of the longitudinal shower profile. Otherwise, the results obtained from
the analysis of SD data would be less accurate relying on air shower simulations.
To obtain the corresponding calibration function, events are used which have been
detected and reconstructed separately by FD as well as SD called golden hybrids.
This example shows, how the downside of one detector type can be compensated by
the other.
The general idea behind the PAO was and is to have two sites, one on the north-
ern and one the southern hemisphere to cover the whole sky with one instrument.
Until now, only the above described southern part is completed. This is one reason
why some discrepancies between experiments could not be resolved, e.g. the dif-
fering composition measurements of HiRes and the PAO. An observatory with the
same properties on both hemispheres of the Earth could easily answer the question
whether the discrepancies originate from the choice of the site or depend on the
reconstruction algorithms and detector specifications.



38 The Pierre Auger Observatory

In the following both detector types are described; the focus lies on SD, since the
data analysed in this work is based on pure SD measurements. Subsequently, en-
hancements to the existing PAO are discussed. Particularly interesting is the High
Elevation Auger Telescope consisting of three inclineable shelters. We discuss in
detail how the optical system is monitored to ensure a stable performance.

Figure 4.1: Left Panel: A map of the Pierre Auger Observatory covering with the
surface detector (SD, red dots) an area 3000 km2 (blue shaded). The fluorescence
detector (FD) consisting of four sites, Los Leones, Los Morados, Loma Amarilla and
Coihueco overlooks the array. Right Panel: A picture of an FD building with an SD
station in front.

4.1 Fluorescence Detector

The fluorescence detector (see [54]) consists of four buildings placed in all cardinal
points covering the array of the surface detector (cf. left panel of Fig. 4.1). It uses
the calorimetric information provided by the atmosphere and the timing of the signal
to reconstruct the properties of an EAS as discussed in chapter 3.4.2.1.
Each of these buildings houses six telescopes shown in Fig. 4.2 with a field of view
of 28.1◦ above the horizon and 30◦ in azimuth covering in total 180◦ in azimuth. A
telescope consists of a 3.5 m × 3.5 m spherical mirror focusing the gathered light
onto a camera of 440 pixels arranged in a 20×22 matrix. Each pixel is a PMT with
a hexagonal front and a field of view of 1.5◦.
In addition, a filter is included which is transparent mainly in the ultraviolet band
suppressing the amount of background light at differing wavelengths. Note that the
emitted fluorescence light contributes primarily to the UV-range.
To estimate the energy of the primary particle, it is necessary to know the fluor-
escence yield in air, i.e. the number of emitted photons per deposited energy. The
amount of light reaching the PMTs depends on atmospheric conditions. Hence, at-
mospheric distortions has to be taken into account leading to the requirement to
monitor constantly the atmosphere. Due to the importance of the fluorescence yield
for the energy determination, dedicated experiments exist such as the AIRFLY ex-
periment [55].
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Atmospheric effects like thunderstorms and the restriction of data taking to moonless
nights reduce the duty cycle of the fluorescence detector to 13 % in the end.

Figure 4.2: The fluorescence detector of the Pierre Auger Observatory. Left Panel:
A photo of one camera including the mirror within a FD building. Right Panel: A
schematic sketch of a bay within an FD building including the shutter, the UV-filter,
mirror, camera and electronics in the DAQ box.

4.1.1 Reconstruction Principle and Resolution

The first two triggers stages within an FD telescope are implemented in the hardware.
While the first level trigger (FLT) considers only single pixels and checks whether
they exceed a certain signal threshold, the second level trigger (SLT) processes the
structure of the track through the camera. Within a detected structure the algorithm
searches for five basic shapes (cf. Fig. 4.3) including their rotations. However, a
minimal number of five pixels is required to pass the SLT. In addition, if a track is
recorded and only one pixel is missing which would complete one of the five shapes,
then the SLT also passes. Subsequently, the found tracks are analysed by a software
to reject background events, e.g. those caused by lightning. The efficiency here is 94
%, while only 0.7 % of true events are thrown away.

For the reconstruction of the EAS additional variables need to be defined. The
track measured by one or more telescopes in one eye (see left panel of Fig. 4.5)
determines the shower-detector plane (SDP). The triggered pixels (purple stands for
early, red for late) correspond to a fixed azimuth angle and elevation. By following
the evolution of the shower through the sky and thus, through the pixels , these
connections form, together with a point representing the FD building, the SDP (cf.
Fig. 4.4) with an inclination of ϑSDP . In addition, for each pixel the viewing angle
χi is calculated by means of the pointing information of the triggered pixel. It is the
solid angle between the ground of the array and the position (azimuth, elevation) of
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Figure 4.3: These are the fundamental types of patters regarded as straight track
segments for the second level trigger of FD.

the pixel within the SDP.
By using the timing information ti of a pixel as well as the corresponding χi under
the assumption that the shower propagates with the speed of light, the shower axis
and the distance to the telescope can be fitted by means of a χ2 minimization. This
is called a mono reconstruction considering only one eye.
Further information can be gained by including the timing and viewing angle χi
of a triggered SD station. The station with the largest signal commonly known as
the hottest station (black square in Fig. 4.5) pins down the impact point of the
shower on the ground. As a result, the errors on shower core position and shower
axis reconstruction are reduced significantly, especially in cases of tracks with only
few triggered pixels. Therefore, these events,commonly known as hybrid events, are
preferred over mono events.
In general, after a physical event was recognized by the fast FD reconstruction
software directly after detection, the SD array in front of the eye is read out increasing
the probability to obtain a hybrid event. Note that a single triggered SD tank
remains normally unrecorded (see below).
Events enabling a hybrid as well as a pure surface detector reconstruction are called
golden hybrids. These are the ones fitting for the cross-calibration procedure which
is discussed in the next section.
After the geometrical shower properties are set for an EAS, the signal strength in the
individual PMT is considered. As discussed in chapter 3.4.2.1, applying a Gaisser-
Hillas-Fit to these signals gives the value of Xmax, the slant depth where the number
of particles of the recorded EAS is maximal. In addition, during the reconstruction
algorithm further radiation constituents are calculated, e.g. the contribution of direct
and indirect (scattered) Cerenkov radiation. This is particularly important for those
showers traversing the atmosphere towards the telescopes. Cerenkov radiation is
emitted in forward direction and contributes therefore to the signals in the PMTs.
Regarding the reconstruction accuracy of energy, arrival direction and Xmax, all the
estimations based on hybrid events rely on simulations [56],[57]. In the following the
event-by-event resolutions are presented as obtained from simulations in an energy
range of 1018 − 1019 eV:

Energy Resolution: = 8%

Angular Resolution: < 1◦

Xmax Resolution: = 20 g cm−2.

In addition, the energy scale has a systematic uncertainty of 22 % mainly caused by
the uncertainty on the fluorescence yield.
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Studies with stereo events (seen by two or more eyes) and no SD station show
comparable results.

Figure 4.4: Geometrical shower properties of an event measured with the fluor-
escence detector. The shower axis and the telescope lie within the shower detector
plane (SDP) which has an inclination of ϑSDP (adapted from [58]).

4.2 Surface Detector
The 1600 surface detector stations are arranged in a hexagonal grid with a spacing of
1.5 km. This array samples the lateral distribution of the secondary shower particles
as described in chapter 3.4.2.2. Each station (cf. Fig. 4.6) consists of a cylindrical
tank with a height of 1.2 m and a ground area of 10 m2 containing 12 m3 of purified
water within a highly reflective liner. While charged particles traverse the water in
the station, they emit Cerenkov radiation since their velocity is larger than the speed
of light in that medium. The light is reflected from the bottom as well as the top and
the walls reaching in the end the three PMTs embedded in the upper shell looking
into the water. The PMTs and corresponding electronics are powered by a battery
which is charged by a solar panel. Thus, each station is self-sustaining, it needs
only maintenance in case of failures. For position and timing determination a GPS
antenna is mounted on top together with a radio antenna used for communication
with the central data acquisition centre.
In the following we focus only on not very inclined events with a zenith angle smaller
than 60◦ which follow the standard reconstruction procedure. Events with a larger
angle need a different treatment due to their longer way through the atmosphere:
the electromagnetic component of the shower dies out and the muonic one dominates
the lateral distribution leading to a differing reconstruction procedure.

4.2.1 Trigger Structure

The trigger structure of the SD array consists of two phases [59]:
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Figure 4.5: An example hybrid event with the energy E = 2.43· 1019 eV seen by
telescope 4 in Los Morados. The colour code in both pictures contains the time
information, i.e. purple means early and red late. The black square represents the
hottest SD station. Left Panel: Track of the event along the camera whereupon
the red line is the shower detector plane and each hexagon represents one pixel of
the camera. Right Panel: Viewing angle and timing of the triggered pixels are
displayed including the best fit for all parameters describing the shower.

Figure 4.6: A sketch of a surface detector station of the PAO including the water
tank with 3 PMTs embedded in the upper shell. On top are the GPS and commu-
nication antennas as well as the solar panel to supply power to the battery powering
the electronics. (provided by A. Nelles)
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1. station triggers (T1, T2) and

2. central data acquisition triggers (T3, T4, T5).

The T1 trigger can be fulfilled in two different ways. On the one hand, the pulse
height, can cross a certain threshold (TH-T1) in all three PMTs in a station simul-
taneously to proceed further. On the other hand, a time-over-threshold (ToT-T1)
is also allowed. Here the signal has to be constantly above a fixed value for more
than 300 ns . This threshold value is smaller than the one used for the TH-T1.
In case of PMT failures, the thresholds are adjusted, i.e. the fewer the number of
active PMTs the higher the values have to be to reduce the background caused
by electronic noise. The unit of the signal is chosen to be VEM which stands for
vertical equivalent muon. From the uniform flux of atmospheric muons an average
pulse height can be estimated which is set to 1 VEM above the electronic noise. All
measured signals are given with respect to this value.
While the TH-T1 has to pass an additional higher signal threshold in conjunction
with the T2 trigger before it is send to the central data acquisition system (CDAS)
in Malargüe, the ToT-T1 is directly passed to CDAS.
In the next step (T3), the single T2 triggers are gathered according to their timing
information. Here, again two types of events are distinguished, those including a
TH-T1 and pure ToT-T1 triggers. Regarding the first case, among all T2 triggered
stations four must be arranged as can be seen in the right panel of Fig. 4.7. Around
a station the others are allocated in crowns Cn with n indicating the corresponding
order. Here, at least one station in the first, second and fourth crown has to have a
T2 based on TH- and/or ToT-T1. This mode is called 2C1 & 3C2 & 4C4. Consid-
ering the pure ToT-T2 case an additional configuration is allowed, namely the one
displayed in the left panel of Fig. 4.7. It is comparable to the 2C1 & 3C2 & 4C4

whereas the triggered station in the fourth crown is omitted. To indicate its exclus-
ive application to the ToT-T2 it is referred to as ToT2C1 & 3C2.
If the spatial requirements are fulfilled, the timing has to be reasonable therefore
the included stations have to be closer than (6+5Cn) µs in their time difference to
the central station.
To separate real events from background a more strict timing condition is applied
within the T4. For pure ToT triggers within a T3 event, a triangle of triggered sta-
tions has to be found which is compatible with a flat shower front moving with the
speed of light. Afterwards, further stations are added to check whether their time
information agrees with the first estimation of time predicted by the shower front.
If not, they are removed from the event and flagged as accidental which is also true
for tanks which are farther away than 3 km from another triggered station.
T3 events including TH-T1 trigger, however, only need to have four stations passing
the T2 without any restrictions regarding the spatial distribution, i.e. no triangular
structure is needed. The rest of the procedure is the same as before.
The last step, T5, is a fiducial trigger. To pass it, the hottest tank within an event
has to be surrounded by six working tanks in the first crown C1, 6T5. This ensures a
reasonable reconstruction. Since events with shower cores close to the border of the
SD array might trigger enough stations to pass the T4, but these triggered stations
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could represent just the outer parts of the footprint on the ground leading to a false
energy and arrival direction assignment. Due to inactive stations in the SD array,
the 6T5 is also applied to
For the highest energies where the flux is very small, this requirement is relaxed
towards a 5T5 to increase the statistics enabling a more detailed study of arrival
directions and thus, anisotropy studies. Simulations have shown that the hereby
induced increase in error on the reconstructed shower properties is negligible.
In the end, one is interested in the efficiency of this trigger chain, i.e. at which en-
ergy all EAS are detected. Therefore, a Monte Carlo study has been performed with
three different types of primary particles (protons, Fe-nuclei, photons) leading to a
full acceptance of the array at an energy of 3 ·1018 eV for the hadronic component of
UHECRs (cf. Fig. 4.8) which was confirmed by cross-checks on real data (see [59]).

Figure 4.7: The two allowed T3 configurations. Left Panel: The ToT2C1 & 3C2

configuration including solely tanks with a ToT-T2. Right Panel: The 2C1& 3C2

& 4C4 configuration in the case of at least one TH-T2 trigger within the event
structure, (taken from [59]).

4.2.2 Reconstruction and Resolution

We discuss in the following the reconstruction procedure using the same event as
in the section regarding the FD. It is a golden hybrid, i.e. FD as well as SD could
reconstruct the event separately. This event has passed the complete trigger chain
being a 6T5 which can be seen in Fig. 4.9. While the area of the filled circles is
proportional to the signal strength in a station, the colour indicates the time of
detection in one station (yellow early, red late). In addition, grey stations represent
accidentals having an improper time information.
The reconstruction starts with an estimation of the shower core by calculating the
barycentre of all stations containing a signal. According to the time information a
planar shower front is fitted resulting in a preliminary arrival direction of the shower.
Subsequently, the shower axis can be reconstructed and the signals are transferred
to the shower plane perpendicular to the axis containing the shower core. In the
following, all values, namely the distance to the shower core and the time of the
corresponding station, are referred to with respect to the shower plane.
Starting with this first result, an iterative process is carried out to find the best
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Figure 4.8: SD trigger efficiency as a function of Monte Carlo energy E for proton
(circles), iron (triangles) and photon primaries (squares) and zenith angles integrated
up to 60◦ . Lines are drawn to guide the eyes (taken from [59]).

estimate for the shower core, the agreement between the lateral shower profile and
the fitted NKG-function as well as the arrival direction. The first step is the fitting
of the lateral distribution function (LDF) to the data points around the shower core
with a modified NKG-function:

S(r) = S(1000) ·
( r

1000 m

)−β (r + 700 m

1700 m

)−β
, (4.1)

with r being the distance to the shower core in meters and S(1000) the extrapolated
signal strength at 1000 m distance. β(θ) = 0.9sec(θ)− 3.3 is the slope of the lateral
distribution function, a fixed parameter, and θ the reconstructed zenith angle of the
air shower. The application to the example event can be seen in Fig. 4.10.
As proposed amongst others by Stanev [16], the value of S(r) at a fixed distance
instead of the complete curve is used to estimate the energy of the primary particle.
It has been shown in [60], that for the PAO 1000 m from the shower core is optimal.
Therefore, S(1000) given in VEM is the first step towards an estimation of the
energy.
Now, the challenge is to relate this variable to the direct energy measurement of
FD. Here, one has to keep in mind that the more a shower is inclined the more it
is attenuated due the longer way through the atmosphere. This leads to a smaller
signal in a station in the end considering the same energy of the primary particle.
From the presumption that no anisotropy in the arrival directions in local coordinates
is present, one can conclude that the distribution of the flux J should be constant:

d

dφ
J = 0 and

d

d(cos(θ))
J =

d

dθ

(
1

Aeff

d3N

dtdEdΩ

)
= 0,
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with θ and φ the zenith and azimuth angle respectively, Aeff = A·cos(θ) the effective
area of the SD array projected on the shower plane and dΩ = d cos(θ)dφ the solid
angle. Using the second equation and focusing on the θ-dependency as well as on
the energy, the following equation is obtained:

dN

dEd(cos2(θ))
= const..

By integrating over a certain energy range one can see that the shape of dN/d(cos2(θ))
is independent of the energy, namely constant. This simplifies the procedure since
only one curve has to be considered for all energies. In the end, one obtains a poly-
nomial of second order in cos2 θ describing the progression of S(1000). This function
allows to convert the signal strength from one zenith angle to another. As a refer-
ence, S(1000) at θ = 38 ◦ is chosen, S38◦ .
In general, this approach is called the constant intensity cut method with the corres-
ponding function CIC(θ) describing the behaviour depending on the zenith angle.
From that we can conclude that S38◦ = S(1000)/CIC(θ).
S38◦ can now be correlated with the direct energy measurement of FD of golden
hybrid events. Fig. 4.11 shows the the correlation of the energy determined by FD
in eV and the S38◦ in VEM. Note that the axes are log scaled. In addition, a straight
line is fitted by means of a χ2 minimization correlating both variables. The area
below the dashed line is excluded to avoid a possible bias due to trigger efficiency ef-
fects. In the end an energy resolution of 5 % at 1020 eV could be achieved whereupon
the 22 % systematic error is also transferred to the energy determined by the SD
[61].
After the best values are found for the LDF, a more realistic model for the shower
front is applied. The best description is achieved by using a parabolic shape
(cf. Fig. 4.12) leading to a more accurate reconstruction of the arrival direction
and thus, to a small change in shower axis and plane. Regarding the uncertainty
of the angular reconstruction, an event-on-event based estimation is chosen called
time variance model [62]. Assuming a Poissonian distribution of the particles in
the shower front and accounting for the uncertainty of the time measurement, the
variance of timing of the shower can be calculated which propagates directly into
an uncertainty of φ and θ, the angles in the local coordinate system. For energies
larger than 1019 eV and number of triggered stations larger than six, a resolution of
σ < 1.0◦ is obtained. Studies using golden hybrids obtain comparable values [56].
The fitting of LDF and timing structures is iterated several times until it converges.

4.3 Enhancements

Due to the good performance of the southern site of the Pierre Auger Observatory,
it offers the unique opportunity to use an excellent environment as a reference to
approach further open questions and extending hereby the scientific purpose. Par-
ticularly interesting is the transition region between the second knee and the ankle
where it is assumed that galactic sources die out and an extragalactic origin is held
responsible for UHECRs. Two correlated questions are connected with this feature:
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Figure 4.9: An example surface detector event fulfilling the 6T5. Each station
is symbolized by empty circles. If stations are triggered they are replaced by filled
circles with their area corresponding to the strength of the signal in the station.
The colour represents the timing of trigger (yellow early, red late). Grey stations
are too far away from another triggered station or have an time information which
is not consistent with the reconstructed lateral distribution. Both types are flagged
as accidental. The black line marks the reconstructed arrival direction.
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Figure 4.10: In blue one can see the final fit of the modified NKG function to the
data points colour-coded corresponding to their timing. Grey triangles mark stations
having detected no signal but according to the function could have seen one. The
red point represents a saturated station whose true signal could be recovered (blue
circle).
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Figure 4.11: Correlation between lgEFD and lgS38◦ for the 387 hybrid events used
in the fit. The solid line is the best fit to the data. Events below the dashed line
were not included in the fit.[61]
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Figure 4.12: Displayed is the final timing fit of the event using a parabolic function.
The colour code is the same as in Fig. 4.9 (yellow represents early, red late).
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1. What is the distribution of Xmax in that region depending on the energy?

2. How large is the difference between the estimated number of muons in air
shower simulations compared to data?

Both questions tend to determine the composition of the primary particles which in
turn can possibly help to resolve the puzzle of the origin of cosmic rays. The latter
question is motivated by KASCADE-Grande results where the direct measurement
of the muonic component of EAS was compared to the predictions of simulations
[63].
With the original design of the PAO these questions cannot be answered due to the
inability of the surface detectors to distinguish between muons and the electromag-
netic component as well as the the existing lower energy threshold of 3 · 1018 eV
where the full efficiency is reached. Therefore, two extensions called AMIGA and
HEAT, which are described in the following, were designed to solve these issues.
In addition, it was decided to test the technique measuring the coherent electric field
produced by charged secondary particles deflected in the magnetic field of the Earth
by means of a large scale radio detection array (AERA). Simulations show that all
shower parameters of physical interest can be reconstructed from the data [64].
By placing all new experiments in the vicinity to the Coihueco site (see Fig. 4.13)
they benefit from each other and from the regular array following the idea of cross-
calibration.
However, plans exist to test even more new techniques and enhance the observatory
with further detectors, but we discuss here only those which have matured the most
over the recent years.

Figure 4.13: Pictured is the north-western border of the PAO where all the en-
hancements are located. HEAT close to Coihueco and the pink shaded area covers
AERA and AMIGA.

4.3.1 High Elevation Auger Telescopes (HEAT)

The HEAT enhancement consists of three additional fluorescence telescopes housed
separately in inclinable bays located roughly 250 m away from the Coihueco telescope
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building (see Fig. 4.14). By operating in the non-tilted mode, they have the same
field of view above the horizon as a standard FD telescope and HEAT is counted
therefore as the 5th eye. However, its actual purpose is to extend the lower energy
bound to 1017.5 eV. By looking higher into the atmosphere (30◦−58◦), a large amount
of the longitudinal shower profile of an EAS with a smaller energy can be seen due to
its earlier development in the atmosphere. Thus, Xmax is more often in the field of
view of HEAT than in the field of view of the standard FD. This allows to study the
composition at these energies. Nevertheless, the ability to operate in two modes has
not only the advantage of cross-calibration between HEAT and Coihueco but also
to reconstruct those showers which would otherwise lead to too large uncertainties
on the observables of interest, e.g. Xmax. An example for such an event is shown
in the bottom panel of Fig. 4.15, without HEAT this event would have lead to an
unreasonable reconstruction.
The first HEAT events were recorded in the beginning of 2009 already in coincidence
with the standard FD telescope of Coihueco (see top panel of Fig. 4.15). By now,
it is working on a regular basis integrated into the normal data acquisition system.
Future plans regard an extension of the SD array in the direction of HEAT to have
more hybrid events in the data set: the EAS seen by HEAT operating in inclined
mode are closer to the telescopes due to their lower energy. Without the extension
of SD they might not trigger a station which would lead to a significant increase
of the uncertainty in the reconstruction. Particularly at the lowest energies, this is
counter-productive considering the motivation of HEAT.

Figure 4.14: Photo of all three inclined HEAT telescopes. Bay 1 to Bay 3 from
left to right.

4.3.1.1 TILT-Monitoring

Due to the dependence of the event reconstruction on the optical stability of the
camera-mirror system it is necessary to monitor the relative changes in inclinations
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Figure 4.15: A HEAT and Coihueco Stereo Event. Top Panel: Colour-coded is
the time structure of this event from blue to red which corresponds to several µs.
The red thin line represents the fit of the shower detector plane. Bottom Panel:
Measured longitudinal profile including a Gaisser-Hillas fit. Only the usage of both,
HEAT (red, left) and Coihueco (blue, right) gives a reasonable value for Xmax (both
taken from [65]).
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and distances of the telescope components. In this way, a stable performance during
periods of data taking independent of the operation mode can be ensured. For this
purpose, we introduce here the Aachen TILT-Monitoring System consisting of four
inclination and four distance sensors. They are mounted at important reference
points (cf. Fig. 4.16 ) of the system measuring relative changes during operation. A
first prototype of this system was developed by J. Calvo de No (see [66]) during his
diploma thesis in collaboration with M. Leuthold. His thesis includes the selection
process for the sensors, the corresponding calibration and the results of a test run
of the prototype installed in Bay 1 of Los Leones.
For the final installation the two additional set-ups had to be calibrated and changes
on the hard- and software were necessary.
The configuration for all HEAT bays can be found in Fig. 4.16. The description is
made from the point of view of someone standing behind the mirror looking in the
direction of the shutter. For the inclination sensors:

1. base of the camera

2. top of the camera,

3. top middle of the mirror and

4. left side of the shutter.

The distance sensors are fixed at the first mentioned position:

1. top left of mirror to top left of the camera

2. top right of mirror to top right of the camera

3. bottom left of the mirror to the shutter and

4. center of the mirror to a point beneath the camera.

In this way, it can be monitored for example whether the distance and/or the relative
inclination between the camera and the mirror are changing. If the positions are
differing from what is expected by the reconstruction, this would lead to a false event
reconstruction. In addition a similar study can be performed including the shelter
of the telescope. Outside influences like strong winds or the frequent tilting could
deform the shelter and thus, cause systematic errors on the reconstruction.

Sensors and Calibration
In the following, we briefly describe the incorporated sensors and focus mainly on
the applied calibration procedure.
Inclination
The basic requirement for this type of sensor is a good resolution (design goal:
∆α ≈ 0.1◦) between the down- and the up-mode. Thus, a minimum range of 30◦

has to be covered. In the end the the following sensor was chosen:

• Dual Axis Inclinometer (DAS-15-MC-RS232), see left panel of Fig. 4.17.
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Figure 4.16: Position of the sensors within one bay: seen from the side (left) and
from the back (right). In red the inclination and in blue the distance sensors.

with a measurement range of ±15◦ in x and y direction. This is sufficient because
they are mounted with a preset inclination of roughly 15◦.

Figure 4.17: Installed sensors in the HEAT shelters. Left Panel: Inclination Sensor
DAS-15-MC-RS232. Right Panel: Distance sensor PTX101 (Potentiometer).

We demonstrate the procedure on one inclination sensor with the serial number 143,
since it is similar for all others. For the calibration we used a goniometer with a
range of ±10◦. Thus, a continuous measurement over the complete range was im-
possible. Therefore, an angle piece of 10◦ was included in the set-up (see Fig. 4.18)
leading to three measurement-intervals:

-17◦ - -3◦ (w/ angle piece)
-7◦ - 7◦ (w/o angle piece)
3◦ - 17◦ (w/ angle piece)
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base

angle piece

goniometer

sensor

Figure 4.18: The set-up for the calibration of the inclination sensors. It consists
of base, goniometer and sensor. For measurements with large inclinations an angle
piece is included.

By making these three measurements overlap it was possible to account for constant
offsets caused by the modification of the set-up during the calibration. The stepsize
is 0.082◦ ± 0.008◦ given by the accuracy of regulating screw.
For each adjustment three measurements are made and the mean is calculated. In
Fig. 4.19 one can see the the difference of measurement and true value against meas-
ured inclinations including the anticipated small shifts mentioned above between the
individual measurements.

Even without correcting the discontinuities, one can see that the deviation from a
linear behaviour is 0.2◦ at the maximum. However, the requirement is a factor two
smaller. Therefore, we corrected for the systematic shifts by calculating the mean
distance between the overlap regions and adjust the data accordingly (cf. Fig. 4.19).
At last, we fit the data points with a polynomial of seventh order. The corresponding
residuum and projection on the y-axis can be found in Fig. 4.20 including a Gaussian
fit giving a σ < 0.01◦. Thus, the resolution is now well below the required value.
For the other sensors the same resolution was obtained by using a similar procedure,
i.e. for some a polynomial of fifth degree was sufficient. The calibration constants
ai for all sensors can be found in Tab. B.1 in the appendix. The coefficient a0 is
omitted since we are interested only in relative changes.

In addition, also the the y-axis was calibrated over the range: -10 ◦ to 10 ◦. Hence,
we could directly fit a polynomial of seventh order leading to a similar resolution
smaller than 0.01◦. The corresponding constants can be found in Tab. B.2.

Distance
Similar to the inclination sensors, the selection procedure was performed by J. Calvo
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Figure 4.19: Displayed is the difference between measurement (given by the in-
clination sensor) and true value (given by the goniometer) against the measurement
of the inclination sensor.

de No and is presented in [66]. In the end a potentiometer (see Fig. 4.17) with a
maximal elongation of 5 cm was chosen to provide the needed accuracy. However,
the distances to be monitored are much longer and therefore, temperature stable
cables are attached to the sensors enlarging the total distance without losing the
precision on relative changes. The calibration of the two additional distance sensor
sets was carried out by N. Scharf and will be part of his Ph.D. thesis.

4.3.1.2 TILT-Setup

Software
For the long term test of the TILT set-up a basic version of the program was written
in LabView by J. Calvo de No. This old version directly sent the data via email to
him from the laptop installed in Los Leones. As a result of changed requirements,
some modifications became necessary. The data is now filled every second in the
general monitoring database of the PAO by means of an ODBC connection. In
addition, some minor changes affect the interactive plotting and the start up of the
program.
A typical cycle goes as follows:

1. computer boots

2. after start up the program runs automatically

3. trying to establish connection to sensors (repeats until success)

4. reading data and filling into database (every second).
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Figure 4.20: Left Panel: Residuum for the polynomial fit. Right Panel: Projection
of the Residuum on y-Axis. The Gaussian fits leads to an accuracy of 0.006◦.

Hardware
The concept (see Fig. 4.21) of the current installation is basically the same as for
the prototype, just the weather sensors are removed from the set-up and the cable
extending the measurements range of the distance sensors are changed from coated
carbon fibres to temperature stable cables due to failures during the long term test.
In the following we describe the installation of the hardware. In the center of the
set-up is the embedded PC housed in a metal box placed behind the mirror. It is
connected via an USB-cable on the one hand to an RS232 to USB-hub, which in turn
is connected by four cables through a power supply box to the inclination sensors.
On the other hand the PC is connected to the µ-Box which in turn is connected
to the four distance sensors. The µ-Box is provided by the producer of the sensors
digitizing the analogue signals of the potentiometers. Additional power supplies and
data acquisition parts (e.g. the µ-box) are also placed within the metal box.
In 2010, the installation process was completed and since then the system is running
stable apart from general power failures. As soon as the power is turned on again,
the PC reboots automatically and starts data taking. For an analysis of the first
data we refer to the Ph.D. thesis of N. Scharf (to be completed in 2011).
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Figure 4.21: Scheme of the current TILT-Setup

4.3.2 Auger Muons and Infill for the Ground Array (AMIGA)

AMIGA consists of two parts. The first is the Infill, an additional hexagonal grid of
85 SD stations with smaller spacings of 430 m and 750 m respectively covering an
area of 23 km2. It is embedded in the regular SD array. The decrease in distance
among the stations lowers the energy threshold of a T3 since EAS with E ≈ 1017

eV have a significantly smaller footprint.
Muon counters form the second part. Each one of the stations of the Infill has its own
muon counter partner buried circa 2 m below the ground to suppress the electromag-
netic component of the shower. A sketch for one station is shown in Fig. 4.22. One
counter consists of 4 modules which in turn have 64 scintillator strips each attached
to the PMT in the center of the corresponding module. A unitary cell consisting of
seven AMIGA detector pairs, SD station and muon counter, is under construction
at the moment.
Although, it is assumed that the electromagnetic component is negligible an addi-
tional detector type is constructed called BATATA. Three layers of plastic scintil-
lators are buried to study the electromagnetic contamination depending on depth.
It will be placed in the center of the AMIGA site surrounded by three SD stations
on the surface. This will test the results obtained from simulations for the optimal
depth for the muon counters of AMIGA.
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Figure 4.22: The AMIGA layout for a typical Infill station and corresponding
Muon Counter. [65]

4.3.3 Auger Engineering Radio Array (AERA)

The Auger Engineering Radio Array is designed to study EAS caused by UHECRs
by measuring the coherent radio emission of secondary shower particles deflected in
the Earth’s magnetic field. Its aim is to extend the operative range of this technique
to energies close to 1018.7 eV, which is approximately one order of magnitude higher
than current dedicated radio experiments, e.g. LOPES. After a good understanding
of processes generating this kind of emission is achieved, it will be explored which
variables of EAS are accessible and to what precision. At this, it will be supported
due to its location by the PAO and the above described extensions.
The current design of the array covers an area of 20 km2 and is compromised of
three construction stages. The first one consisting of 24 stations visible as the dense
inner part in Fig. 4.23 with a spacing of 150 m on a triangular grid was completed in
2009 and is taking data at the moment (spring 2011). In a second and third stage it
will be extended with 50 and 60 further stations respectively whereupon the spacing
increases to 250 m and 350 m.

Figure 4.23: The current design of the grid for the radio antennas (circles) of
AERA embedded in the regular SD array (triangles). The coordinate system is
aligned with respect to Coihueco at the (0 km, 0 km) position. (taken from [65])



5. Autocorrelation Methods

In chapter 3, a search for anisotropy in the arrival directions of the highest energetic
events measured by the Pierre Auger Observatory has been presented. It is based
on the correlation of UHECRs with AGN of the Veron-Cetty and Veron catalogue
within an angular scale of 3◦. Thus, this study depends strongly on the choice of
the catalogue and hence, on the contained astronomical objects. It can be argued
that there is no connection between UHECRs and AGN, although they are promin-
ent source candidates (see chapter 3.3.1.1). Furthermore, many source models exist
beside AGN claiming to be able to explain the origin of UHECRs. To avoid the
need to make assumptions about sources or their distribution, the concept of Auto-
correlation can be adapted, i.e. a data set is tested whether it is cross-correlated
with itself or not. In the context of the recently obtained positive anisotropy signal,
new algorithms were developed such as the 2pt+ correlation function [67] and those
discussed in this chapter to perceive an intrinsic anisotropy.
In the following, three methods are introduced starting with a representation of the
2pt-Correlation Function, followed by a Minimum Spanning Tree and a Cluster Al-
gorithm. Since there are various kinds of possible anisotropy scenarios in nature,
each of these methods is designed to be sensitive to a different kind, e.g. the Cluster
Algorithm to small scale structures. An important requirement for all of them is the
unbiasedness when applied to an isotropic data set, i.e. the probability distribution
that isotropy agrees with isotropy for many test sets should be uniform between 0
and 1.
For all these methods, the data is used in equatorial coordinates (right ascension α,
declination δ) unless it is noted otherwise. α and δ are the celestial equivalents to the
terrestrial longitude and latitude, whereas the declination is zero at the equator, 90◦

at the north and −90◦ at the south pole in contrast to the standard mathematical
spherical coordinates. A pair of theses two angles defines an event A.
To explain exemplary how a particular method works, we use a test data set consist-
ing of 100 events based on an anisotropic probability density distribution displayed
in Fig. 5.1. The estimator is computed according to the chosen method and a prob-
ability is assigned. To this end, the estimator is compared to the results obtained
by analysing nsets =10,000 isotropic sets which represent the Null-hypothesis (H0).
They are simulated on the whole sphere reducing the probability density to a pure
geometric one, i.e. in right ascension the density is flat and in declination follows a
cosine behaviour. Considering the field of view of the PAO in the next chapter, a
more complicated formula is introduced.
For all methods the same procedure is chosen. We use the reference distribution
of the estimator based on H0 to calculate the probability P by integrating over
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that part of the histogram providing values deviating even more from the isotropic
expectation than the test data set (see Fig. 5.1). The resulting value, which is nor-
malized to the integral of the histogram, gives the probability that the test data set
is based on the same scenario.
For these and following analyses we have used the ROOT framework [68].

°=90δ

°45

°45

°90

°=180α °90 °0 °90 °180

Figure 5.1: Example MC data set of 100 events based on the VCV catalogue
(Hammer Projection).

5.1 2pt-Correlation-Function
The 2pt-Correlation Function is mostly referred to as the standard autocorrelation
method. In many cases, the integral version is used, e.g. within the latest PAO
publication regarding anisotropy studies[25] (cf. Fig. 3.7). In the differential repres-
entation, the angular distances between all events are calculated and filled into a
histogram for instance. The integral version is then the resulting cumulative distri-
bution based on this very histogram, i.e. each bin is equal to the integral of all bins
below this one of the differential histogram.
We consider in the following the differential approach in two separated realisations
using one angle (chapter 5.1.1, referred to as TwoPt) and two angles respectively
(chapter 5.1.2, referred to TwoPtPlus) to test for a compatibility with the isotropic
expectation.

5.1.1 Using one angle

We calculate the solid angle Ω between two events for all possible combinations. The
result for the test data set (red,dashed) and the isotropic data sets (blue shaded and
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mean in black) can be found in Fig. 5.2. Here, the difference is clearly visible, the
angular distance between two events is enhanced on small scales for the anisotropic
case (dashed,red). In addition, the probability density distribution for the isotropic
realisations is shown in shades of blue using again 100 events per set. In this 2-
dimensional histogram for a fixed bin i on the x-axis, the distribution along the
y-axis is normalised to one.
As a measure for the discrepancy between the test set and the isotropic expectations,
we use

• a negative log-likelihood (LL) and

• a Kolmogorov-Smirnov-Test (KS).
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Figure 5.2: Solid Angle Distribution for the test data set is shown as dashed(red)
line, while the isotropic density distribution is color coded in blue shade. It is based
on 10,000 isotropic MC sets. The mean of all isotropic MC sets is displayed as a
black line.

While the first one compares the distributions of the isotropic and the example MC
sets over the complete range, the second focusses on the point where the distance
between those two is maximal.

Logliklihood-Test (LL)
For the loglikelihood test the standard formula is used:

LLdata = −2 ·
nbins∑

i=1

lnP (Ωi,data|Ωi,iso). (5.1)
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Hence, we sum the logarithm of the probability P that we measure Ωi,data when Ωi,iso

is expected on average. In general, one would use the Poissonian errors for bins of a
histogram, but here they are correlated leading to a deviation from this assumption.
Therefore, we rely on the density distribution based on the 10,000 isotropic sets to
estimate the probability in a bin (i, j). By performing the same analysis for the
isotropic as well as the test data sets, the method is reasonable.
As one can see from Fig. 5.2 many bins of the reference density distribution (in blue
shade) are empty leading to infinite terms in equation (5.1). To avoid this, these
bins are set to 1

2·nsets , the half of the minimal possible value.
By applying this method to nsets isotropic sets we obtain a histogram for LLiso (see
left panel of Fig. 5.4). In addition, the result of the test data set LLtest is also
included, visible as a red line. Subsequently, the probability is then calculated by
integrating. The lower and upper integration limits are LLtest = 634 and infinity,
respectively. In this very anisotropic example the probability that the test data set
is based on the isotropic expectation is smaller than 10−4.

Kolmogorov-Smirnov-Test (KS)
The main advantage of this kind of test is that it already shows a good performance
on low statistic samples, i.e. the error of the first kind is small. However, it is known
that the error of the second kind is enhanced leading to the acceptance of the Null
hypothesis when it has to be rejected.
Compared to the LL-Test, the KS-Test considers indeed the complete histograms,
but for the estimator calculation only one bin is crucial in the end. Furthermore, the
mean distribution of the isotropic model is used instead of the probability density.
Here, the estimator is computed in the following way:

δKS,test = max|Ftest(Ωi)− Fiso(Ωi)|, (5.2)

with F the corresponding cumulative normalized distribution (see Fig. 5.3) based on
the histograms (black and red line) shown in Fig. 5.2.

The index KS is added to avoid a confusion with the standard variable of the de-
clination δ.
Within this method, the largest absolute distance between the mean isotropic dis-
tribution Fiso and the one for the test data set is calculated. As before, the larger
the estimator the larger the deviation from isotropy. To assign a probability to the
final value of δKS,test = 0.29 for the anisotropic MC test sample, the value of δKS is
computed for the 10,000 reference sets. The resulting histogram of δKS,iso and the
result of the test data set can be seen in the right panel of Fig. 5.4. The agreement is
calculated again by integrating over the resulting reference distribution from δKS,test
to infinity giving a probability of P< 10−4.

Combination
Both tests have their own assets and drawbacks, while the KS needs less statistics
to be conclusive than the LL, LL is more precise given a deviation from the Null
hypothesis is present. Therefore, we combine them in the sense that it is required
for the a test data set to exceed LLtest as well as δKS,test.
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Figure 5.3: Cumulative angular distance distribution F (Ω) for isotropy (black)
and the test event sample (red,dashed).
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Figure 5.4: In both plots the estimator distribution of the isotropic expectation is
shown (black) as well as the result for the test data set (red line). In both cases the
reference and test data set are clearly distinguishable. Left Panel: Distribution of
LLiso. Right Panel: Distribution of δKS,iso.

However, for the probability calculation an additional step has to be introduced.
In contrast to the procedure in the 1-dimensional case where in principle one value
of the estimator corresponds exactly to one probability, now several points in the
KS-LL-plane can give the same probability (cf. Fig. 5.5). This would lead to a bias
towards smaller values of the probability (see Fig. C.1). Therefore, the resulting
probability has to be corrected which is discussed in detail in appendix C.1. In
this context, a reference probability distribution is needed based on an independent
sample of isotropic sets. To compute the true probability of a test data set, the
fraction of isotropic sets is calculated which gives an even smaller probability than
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Ptest,bias.
In the end, one obtains also a probability of < 10−4 that H0 and the test data set
agree.
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Figure 5.5: Estimator distribution (black small crosses) in the KS-LL plane based
on 10,000 isotropic sets and the result of the test data set (red large cross).

5.1.2 Using two angles

The absolute angular distance between two events describes the relative position with
respect to each other. However, the events are distributed on a 2-dimensional sphere,
i.e. two independent coordinates are necessary to determine their absolute positions.
Thus, more information can be gained by accessing this additional information. A
disadvantage which is linked to this circumstance is the requirement to decide for
a coordinate system. This was unnecessary if one is only interested in the relative
differences.
Here, we restrict ourselves to the equatorial coordinate system (α, δ), which can
be justified by experimental arguments and is found among those mentioned in
chapter 2. The ECS is the natural choice for the PAO since it is earthbound and
in time independent in relation to one epoch. In addition, it has the advantage of
yielding a flat distribution in right ascension allowing to recognize at an early stage
deviations from this behaviour. In this way, the method is still independent of source
assumptions since the focus lies solely on the detector and the associated conditions.
The procedure is adapted from the version with only one angle (TwoPt), i.e. for
each variable we use the KS- and LL-test and combine them to estimate the final
probability. First, the angular differences in α and δ are calculated (cf. Fig. 5.6).
It can be noticed that the ∆α-distribution is flat for the isotropic case allowing to
recognize easily a deviation from this constant behaviour. The reason for this lies
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in the flat density distribution in azimuth (or here right ascension) on a sphere. In
contrast to the behaviour of this variable, the density distribution of δ follows a
cosine behaviour accounting for the smaller solid angles at the poles compared to
those at the equator.
Applying both methods, KS and LL, to ∆α and ∆δ of the test data set the following
results are obtained:

δKS(∆α) = 0.33 =⇒ PKS(∆α) < 10−4

δKS(∆δ) = 0.078 =⇒ PKS(∆δ) = 1 · 10−2

δLL(∆α) = 660 =⇒ PLL(∆α) < 10−4

δLL(∆δ) = 501 =⇒ PLL(∆δ) = 5 · 10−4

The corresponding distributions can be found in Fig. 5.7. All methods indicate a
deviation from isotropy only the KS test regarding ∆δ is in the transition region
close to 1% where the outcome is undecided.
Combing all variables and tests as in the previous method yields a final probab-
ility of < 10−4 taking into account the needed correction of the probability (see
appendix C.1).
A discussion regarding the comparison between TwoPt and TwoPtPlus can be found
in the next chapter.
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Figure 5.6: Reference Distributions of the TwoPtPlus method including the result
for the test data set (red dashed). In black the mean expectation of isotropy and in
blue shade the density distribution. Left Panel: Distribution of ∆α. Right Panel:
Distribution of ∆δ.

5.2 Minimum Spanning Tree

In the 2pt-Correlation Function each pair of events Ai, Aj contributes to the estim-
ator in the same way. All events are included independent of their relative distance
towards each other, i.e. background events can dilute the anisotropy signal. This is
especially the case when many sources contribute just a small amount to the total
flux of UHECRs. In this way, no certain angular scale is enhanced leading to a
deviation from isotropy (see the next chapter).
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Figure 5.7: Estimator Distributions of the TwoPtPlus method including the result
for the test data set (red line). In black the expectation based on 10,000 isotropy sets.
Top Left Panel: Distribution of δKS(∆α). Top Right Panel: Distribution of δKS∆δ.
Bottom Left Panel: Distribution of LL(∆α). Bottom Right Panel: Distribution of
LL∆δ.

However, the influence of noise can be reduced by focusing only on adjacent events.
A well known algorithm for such a purpose is the Minimum Spanning Tree (MST).
The MST is an application from graph theory and has found its way into many areas
of research amongst others astronomy [69] and astroparticle physics [70]. It connects
a given set of n points along (n − 1) weighted edges without loops minimizing the
total cost or length of the tree, LMST . In the case of distinct weights, the resulting
tree is unique. Otherwise, several equal solutions are possible.
We adapt this concept for our autocorrelation studies and use the angular distance
between two events as weight for the corresponding edge, Le. The idea behind this
is that for anisotropic source scenarios the events are distributed along the matter
distribution forming large scale structures. In this case, many sources contribute
a small amount of events each following the underlying source distribution which
might be invisible in the estimator for the 2pt-correlation function. In contrast to
this, the MST follows these kinds of structures resulting in a shorter length for the
MST compared to the isotropic expectation.
To find the correct MST, we use Prim’s algorithm which works as displayed in
Fig. 5.8. Starting the MST with an arbitrary event, we search for another event
connected to this along the shortest edge which is in turn added to the MST. Then,
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the data set is searched for the next event close to one of the points already being
part of the MST but this event must not be part of the MST. This process is re-
peated until all events are connected. A simple example consisting of four events is
shown in Fig. 5.9. Note that the weight of an edge can differ from the geometrical
distance between two events, i.e. additional factors can be included.

Start with
arbitrary Event i

Add Event 
to list of Points

within MST

Find Event:
 1. not in MST 

2. connected to a Point in MST
along shortest edge

Add connected Event
to list of Points within MST

Are all Events 
in the MST? MST

No Yes

Figure 5.8: Starting a MST with an arbitrary Event i. Searching the data set for
the next point which is not part of the MST and the closest to one point in the set.
After adding this to the tree the algorithm is repeated until all events are part of
the MST.

Applied to our example data set, the resulting MST on a sky map is shown in
Fig. 5.10. Here, a filamentary structure is clearly visible with a nearly constant
longitude of 180◦. Such a behaviour could hint towards a possible source distribution
when applied to the final data set. In Fig. 5.11 the results for the isotropic sets
(black) and the test data set (red,dashed) are shown. On the left panel the edge
length distribution , Le,test, is shown affirming the clustering on small scales seen
already by the 2pt-Correlation Functions. However, here it is much more enhanced
since only the closest events contribute.
Again, the 10,000 isotropic sets provide the reference MST total length distribution
(right panel). The analysis using the test data set yields a total length for the MST
of LMST,test = 721. By integrating from LMST,test to zero, a probability of P< 10−4

is obtained that the events of the test data set are isotropically distributed.
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Figure 5.9: Example of the MST applied to a small event set. Points within the
MST are marked as red stars and are connected via red dashed lines. Note that the
geometrical distance between two events differs here from the actual weight of an
edge. (a) Event B is the starting point of the Minimum Spanning Tree. (b) The
edge with the smallest weight is found towards D. (c) Event A is closest to one point
within MST, in this case again to D. (d) The last event is added again along the
shortest edge starting at point D resulting in a total length for the MST of 7.

5.3 Cluster Algorithm

In contrast to the other methods, the Cluster Algorithm is designed to be sensitive to
an overabundance of doublets (pairs of events with small angular distance), triplets
and so forth in an event set, compared to an isotropic expectation. For this purpose,
each event functions as a seed for the algorithm, i.e. starting with the first event
(A1) we calculate the angular distance Ω to all other events (Aj) in the set. This is
done for all possible combinations resulting in a symmetric n×n-matrix O with the
entries:

Oij = Ωij = ^(Ai, Aj). (5.3)
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Figure 5.10: The example event set (black stars) with the corresponding Minimum
Spanning Tree (red lines).
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Figure 5.11: Left Panel: Distribution of edge lengths Le within the MST for
isotropy (black) and the test data set (red, dashed). Right Panel: Distribution of
LMST based on isotropy and the result for the data set (red line).
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A simple example consisting of three events could lead to the following Matrix:

e.g.




0◦ 3◦ 4◦

3◦ 0◦ 7◦

4◦ 7◦ 0◦


 .

However, at a certain angular scale the signal is diluted due to the increasing influ-
ence of the isotropic background. Therefore, we introduce a maximum angle R as a
cutoff accepting only those entries where Oij ≤ R. The remaining multiplets (pairs,
triplets, ...) are the found clusters.
To estimate a reasonable value for R we use a formula given in [53] based on the
random walk model (see chapter 3.3.3.2):

R ' 0.025◦Z

(
d

λ

)1/2(
λ

10Mpc

)(
B

10−11G

)(
E

1020eV

)−1
. (5.4)

Assuming protons as primary particles (Z=1) with an energy of E = 55 EeV, λ = 1
Mpc the typical size of a region with a coherent magnetic field B = 2 nG and
d = 100 Mpc the maximal allowed distance between source and detector leads to an
estimated maximum angular distance of R ≈ 10◦.
In the following, we present two variants of the algorithm. While the first one is
focusing solely on the number of events within a cluster, the second one includes also
information about the distribution of events within a cluster itself. In both cases,
we demonstrate the performance of the algorithm by means of the example event
set (see Fig.5.12). Of the found clusters we only display doublets and triplets by
red circles around the centre of each cluster with radius R due to reasons of better
clarity.

It is obvious that clusters overlap. The reason for this is, that if two events Ai and Aj
are closer than R then accordingly this statement is true vice versa, i.e. each doublet
is found twice. However, for multiplets of higher order this is not always true, since
on average the events are further apart so that a triplet includes more often two
doublets than two additional triplets. In the end, all clusters are kept leading to the
conclusion that the result of the algorithm is independent of the starting event.

5.3.1 Unweighted Realisation (CA I)

Without making any assumptions about distributions of UHECR around their sources,
we just account for the events within a cluster in the same way by setting all ele-
ments Oij surviving the maximum angular distance cut to one and the rest to zero.
This includes also the entries on the diagonal (i=j). This new matrix is called M.
Two simple examples are shown in Fig. 5.13 consisting of three events each. In
the first example (a), only the events 1 and 2 are closer to than R to each other
while the angular distances of event 3 to the others is larger than R. In the bottom
panel (b), all events are part of a cluster where event 1 and 3 just close to event 2.
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Figure 5.12: An example Monte Carlo data set (100 events) as black stars. Only
the found doublets and triplets are marked as red circles drawn around the seed
event due better clarity.

Considering these examples, the first step regarding the calculation of the estimator
is to sum over all entries in row i of matrix M resulting in the Cluster Size, NC,i,
which corresponds to the type of found cluster (pair, triplet, ...). This sheds light
on the abundance of isolated events, doublets and so forth. The final estimator is
the Cluster Sum NC , the sum over all entries of the matrix M. Following these rules,
example (a) gives NC = 5 and example (b) NC = 7.
In the following the CA I is applied to the example event data set. The left panel
of Fig. 5.14 contains the distribution of the Cluster Size for the test data set (red,
dashed) and the isotropic expectation (black). While for isotropy the isolated events
and doublets dominate as expected, the test data set differs clearly from H0.

NC =
n∑

i=1

n∑

j=1

Mij(R) =
n∑

i=1

NC,i. (5.5)

The larger NC gets the more anisotropic is the analysed data set, depending on the
choice of R. From this it follows that NC is much larger for the test data set as for
the isotropic expectation based on 10,000 sets as can be seen in the right panel of
Fig. 5.14. Though, if R is too large, for instance close to 180◦, then NC will be
similar for all scenarios.
Finally the method yields a value of NC,test = 864 for the test data set representing
a probability of P < 10−4 to be in agreement with the isotropic expectation.
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NC  = Σi Σj Mi,j

 = 2+3+2 = 7  

NC  = Σi Σj Mi,j

 = 2+2+1=5

R




1 1 0
1 1 1
0 1 1


=




1 1 0
1 1 0
0 0 1


=

1 2

3

1 2 3

(a)

(b)

= M

= M

Figure 5.13: Two simple applications of the CA I to small events sets are shown
with three events (red stars) each. (a) While the events 1 and 2 are closer to each
other than R, event 3 is too far away. Thus it contributes to no cluster. The Cluster
Size NC,i and the Cluster Sum NC are calculated by summing over row i of matrix
M and by summing over all entries of matrix M, respectively. (b) Event 2 is closer
than R to the other events forming a triplet while the others in turn only form a
pair with event two each. The calculation of the estimator is the same as before.
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Figure 5.14: Left Panel: Distribution of Cluster Size for 100 events: Isotropic
expectation in solid black for 10,000 sets normalised to one set and test data in
dashed red. Right Panel: Distribution of Cluster Sum for 100 events: isotropic
expectation in black for 10,000 sets normalised to one and test data set (red).
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5.3.2 Weighted Realisation (CA II)

In contrast to the unweighted variant, a weight w can be attributed depending on
the angular distances Ω of the events within clusters, which should be large for
small Ω′s and close to zero for Ω ≈ R, since for anisotropic scenarios it is expected
that events are closer to each other than in the isotropic case. Here, we adapted a
Gaussian distribution to calculate the weight motivated by the random walk model
[53] for UHECR predicting this behaviour.

wij = exp(−
Ω2
ij

2σ2
) (5.6)

σ =
1

3
R (5.7)

Thus, the above mentioned requirement is fulfilled having a weight close to one for
nearby events and one close to zero if their distance is comparable to R. Furthermore,
the standard deviation σ is directly linked to the previously defined maximum radius
keeping the number of free parameters fixed to one.
The algorithm uses the also the original matrix O containing all relative angular
distances between all events which are smaller than R. However, instead of setting
all entries unequal zero to one as for CA I, here the entries smaller than R are set
to wi,j and the rest is zero. In addition, the entries on the diagonal are all also set
to zero since they only add a constant offset to NC which is equal to the size of the
event set. Again, the resulting matrix is called M. In equation (5.5) the Cluster Size
NC,i is replaced by the Cluster Weight WC,i which is the sum of all entries of row i
of M. Then we calculate the Cluster Weight and Cluster Sum as defined in equation
(5.5). Besides the information about the abundance of each Cluster Size, Fig. 5.15
also includes colour-coded the distribution of the weights for all occurring Clusters
Sizes. Note that the Cluster Size is still an integer as defined in the previous section
while the Cluster Weight is a floating number.

As before, the isotropic model gives mostly values NC,i = 2 with small weights,
i.e. their angular distance Ωij ≈ R (use equation (5.6)) which is a new information
inaccessible in CA I. Again, the difference between model and test data set is ob-
viously leading to a similar plot as shown for the unweighted case (see right panel
of Fig. 5.14). The Cluster Sum (CA II) NC,test is 295 for the example data set with
the corresponding probability of P < 10−4 (see Fig. 5.16). In the case of CA II the
Cluster Sum is smaller than for the unweighted case, which is expected. Since the
Cluster Weights are in general smaller than 1, while the Cluster Size is at least 1.

5.4 Summary

In this chapter three different algorithms have been presented. Each one has different
assets and drawbacks by design. Here, we have explained in detail how these work by
means of a very anisotropic test data sample. The single steps have been presented
resulting in the corresponding estimator. All methods have found a clear deviation
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Figure 5.15: Distribution of Cluster Size for 10,000 isotropic sets of 100 events.
Doublets with small weights dominate.

from the Null-hypothesis, an isotropic distribution of arrival directions of UHECRs.
A more detailed analysis regarding the sensitivity is performed in the next chapter
by using several different source scenarios and testing the methods on the resulting
Monte Carlo sets.
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Figure 5.16: Displayed is the distribution of the Cluster Sum for 10,000 isotropic
sets containing 100 events each. The test data set (red solid line) shows a clear
deviation from the isotropic expectation yielding a probability of 10−4.
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6. Monte Carlo Studies

Before applying the autocorrelation methods to the data set of the PAO, we explore
their ability to find a deviation from isotropy. Therefore, many Monte Carlo data
sets were simulated varying the underlying type and amount of anisotropy as well
as the total number of events. An advantage of this procedure is the possibility
to recognize cross-correlations among the methods and study the effect of the PAO
exposure in contrast to a full sky observatory. We start by discussing the procedure
of generating these Monte Carlo Maps commonly known as Mock Maps of the con-
sidered anisotropies and end with the results obtained by analysing them with the
methods presented in the previous chapter.
It is worth noting that in the following no detector simulations are included and
thus, the anisotropic MC sets are assumed to be ideal. For isotropy, the detector
effects are negligible due to the fact that they would lead to a further isotropization
of the sample. However, the reference is already totally isotropic and therefore, it
would be unaltered.

6.1 Generating Mock Maps

Despite the vast amount of possibilities regarding source scenarios of UHECRs, we
focus on three basic types here:

1. catalogue-based (many sources),

2. isolated objects (few sources) and

3. multipoles.

Although this choice covers current and most prominent source models, it is im-
possible to consider all potential scenarios, e.g. strengths and number of sources as
well as their distribution and the scale of deflection.
In principle, the analysis procedure is the same for all source scenarios. The unit
sphere which is the reference for the arrival direction has to be binned and each bin
has the weight proportional to the probability ρ = ρ(φ, θ) that cosmic rays originate
from that position in the sky. This depends of course also on the type of smearing
and the smearing scale applied.
Then, 10,000 sets each containing from 20 up to 100 cosmic ray events are produced
according to the density distribution of these maps using a step size of 20. This
choice of the number of events reflects the current statistics available from different
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experiments, e.g. the PAO has above 55 EeV roughly 90 events up to now. The
resulting density maps shown below are all in equatorial coordinates displayed ac-
cording to the Hammer projection scheme.
It is worth mentioning, that standard programs like ROOT cannot bin the sphere
in an optimal way. The typical rectangular binning of a 2-dim histogram matches
different solid angles to the same area. One possibility to avoid this problem is the
usage of the HEALPix package (see section 6.1.1) provided by the Cosmic Microwave
Background community.

6.1.1 HEALPix

The name HEALPix stands for High Equal Area isoLatitude Pixelisation [71] and
solves the issue of different solid angles per pixel. This is achieved by using cur-
vilinear quadrilaterals (cf. Fig. 6.1) covering equal area partitions of the sphere.
Each one of them can in turn be split into four smaller quadrilaterals having the
same properties as their mother pixels. In the basic configuration the corresponding
scheme consists of twelve pixels (= Npix) with a resolution of three pixels in θ and
of four pixels in φ. Instead of the the number of pixels, the describing parameter is
Nside which is here equal to 1. With each quartering of the pixels Nside is increased
by a factor of two such that the following formula per definition describes the total
amount of pixels on the sphere:

Npix = 12 ·N2
side. (6.1)

For Nside = 1, 2, 4, 8 the realisations are shown in Fig. 6.1 starting at the upper left
and then going clockwise to higher Nside. The black dots represent the center of the
pixels and as one can see, they are arranged in rings of constant latitudes.

6.1.2 Smearing

To create realistic density maps for the different source scenarios, it is necessary
to include deflections caused for example by intergalactic magnetic fields. The
simplest model is called random walk [44] assuming many regions of non-coherent
fields between origin and detector. This leads to a Gauss distribution of events
around their source.
The effect of the directional galactic magnetic field BG is neglected here. Since, one
can argue that due to the high energies of the considered cosmic rays and the small
amount of time, UHECRs are only minimally affected by BG. Thus, the deflection
is small compared to the one caused by the intergalactic magnetic field.
On a 2-dimensional sphere, the Gaussian is replaced by the von Mises-Fisher distri-
bution for the <3:

f3(x;µ, κ) =
κ

2(eκ − e−κ)
· exp(κµTx). (6.2)

Here, µ is the position direction vector of the source and x the vector to the point
on the sphere where one is interested in the probability density. Thus, the exponent
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Figure 6.1: Displayed is the pixelisation of the sphere for Nside = 1, 2, 4, 8 starting
at the upper left panel and then going clockwise (taken from [71]). The sizes which
are given in the following represent the average radius of a quadrilateral. Upper
Left Panel: Nside = 1 leads to 12 pixels, each a size of ≈ 45◦. Upper Right Panel:
Nside = 2 leads to 48 pixels, each a size of ≈ 22◦. Bottom Right Panel: Nside = 4
leads to 192 pixels, each a size of ≈ 11◦. Bottom Left Panel: Nside = 8 leads to 768
pixels, each a size of ≈ 5◦.

can be simplified. It is just the vector product of these two vectors resulting in the
cosine of the angle Ω in between.

κµTx = κ · cos Ω. (6.3)

For small deflections the von Mises-Fisher distribution can be approximated by a
Gaussian leading to the relation κ = 1/σ2.
The binning is here important, too. Since, the differential angular distance should
be unaltered to ensure a consistent behaviour regarding the random walk model,
i.e. the angular distance distribution of events around the source should follow a
Rayleigh distribution.
Therefore, an Nside of 256 is chosen with a pixel radius of ≈ 0.2◦ well below the 1◦

angular resolution of the PAO. Thus, artificial deviations from the expected Rayleigh
distribution caused by the binning around a source vanish.
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6.1.3 Effect of Coverage

Until now, the complete sphere has been considered. However, in this analysis the
data of the Pierre Auger Observatory is only considered up to a zenith angle θ
smaller than θm = 60◦ in local coordinates leading to a a sharp cut at a declination
of δ ≈ 25◦. The resulting coverage ω depending on the declination δ is analytically
described in [72] :

ω ∝ cos(δ) cos(δA) sin(αm) + αm sin(δ) sin(δA) (6.4)

where δA = −35.2◦ is the declination of the PAO and αm is

αm =





0 if ξ > 1

π if ξ < −1

cos−1 ξ otherwise

.

with

ξ ≡ cos θm − sin δA sin δ

cos δA cos δ
.

It must be noted that this formula is independent of the right ascension.
This is a parametrisation of isotropy measured by the PAO and a density HEALPix
map can be filled according to this formula (see Fig. 6.2). By multiplying this refer-
ence with an anisotropic density map we obtain the probability density distribution
for the arrival directions of cosmic rays as seen by the PAO for this scenario.

6.1.4 Catalogues

Many catalogues exist in astronomy mostly focusing on a single wavelength band,
e.g. radio, x-ray and infrared, or on special objects, for example Active Galactic
Nuclei (AGN). The second type of catalogue was used by the PAO for the catalogue-
dependent anisotropy study described in [26]. Therefore, we use the same one, the
Veron-Cetty and Veron (VCV) catalogue to generate MC maps. However, it has
some known issues which are discussed below. As a contrast to the VCV, we have
chosen the Infrared Astronomical Satellite (IRAS) catalogue in addition which fulfils
the requirement of being complete up to a distance of 100 Mpc (see [73]).

6.1.4.1 VCV

The Veron-Cetty and Veron (VCV) catalogue [3] is a compendium of many differ-
ent objects. It contains over 10,000 objects consisting of AGN as well as BL Lac
and quasar candidates which can be found in the literature. The coverage of the
catalogue is non-uniform which can be seen in in the top left panel of Fig. 6.3. Ob-
viously a band is missing with longitudes of roughly ±90◦. The reason for this lies
in the presence of the milky way obscuring the sight on those AGN lying behind it.
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Figure 6.2: The analytically calculated coverage of the Pierre Auger Observatory.
The highest probability for events to be detected is at the south pole since it is in
the field of view of the observatory at all times.

However, on this very catalogue the correlation analysis of the PAO was performed
with a restriction on the redshift of the objects (z ≤ 0.017 which corresponds to 428
objects on the whole sky).
Therefore, we use this catalogue as a basis for one source model whereupon we extend
the allowed range of redshift to 0.02 (≈ 85 Mpc including 497 objects, cf. top right
panel of Fig. 6.3). Since the redshift cut obtained during the correlation analysis is
the result of a scan for this catalogue-dependent approach and was optimized within
the framework of that study. Thus, the sources still might have larger distances
than 74 Mpc. The GZK-effect for instance predicts that cosmic rays at the highest
energies have their origin within distances of 100 to 200 Mpc. As a compromise
between both values we have chosen the one mentioned above.
In addition, we have chosen two kinds of strength assignments for each source. The
first one assumes that all objects contribute to the same amount of cosmic rays on
Earth independent of their distance to us. This corresponds to different strengths
of each object. The second one assigns to each source candidate a weight which is
proportional to 1/z2, i.e. each object has the same absolute magnitude. For close
objects the linear Hubble law can be applied where z ∝ d.
For the smearing scale we adopt another result of the correlation analysis namely
the maximal angular distance being ≈ 3◦. Furthermore, we increase this number in
another event set to 6◦ to estimate how the signal might behave when the deflections
is larger.
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After the amount and relative strength of the sources including the smearing scale
is defined, we set in the last step the signal to noise ratio per event set. We vary the
isotropic contribution from 0 % to 80 % in steps of 20 %.
In the bottom panel of Fig. 6.3 an example is shown based on a pure VCV contribu-
tion weighted with the inverse of the square of the distance. On the left side of the
bottom panel the pure distance weighted VCV catalogue with a smearing of 3◦ is
displayed which gives, by multiplying it with the PAO coverage, the map on right.
The effect of the coverage is clearly visible, particularly close to the south pole where
the sources are enhanced in comparison to those in the vicinity of the equator.
Further maps based on different parameters can be found in the appendix.
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Figure 6.3: The Veron-Cetty and Veron catalogue in different representations in
equatorial coordinates and Hammer projection. The strength of the source is indic-
ated coloured plots, the darker the blue the stronger the source. The logarithmised
strength is given in arbitrary units.Top Left Panel: Displayed are all objects having a
redshift. Top Right Panel: The 497 objects are shown having a redshift smaller than
0.02. Bottom Left Panel: These 497 objects are smeared with a Gaussian (σ = 3◦)
and weighted with the inverse of the distance squared. Bottom Right Panel: The
density map on the left side for the complete sphere is weighted with the coverage
of the PAO enhancing objects close to the south pole while those close the border
of the field of view are suppressed.

6.1.4.2 IRAS

The Infrared Astronomical Satellite (IRAS) [74] was an experiment operating for
ten month in 1983 searching the sky for infrared sources. It detected the positions
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of more than 200,000 objects, and the distances are not measured.
In the following years dedicated redshift surveys determined the corresponding dis-
tances of several thousand of these objects. A combination was compiled by [75]
taking care of uniform sky coverage and completeness of the final catalogue, the
Point Source Catalogue redshift (PSCz).
However, some regions of the sky are more trusted than others due to unknown
exposure in that region of the sky. These unreliable regions are masked to ensure a
reliable distribution of sources. The mask applied here is called himask and yields
finally than 10,000 objects (see top left panel of Fig. 6.4). Comparing this map with
the one of the VCV a clear difference emerges. Indeed, the PSCz seems to be much
more uniform although the same empty band is present in the sky as before again
caused by the milky way obscuring objects lying behind.
To generate Mock Maps based on this catalogue, the same specifications are used
as in the case of the VCV, i.e. z ≤ 0.02, smearing 3◦ and 6◦, respectively, and a
flat distribution as well as a distance weighting for the strength of the sources. In
addition, the same contribution of an isotropic background is chosen.
The example map (σ = 3◦, distance weighting) is shown on the bottom left panel
which is dominated by two sources in the northern hemisphere close to the pole.
By multiplying it with the coverage of the PAO the final density map is obtained
whereupon now many sources are becoming visible on the southern hemisphere.
It it worth noticing that the general matter distribution of the VCV and PSCz is
following the same directions.

6.1.5 Single Sources

A complementary approach focuses on single sources. As described in chapter 3.3.1.1,
a model based on radio loud galaxies proposes just this kind of anisotropy. Few
sources contribute a major part to the overall flux of UHECRs which are more or
less deflected by magnetic fields.
In addition, it is still possible that the current source scenarios are all incorrect,
i.e. in general without making any assumption all positions are equal. Therefore, we
introduce here a scenario where the sources are randomly distributed on the sky.
In both cases the signal is diluted by a varying amount of isotropic background
(40 %, 60 %, 80 %).

6.1.5.1 Radio Loud Galaxies

The three radio loud galaxies mentioned before are considered for this model, namely
Centaurus A, Virgo A, Fornax A. Compared to the catalogue-based scenarios, a more
explicit model of strength and smearing is possible. We use two kinds of smearing

1. Gaussian (based on random walk [44]) and

2. and Inverse (proposed by P. L. Biermann, see below).

The next step is to fix the relative strength of each source. We use two models sug-
gesting different mechanisms powering the jets which in turn accelerate the particles
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Figure 6.4: The Infrared Astronomical Survey catalogue in different represent-
ations in equatorial coordinates and Hammer projection. Regarding the coloured
plots, the darker the blue the stronger the source. The logarithmised strength is
given in arbitrary units normalised to the same value. Top Left Panel: Displayed
are all objects within the catalogue. Top Right Panel: The 4431 objects are shown
having a redshift smaller than 0.02. Bottom Left Panel: The remaining objects are
smeared with a Gaussian (σ = 3◦) and weighted with the inverse of the distance
squared. Three sources on the northern hemisphere dominate the total flux. Bottom
Right Panel: The density map on the left side for the complete sphere is weighted
with the coverage of the PAO enhancing objects close to the south pole while those
close to the border of the field of view are suppressed.

within. The first one is the Spin-Down model introduced by Blandford and Znajek
in 1977 (model S, [76]) and the second is the Accretion model by Falcke (model A,
[77]). Both allow to calculate the expected relative flux on earth for each galaxy,
which has been computed by P. Biermann [29] (see Tab.6.1).
Gaussian Model
We calculated the smearing width σ according to formula 6.5 which is valid for this
kind of model:

σ = 0.025◦
(
d

λ

)1/2(
λ

10Mpc

)(
B

10−11G

)(
1020eV

E

)
Z. (6.5)

d is the distance of each object to the Earth, λ=100 kpc the average coherence
length of a magnetic field with strength B and E the energy of the cosmic ray with
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Table 6.1: Predictions of relative fluxes for Models S and A calculated by P.
Biermann in [29].

relative strength
Name Model S Model A
Cen A 13 3.63
Vir A 1 1
For A 0.01 0.03

charge Z. We adopted the lower energy bound used for the AGN correlation study,
i.e. E=55 EeV and set B = 10−9 G, which is within the upper limit on the strength
of the intergalactic magnetic field (1 - 10 nG) set by recent CMB measurements [42].
By increasing the average coherence length to 1 Mpc or the strength of the B-field
to 10 nG, σ is enlarged by a factor of ten. This leads to huge smearing scales and
the arrival directions are isotropized. Therefore, we have chose the above mentioned
values to generate a model which is able to produce the observed overabundance
close the Cen A. The corresponding scale is of the order 10◦ − 20◦ (cf. Fig. 3.7).
Using the distances given in Tab. 3.2 the following approximate σ’s are obtained:

σCenA = 11◦ σV irA = 23◦ σForA = 25◦ (6.6)

(6.7)

The maps based on acceleration model A with an isotropic background of 40 % are
displayed in the top panel of Fig. 6.5 whereupon on the left the full sky map can be
seen and on the right the one weighted with the coverage of the PAO. As one can
conclude from the source strength given in Tab. 6.1, Cen A is the strongest clearly
visible, followed by Vir A. Whereas, For A is invisible being on the same level as the
isotropic background.

Inverse Model
The basic assumption in this model is that the smearing follows a 1/Ω-distribution
caused by a magnetic plasma. UHECRs mainly scatter just once in this environment
and stay afterwards unaffected during propagation. In this way, the UHECRs are
spread evenly over the complete sky with a maximum around the source (see [29]).
This is an alternative approach which stands in contrast to the default distribution
(Gaussian) based on the random walk model where many scatterings are taking place
during the propagation of cosmic rays. Ω is again the solid angle between the source
and a point on the sphere. The integral of the function, however, is unequal to one.
Hence, in principle it cannot be used to represent a probability density. Therefore,
the function has to be modified to ensure a proper behaviour. One option is to
introduce a cut-off parameter ε > 0 in the sense that

f(Ω; ε) =
1

N

1

Ω + ε
,

with N being the normalisation constant. We chose ε according to the σ’s computed
in the previous section. The idea is to keep the same amount of events within this
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predefined radius around the source. To determine the value of ε, we integrate f(Ω)
only up to the corresponding smearing scale σ calculated for the Gaussian model
which should yield a value of 68 %. By solving the following equation numerically,
the ε is calculated.

σ =

((
180

ε
− 1

)0.68

− 1

)
· ε.

The different functions according to the corresponding strength and cut-off para-
meters are displayed in Fig. 6.6.

Figure 6.5: Probability density maps based on three radio loud galaxies and
strength model A, the isotropic background is 40 %. The logarithmitised strength
is given in arbitrary units. Top Left Panel: The distribution on the complete sphere
with an applied Gaussian smearing. Top Right Panel: Resulting map multiplied
with the exposure of the PAO. Bottom Left Panel: The distribution on the com-
plete sphere with an applied smearing according to the Inverse model. Bottom Right
Panel: Resulting map multiplied with the exposure of the PAO.

The assigned probability for each pixel is the sum based on the values of the three
curves corresponding to the three sources according to their distances to the sources.
In the bottom of panel Fig. 6.5 we show the probability density of model A again with
40 % background. The sources are nearly invisible, only Cen A can be identified.
However, the area which is enhanced is much smaller than the one seen for the
Gaussian smearing.
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Figure 6.6: Distribution around the three sources corresponding to the Inverse
model. Solid lines represent strength model A, dashed lines strength model S. Since
Vir A (red) is the reference in both cases, the curve is the same. The black one
represents Cen A and the green one For A. Left Panel: The distribution over the
complete range. Right Panel: The distribution for small distances shows a clear
difference in the shape close to the corresponding source.

6.1.5.2 Random Sources

Due to the fact that no source has been confirmed so far, we include here a model
consisting of random source positions on the sky, since all are in principle equally
probable. The number of considered sources depends on the overall signal to noise
ratio used for the maps, for instance a contribution of 40 % in this scenario corres-
ponds to 4 sources. In general, the number of sources is equal to the fraction of the
anisotropic contribution divided by ten.
For the smearing also an alternative approach is applied. Here, a flat distribution of
events around the source is considered whereupon these have to be within specified
borders. Three configurations are chosen:

1. a circle with a radius of 10◦,

2. an ellipse with axis of 15◦ and 5◦ (randomly oriented) and

3. an ellipse with axis of 20◦ and 10◦ (randomly oriented).

Due to the random positions the density map resembles isotropy. Hence, we show
in Fig. 6.7 only one event set consisting of 60 events from 6 ellipses plus 40 events
from isotropy considering the PAO coverage. The left panel displays the case of a
circle of radius 10◦, while the one on the right panel gives an example for ellipses
having a long axis of 15◦ and a short one of 5◦. In the second case this stretched
shape is visible for some ellipses.

6.1.6 Multipoles

These are the most prominent types in search for anisotropies in the arrival directions
of cosmic rays not only at the highest energies. Particularly, those of lower order can
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Figure 6.7: An example event set consisting of 10 events distributed in 6 ellipses
each plus 40 events from the isotropic background. Left Panel: Six circles of radius
10◦ are distributed within the field of view of the PAO. Right Panel: Six ellipses
with axis 15◦ and 5◦ are distributed within the field of view of the PAO.

be tested at an early stage of the experiment before smaller substructures become
visible in the data. Therefore, only dipoles, quadrupoles and octupoles on a sphere
are considered with two orientations (x, z). Furthermore, the isotropic background
usually added is neglected given that these models are large scales anisotropies dis-
tributed over the complete sky. The following equations describe the z-direction of
the particular multipole:

Dipole: f(x, y, z) =

√
3

4π

z

r
,

Quadrupole: f(x, y, z) =
1

4

√
5

π
· −x

2 − y2 + 2z2

r2
, and

Octupole: f(x, y, z) =
1

4

√
7

π
· z(2z2 − 3x2 − 3y2

r3
.

with r the radius of the considered sphere, here set to one, and x, y, z the usual
Cartesian coordinates. For the x-direction, just substitute the x for z and vice versa.
We use these formulas as the probability density to fill the bins in the corresponding
maps. In Fig. 6.8 the density distributions for all used multipoles can be seen.

6.2 Analysing Mock Maps

We apply the methods introduced in chapter 5 to the created MC sets and in the fol-
lowing present exemplary results based on a preselection of maps. The chosen source
scenarios are chosen to be very different. In this way, a more detailed overview can be
given of the capabilities of the algorithms. At this, we split the discussion according
to the classification used previously in this chapter. As benchmark points we have
chosen probabilities of 0.01 and 0.001. In this context, we count the number of iso-
tropic sets yielding an even larger deviation from the isotropic expectation than the
tested anisotropic MC sets, i.e. the estimators of the isotropic sets have to larger or
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Figure 6.8: Multipoles in x (left) and z (right) direction weighted with the cov-
erage of the PAO. Top Panel: Dipole. Middle Panel: Quadrupole. Bottom Panel:
Octupole.

smaller then the those of the anisotropic samples depending on the algorithm. These
values for P can be interpreted as errors of first kind, accepting anisotropy although
the events are isotropically distributed. To estimate the efficiency and sensitivity
of the autocorrelation methods, we calculate the fraction of MC sets identified as
being anisotropic, therefore having smaller values of P. This corresponds to 1-β, the
modified error of the second kind, accepting anisotropy in the case the distribution
is really anisotropic.
Regarding both variants of the Cluster Algorithm, six different maximal angular
radii have been considered, from 5◦ up to 30◦ in steps of 5◦. The results presented
below are based on an analysis with a radius R = 15◦. In this way the best perform-
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Figure 6.9: Displayed is the amount of event sets giving a probability smaller than
P=0.01 (solid line) and P = 0.001 (dashed line) for all methods. Left Panel: MC
sets based on the VCV catalogue with a smearing of 3◦, the strength of a galaxy on
Earth is distance weighted and the contribution of isotropy is 60 %. Right Panel:
MC map based on the IRAS catalogue with a smearing of 6◦, the strength of all
galaxies on Earth is the same. The contribution of isotropy is zero.

ance is achieved based on the considered MC scenarios. A detailed discussion of the
dependence of the results on R is presented in the appendix E.
In addition, we provide tables containing the results averaged over all set sizes. How-
ever, just the fraction for P = 0.01 is given here. In appendix F the tables for each
set size are presented.

6.2.1 Analysis of catalogue-based Mock Maps

From each catalogue we have chosen one representation:

1. VCV with distance weighting, 3◦ smearing and 60 % isotropic background and

2. IRAS with flat weighting, 6◦ smearing and 0 % isotropic background.

While the first map represents the findings of the correlation analysis of the PAO,
the second one is complementary. Instead of a few strong sources against an iso-
tropic background, many weak sources form the complete flux of UHECRs.
The results are displayed in Fig. 6.9.

Regarding the sets based on the VCV catalogue, the cluster algorithm in both
variants is very sensitive to this kind of anisotropy. Nearly all sets with 100 events
have a probability of P < 0.01 and for the weighted version (CA II) this is even true
for P <0.001. Taking a few sources with a small spread of UHECRs around them is
enough to distinguish the resulting distribution of arrival directions from isotropy.
The unweighted cluster algorithm (CA I) is a little bit less effective which can be
explained by the used smearing (Gaussian). This enhances CA II since it is the same
function which is used to weight to the events within a cluster (see equation (5.6)).
While the TwoPtPlus at least for 75 % of all sets still finds a deviation from the
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isotropic expectations the TwoPt correlation function and the MST are at a level of
50 % for 100 events per set. Despite the strong background which dilutes the signal,
still half of all sets are identified to be anisotropic.
For the other scenario the development regarding the sensitivity of the autocorrel-
ation methods is different. Indeed CA I and CA II are again the best methods,
however the difference to the MST is very small, of the order of a few percent. This
is caused by the large number of objects contributing equally to the overall flux of
UHECRs. Thus, the probability that one source emits more than one UHECR is
small and identifying single sources is becoming even more challenging. However, by
choosing a radius for the cluster algorithms which is larger than the smearing scale,
events are combined which have not the same origin. This is the case here, since
R = 15◦ > σ = 6◦ which explains the results.
For the MST the good performance can be explained by the distribution of the
sources which form filamentary structures. Due to the small smearing scale, these
structures propagate to the distribution of the events. Since, the average distance
between two objects emitting a UHECR is smaller than the average distance for
isotropy a large fraction of sets deviated clearly from the Null hypothesis.
The TwoPt correlation functions are again on a lower level since many sources all
with the same strength for these methods mimic an isotropic distribution. This can
be seen for instance in the probability density distribution (cf. Fig. D.1, left sky
plot of the bottom row) where only a small band is missing making the difference to
isotropy.
In the following we give the tables containing all results regarding the analysis on
catalogue-based source scenarios. To this end we have averaged over all event set
sizes to obtain the fraction of sets having a probability smaller than 0.01. In Tab. 6.2
to 6.5 the average fractions are given averaged over all set sizes.

Maps with flat weighting
The general numbers presented in Tab. 6.3 for maps based on the IRAS catalogue
conform the results presented above on the example map. By increasing the amount
of background the sensitivity decreases being only at the level of 10 % or less for all
methods for 40 % isotropic contribution. Due to the similarity to the coverage of
the PAO these scenarios are hard to detect for all methods.
By reducing the number of possible sources however, the results are slightly better.
Indeed more sets are identified to be anisotropic but again a background level of
60 % shows that the methods are nearly blind to this scenario. The impact of the
doubling of the smearing scale is only of the order of a few percent.

Maps with distance weighting
This picture changes significantly when applying a weighting according to the dis-
tance of the objects (cf. Tab. 6.4 and 6.5). In contrast to the scenario before now
only those galaxies being very close to the Earth contribute to a major amount of all
events. This makes it for a cluster algorithm to detect a deviation form isotropy. The
other methods give similar results. However, by increasing the background contri-
bution they are much more affected than the CAs and suffer the loss of sensitivity.
While they can still benefit from the occurring clusters, the others are weakened
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Table 6.2: Presented are the fraction of sets based on the VCV with a flat weighting
giving a probability smaller than 0.01 relative to isotropy averaged over all set sizes.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.67 0.40 0.14 0.04 0.01 0.61 0.31 0.10 0.03 0.01
TwoPt 0.70 0.45 0.18 0.05 0.01 0.66 0.40 0.15 0.04 0.01

TwoPtPlus 0.52 0.30 0.12 0.03 0.01 0.48 0.27 0.10 0.03 0.01
CA I 0.70 0.46 0.19 0.04 0.01 0.67 0.42 0.16 0.03 0.01
CA II 0.77 0.60 0.30 0.08 0.02 0.66 0.44 0.18 0.05 0.01

Table 6.3: Presented are the fraction of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 relative to isotropy averaged over
all set sizes.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.50 0.23 0.08 0.03 0.01 0.42 0.18 0.06 0.02 0.01
TwoPt 0.14 0.05 0.02 0.01 0.01 0.11 0.04 0.02 0.01 0.01

TwoPtPlus 0.16 0.08 0.03 0.02 0.01 0.14 0.06 0.03 0.01 0.01
CA I 0.55 0.31 0.12 0.04 0.01 0.50 0.27 0.10 0.03 0.01
CA II 0.56 0.34 0.14 0.04 0.02 0.46 0.24 0.10 0.03 0.01

since they include large angular distances which are more likely to be dominated by
isotropy.
Again, the effect of doubling the smearing scale is small.

Summary
It is worth noting that despite the extend source distribution the CA methods show
the best results especially in the presence of an isotropic background.

6.2.2 Analysis of single-source Mock Maps

This category is split in two separate approaches and therefore, we discuss them
individually here.
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Table 6.4: Presented are the fraction of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 relative to isotropy averaged over
all set sizes.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.98 0.89 0.68 0.29 0.04 0.97 0.86 0.60 0.21 0.03
TwoPt 0.99 0.94 0.77 0.33 0.03 0.98 0.91 0.71 0.25 0.03

TwoPtPlus 0.97 0.90 0.77 0.43 0.06 0.96 0.88 0.73 0.38 0.05
CA I 0.99 0.94 0.83 0.52 0.07 0.99 0.94 0.81 0.50 0.07
CA II 1.00 0.98 0.92 0.74 0.20 0.99 0.95 0.85 0.59 0.10

Table 6.5: Presented are the fraction of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 relative to isotropy averaged over
all set sizes.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.98 0.89 0.71 0.35 0.06 0.97 0.87 0.64 0.26 0.04
TwoPt 1.00 0.97 0.86 0.47 0.06 0.99 0.94 0.80 0.36 0.04

TwoPtPlus 0.97 0.91 0.78 0.46 0.08 0.95 0.86 0.70 0.34 0.05
CA I 1.00 0.96 0.88 0.64 0.14 1.00 0.96 0.87 0.64 0.14
CA II 1.00 0.99 0.96 0.85 0.41 1.00 0.98 0.92 0.75 0.24

Radio Loud Galaxies
First, two example maps are considered based on the three radio loud galaxies, Cen
A, Vir A and For A which are analysed as described above:

1. Gaussian smearing, relative strength according to acceleration model S (80 %
isotropic background) and

2. Inverse smearing, relative strength according to acceleration model A (40 %
isotropic background).

In the left panel of Fig. 6.10, displaying the result of the first map, the CA methods
again show the best performance due to the few sources contributing a major amount
of events. The S model has the characteristic that Cen A is responsible for more than
90 % of all events. This is, however, not enough to result in a significant deviation
compared to isotropy concerning the MST, which ends up with a fraction of 20 %
and below. Both TwoPt functions give fractions in between 40 and 60 %.
By changing the smearing function and the acceleration model the sensitivity of the
CA methods drop by about a factor of two (cf. right panel of Fig. 6.10). Hence, if
in nature the deflection mechanisms leads to an Inverse smearing the possibility to
recognize anisotropy with these methods decreases significantly. It is worth noting
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Figure 6.10: Displayed is the amount of event sets giving a probability smaller
than P=0.01 (solid line) and P = 0.001 (dashed line) for all methods. The only
contributing objects are Cen A, Vir A and For A. Left Panel: MC sets analysed
are based on acceleration model S with a Gaussian smearing. The contribution of
isotropy is 80 %. Right Panel: MC sets analysed are based on acceleration model
A with a smearing according to the Inverse model. The contribution of isotropy is
40 %.

that this happens although the isotropic background has been reduced to 40 %.
The other methods remain nearly unchanged in their performance while the TwoPt
correlation functions are then comparable in sensitivity to the CAs.
Including also the other simulated realisations, the results are found in Tab. 6.6 and
6.7 for the Gaussian and Inverse smearing, respectively, which are discussed in the
following.
Maps with a Gaussian smearing
For the smallest amount of isotropy all methods show an excellent performance.
More than 90 % of all sets are identified to be anisotropic. However, the behaviour
regarding an increase of background is different. While the CAs are always above
the 60 - 70 % level, the MST ends up with values close to 10 % and the TwoPt
correlation functions between 20 % and 30 %.
This is results is expected due to the similarities of scenario and design of the cluster
algorithms.

Maps with an Inverse smearing
As already discussed above the change in the smearing function affects all meth-
ods drastically. Especially, the CAs lose sensitivity although only very few sources
contribute to the overall flux of cosmic rays. The reason for this lies in the dens-
ity distribution. Although 68 % of the events emitted by one of the three sources
lie within the smearing scales σ (given in equation (6.8)) around the corresponding
sources, 99 % of the events spread over the complete sphere and are not contained
within circles of 3σ around the sources. For the Gaussian smearing, however, this
relation is valid. Hence, a clustering is disfavoured by this model. In addition, the
broad distribution on the complete sphere only leads to a small alteration of the dis-
tribution of arrival directions as compared to isotropy which in turn causes a drop
in sensitivity for the other methods. Here, It is worth noting that a single strong
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Table 6.6: Presented are the fraction of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 relative to isotropy
averaged over all set sizes.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.93 0.61 0.11 0.96 0.70 0.14
TwoPt 1.00 0.89 0.19 1.00 0.93 0.26

TwoPtPlus 0.98 0.84 0.28 0.99 0.86 0.31
CA I 1.00 0.97 0.66 1.00 0.99 0.72
CA II 1.00 0.96 0.64 1.00 0.98 0.70

source as in model S is easier detected than two weaker sources in model A.

Table 6.7: Presented are the fraction of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 relative to isotropy
averaged over all set sizes.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.09 0.04 0.02 0.13 0.05 0.02
TwoPt 0.22 0.07 0.02 0.32 0.10 0.02

TwoPtPlus 0.27 0.08 0.02 0.30 0.09 0.02
CA I 0.32 0.11 0.02 0.44 0.17 0.03
CA II 0.29 0.10 0.02 0.39 0.15 0.03

Ellipses
The two example maps analysed based on the ellipse model are:

1. four ellipses containing 10 % of all events each with a radius of 10◦ and

2. four ellipses containing 10 % of all events each with a large axis of 15◦ and a
small one of 5◦.

For each scenario, isotropy accounts for the other 60 % of events.
Due to the model description one can assume that CA I and CA II should be partic-
ularly sensitive and indeed they show again the best performance over the different
set sizes (cf. Fig. 6.11). Already for a small number of events a large amount of sets
is recognized to be anisotropic, not only for P=0.01 but also for P=0.001. Further-
more, for small event sets CA I is more sensitive than CA II. However, for 80 events
per set both are at the maximum.
The MST and the TwoPt functions show also a very good performance reaching
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Figure 6.11: Displayed is the amount of event sets giving a probability smaller
than P=0.01 (solid line) and P = 0.001 (dashed line) for all methods. In both cases
four ellipses are considered each accounting for 10 % of all events. The other 60 %
are contributed by isotropy. Left Panel: The ellipses are circles with a radius of 10◦.
Right Panel: The ellipses have a large axis of 15◦ and a small one of 5◦.

Table 6.8: Presented are the fraction of sets based on the Ellipse giving a prob-
ability smaller than 0.01 relative to isotropy averaged over all set sizes.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 0.85 0.60 0.15 0.88 0.67 0.18 0.83 0.52 0.12
TwoPt 0.76 0.55 0.16 0.82 0.63 0.20 0.78 0.54 0.15

TwoPtPlus 0.68 0.51 0.21 0.72 0.57 0.25 0.61 0.41 0.15
CA I 0.89 0.80 0.58 0.90 0.82 0.61 0.85 0.74 0.46
CA II 0.87 0.81 0.62 0.91 0.85 0.72 0.81 0.71 0.43

nearly a fraction of 100 % for 100 events. Among these three methods the differ-
ences are very small of the order of a few percent.
The fraction for all simulated maps can be found in Tab. 6.8. All methods are sim-
ilar in their performance with advantages on the side of the CAs especially in the
presence of a large isotropic background where it still can identify up to 70 % of all
anisotropic event sets. The other methods again are weakened due to the increasing
contribution of isotropic events to the estimator. The resulting fraction then is of
the order of 10 - 20 %.

6.2.3 Analysis of Multipoles

At last we consider two example sets based on multipoles with the corresponding
results presented in Fig. 6.12:

• a dipole in x direction and

• an octupole in z direction.
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Figure 6.12: Displayed is the amount of event sets giving a probability smaller
than P=0.01 (solid line) and P = 0.001 (dashed line) for all methods. Left Panel:
The dipole is in x direction Right Panel: The octupole is in z direction.

While for the dipole (see left panel of Fig. 6.12) some methods are performing very
well (TwoPt and TwoPtPlus have a fraction > 70 %), the other three are at the
level of 50 % and below. This has been expected for the CAs due to their design.
An important factor is the number of maxima in the density distribution and how
distinct they are.
Furthermore, the analysed sets based on an octupole show a very different behaviour
regarding all methods. The TwoPtPlus is least affected and still on a reasonable level
regarding the fraction of identified sets as compared to the other methods which are
below the 10 % level. In general, the difference between this octupole and isotropy is
too small which can be seen by comparing the underlying density distribution with
the coverage of the PAO.
Results for all multipole models are given in the summary Tab. 6.9. The first thing
to notice is that no method shows an overall good performance. At least for one
map the sensitivity is very low, at the percent level.
Furthermore, the quadrupole, especially the one in z direction, seems to produce
event sets which can be identified easier as being anisotropic. This is caused by the
typical structure. The strong maxima in the field of view of the PAO enhance pairs,
triplets and so forth on small angular scales. Studying the second row of Fig. 6.8
one can also understand why the MST is weaker for the x than for the z direction.
In z direction most of the events are contained in a region below the equator, only
a small amount lies above. This leads to a smaller length of the MST due to the
smaller available area on which the events can be distributed. Similar considerations
explain why the TwoPt correlation functions are sensitive.

6.3 Summary and Conclusions

In this chapter many MC models have been presented which were the basis for a
study aiming to find the best autocorrelation method among the ones introduced in
the previous chapter. Many different scenarios have been covered regarding number
of sources, their strength, distribution, smearing function and scale and so forth.
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Table 6.9: Presented are the fractions of sets based on multipoles giving a prob-
ability smaller than 0.01 relative to isotropy averaged over all set sizes.

Multipole Dipole Quadrupole Octupole
Direction x z x z x z

MST 0.27 0.01 0.48 0.96 0.05 0.08
TwoPt 0.44 0.85 0.92 0.99 0.02 0.01

TwoPtPlus 0.64 0.37 0.82 0.67 0.04 0.42
CA I 0.27 0.01 0.55 0.88 0.06 0.05
CA II 0.15 0.01 0.38 0.78 0.04 0.04

These were grouped depending on the considered type of anisotropy into three
classes, namely catalogue based, few sources and multipoles. The few sources model
is again divided into two subclasses characterised by different source positions and
smearing.
In the end, one is interested in the average fraction of sets having probabilities smal-
ler than 0.01 relative to isotropy. To avoid a bias towards one type of anisotropy
we first calculated the mean fraction for each class of anisotropy. In total, for the
catalogue based model 40 different maps have been analysed, 6 maps based on mul-
tipoles, 12 using the radio loud galaxies and and 9 with an elliptical shape for the
sources. The corresponding results per map as well as the average over all maps can
be found in Tab. 6.10. For the second case we have averaged over all models, one
time including multipoles and the other time excluding this scenario. This selection
can be motivated by the obtained results by analysing these maps. All methods
are able to identify at least one kind of multipole. However, no method shows an
overall good performance. In addition, many more orientations are possible for the
multipoles making it hard to estimate the behaviour of all methods. Therefore, we
exclude multipoles and check which method gives then the best result. In both
cases the resulting numbers are very similar and the order regarding the sensitivity
is nearly unaltered.
The weakest method which finds only 40 % of all anisotropic sets is the MST. One
reason for this is the influence of isotropically distributed background events. Since
their average distance towards another events is larger and leads therefore in turn
to a larger value for the estimator. A possible way to reduce this factor is to define
a maximum edge length, i.e. the MST is calculated and afterwards all edges are
removed being longer than a predefined value. This corresponds to an application
of the MST presented by Harari et al. in [70]. However, the maximum length has to
be motivated by theory or estimated by exploring the data.
On the second place we find the TwoPt and TwoPtPlus correlation functions yielding
a slightly better sensitivity than the MST. As we have seen, the behaviour of these
two is very similar for all presented maps. A clear difference could only be found
for certain multipoles whereas these fluctuations are characteristic for all methods.
Hence, by using the TwoPtPlus the gain in sensitivity is in general small. The reason
for the difference in the performance of the both methods might be an effect of the
coverage of the PAO. Further comparisons considering the complete sphere could
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Table 6.10: Fraction of sets with P < 0.01 relative to isotropy averaged over all
MC maps and set sizes

Maps MST TwoPt TwoPtPlus CA I CA II

Catalogues 0.38 0.39 0.37 0.46 0.51
Radio loud galaxies 0.32 0.42 0.42 0.54 0.52

Ellipses 0.53 0.51 0.46 0.74 0.75
Multipoles 0.31 0.55 0.50 0.30 0.23

all maps (w/ MP) 0.38 0.47 0.43 0.51 0.50
all maps (w/o MP) 0.41 0.44 0.41 0.58 0.59

test if their performance is the same or what causes the differences. It is worth
noting that there might exist an optimal choice for the reference coordinate system
for the TwoPtPlus leading to better results. A good candidate for this is the super
galactic coordinate system where the equator contains many AGN close to Earth
among them Cen A.
Regarding the CA methods, both show a better performance than the other three
which is strengthened by excluding multipoles. The difference of the results between
those two versions of the CA is just about 1%. Hence, the effect caused by the
weighting within the cluster is only minimal in the end by using these simulated
models as a reference.
Thus, for the final analysis of the data of the PAO we choose a CA. To decide which
of the two realisations is applied to the event set two arguments are discussed. The
first one is to use a method and an analysis which are as simple as possible. In
addition, we can take current anisotropy results into account, i.e. the correlation
of events of the PAO with AGN. By assuming that the true sources are distrib-
uted according to the matter distribution in our cosmological neighbourhood, the
performance of the CAs on this kind of MC maps should have more weight in the
process of deciding. From Tab. 6.2 to 6.5 one can see that the CA II is more sensitive
to this type of anisotropy leading to the decision to use it for the analysis of the
data of the PAO presented in the next chapter.
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7. Application to Data measured
with the PAO

In the last chapter it has been shown that the weighted Cluster Algorithm (CAII)
with a radius R = 15◦ works best on the chosen MC models. Therefore, in the
following it is applied to the high energy data set based on measurements of the
surface detector of the PAO. First, we describe the cuts constraining the data set
to events of high quality. They are the same which have been so far used for all
publications of the PAO collaboration regarding anisotropy studies at energies larger
than 50 EeV, e.g. the correlation of UHECRs with AGN. Moreover, to compare the
autocorrelation method with the catalogue dependent study we use this published
analysis as a benchmark for our method, i.e. we compare the resulting probability
for the identical data set.
However, this publication considers only events which have been detected prior to
the end of 2009. Hence, we extend the data set as far as possible. In this context, the
two independent event reconstruction algorithms existing within the collaboration
of the PAO are compared.
In addition, we consider all events with energies larger than 3 EeV. Thus, it can
be checked whether the magnetic field (galactic as well as intergalactic) suppresses
clustering on small scales.
Finally, we move on from autocorrelation to point source searches. We try to identify
a possible source candidate by looking at the positions of the found clusters. The
vicinity of the Centaurus A is of particular interest here.

7.1 Cut Parameters

The first cut removes bad periods from the data set. At these times, the data acquis-
ition was unstable and thus, a proper event reconstructions cannot be guaranteed.
In the end it is recommended to exclude three periods for anisotropy studies at the
highest energies which are listed in Tab. 7.1:

Furthermore, each event has to pass the complete trigger chain described in chapter
4.2.1. Only those fulfilling a 6T5 or a 5T5 trigger are allowed, i.e. the tank with the
strongest signal has to be surrounded by at least 5 operating detector stations. In
the following, only those events are considered which are well reconstructed and have
a zenith angle smaller than 60◦. Events with a larger value for θ are reconstructed in
a different way as mentioned before and until now the energy scales are not matched.
Therefore, an integration in the analysis could lead to questionable results. However,
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Table 7.1: Bad periods excluded from the used data set.

Begin End
Day Month Year Hour Minute Day Month Year Hour Minute
26 3 2005 18 15 6 4 2005 23 56
22 4 2005 0 0 2 5 2005 23 57
17 4 2009 0 0 6 6 2009 23 59

when this issue is resolved, it is worth to include these events due to a significant
increase of statistics of roughly 25 %.
Another important step is the energy cut. If the cut value is too low the signal will
overwhelmed by the isotropic contribution depending on the strength of the signal.
If it is too high the amount of events might be too small due to the steep energy
spectrum. One way to deal with this is to scan the data sets for the optimal radius
yielding the smallest probability for an agreement with the isotropic expectation. In
the context of the AGN correlation study an optimal value for the energy cut has
been found in this way. The best results were obtained for a lower energy limit of
Ecut = 55 EeV. However, a different analysis will usually end up with a different
value. The mentioned cuts are summarized in Tab. 7.2:

Table 7.2: Standard Quality cuts applied to data set

Trigger: 5T5 || 6T5
Reconstruction OK
Zenith Angle: θ < 60◦

7.2 High Energy Data Sets

Within the PAO two independent reconstruction frameworks exist (CDAS and Offline).
Each one yields a file containing all reconstructed events, which are called Herald
and Observer, respectively. These are used in the following. The first one is chosen
to be the basis for all anisotropy analyses at the highest energies, for instance in
the AGN correlation publications. However, we consider both to have an estimate
regarding systematic uncertainties caused by the reconstruction scheme.
As a start, we analyse the same data sets as used in the last publication on aniso-
tropy studies published by the PAO. Afterwards, the number of events is updated
until the 31st of October 2010 with the same cut parameters, since the list of bad
periods is missing for the time after. Both reconstructions are compared and the
resulting differences are discussed.
For the following analyses the considered data set is compared to 10,000 isotropic
sets of the same size, simulated according to the coverage of the PAO. It must be
noted that for the isotropic events only the arrival direction in equatorial coordinates
is simulated, i.e. neither an air shower nor a detector simulation is included. The
smearing of the original values according to the detector resolution can be neglected,
since a smeared isotropic distribution is equal to the non-smeared one.
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Regarding the data of the PAO, these events have passed through the complete
reconstruction chain and hence, the original values are already smeared.

7.2.1 Comparison with the result of the AGN correlation
study

The corresponding data set consists of 69 UHECRs fulfilling the cut mentioned
above including the cut on the energy. A correlation analysis of these events with
AGN of the VCV catalogue lead to a probability of 10−3 that the cosmic rays are
isotropically distributed on the sky.
Applying the Cluster Algorithm II with the maximal radius of 15◦ to this data set
we find an excess of clusters of the size seven, nine and ten (see top left panel of
Fig. 7.1) compared to 10,000 isotropically distributed sets. However, by looking at
the spread which is based on these sets, one can see that the data is well contained in
the expectation of isotropy. The corresponding weights marked as stars can be found
in the bottom left panel together with the expected density of isotropic clusters. The
weights are in agreement with the expectation from isotropy. The estimator of the
CA II is the Cluster Sum which is displayed in the bottom right panel of Fig. 7.1.
It exhibits no clear discrepancy between the isotropic expectation based on 10,000
sets (black histogram) and the value (red line) for the data. In the end, this yields
a probability of P = 0.04 for a Cluster Sum of 39.49. Thus, with the CA II no
deviation from the isotropic expectation could be found.

7.2.2 Current Data Set

The 55 EeV lower energy cut was appropriate for the AGN correlation analysis
which was found by a scan. Thus, a different study will in general have an optimal
value for Ecut differing from this one, i.e. the optimal energy cut yields the smallest
probability for an agreement between data and isotropy.
Instead of performing also a scan, we followed here the approach presented in [51].
In this context, the event set is increased in steps of 20 up to 100 events starting with
the 20 of the highest energy. The used parameters and the corresponding Cluster
Sum and probability can be found in Tab. 7.3.

Table 7.3: For different set sizes corresponding to different lower energy cuts, Ecut,
the Cluster Sum (CS) and corresponding probability (P) are given for the Herald.

N 20 40 60 80 100

Ecut [EeV] 76.61 66.32 60.67 55.44 52.12

CS 4.35 8.94 23.80 42.34 74.86

P 0.10 0.54 0.30 0.26 0.06

For all considered event sets, no deviation from isotropy is found. Although, for the
20 highest energetic events the probability is close to the P = 0.01. This could hint
towards a weak clustering signal in the data of the PAO. Future data will help to
answer the question if this is just a fluctuation or a true trend towards anisotropy.
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Figure 7.1: Presented are the results of the CA II applied to the 69 published high
energy events of the PAO which are compared to the results of 10,000 isotropic sets
of the same set size. Top Left Panel: The isotropic expectation of the Cluster Size
is shown in black and in red dashed the data with logarithmised y-axis. Top Right
Panel: The mean of the isotropic expectation of the Cluster Size is drawn in black,
in red dashed the data and in addition, in blue shade the density of the expected
spread for isotropic sets based on simulations. Bottom Left Panel: The blue shade
represents the density of the weights expected for isotropic sets and the stars mark
the calculated weights of the data set. Bottom Right Panel: The black distribution
corresponds to the Cluster Sum of the isotropic sets and the red line to the Cluster
Sum of the 69 events detected by the PAO leading to a probability of 0.04 that this
value is in agreement with isotropy.

7.2.2.1 Comparison between Herald and Observer

In the following, we compare the events sets provided by the two reconstruction
schemes. To this end, we consider the 100 of the highest energy events out of Herald
and Observer. A comparison on an event-by-event basis yields that only 88 events
have the same identification number while the remaining 12 are completely different.
This can be explained for example by a differing energy assignment to a certain event
(see below).
The differences in energy (∆E = (E(Herald) − E(Observer))/E(Herald)) and
arrival direction reconstruction (∆Ω) of shared events having an identical time stamp
are shown in Fig.7.2.
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Figure 7.2: Comparison of the two reconstruction algorithms in energy and arrival
direction for the 88 events of the highest energy. Left Panel: The mean difference
between Herald and Observer in the arrival direction is 0.2◦, i.e. well below the
angular resolution of the detector. Right Panel: Observer contains energies which
are on average 5 % smaller than those found in the Herald whereas the RMS is about
9 %.

The mean of both distributions is below the resolution of the detector, which is 1◦

on the reconstructed arrival direction and 10 % on energy (pure statistical error for
energies of E = 1019 eV):

∆Ω = 0.2◦,

∆E = 5%.

The resulting Cluster Sum for the Observer and Herald are displayed in Fig. 7.3
including the isotropic expectation. All calculated values for the Cluster Sum are
in good agreement with the Null hypothesis. The corresponding probabilities are
found in Fig. 7.4 as well as in Tab. 7.4 with further parameters, namely event size
and the corresponding energy.

Table 7.4: For different set sizes corresponding to different lower energy cuts, Ecut,
the Cluster Sum (CS) and corresponding probability (P) are given for the Observer.

N 20 40 60 80 100

Ecut [EeV] 79.45 67.80 61.42 56.08 51.03

CS 3.67 10.92 23.31 45.14 68.45

P 0.18 0.30 0.33 0.16 0.17

7.3 Low Energy Data Set

As discussed before one expects at lower energies that no anisotropy should be
present due to the stronger influence of the magnetic field, galactic as well as inter-
galactic. Hence, we tested this by analysing events with an energy larger than 3 EeV
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Figure 7.3: Displayed is the Cluster Sum of 10,000 isotropic sets in black for sets
sizes of 20, 40, 60, 80 and 100, from left to right and top to bottom. The red solid
line corresponds to the Herald and the blue dashed to the Observer.

surviving all cuts mentioned before. In addition, a different reference file for bad
periods is in use including even more time periods up to the 31st of October 2010
than the one given above. However, this can introduce a false large scale anisotropy
together with the geomagnetic field and the weather effect (as discussed in [48]).
These local effects can cause an anisotropy in the arrival directions in equatorial co-
ordinates due to their influence on the energy reconstruction. For a detailed study,
we refer to the Ph.D. thesis of M. Grigat.
This cross-check here is intended to take a first look at low energy data. Future
studies including the relevant effects will therefore change the below presented res-
ults.
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Figure 7.4: Probability of the data sets based on Herald (red, solid line) and
Observer (blue dashed line) for different sizes. The lines are only drawn to guide the
eye. For both schemes no significant deviation from isotropy is found.

For this analysis the Herald file is used, which yields more than 44,800 events. These
are split in sets containing 100 events each analysed with the CA II. In the left panel
of Fig. 7.5 the abundance of the Cluster Size normalised to one set is presented in
red for the data and in black for isotropy. The latter is again based on 10,000 sets. A
difference is visible in particular for high multiplicities, i.e. clusters containing more
than 10 events. This becomes even clearer by looking at the right panel of the same
Fig. where the ratio of the two histograms is shown.
However, the corresponding distributions of the Cluster Sum for isotropy (black) and
data (red) (cf. Fig. 7.6) show a similar behaviour. We applied a χ2-test to estimate
the comparability between these two distributions which resulted in:

χ2 = 51.24,

Ndof = 42 and

Probability = 15%.

Thus, no deviation from isotropy is found so far. However, a future study using the
Cluster Algorithm II, which accounts for local effects, could reveal an underlying
anisotropy.

7.4 Point Source Search

Although, the autocorrelation is a proper approach to search for anisotropies as
we have seen before, in the end one would like to identify the sources or at least
interesting regions. In this context, another advantage of the cluster algorithm
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Figure 7.5: Left Panel: Cluster Size distribution is displayed for the low energy
data set where the isotropic model corresponds to the black points and the data
to the red points. Both event sets are normalised to one set. Right Panel: The
corresponding ratio of both histograms, data divided by isotropy.
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Figure 7.6: In red the distribution of the Cluster Sum based on 448 low energy data
sets of the PAO containing 100 events each. Black symbols indicate the expected
distribution for isotropy. A comparison of both with a χ2 test yields a probability
of 15 %.



7.5. Summary 109

should be pointed out. It keeps the information about the position of the found
clusters which other methods cannot provide , e.g. the TwoPt.
In chapter 3 it has been discussed that especially one object might be responsible
for many UHECRs detected at Earth. Cen A has drawn much attention due to its
physical properties (distance to Earth, extended radio lobes) and the high amount
of events in its vicinity. Therefore, we study in the following the region around Cen
A. A first a posteriori analysis was performed in [25] (cf. Fig. 3.7) focusing on the
angular distance ΨCenA of the events towards Cen A.
This has, however, the disadvantage of including all events, i.e. also those isolated
and hence being most likely background.
Therefore, we include only clusters found by the CA II, their position and weight.
We analysed the 100 events of highest energy provided by the Herald. The resulting
histogram filled with the weight of the cluster at the corresponding distance (red,
dashed) can be seen in the top panel of Fig. 7.7 as well as the mean expectation
of 10,000 isotropic sets in black. A peak is visible around 40◦ corresponding to the
south pole where the exposure is the largest, leading in turn to a higher probability
of clusters of different sizes. For the largest distance the histograms have empty bins
since this represents regions on the sky which are not covered by the standard field
of view of the PAO.
While only a comparison with the mean distribution would lead to a clear statement
towards a deviation from isotropy we include the spread based on all sets leading
to the blue shaded area. This is again the density distribution for isotropy similar
to the one presented in the context of the introduction of the TwoPt correlation
function. To compare both distributions, we also adapted the estimator based on
the negative Log-likelihood and calculated its value for the 10,000 isotropic sets and
the data set (cf. bottom panel of Fig. 7.7). Only two sets give a larger value for the
estimator leading to a probability P = 2 · 10−4.
However, this is still no proof for Cen A to be the source of UHECRs. This very
region on the sky is very dense on objects and thus, all of them could be responsible
for the UHECRs. Furthermore, a strong directional magnetic field within or outside
our galaxy might focus the particles into that region on the sky.
It is again worth noting that this is an a posteriori analysis. To establish, however,
a true anisotropy in the direction of Cen A a prescription is needed for instance.

7.5 Summary

In this chapter the CA II has been applied to high energy as well as to the low energy
data set of the PAO. Both analysis yield an agreement with the isotropic expectation.
Although, the probability obtained by analysing the data set containing 100 events
might hint towards a clustering on small scales. It must be noted that for the
latter one no corrections were applied to the data set accounting for the influence
of weather and geomagnetic field effect. Hence, an analysis including these changes
could still find an anisotropy.
In addition, another advantage of the CA II has been used. In contrast to other
autocorrelation methods, the CA II keeps the information where the clusters are
located. Thus, the field of application can be extended to point source searches.
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Figure 7.7: Top Panel: Distance distribution of Clusters to Cen A. The histograms
are filled with the weight of the corresponding clusters. The mean expectation for
isotropy is shown in black and in blue shade the underlying density distribution.
The data is again displayed as the red and dashed line. Bottom Panel: In black the
resulting distribution of the negative Log-likelihood estimator for isotropy. The red
line corresponds to the result based on the 100 highest energetic events leading to a
probability of 2 · 10−4.
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Here, we have focused on Cen A, a very prominent source candidate for UHECRs.
However, this analysis was a posteriori and the calculated probability of 2 · 10−4 has
to be confirmed by future analyses.
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8. Conclusion & Outlook

In this work, recent results of the PAO have been presented including an anisotropy
study of the arrival direction of cosmic rays at the highest energies. In this context,
a correlation analysis with nearby AGN has been performed leading to a first estab-
lishment of anisotropy on the southern hemisphere.
In this work a different approach has been presented focusing on autocorrelation
methods as a tool to search for a deviation from the isotropic expectation. Three dif-
ferent algorithms have been introduced relying only on the angular distance between
two events Ωi,j. Each one of them is specialised for a certain kind of anisotropy. The
first one, a TwoPt correlation function, is a standard method and represents the
reference for all others. A first step towards a new method was to extend this known
one. While the original representation compares the distribution of solid angles
between all events of isotropy and the data set, the TwoPtPlus uses instead the
distribution of the two angular distances within the two angles in a reference spher-
ical coordinate system. This, however, leads to a dependence of the method on the
choice of it. In general, an infinite number of coordinate systems is available which
can be more or less motivated. e.g. the equatorial system which is the reference
coordinate system of the PAO and hence, the natural choice.
These methods consider the relations of all events independent of their angular
distance which might lead to a dilution of the signal by isotropy. To compensate
this effect we have adapted a concept out of graph theory, the Minimum Spanning
Tree (MST). Here only the closest events contribute forming a graph connecting all
events according to Prim’s algorithm without loops. In this way especially filament-
ary structures become visible on the sky map.
The third type of method, the cluster algorithm (CA), reduces not only the scale of
angular distances contributing to the estimator but also the number of events. A
maximal radius R is defined leading to pairs, triplets and so forth of events which
are closer to each other than R. Isolated events, however, are ignored since they
are most likely from isotropy. The weight of each cluster can be computed in two
different ways. While in the first (CA I), the angular distances within a cluster are
irrelevant leading to a weight equal to the number of events inside, in the second
case (CA II)the weight is calculated by means of a Gaussian with 3σ = R. In this
way also those clusters are suppressed where Ωi,j is close to R which is again very
typical for isotropy. The sum over all weights is then the Cluster sum the estimator
of both realisations.
In this thesis the mentioned methods have been tested on many types of anisotrop-
ies. To this end, several source scenarios have been simulated based on catalogues,
few isolated sources as well as on a small selection of large scale multipoles. We
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have varied the number of events, the contribution of the background (isotropy), the
smearing scale and smearing function. It is worth noting that this selection covered
only a small amount of possible theories and models.
A method has found a deviation from isotropy when the probability of a data set was
smaller than P = 0.01. In this context, we compared the methods among themselves
to find the one being most sensitive to the considered anisotropies.
In general, one could see for all methods that in increase in statistics leads to a
higher sensitivity. Regarding the catalogue-based as well as the few isolated sources,
the CA performs best especially for the second type which is expected due to its
design. However, by changing the smearing function from a Gaussian towards an
behaviour proportional to 1/Ω the sensitivity is reduced drastically.
For multipoles the results are ambivalent. No method gave the best results for all
types of simulated multipoles while the TwoPtPlus and TwoPt were more sensitive
than the others.
Averaging over all scenarios and set sizes the CAs gave in the end the best results.
The difference between both version was just of the order of 1 %. Furthermore, the
assumption that the TwoPtPlus might be better in its performance compared to
the TwoPt could not be confirmed. However, further tests with a different reference
coordinate system than the equatorial coordinate system will possibly change this
results. A good choice might be the supergalactic coordinate system. Of course, this
depends strongly on the type of anisotropy which is realised in nature.
The final decision was made based on the better performance of CA II on the cata-
logue based scenarios since these are encouraged by recent results of the PAO.
Finally, we applied CA II to the current data set of the PAO. In a first step the
events of the latest publication regarding the AGN correlation study are analysed to
compare the resulting probabilities. The CA II gave for the 69 events a probability
of 0.04 which might hint towards an underlying anisotropy but so far is still com-
patible with the Null hypothesis.
Afterwards, the data set was updates until the 31st of October 2010 and again ana-
lysed. The 20, 40, ..., 100 events of highest energies were processed showing for all
subsets an agreement with the isotropic expectations while for the 100 events (≈ 52
EeV) the lowest probability of a few percent was reached at a similar lower energy
threshold than for the catalogue-dependent study. By increasing the statistics even
more, this might lead to an establishment of anisotropy in the arrival directions of
UHECRs by means of autocorrelation methods.
Furthermore, the energy threshold has been lowered to 3 EeV where the PAO reaches
its full acceptance. The total amount of events was split in more than 400 sets con-
sisting of 100 events. The resulting distribution of the estimator of CA II was
compared again to the one based on the isotropic expectation by means of a χ2

test. In this first simple analysis no deviation could be found. A more detailed
study including local effects (geomagnetic field, weather corrections) could change
this result, because these effects cannot only cause an anisotropy but also obscure
it.
In the last step another advantage of the cluster algorithm has been used. It is
not only suited to detect a global anisotropy but cluster algorithm can also be used
in a search for sources of UHECRs since it keeps the position information of the
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found clusters. Here, only one possible source has been considered, Cen A. By many
theories it has been argued that this object is an excellent candidate to accelerate
UHECRs due to its vicinity and large jets. To this end, the cluster distributions
around Cen A has been compared to isotropy with a negative Loglikelihood yielding
a probability of 2 · 10−4. It must be noted that this is an a posteriori analysis and
future data is needed to confirm this number.
In sum, many aspects of anisotropies in the arrival directions of UHECRs detected
with the PAO have been examined:

1. Autocorrelation study at the highest energies;

2. Autocorrelation study of events above 3 EeV;

3. Point Source Seach.

While in the first two no clear signal could be found, in the third a strong deviation
has been discovered which, however, needs more statistics to establish this result.
In the future when more events are available above 50 EeV then the Cluster Al-
gorithm might be able not only to give hints towards anisotropy but depending on
the signal strength to determine the position of the sources of UHECR. A publica-
tion regarding the performance of the Cluster Algorithm will follow soon.
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A. Acronyms

A.1 List of abbreviations

AERA Auger Engineering Radio Array
AGN Active Galactic Nuclei
AIRES AIRshower Extended Simulations
AMIGA Auger Muon-detectors and Infill for the Ground Array
CA I Cluster Algorithm (unweighted)
CA II Cluster Algorithm (weighted)
CDAS Central Data Acquisition System
CMB Cosmic Microwave Background
CMS Compact Muon Solenoid
CORSIKA COsmic Ray SImulation for KAskade
CS Cluster Sum, estimator of CA I and CA II
EAS Extensive Air Shower
FADC Flash Analog Digital Converter
FD Fluorescence Detector
FLUKA FLUktuierende KAskade
GPS Global Positioning System
GRB Gamma-Ray Burst
GZK-cutoff Greisen-Zatsepin-Kuzmin-cutoff
HEAT High Elevation Auger Telescope
LEP Large Electron Positron storage ring
LDF Lateral Distribution Function
LHC Large Hadron Collider
MSSM Minimal SuperSymmetric Model
MST Minimum Spanning Tree
PBH Primordial Black-Hole
PMT Photomultiplier tube
QGS-Jet Quark-Gluon-String model with Jets
SD Surface Detector
SHDM Super Heavy Dark Matter
TwoPt 2-point-correlation funcion using the relative angular distance
TwoPtPlus 2-point-correlation funcion using the angular distance in each angle of the coordinate system
UHECR Ultra-High Energy Cosmic Ray
VEM Vertical Equivalent Muon
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B. Tilt Monitoring System

B.1 Calibration Constants (Tilt-Monitoring Setup)

For both axes of the sensors a polynomial of Ith order is used as calibration function
with the corresponding coefficients ai and the measured inclination αi.

CalibrationCurve: f(ai;α) =
n∑

i=1

ai · αi. (B.1)

We give here the calibration constants for the inclination sensor 143. In Tab. B.1
the coefficients are given for the x-axis and in Tab. B.2 for the y-axis, respectively.
Those for all other sensors can be found in the TILT-Monitoring manual.

Table B.1: Calibration constants for the x-axis of the inclination sensors.

Sensor No. a1 a2 a3 a4
143 0.987639 6.51049e-05 1.25916e-4 9.54672e-07

Sensor No. a5 a6 a7
143 -6.029e-07 -1.75768e-09 1.38511e-09

Table B.2: Calibration constants for the y-axis of the inclination sensors.

Sensor No. a1 a2 a3 a4
143 0.992402 -0.000824292 -7.79218e-06 1.44276e-05

Sensor No. a5 a6 a7
143 2.0425e-06 -1.00341e-07 -6.95069e-09
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B.2 Software Screenshots

The LabView program is arranged in four tabs displayed in Fig. B.1. The first one
(on the top left) shows the input variables required to start the program. Regarding
the distance sensors, the serial number of the µ-box as well as the firmware and
dll-version are needed. For the inclination sensors only their number, name and
the corresponding COM ports have to be put in. Afterwards, the program runs
by itself and needs in general no maintenance. The next tab on top handles the
communication with the monitoring database, i.e. the correct database is set and
the filling is turned on and off. Both screenshots on the bottom show the interactive
plotting of the program which can be turned on if required. While for the distance
sensors a relative plotting was chosen, absolute measurements are displayed for the
inclination sensors.
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Figure B.1: Displayed are the tabs of the monitoring software visible on the screen:
Top left: The system start up check. Top right: MySQL error tab. Bottom left:
Interactive Distance Measurements. Bottom right: Interactive Inclination Measure-
ments
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C. Significance Calculation

C.1 Significance Calculation in the case of com-

bined tests

In chapter 5 a realisation of the 2pt-Correlation Function is presented where two stat-
istical tests, namely the negative loglikelihood (LL) and the Kolmogorov-Smirnov
(KS) tests, are combined to evaluate the agreement between a Monte Carlo data
set and the H0-hypothesis. In the following we discuss the effect on the resulting
probability and how to handle the outcome.
In contrast to the example data set in chapter 5, we compare two independent iso-
tropic sets. The assumption is to obtain a flat probability distribution in the end
since both sets have the same origin. Note that, we consider isotropy on the com-
plete sphere without the PAO coverage.
First, each method is used separately on the test data sets giving a distribution for
LL and δKS as well as the corresponding probability. For the combination of both
tests, we demand that the reference sets have to exceed the values of both estimators
(cf. Fig. 5.5). The probability is then calculated by counting the number of reference
sets fulfilling this requirement. In contrast to a 1-dimensional test, several points in
the KS-LL plane can give the same small probability particularly for large values of
LL and/or δKS. In the top panel of Fig. C.1 a sketch of the probability calculation
is shown. Considering the coloured stars as the results of three isotropic sets which
are compared to the reference isotropic distribution in black. Each of the three sets
has a resulting probability of zero. On the other hand, the possibility to obtain a
large probability is reduced. Thus, the resulting probability is biased towards small
values as one can see in the left bottom panel of Fig. C.1.
To correct for this, we reuse the wrong probability distribution as a new estimator,
i.e. the fraction of reference sets providing an even smaller value for P gives the
true probability. In the right bottom panel the resulting distribution including a
polynomial fit of 0th order is shown. The probability that this function describes
the behaviour is 32 % with a χ2/Ndof = 21.42/19.
This approach can be adapted for any number of combined tests, e.g. the 2pt-
Correlation Function using two angles, the TwoPtPlus.
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Figure C.1: Top Panel: A sketch of the LL-KS plane is shown with the black stars
representing the isotropic reference distribution. The coloured stars represent three
isotropic test sets. Each one yields a probability of zero since no reference set exceeds
the values of both estimators. Thus, by combining these two tests the probability
is biased towards smaller values. Left Bottom Panel: Uncorrected Probability for
the Combination of KS and LL test for the 2pt correlation function. Right Bottom
Panel: The true probability distribution for the combination of both tests. It is flat
as expected for the case that two samples are compared having the same origin. The
polynomial fit gives a χ2/Ndof = 21.42/19 and a probability of 32 %.



D. Monte Carlo Maps

D.1 Produced Monte Carlo Maps

In chapter 6 a procedure has been discussed to generate Monte Carlo Sets based on
different source models. In this context a few maps have been presented as examples.
During this study, however, several more maps have been produced as mentioned in
that chapter.
Here, we give a more detailed view on those maps. The multipoles and the model
based on ellipses are excluded. Since all maps regarding multipoles are already
shown in the corresponding chapter and for the second one all maps would look like
isotropy due to the randomly distributed positions of the sources.
Maps based on catalogues
For both catalogues (VCV and IRAS) the same parameter sets have been used, i.e. a
smearing of either 3◦ or 6◦ and either a weighting of the sources according to their
distance or a flat distribution. In addition, the contribution of the isotropic back-
ground is varied between 0 % and 80 %.
In Fig. D.1 the resulting IRAS density maps are displayed. As expected, for the
weighted case with the smaller smearing angle, few sources are still visible even in
the presence of a large background. By enlarging the smearing angle as well as in-
creasing the number of possible sources, the substructures vanish and the maps are
nearly indistinguishable from pure isotropy by eye.
A similar behaviour is also observable for VCV MC maps (see Fig. D.2). How-
ever, due to the smaller number of objects (roughly a factor of 10) they are still
recognisable despite a large amount of background.

Maps based on radio loud galaxies
In addition to the catalogue based MC maps, we have also introduced a model based
on three radio loud galaxies, Cen A, Vir A and For A. In this context, two different
smearing algorithms, Gaussian and Inverse, and relative source strength scenarios
(A and S) have been applied to the three objects. All combinations for isotropic
contributions of 40 % and 80 % can be found in Fig. D.3.
As one can expect from the smearing functions, the sources are more extended in
the Gaussian case (top four hammer projections) than in the Inverse (lower four
hammer projections). Furthermore, the difference between S (first and third row)
and A (second and fourth row) is only visible for the Gaussian smearing.
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Figure D.1: MC maps based on the IRAS catalogue using different parameter sets.
On the left the pure contribution is shown, while on the right 80 % of the events are
contributed by isotropy. Top Panel: The smearing angle is 3◦ and the sources are
weighted accordingly to their distance. Upper Middle Panel: The smearing angle is
6◦ and the sources are weighted accordingly to their distance.Lower Middle Panel:
The smearing angle is 3◦ and the sources all have the same strength on Earth.
Bottom Panel: The smearing angle is 6◦ and the sources all have the same strength
on Earth.
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Figure D.2: MC maps based on the VCV catalogue using different parameter sets.
On the left the pure contribution is shown, while on the right 80 % of the events are
contributed by isotropy. Top Panel: The smearing angle is 3◦ and the sources are
weighted accordingly to their distance. Upper Middle Panel: The smearing angle is
6◦ and the sources are weighted accordingly to their distance.Lower Middle Panel:
The smearing angle is 3◦ and the sources all have the same strength on Earth.
Bottom Panel: The smearing angle is 6◦ and the sources all have the same strength
on Earth.
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Figure D.3: MC maps based on radio loud galaxies using different parameter
sets. On the left the isotropic contribution is 40 % and on the right 80 %. Top
Panel: The relative strength follows the prediction of model S with a Gaussian
smearing. Upper Middle Panel: The relative strength follows the prediction of model
A with a Gaussian smearing. Lower Middle Panel: The relative strength follows the
prediction of model S with an inverse smearing. Bottom Panel: The relative strength
follows the prediction of model A with an inverse smearing.



E. Optimal Radius of the Cluster
Algorithm

E.1 Dependence of the Cluster Algorithm on the

Radius

In contrast to the other methods presented the Cluster Algorithm has a free para-
meter, the maximal radius R. Three ways exist to handle it. The first one is to fix
it a priori motivated by reasonable models predicting a certain scale of deflections.
However, it is still unclear what the sources are and what the corresponding smear-
ing is. Thus, in the second approach a Monte Carlo study can be performed covering
many different models where several radii are tested to find out which one gives the
best results on average. The third one includes a scan on actual data, i.e. the radius
is optimized on a data set followed by a prescription. Further data will then answer
the question if this was the optimal choice and an anisotropy is still present at that
scale or if it was a fluctuation and nature differs from this.
We have decided to follow the second approach. The several Monte Carlo sets pro-
duced in chapter 6 are analysed with six different radii, 5◦ to 30◦ in steps of 5◦. As
a measure of the sensitivity we use the fraction of analysed sets having a probability
P < 0.01 for the unweighted (CA I) as well as the weighted algorithm (CA II).
The radius providing the best results will be presented again in chapter 6 and then
compared to the other methods.
Due to the vast amount of source scenarios considered we simplify it by averaging
over all set sizes which are between 20 and 100 to reduce the number of parameters
by one. However, there are still many parameters left and hence, it is impossible to
show a single histogram displaying all results. Therefore, the results are subdivided
so that one histogram can contain the results of more than one parameter set. For
every other plot only one parameter is changed, e.g. the smearing angle.
All shown histograms have two things in common, the x-axis gives the fraction of
isotropy to the total amount of events in one set in % and the y-axis corresponds to
the radius used.

Monte Carlo Maps based on catalogues
In Fig. E.1 the result are presented for all catalogue based maps which have been
analysed with CA I. Each of the displayed histograms is split in two whereas the left
side contains maps having a Gaussian smearing of 3◦ and the right one a smearing
of 6◦. The top row shows the results for the VCV weighted with distance (left) and
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Figure E.1: Displayed is the fraction of sets analysed with CA I giving a prob-
ability smaller than 0.01. The top row contains all VCV and the bottom one the
corresponding IRAS maps. The left columns represents a distance weighting accord-
ing to the redshift of the galaxies whereas in the right one each galaxy has the same
flux on Earth. On the x-axis of each histogram the contribution of isotropy in % is
given. In addition, the histogram is split in 2, the left half corresponds to a smearing
of 3◦ and the right one to 6◦.

unweighted (right). Accordingly, the bottom row gives the corresponding results for
the maps based on IRAS.
Since we are interested solely in the performance of the method depending on the
radius we focus on this parameter. Further discussion regarding the type of the map
and the corresponding sensitivity is carried out in chapter 6.
From the displayed maps one can conclude that in the case of a small amount of
isotropy and only a few sources the radius is not an important factor. However,
when increasing one of these two parameters it can be seen that a radius of 10◦−15◦

is favoured.
In case of the CA II (see Fig. E.2), however, this is not true. Only a minimal radius
is required. For all R larger than this value the fraction is nearly constant or only
decreasing slightly.

Monte Carlo Maps based on few sources
For this kind of anisotropy two different approaches have been chosen, a model based
on radio loud galaxies and one including ellipses at random positions in the field of
view of the PAO. The first model has three free parameters (strength, smearing and
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Figure E.2: Displayed is the fraction of sets analysed with CA II giving a prob-
ability smaller than 0.01. The top row contains all VCV maps and the bottom one
the corresponding IRAS maps. The left columns represents a distance weighting
according to the redshift of the galaxies whereas in the right one each galaxy has the
same flux on Earth. On the x-axis of each histogram the contribution of isotropy
in % is given. In addition, the histogram is split in 2, the left half corresponds to a
smearing of 3◦ and the right one to 6◦.

isotropic contribution), while the second one has only two (size of the ellipse and
isotropic contribution).
The strength corresponds to the column of the histograms in Fig. E.3, left model A,
right model S. Within each histogram a similar subdivision is made for the smearing,
left (Inverse) and right (Gaussian), which in turn is again subdivided corresponding
to the amount of isotropy in the data set. The top row corresponds to CA I and the
bottom row to CA II.
It is worth noting, that by changing the smearing function the sensitivity of both
variants drop drastically. In contrast to the Gaussian where nearly all sets have small
probabilities, just 40 % or less show a similar behaviour. In addition, the influence
of the increasing background isstronger leading to an insensitivity for contributions
of 60 % or larger. However, this effect is much weaker for the Gaussian smearing.
The sizes of the simulated ellipses are ((10◦, 10◦), (15◦, 5◦), (20◦, 10◦)) and corres-
pond to three parts in each histogram in Fig. E.4 (the left one corresponds to CA
I and the right to CA II) which are divided in the same way corresponding to their
isotropic contribution.
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Figure E.3: Fraction of sets based on radio loud galaxies giving a probability
smaller than 0.01 depending on radius. Each histogram is divided into two halves,
inverse smearing on the left and Gaussian on the right. The strength model A
corresponds to the left column of histograms and the right to model S. The isotropic
contribution is given on x-axis in %. Top Panel: Sets analysed with CA I. Bottom
Panel: Sets analysed with CA II.

Regarding this model, both variants behave as expected. By increasing the back-
ground the sensitivity is weakened whereupon the influence of the size of the ellipses
is negligible.
Furthermore, the observed behaviour regarding the dependency on the radius found
in the catalogue based maps can be confirmed here for both source models.

Monte Carlo Maps based on multipoles
Due to the design of the methods, one expects that they should be rather insensitive
to this kind of anisotropy: particularly at small radii a multipole looks very similar
to isotropy. However, by increasing the radius one should be able to see some of the
multipoles depending on how strong and located the maxima are.
The results for the analysed multipole sets are displayed in Fig. E.5 (CA I the left
histograms and CA II the right one with the type of the dipole on the x-axis). For
both methods the results are very similar.
A remarkable sensitivity is reached for the dipole in x direction as well as for the
quadrupole in x and z direction, respectively.
With the density maps presented in chapter 6 (cf. Fig. 6.8) this result can be ex-
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Figure E.4: Fraction of sets based on ellipses giving a probability smaller than 0.01
depending on radius. Each histogram is divided in three parts, the left corresponds
to a long axis of 10◦, the middle to 15◦ and the right to 20◦. Each of these is again
divided corresponding to the contribution of isotropy. Left Panel: Sets analysed
with CA I. Right Panel: Sets analysed with CA II.
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Figure E.5: Fraction of sets based on multipoles giving a probability smaller than
0.01 depending on radius. Left Panel: Sets analysed with CA I. Right Panel: Sets
analysed with CA II.

plained: Only those maps showing areas of clear overabundance of events can give
rise to significant contributions to the Cluster Sum. This is particularly visible for
the quadrupole in z direction which gives indeed the best results. The others are to
close to isotropy in shape and structure and thus, they are not recognized.

E.1.1 Summary

For each radius the amount of sets giving a probability smaller than 0.01 has been
calculated and the results are shown in Tab. E.1. Since, CA I as well as CA II are
not designed to be sensitive to multipoles (MP) also the result excluding these maps
is given.

As a comparison we also give the result for a fixed event set size of 100 in Tab. E.2
to check if an averaging over all set sizes leads to a domination of the results by
small sets.
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Table E.1: Given are the overall fraction of sets having probabilities below 0.01 for
all sizes (20 to 100 in steps of 20). Due to the know insensitivity of both algorithms
to multipoles (MP), results with and without including multipoles are presented.

Method Fraction of sets below P = 0.01 for different R
5◦ 10◦ 15◦ 20◦ 25◦ 30◦

CA I (w/ MP) 0.386623 0.481698 0.510503 0.505536 0.479242 0.44943
CA II (w/ MP) 0.337495 0.451382 0.503315 0.526434 0.537056 0.54024
CA I (w/o MP) 0.474711 0.562559 0.579351 0.560455 0.51989 0.47781
CA II (w/o MP) 0.425093 0.546661 0.593718 0.609283 0.612353 0.608199

Table E.2: Given are the overall fraction of sets having probabilities below 0.01 for
all a set size of 100. Due to the know insensitivity of both algorithms to multipoles
(MP), results with and without including multipoles are presented.

Method Fraction of sets below P = 0.01 for different R
5◦ 10◦ 15◦ 20◦ 25◦ 30◦

CA I (w/ MP) 0.553474 0.653161 0.674742 0.660188 0.639066 0.599708
CA II (w/ MP) 0.501151 0.621098 0.662995 0.681002 0.687854 0.691335
CA I (w/o MP) 0.661437 0.742859 0.751172 0.725079 0.690105 0.638205
CA II (w/o MP) 0.619391 0.732125 0.761087 0.768158 0.767022 0.763969

It is worth noting that for CA I and CA II the results are nearly the same consid-
ering all set sizes as well as only the one containing 100 events. The largest value is
obtained for a radius R = 15◦ followed by R= 10◦ (CA I) and R = 20◦ followed by
R= 15◦ (CA II) independent of the choice to include or exclude the maps based on
multipoles. Since the difference in both cases is only of the order of 2-4 % and due
to simplicity we keep only one radius for both methods, R = 15◦.
However, this result is biased of course by the arbitrary choice of MC maps con-
sidered. Note that a different optimal radius would be chosen in the end when
used only those based on multipoles. As an alternative we consider a formula 6.5
presented in chapter 6 which gives the smearing scale based on assumptions and/or
measurements of distance of the source, the charge of the primary particle, inter-
galactic B-field and its coherence length. In this context a maximal radius of 10◦

was emphasized using a strength of the magnetic field to be a factor two larger than
recent measurements which leads in turn to a decrease of the smearing by a factor
of two. If this is the true average smearing then the optimal radius of CA I would
be 5◦ or 10◦ whereas for CA II this only sets the minimal appropriate radius. From
the MC study we see that afterwards the sensitivity only varies slightly. Hence, we
accept the optimal radius found in this MC study and use it to compare CA I as
well as CA II to the other methods.



F. Results of the Monte Carlo
Study

In chapter 6 many different source models have been simulated and analysed whereas
only those results are given being averaged over all set sizes (20, 40, ..., 100). Here,
we now list in more detail the results of the MC study. The tables are ordered accord-
ing to the introduction of the models; starting with the catalogue based scenarios
followed by the single source models and ending with the multipoles.

F.1 Maps based on catalogues

From Tab. F.1 and F.2 one can see that in the case of a pure contribution from a
few strong galaxies already 20 events are enough to discover the anisotropic distri-
bution of arrival directions of cosmic rays. By increasing the fraction of the isotropic
background to values of 40 % or even more the signal is diluted and only 50 % of
all sets are still recognized.
Considering the development of the power of the methods for larger event set sizes
one can see that for 100 events the ability to find an anisotropic signal has increased
as expected. All methods are nearly on the same level, only the MST shows a bit
earlier a weakening of its power when adding more isotropically distributed events.
The TwoPt correlation functions as well as the cluster algorithms are still properly
working in the presence of 80 % background.
However, this result is weakened if the number of sources contributing in the same
way, i.e. having the same strength on Earth, is enlarged. Only the CA II is still
above 90 % for an isotropic background of 20 % in the case of 100 events. The
others are below this value and drop including the CA II to the percent level when
the signal is of the order of 20 %.
If we can be sure that the signal should look like anything covered by these models,
then the CA II gives the best results averaged over all parameter sets.
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Table F.1: Presented are the fractions of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 for a set size of 20.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.90 0.54 0.21 0.07 0.02 0.84 0.46 0.18 0.05 0.02
TwoPt 0.98 0.84 0.54 0.20 0.03 0.95 0.75 0.40 0.13 0.02

TwoPtPlus 0.85 0.56 0.27 0.08 0.02 0.72 0.40 0.17 0.05 0.01
CA I 0.98 0.82 0.50 0.18 0.03 0.98 0.81 0.49 0.17 0.03
CA II 1.00 0.97 0.81 0.47 0.11 0.98 0.88 0.62 0.28 0.05

Table F.2: Presented are the fractions of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 for a set size of 20.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.90 0.52 0.20 0.05 0.01 0.86 0.46 0.17 0.05 0.01
TwoPt 0.96 0.72 0.36 0.11 0.02 0.91 0.60 0.27 0.07 0.02

TwoPtPlus 0.86 0.51 0.20 0.05 0.01 0.78 0.42 0.15 0.04 0.01
CA I 0.96 0.71 0.37 0.11 0.02 0.95 0.71 0.35 0.10 0.02
CA II 0.99 0.90 0.62 0.27 0.05 0.95 0.75 0.43 0.15 0.03

Table F.3: Presented are the fractions of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 for a set size of 40.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 0.93 0.60 0.19 0.03 1.00 0.89 0.49 0.13 0.03
TwoPt 1.00 0.99 0.84 0.39 0.05 1.00 0.98 0.75 0.27 0.03

TwoPtPlus 1.00 0.97 0.72 0.27 0.04 1.00 0.91 0.55 0.17 0.03
CA I 1.00 1.00 0.89 0.46 0.07 1.00 1.00 0.89 0.46 0.07
CA II 1.00 1.00 0.99 0.84 0.26 1.00 1.00 0.95 0.64 0.13
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Table F.4: Presented are the fractions of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 for a set size of 40.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 0.91 0.53 0.14 0.02 1.00 0.86 0.43 0.11 0.02
TwoPt 1.00 0.98 0.72 0.24 0.03 1.00 0.95 0.60 0.16 0.02

TwoPtPlus 1.00 0.98 0.73 0.25 0.03 1.00 0.96 0.64 0.19 0.03
CA I 1.00 0.99 0.80 0.30 0.04 1.00 0.99 0.77 0.27 0.04
CA II 1.00 1.00 0.97 0.62 0.11 1.00 0.99 0.86 0.40 0.06

Table F.5: Presented are the fractions of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 for a set size of 60.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 1.00 0.83 0.35 0.05 1.00 0.99 0.74 0.27 0.04
TwoPt 1.00 1.00 0.94 0.51 0.06 1.00 1.00 0.90 0.41 0.04

TwoPtPlus 1.00 1.00 0.93 0.50 0.07 1.00 0.99 0.84 0.34 0.05
CA I 1.00 1.00 0.99 0.73 0.14 1.00 1.00 0.99 0.73 0.13
CA II 1.00 1.00 1.00 0.96 0.43 1.00 1.00 1.00 0.86 0.23

Table F.6: Presented are the fractions of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 for a set size of 60.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 0.99 0.79 0.28 0.04 1.00 0.98 0.67 0.20 0.03
TwoPt 1.00 1.00 0.88 0.37 0.04 1.00 0.99 0.81 0.27 0.03

TwoPtPlus 1.00 1.00 0.93 0.45 0.05 1.00 1.00 0.88 0.38 0.04
CA I 1.00 1.00 0.97 0.57 0.07 1.00 1.00 0.96 0.54 0.06
CA II 1.00 1.00 1.00 0.86 0.19 1.00 1.00 0.98 0.65 0.09
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Table F.7: Presented are the fractions of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 for a set size of 80.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 1.00 0.94 0.50 0.08 1.00 1.00 0.87 0.37 0.05
TwoPt 1.00 1.00 0.98 0.57 0.06 1.00 1.00 0.94 0.45 0.04

TwoPtPlus 1.00 1.00 0.98 0.66 0.10 1.00 1.00 0.94 0.49 0.07
CA I 1.00 1.00 1.00 0.89 0.20 1.00 1.00 1.00 0.88 0.20
CA II 1.00 1.00 1.00 0.99 0.59 1.00 1.00 1.00 0.96 0.35

Table F.8: Presented are the fractions of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 for a set size of 80.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 1.00 0.92 0.42 0.05 1.00 1.00 0.83 0.29 0.04
TwoPt 1.00 1.00 0.94 0.41 0.04 1.00 1.00 0.89 0.33 0.03

TwoPtPlus 1.00 1.00 0.98 0.62 0.08 1.00 1.00 0.97 0.54 0.06
CA I 1.00 1.00 1.00 0.75 0.11 1.00 1.00 0.99 0.73 0.10
CA II 1.00 1.00 1.00 0.96 0.30 1.00 1.00 1.00 0.84 0.16

Table F.9: Presented are the fractions of sets based on the IRAS with distance
weighting giving a probability smaller than 0.01 for a set size of 100.

IRAS with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 1.00 0.99 0.63 0.10 1.00 1.00 0.94 0.48 0.06
TwoPt 1.00 1.00 0.99 0.67 0.07 1.00 1.00 0.98 0.56 0.04

TwoPtPlus 1.00 1.00 1.00 0.82 0.13 1.00 1.00 0.99 0.66 0.08
CA I 1.00 1.00 1.00 0.97 0.26 1.00 1.00 1.00 0.95 0.25
CA II 1.00 1.00 1.00 1.00 0.69 1.00 1.00 1.00 0.99 0.44
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Table F.10: Presented are the fractions of sets based on the VCV with distance
weighting giving a probability smaller than 0.01 for a set size of 100.

VCV with distance weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 1.00 0.98 0.56 0.07 1.00 1.00 0.92 0.39 0.04
TwoPt 1.00 1.00 0.98 0.53 0.05 1.00 1.00 0.96 0.44 0.04

TwoPtPlus 1.00 1.00 1.00 0.80 0.11 1.00 1.00 1.00 0.73 0.09
CA I 1.00 1.00 1.00 0.86 0.12 1.00 1.00 1.00 0.84 0.12
CA II 1.00 1.00 1.00 0.99 0.37 1.00 1.00 1.00 0.93 0.20

Table F.11: Presented are the fractions of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 for a set size of 20.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.05 0.03 0.02 0.01 0.01 0.05 0.03 0.02 0.01 0.01
TwoPt 0.04 0.03 0.01 0.01 0.01 0.03 0.02 0.02 0.01 0.01

TwoPtPlus 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
CA I 0.09 0.05 0.03 0.01 0.01 0.08 0.04 0.02 0.01 0.01
CA II 0.10 0.06 0.03 0.02 0.01 0.08 0.04 0.03 0.02 0.01

Table F.12: Presented are the fractions of sets based on the VCV with a flat
weighting giving a probability smaller than 0.01 for a set size of 20.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.10 0.04 0.02 0.01 0.01 0.09 0.04 0.02 0.01 0.01
TwoPt 0.24 0.13 0.06 0.02 0.01 0.21 0.11 0.05 0.02 0.01

TwoPtPlus 0.05 0.02 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01
CA I 0.17 0.08 0.04 0.01 0.01 0.14 0.07 0.03 0.01 0.01
CA II 0.23 0.12 0.06 0.02 0.01 0.14 0.08 0.04 0.02 0.01
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Table F.13: Presented are the fractions of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 for a set size of 40.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.24 0.10 0.04 0.02 0.01 0.20 0.08 0.04 0.02 0.01
TwoPt 0.08 0.03 0.02 0.01 0.01 0.07 0.03 0.02 0.01 0.01

TwoPtPlus 0.06 0.03 0.02 0.01 0.01 0.05 0.03 0.02 0.01 0.01
CA I 0.30 0.14 0.05 0.02 0.01 0.26 0.12 0.05 0.02 0.01
CA II 0.32 0.16 0.07 0.03 0.01 0.22 0.11 0.05 0.03 0.01

Table F.14: Presented are the fractions of sets based on the VCV with a flat
weighting giving a probability smaller than 0.01 for a set size of 40.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.47 0.17 0.06 0.02 0.01 0.39 0.14 0.04 0.02 0.01
TwoPt 0.57 0.29 0.11 0.03 0.01 0.51 0.25 0.09 0.03 0.01

TwoPtPlus 0.30 0.13 0.05 0.02 0.01 0.26 0.12 0.04 0.01 0.01
CA I 0.52 0.23 0.08 0.03 0.01 0.46 0.20 0.07 0.01 0.01
CA II 0.68 0.37 0.15 0.04 0.01 0.46 0.22 0.08 0.03 0.01

Table F.15: Presented are the fractions of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 for a set size of 60.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.51 0.21 0.08 0.03 0.01 0.42 0.17 0.06 0.02 0.01
TwoPt 0.15 0.05 0.02 0.01 0.01 0.11 0.04 0.01 0.01 0.01

TwoPtPlus 0.13 0.07 0.04 0.02 0.01 0.11 0.06 0.03 0.02 0.01
CA I 0.60 0.29 0.11 0.04 0.02 0.54 0.26 0.10 0.04 0.01
CA II 0.60 0.30 0.12 0.04 0.02 0.45 0.22 0.08 0.03 0.01
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Table F.16: Presented are the fractions of sets based on the VCV with a flat
weighting giving a probability smaller than 0.01 for a set size of 60.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.83 0.39 0.12 0.03 0.01 0.71 0.29 0.09 0.02 0.01
TwoPt 0.81 0.46 0.17 0.04 0.01 0.75 0.41 0.15 0.04 0.02

TwoPtPlus 0.57 0.28 0.10 0.03 0.01 0.50 0.24 0.09 0.03 0.01
CA I 0.85 0.48 0.17 0.04 0.01 0.79 0.42 0.15 0.04 0.01
CA II 0.94 0.66 0.28 0.07 0.01 0.78 0.43 0.16 0.04 0.01

Table F.17: Presented are the fractions of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 for a set size of 80.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.77 0.34 0.11 0.03 0.01 0.64 0.26 0.09 0.03 0.01
TwoPt 0.18 0.06 0.02 0.01 0.01 0.13 0.05 0.012 0.01 0.01

TwoPtPlus 0.22 0.10 0.05 0.02 0.01 0.19 0.09 0.04 0.02 0.01
CA I 0.83 0.47 0.20 0.05 0.01 0.75 0.40 0.15 0.05 0.02
CA II 0.85 0.53 0.21 0.06 0.02 0.70 0.36 0.14 0.04 0.02

Table F.18: Presented are the fractions of sets based on the VCV with a flat
weighting giving a probability smaller than 0.01 for a set size of 80.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.98 0.62 0.21 0.05 0.01 0.91 0.47 0.14 0.03 0.01
TwoPt 0.92 0.60 0.23 0.05 0.01 0.88 0.54 0.19 0.05 0.01

TwoPtPlus 0.78 0.44 0.17 0.05 0.02 0.72 0.39 0.14 0.04 0.02
CA I 0.97 0.69 0.28 0.06 0.01 0.94 0.62 0.24 0.05 0.01
CA II 1.00 0.88 0.45 0.11 0.02 0.95 0.66 0.27 0.06 0.01
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Table F.19: Presented are the fractions of sets based on the IRAS with a flat
weighting giving a probability smaller than 0.01 for a set size of 100.

IRAS with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 0.92 0.47 0.14 0.04 0.01 0.80 0.35 0.12 0.04 0.01
TwoPt 0.26 0.09 0.03 0.01 0.01 0.19 0.07 0.03 0.02 0.01

TwoPtPlus 0.35 0.17 0.05 0.02 0.01 0.32 0.14 0.05 0.02 0.01
CA I 0.92 0.59 0.22 0.06 0.01 0.87 0.51 0.19 0.05 0.02
CA II 0.95 0.67 0.28 0.07 0.02 0.83 0.49 0.19 0.05 0.01
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Table F.20: Presented are the fractions of sets based on the VCV with a flat
weighting giving a probability smaller than 0.01 for a set size of 100.

VCV with flat weighting
Smearing 3◦ 6◦

Isotropy [%] 0 20 40 60 80 0 20 40 60 80

MST 1.00 0.79 0.31 0.07 0.01 0.98 0.62 0.21 0.04 0.01
TwoPt 0.97 0.76 0.33 0.08 0.02 0.96 0.69 0.27 0.07 0.02

TwoPtPlus 0.94 0.65 0.27 0.06 0.02 0.90 0.59 0.23 0.05 0.01
CA I 0.99 0.82 0.36 0.07 0.01 0.98 0.76 0.30 0.05 0.01
CA II 1.00 0.96 0.60 0.15 0.02 0.99 0.81 0.36 0.08 0.02

F.2 Maps based on single sources

Considering this type of maps one assumes that by design the CA should be the
most sensitive method. Since, the shape of the event distribution and the number of
sources matches perfectly the incorporated assumptions. The corresponding tables
are Tab. F.21-F.35.
Radio loud galaxies
Although, this is true for the model using a Gaussian smearing for the radio loud
galaxies, a change of the distribution function towards the Inverse smearing leads
to a drastic drop in sensitivity which only increases up to values of 50 % with the
smallest background for strength model A. In the case of model S where the fraction
coming from Cen A is further enhanced towards roughly 70 %.
The other methods, especially the TwoPtPlus, show a comparable behaviour only
slightly worse in sensitivity. Consequently, a single source whose cosmic rays are
smeared with a Gaussian can definitely be identified for a small number of events.
And for an even larger background this can be achieved at 100 events.
Furthermore, a change in the deflection function leading to a distribution around a
source following the Inverse model will cause a loss in performance for all methods.
Ellipse model
However, a flat distribution around a source has no significant effect on the sensitivity
of the CA. At a size of 100 events all simulated event sets are identified when
compared to the isotropic expectations in case of a low background. When increasing
it only the CA is as good as before while MST, TwoPt and TwoPtPlus show worse
behaviour which is expected due to the strong influence of isotropically distributed
events.

F.3 Maps based on multipoles

The last type of MC maps produced are those based on multipoles (see Tab. F.36-
F.40). From the shape of these one can argue that the TwoPt and MST methods
should be more sensitive than the cluster algorithms. They take into account the
complete available sky whereas the CA focuses on angular scales well below the size
of considered multipoles.
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Table F.21: Presented are the fractions of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 for a set size of 20.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.70 0.24 0.05 0.81 0.31 0.05
TwoPt 0.99 0.52 0.03 1.00 0.65 0.04

TwoPtPlus 0.89 0.25 0.02 0.96 0.32 0.02
CA I 1.00 0.85 0.10 1.00 0.94 0.12
CA II 0.99 0.79 0.11 1.00 0.88 0.13

Table F.22: Presented are the fractions of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 for a set size of 20.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.05 0.03 0.01 0.07 0.03 0.01
TwoPt 0.06 0.02 0.01 0.07 0.03 0.01

TwoPtPlus 0.02 0.01 0.01 0.03 0.01 0.01
CA I 0.06 0.03 0.01 0.09 0.03 0.01
CA II 0.06 0.03 0.01 0.08 0.03 0.01

Table F.23: Presented are the fractions of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 for a set size of 40.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.95 0.46 0.07 0.99 0.58 0.10
TwoPt 1.00 0.94 0.11 1 0.99 0.14

TwoPtPlus 1.00 0.93 0.10 1 0.96 0.11
CA I 1.00 1.00 0.45 1.00 1.00 0.56
CA II 1.00 1.00 0.44 1.00 1.00 0.54

However, as can be seen from the corresponding tables the quadrupole in z direction
forms a exception to this assumptions. It shows an enhanced sensitivity for all
methods. This can be explained by its shape which includes several well separated
maxima which can be found e.g. by the CA especially for larger radii.
In addition, for the TwoPt functions further types like the dipole in z direction can
be clearly identified for 100 events in a set.
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Table F.24: Presented are the fractions of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 for a set size of 40.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.07 0.03 0.01 0.10 0.04 0.02
TwoPt 0.13 0.04 0.01 0.19 0.06 0.02

TwoPtPlus 0.12 0.03 0.01 0.14 0.04 0.01
CA I 0.16 0.05 0.02 0.24 0.08 0.02
CA II 0.15 0.05 0.02 0.22 0.08 0.02

Table F.25: Presented are the fractions of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 for a set size of 60.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.99 0.67 0.11 1.00 0.78 0.14
TwoPt 1.00 0.99 0.19 1.00 1.00 0.26

TwoPtPlus 1.00 1.00 0.24 1 1.00 0.28
CA I 1.00 1.00 0.81 1.00 1.00 0.91
CA II 1.00 1.00 0.75 1.00 1.00 0.86

Table F.26: Presented are the fractions of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 for a set size of 60.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.09 0.04 0.02 0.13 0.05 0.02
TwoPt 0.21 0.06 0.02 0.33 0.10 0.02

TwoPtPlus 0.23 0.06 0.02 0.28 0.08 0.02
CA I 0.32 0.11 0.02 0.46 0.16 0.03
CA II 0.27 0.09 0.02 0.39 0.14 0.03
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Table F.27: Presented are the fractions of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 for a set size of 80.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 1.00 0.81 0.14 1 0.89 0.19
TwoPt 1.00 1.00 0.26 1.00 1.00 0.36

TwoPtPlus 1.00 1.00 0.41 1.00 1.00 0.48
CA I 1.00 1.00 0.95 1.00 1.00 0.99
CA II 1.00 1.00 0.93 1.00 1.00 0.98

Table F.28: Presented are the fractions of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 for a set size of 80.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.11 0.04 0.02 0.17 0.06 0.02
TwoPt 0.29 0.09 0.02 0.45 0.13 0.03

TwoPtPlus 0.41 0.12 0.02 0.46 0.14 0.03
CA I 0.48 0.17 0.03 0.65 0.25 0.04
CA II 0.42 0.15 0.03 0.57 0.22 0.04

Table F.29: Presented are the fractions of sets based on the radio loud galaxies
with a Gaussian smearing giving a probability smaller than 0.01 for a set size of 100.

Radio loud galaxies with a Gaussian smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 1.00 0.88 0.18 1.00 0.95 0.24
TwoPt 1.00 1.00 0.35 1.00 1.00 0.47

TwoPtPlus 1.00 1.00 0.61 1.00 1.00 0.68
CA I 1.00 1.00 0.99 1.00 1.00 1.00
CA II 1.00 1.00 0.98 1.00 1.00 1.00
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Table F.30: Presented are the fractions of sets based on the radio loud galaxies
with an Inverse smearing giving a probability smaller than 0.01 for a set size of 100.

Radio loud galaxies with an Inverse smearing
strength model A S

Isotropy [%] 40 60 80 40 60 80

MST 0.13 0.05 0.02 0.20 0.08 0.02
TwoPt 0.39 0.11 0.02 0.56 0.18 0.03

TwoPtPlus 0.55 0.16 0.03 0.61 0.20 0.03
CA I 0.60 0.22 0.04 0.77 0.33 0.05
CA II 0.53 0.19 0.04 0.70 0.29 0.04

Table F.31: Presented are the fractions of sets based on the Ellipse giving a
probability smaller than 0.01 for a set size of 20.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 0.35 0.14 0.04 0.44 0.18 0.04 0.38 0.14 0.04
TwoPt 0.15 0.06 0.03 0.24 0.10 0.03 0.23 0.09 0.02

TwoPtPlus 0.09 0.04 0.01 0.13 0.05 0.02 0.09 0.03 0.01
CA I 0.44 0.18 0.05 0.50 0.21 0.05 0.33 0.13 0.04
CA II 0.34 0.16 0.05 0.55 0.27 0.08 0.20 0.10 0.04

Table F.32: Presented are the fractions of sets based on the Ellipse giving a
probability smaller than 0.01 for a set size of 40.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 0.89 0.42 0.09 0.94 0.51 0.10 0.81 0.35 0.07
TwoPt 0.74 0.35 0.07 0.88 0.49 0.10 0.74 0.35 0.07

TwoPtPlus 0.53 0.26 0.06 0.62 0.31 0.07 0.42 0.18 0.05
CA I 1.00 0.84 0.28 1.00 0.87 0.30 0.94 0.64 0.18
CA II 1.00 0.87 0.34 1.00 0.99 0.57 0.87 0.56 0.17
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Table F.33: Presented are the fractions of sets based on the Ellipse giving a
probability smaller than 0.01 for a set size of 60.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 0.99 0.70 0.15 1.00 0.78 0.18 0.97 0.57 0.13
TwoPt 0.96 0.67 0.15 0.98 0.79 0.21 0.95 0.63 0.14

TwoPtPlus 0.84 0.58 0.17 0.91 0.68 0.20 0.74 0.43 0.12
CA I 1.00 1.00 0.68 1.00 1.00 0.73 1.00 0.95 0.47
CA II 1.00 1.00 0.74 1.00 1.00 0.93 1.00 0.91 0.41

Table F.34: Presented are the fractions of sets based on the Ellipse giving a
probability smaller than 0.01 for a set size of 80.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 1.00 0.85 0.22 1 0.92 0.26 0.99 0.73 0.16
TwoPt 0.99 0.81 0.24 1.00 0.88 0.30 0.99 0.79 0.22

TwoPtPlus 0.95 0.79 0.33 0.98 0.86 0.38 0.88 0.64 0.24
CA I 1.00 1.00 0.93 1.00 1.00 0.95 1.00 1.00 0.73
CA II 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.99 0.68

Table F.35: Presented are the fractions of sets based on the Ellipse giving a
probability smaller than 0.01 for a set size of 100.

Ellipses with dimensions
Axes 10◦, 10◦ 15◦, 5◦ 20◦, 10◦

Isotropy [%] 40 60 80 40 60 80 40 60 80

MST 1.00 0.92 0.27 1.00 0.96 0.33 1.00 0.81 0.21
TwoPt 0.99 0.87 0.33 1.00 0.92 0.38 1.00 0.87 0.30

TwoPtPlus 0.98 0.89 0.48 1.00 0.94 0.56 0.95 0.77 0.35
CA I 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.88
CA II 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84

Table F.36: Presented are the fractions of sets based on multipoles giving a
probability smaller than 0.01 for a set size of 20.

Multipole Dipole Quadrupole Octupole
Direction X Z X Z X Z

MST 0.10 0.01 0.05 0.83 0.02 0.02
TwoPt 0.09 0.38 0.63 0.93 0.01 0.01

TwoPtPlus 0.07 0.06 0.24 0.15 0.01 0.05
CA I 0.05 0.01 0.10 0.44 0.02 0.02
CA II 0.03 0.01 0.06 0.21 0.02 0.01
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Table F.37: Presented are the fractions of sets based on multipoles giving a
probability smaller than 0.01 for a set size of 40.

Multipole Dipole Quadrupole Octupole
Direction X Z X Z X Z

MST 0.18 0.01 0.26 0.97 0.03 0.05
TwoPt 0.27 0.88 0.96 1.00 0.02 0.02

TwoPtPlus 0.49 0.14 0.88 0.43 0.02 0.16
CA I 0.12 0.01 0.29 0.95 0.03 0.03
CA II 0.07 0.01 0.16 0.71 0.03 0.03
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Table F.38: Presented are the fractions of sets based on multipoles giving a
probability smaller than 0.01 for a set size of 60.

Multipole Dipole Quadrupole Octupole
Direction X Z X Z X Z

MST 0.28 0.01 0.53 0.99 0.05 0.08
TwoPt 0.47 0.99 1.00 1 0.02 0.05

TwoPtPlus 0.72 0.36 1.00 0.81 0.04 0.43
CA I 0.25 0.01 0.61 1.00 0.06 0.05
CA II 0.12 0.01 0.34 0.96 0.04 0.03

Table F.39: Presented are the fractions of sets based on multipoles giving a
probability smaller than 0.01 for a set size of 80.

Multipole Dipole Quadrupole Octupole
Direction X Z X Z X Z

MST 0.36 0.01 0.72 1.00 0.07 0.12
TwoPt 0.63 1.00 1.00 1.00 0.03 0.07

TwoPtPlus 0.94 0.63 1.00 0.96 0.06 0.69
CA I 0.41 0.01 0.83 1.00 0.09 0.08
CA II 0.22 0.01 0.58 1.00 0.06 0.05

Table F.40: Presented are the fractions of sets based on multipoles giving a
probability smaller than 0.01 for a set size of 100.

Multipole Dipole Quadrupole Octupole
Direction X Z X Z X Z

MST 0.43 0.01 0.85 1.00 0.08 0.14
TwoPt 0.75 1.00 1.00 1.00 0.04 0.13

TwoPtPlus 0.99 0.68 1.00 0.98 0.09 0.77
CA I 0.54 0.01 0.93 1.00 0.11 0.09
CA II 0.32 0.01 0.75 1.00 0.07 0.06

F.4 Summary

In general, all methods show the expected behaviour, i.e. the stronger the signal and
the larger the event set size the more sensitive they become. The only exception
to this behaviour can be found on maps based on multipole such as the dipole in z
direction and the CAs. Here, the fraction of identified sets stays at the level of 0.01.
Consequently, these methods are completely insensitive to this kind of anisotropy.
However, other multipoles exist, e.g. the quadrupole in z direction which can be
distinguished from the Null hypothesis for all sets containing 100 events.
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