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Chapter 1

Introduction

With energies even above 1020 eV [1], ultra-high energy cosmic rays (UHECRs) are the

most energetic particles observed in nature. They were discovered in 1912 by Victor

Hess and have since then been studied in great detail over many orders of magnitude in

energy. Important questions such as where the particles come from or their composition

at the highest energies are still unsolved. Although most cosmic rays are nuclei, especially

protons, there are also some other particle types like photons. The most energetic photons

that have been discovered so far have energies below 1 PeV [2] and no ultra-high energy

photon (UHEP) with energies above 1017 eV has been found yet.

When interacting with the Earth’s atmosphere, cosmic rays produce secondary particles

inducing large cascades, called extensive air showers (EASs), which can spread over several

kilometers in width and reach the surface, where they can be detected. Due to this reaction,

cosmic rays can only be detected directly in space, but at the highest energies the incoming

flux is too low so that the arrangement of a giant detector in space would be necessary,

which is not possible today. Instead, UHECRs are detected indirectly by measuring only

their remnants in the form of EASs. Nevertheless, there are different ways to measure

EASs. The Pierre Auger Observatory is the largest cosmic ray observatory in the world

which is able to detect EASs induced by cosmic rays with energies starting at 1017 eV [3].

It uses a grid of water Cherenkov detectors (WCDs), called the surface detector (SD),

to detect particles which hit the ground, and multiple fluorescence telescopes, called the

fluorescence detector (FD), which can detect the fluorescence light emitted by nitrogen

atoms which were excited by the air shower. On the basis of these measurements it is

possible to reconstruct properties of the primary particle, such as the energy and the

arrival direction. In this thesis, methods are presented which allow UHEPs to be found in

the background of UHECRs using simulated events of the Pierre Auger Observatory.
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In recent years, machine learning techniques like boosted decision trees (BDTs) were used

for this task. Although these methods achieve good precision, no event from data of the

Pierre Auger Observatory has so far been classified as a photon. New methods with higher

sensitivity thus have the potential of detecting a UHEP for the first time or lowering the

upper limits of the photon flux. One part of the wide field of machine learning covers deep

learning techniques using deep neural networks (DNNs), which have made rapid progress

and achieved great successes in the last few years, for example in image recognition [4].

More and more applications in physics research also show that they are a useful tool, for

example in reconstruction tasks of EASs at the Pierre Auger Observatory [5]. The recon-

struction of air showers on the basis of numerous detector measurements with spatially

and temporally interrelated connections is a very challenging task, which is why the devel-

opment of conventional analytical evaluations can be very complicated. Once the training

of the DNN is completed, deep learning methods have the potential to solve such complex

problems at low computational costs, using all measurements available and, therefore, in

the best case extract all possible information from the data. The first step is to train the

DNN on simulated data whose true Monte Carlo output is known. Afterwards, the trained

DNN can be applied to measured data.

In this thesis, the design of a DNN for the distinction between primary photons and

protons is presented. Different approaches are discussed and compared to a previous

analysis, where a BDT was used [6, 7]. Finally, the impact of these results on the photon

flux estimation is discussed.
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Chapter 2

Cosmic rays

2.1 Cosmic ray physics

The spectrum of cosmic rays exceeds eleven orders of magnitude in energy as can be seen

in figure 2.1. The cosmic ray flux over this energy range can be described by a power law

Φ ∝ E−γ with

γ ≈



2.7 E . 4 PeV

3 4 PeV . E . 3 EeV

2.7 3 EeV . E . 60 EeV

4 60 EeV . E

(2.1)

starting at high fluxes of ∼ 104 m−2s−1 at 1 GeV and ending at extremely low fluxes of

∼ 1 km−2 century−1 at 1020 eV. Cosmic rays below the so-called “knee”, at 4 PeV [8],

are assumed to have a galactic origin whereas cosmic rays above the so-called “ankle”, at

3 EeV [9], are assumed to be extragalactic. This occurs because the deflection of the cosmic

ray due to galactic magnetic fields becomes too weak to bind it within the galaxy. This

effect is depending on the charge of the particle. Above 60 EeV, the spectrum strongly

cuts off [9]. A possible explanation for this might be the Greisen-Zatsepin-Kuzmin (GZK)

effect [10, 11] which will be explained below.

It is not completely clear yet how cosmic rays achieve such energies, although there are

already many models. For example, Fermi acceleration is a mechanism describing the

acceleration of charged particles in astrophysical shock waves, like in supernovae, where the

particles are scattered in turbulent magnetic fields [12]. The most likely source candidates

for this shock acceleration are gamma ray bursts, active galactic nuclei, pulsars and the

lobes of giant radio galaxies.
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Figure 2.1: Cosmic ray flux as a function of energy, starting at 200 MeV up to 1 ZeV, measured
by various experiments. Taken from [13].

Even though there are also many open questions regarding the composition of cosmic rays,

it is known that ∼ 99% of all cosmic rays are nuclei and only ∼ 1% other particles like

electrons or photons. With 90%, protons make up the largest part of nuclei, followed by

helium (9%), and only 1% are heavier elements.

Due to the deflection by galactic magnetic fields, charged particles lose their directional

information which is why neutral particles are essential to identify the cosmic ray sources.

Neutrons decay to protons during propagation through space, and neutrinos are very hard

to detect so that photons are very important for arrival direction studies and point sources

analyses.
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The production of UHEPs is assumed to be linked to the GZK effect [10, 11], which might

be the cause for the cosmic ray cut-off. At ∼ 60 EeV, protons start to interact with cosmic

microwave background (CMB) photons (E ∼ 10−3 eV) and produce ∆+ baryons which

then decay into pions and nucleons:

p+ + γCMB → ∆+ → p+ + π0

→ n+ π+

Ultra-high energy photons are then produced due to the decay

π0 → 2γ

with ∼ 10% of the energy of the incoming proton.

Until now, no UHEP has been detected by the Pierre Auger Observatory. Many other pro-

duction models such as super heavy dark matter, topological defect or Z-burst models [14]

can already be excluded as a result of the current upper limits for the photon flux. The

current upper limits of the photon flux can be seen in figure 2.2. Currently, the results

cannot confirm or disprove the GZK effect, which is why improved methods to identify

UHEPs are presented in this thesis.

Figure 2.2: Photon flux limits for different experiments at 95% confidence level (90% for EAS-
MSU and KASCADE-Grande), compared to model predictions. Taken from [6].
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2.2 Cosmic ray-induced extensive air showers

When entering the Earth’s atmosphere, UHECRs interact with a nucleus (most likely

nitrogen or oxygen) and initiate a cascade of particles. The first interaction happens

typically at a height of 20− 30 km, depending on the energy and type of the particle and,

of course, with underlying statistical fluctuations because it is a probabilistic interaction.

The secondary particles themselves interact with the atmosphere and produce even more

particles that successively feed the cascade. With a few meters in depth, the air shower

propagates through the atmosphere as a thin, slightly curved plane. The lateral extension,

on the other hand, can exceed a few kilometers, again depending on the energy and type

of the particle. A sketch can be seen on the right of figure 2.3.

The air shower has three main components: the hadronic, the muonic and the electro-

magnetic component (see figure 2.3 on the left). In principle neutrinos, mostly produced

by the production and decay of muons, are a fourth component, but because they are

almost unmeasurable, they are not very important, apart from the fact that the energy

reconstruction of the EAS has to be corrected for the invisible neutrino energy. The three

main components are described below.

Figure 2.3: Left: Scheme of the different components of an extensive air shower. In real air
showers different components are not spatially separated but mixed. Right: Sketch
of an air shower not to scale with its thin shower front arriving with zenith angle Θ.
Taken from [15].
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Hadronic component. Usually initiated by a hadronic particle, the hadronic component

consists mostly of baryons such as protons and neutrons, and mesons like pions and kaons.

Initialization due to photons by photonuclear interaction is also possible. The cascade

develops due to further scattering and interactions in the air, along with the decay of

short-lived hadrons whose decay products can also contribute to the other components.

Muonic component. If mesons, especially kaons and pions, of the hadronic component

decay, they often produce muons:

π+ → µ+ + ν

π− → µ− + ν̄

K+ → µ+ + ν

K− → µ− + ν̄

Kaons also decay into pions, which in turn decay into muons. As muons interact very

little with the atmosphere, most of them reach the Earth’s surface on an almost straight

way. Consequently, muons normally reach the ground earlier than the electromagnetic

component and still carry directional information. Most muons have relativistic energies

and therefore do not decay before reaching the surface, whereas low-energy muons can

decay into electrons, thus contributing to the electromagnetic component.

Electromagnetic component. When π0 mesons decay almost immediately (τ = (8.52 ±
0.18) · 10−17 s [16]) into two photons, they initiate an electromagnetic cascade.

π0 → 2γ

The two main processes within the electromagnetic component are the e+e− pair produc-

tion

γ → e+ + e−

and bremsstrahlung of electrons and positrons by interaction with the nuclei in the air.

These two effects recur as long as the photons exceed the critical energy Ecrit ≈ 37 MeV.

Below this value, they do not have enough energy for further reactions and the cascade

begins to fade. These two production processes cause the electromagnetic component to

increase very fast so that the number of photons, electrons and positrons by far exceeds

the particle count of the other components, making the electromagnetic component the

dominant part of the particle density and energy in EASs. Charged particles can excite

nitrogen molecules in the atmosphere, which leads to the production of fluorescence light.

Thus the electromagnetic component is also dominant in the production of this fluorescence

light. The electromagnetic component can be described well by the Heitler model [17].

7
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The slant depth X is a quantity describing the longitudinal development of EASs. It is

measured in [X] = g cm−2 and is defined by the integral over the transversed air density

X(x) =

∫ x

∞
ρ(x′)dx′ (2.2)

with the height x and the air density ρ. The number of particles in the EAS can be

parametrized by the Gaisser-Hillas function [18]

N(X) = Nmax

(
X −X0

Xmax −X0

)Xmax−X0
λ

exp

(
Xmax −X

λ

)
(2.3)

with the maximum number of secondary particles Nmax, the slant depth of the first in-

teraction X0 and the effective mean free path between interactions λ. At some point in

the shower development, the particles have not enough energy for further reactions which

is why the slant depth of the shower maximum Xmax is reached. It is dependent on the

energy and the type of the particle and, therefore, an important observable for the dis-

tinction between photon and proton-induced air showers. Usually, photons have a higher

Xmax than protons for the same energy and the Xmax of heavier nuclei is even lower.

Since proton and photon-induced air showers are the most alike, only the differences and

distinction methods between these two types are discussed in this analysis.

2.3 Attributes of photon-induced air showers

In order to find UHEPs it is crucial to know the differences between photon and proton-

induced EASs. A very important difference is the slant depth of the shower maximum

Xmax which is, for the same energy, on an average higher for photon-induced showers,

although an event-by-event distinction is not possible, because statistical fluctuations cause

an overlap of the two distributions, though the distinction becomes clearer for higher

energies. Moreover, the photon penetrates much deeper into the atmosphere before the

first interaction happens. Another difference is that photon-induced showers can only

produce hadrons by photonuclear interactions which causes a strongly reduced hadronic

component compared to hadron-induced air showers. Since muons are mainly produced in

the hadronic component, they are suppressed in photon-induced showers as well. This also

means that those showers, compared to proton-induced ones, extend over a smaller area

and thus are more concentrated, because hadron interactions provide a high transverse

momentum which makes the muon component widespread. As a consequence, the ratio

of the electromagnetic component to the muonic component is higher in photon-induced

showers. At the same primary energy they therefore excite more air molecules and emit

more fluorescence light. Another difference is that, due to lower muon production, less

8
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neutrinos are produced as well. This means that photon-induced showers also have less

invisible energy. For proton-induced showers the fraction of invisible energy is ∼ 10%,

but less than 1% for photons [19]. A photon and a proton-induced air shower is shown in

figure 2.4 for a better visual understanding of the differences.

Two important effects change the behavior of photon-induced EASs, which increases the

difference to hadronic induced ones. These effects are the Landau-Pomeranchuk-Migdal

(LPM) effect and the preshower effect which are described below.

Landau-Pomeranchuk-Migdal effect. The LPM effect [20, 21] describes the suppression of

the cross section of pair production and bremsstrahlung processes for very high energies.

e+e− pair production requires a transfer of momentum from a photon to the nucleus via a

virtual photon. For higher photon energies, the transversed momentum becomes smaller

and the wavelength of the virtual photon larger. If the photon has enough energy, the

wavelength of the virtual photon becomes longer than the mean free path in the medium.

Pair productions at multiple nuclei then destructively interfere and as a result the cross

section of the process is reduced. The higher the photon energy and the material density,

the higher is the suppression of the pair production cross section. A similar effect happens

for bremsstrahlung of e±. The density dependence of the LPM effect means an increasing

suppression at lower altitudes. So the LPM effect delays the first interactions of UHEPs

in the atmosphere, further delays the whole shower development and also causes higher

fluctuations in the shower development resulting in a higher Xmax. These effects become

relevant for UHEP energies above 1 EeV [22].

Preshower effect. UHEPs can do e+e− pair production before even entering the atmo-

sphere, by interacting with the Earth’s magnetic field. This is the so-called preshower

effect [23]. The e± then emit photons through bremsstrahlung in the magnetic field. As a

result, many electromagnetic particles that are not energetic enough for the LPM effect,

enter the atmosphere. This means that the preshower effect and the LPM effect usually

compete. The preshower effect is dependent on the strength of the transverse magnetic

field and, therefore, on the location on Earth and the arrival direction of the UHEP. It

increases for higher primary energies, but it only becomes significant at energies above

1019.6 eV. Since our simulated and analyzed energy range does not exceed 1019.5 eV, the

preshower effect will not be discussed any further.

9
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(a) γ-induced air shower: longitudinal view. (b) p+-induced air shower: longitudinal view.

(c) γ-induced air shower: footprint view. (d) p+-induced air shower: footprint view.

Figure 2.4: Comparison of a vertical photon (left) and proton-induced air shower (right). Both
were simulated with CORSIKA with 1015 eV as the primary energy. The red lines
are the electromagnetic component (e±, γ), green lines are muons and blue lines are
hadrons. Colors are mixed for overlapping components such that, for example, yellow
means electromagnetic and muonic. It can be seen that the proton shower is broader
which results in a larger footprint (bottom pictures), has more muons (more green
and yellow) and has the first interaction much earlier (top pictures). Taken from [24].

10
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2.4 Detection principles

Cosmic rays can be measured directly with detectors in space, but above energies of TeV,

the particle flux decreases to such low values that the detector size has to be much bigger

for reasonable statistics and this is infeasible. Instead, UHECR are measured indirectly

by measuring the induced EAS.

There are many different ways to measure an air shower. The most important methods

can be seen in figure 2.5. The particles reaching the ground can be measured by an array of

particle detectors. The air shower also emits fluorescence and Cherenkov light, which can

be detected by telescopes. There are also photons in the radio range, which are emitted

by the air shower due to the coupling of electrons and positrons to the Earth’s magnetic

field and the charge separation inside the shower. These photons can be detected by an

array of radio antennas. Large neutrino detectors are suitable to measure the otherwise

almost unmeasurable neutrino component of the shower.

All these detectors measure different particle types and stages in the shower development

and they therefore offer different advantages and disadvantages. For a precise measurement

of the air shower and its properties, it is important to apply multiple methods.

Figure 2.5: Sketch of different detection techniques of an air shower. Taken from [25].
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Chapter 3

The Pierre Auger Observatory

The Pierre Auger Observatory is the largest cosmic ray observatory in the world; it is

located 1400 m above sea level near Malargüe, Argentina. The location and structure of

the observatory can be seen in figure 3.1. It measures UHECR-induced EAS with primary

energies above 1017 eV by using a hybrid measurement method. There are 1660 water-

Cherenkov detectors spread over an area of ∼ 3000 km2, supplemented by five fluorescence

detector buildings with six telescopes, each located on the edges of the SD array overlooking

it. While the FD is measuring the shower development in the air, the SD is measuring

the shower footprint on the ground. The combination of these two methods leads to an

accurate reconstruction of the EAS and thus of the primary particle. Although the Pierre

Auger Observatory includes some other detection techniques such as, for example, radio

antennas, only the details of the SD and FD will be discussed in the following, because

only these are used for this analysis.

3.1 The Surface Detector

The SD consists of 1660 identical surface water-Cherenkov detector (WCD) stations ar-

ranged on a triangular grid with 1.5 km spacing spread over an area of ∼ 3000 km2 [26].

A picture and a sketch of one of these detectors are shown in figure 3.2. Each detector

consists of a lightproof tank filled with 12 tons of highly purified water. When a charged

particle enters the tank at a speed faster than the speed of light in water, it produces

Cherenkov light. This light can be reflected by the inner walls and measured by three

photomultiplier tubes (PMTs) mounted inside the tank on the top looking downwards.

The intensity of the resulting signal can be measured with a good time resolution. It

outputs for each PMT a signal trace with 768 time steps where each step is equal to 25 ns.

The signal is usually calibrated to vertical equivalent muons (VEM) where one VEM is

13
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Figure 3.1: Location and structure of the Pierre Auger Observatory on the map. Each black
dot represents one of the surface detector stations. The blue lines mark the field
of view of the six telescopes for each of the four fluorescence detector enclosures.
Taken from [27].

the signal produced by a vertical muon crossing the station. Additionally, the arrival

time is determined with a trigger as soon as a certain signal strength is exceeded. When

the charged particles in the EAS reach the ground, they produce Cherenkov light in the

tanks. The more energetic the primary particle is, the higher the number of secondary

particles in the EAS is. Therefore, more stations are hit and the signals in every station

are higher. Using the arrival time and the signal of multiple stations, it is possible to

reconstruct, for example, the arrival direction and the primary energy of the cosmic ray.

Since the SD stations are lightproof and operational at day and night, they have a duty

cycle close to 100%.

(a) Taken from [3]. (b) Taken from [28].

Figure 3.2: Picture (left) and sketch (right) of one single water-Cherenkov detector.

14
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3.2 The Fluorescence Detector

The FD consists of four buildings (Coihueco, Loma Amarilla, Los Morados and Los Leones)

located on the edges of the SD [29]. Each building has 6 telescopes, each with a field of

view of 30◦ × 30◦ starting at a minimum elevation of 1.5◦ above the horizon. Thus each

building has a total field of view of 180◦, which allows the whole SD array to be overviewed.

A picture and a sketch of a FD building are shown in figure 3.3. When the electromagnetic

component of EASs interacts with the atmosphere, the atoms in the air are excited. These

excited atoms can then spontaneously emit light during their de-excitation, so-called flu-

orescence light. Because the Earth’s atmosphere mostly consists of nitrogen, most of the

fluorescence light is in the UV range. This isotropic light can then be detected by the FD

telescopes which have apertures with UV-passing filters to reduce background light. The

transmitted light is then focused on the camera by a 10 m2 mirror. The camera contains

22 rows and 20 columns of pixels. Each of these 440 pixels is a PMT with a field of view

of 1.5◦. Like the SD, each pixel measures a signal trace proportional to the amount of

light and the arrival time of the signal. Since the fluorescence light intensity is very weak,

the FD only works properly in clear and moonless nights, which results in a reduced duty

cycle of only ∼ 15%. Nevertheless, the FD-recorded signals allow the longitudinal shape

of the shower development to be observed which makes the reconstruction of Xmax pos-

sible. Furthermore, since the fluorescence light is a measurement of the energy deposited

on the atmosphere, it is used for energy calibration purposes because it is proportional to

the primary cosmic ray energy. Thus the measurements of combined SD and FD events,

called hybrid events, can in principle compensate the lower exposure due to the reduced

duty cycle by furnishing additional information, thus improving reconstruction.

(a) Picture of the fluorescence detector enclosure Los
Leones with closed shutters. Taken from [3].

(b) Schematic top-down view of the FD building with six
fluorescence telescopes. Taken from [29].

Figure 3.3: Picture (left) and sketch (right) of one of the four FD buildings.
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3.3 The Infill array

In order to be sensitive to energies down to 1017 eV, the so-called infill array was con-

structed. It is an area of 24 km2 located in the north east of the SD close to Coihueco,

where additional SD stations were built to create an array with half the distances (750 m)

between each of the stations. A map of the infill array can be seen in figure 3.4. Closely

located to Coihueco are the High Elevation Auger Telescopes (HEAT). These are three

additional FD telescopes, the only difference being that they are tilted towards higher

angles in order to cover the field of view above Coihueco. A picture and sketch of HEAT

can be seen in figure 3.5. The extension of Coihueco by HEAT is called HECO. When the

larger field of view of HECO and the denser SD grid close to it are used, it is possible to

detect EASs of less energetic primary particles, because they produce less signals, trigger

less stations and penetrate less deeply into the atmosphere. Since the cosmic ray flux is

much higher at lower energies, the smaller area of the infill array compared to the main

array is still sufficient for a high exposure and good statistics.

HEAT

Coihueco

1500m 750m

Figure 3.4: Map of the infill array. The red dots are the 49 SD stations that were added with a
spacing of 750 m. The black dots with a red ring are stations which belong to both
the infill and the large main array. Thus the infill consists of 71 stations in total.
The black dots belong to the main array only. The locations of Coihueco (green)
and HEAT (orange) with their fields of view have also been marked. Although all
telescopes have the same field of view, HEAT sees a larger range of azimuth angles
because of the higher inclination. The location of the infill array within the Pierre
Auger Observatory can be seen in figure 3.1.
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(a) Photo of the three HEAT telescopes in tilted mode. (b) Sketch of one HEAT building in tilted mode.

Figure 3.5: Picture (left) and sketch (right) of HEAT. Taken from [3].

3.4 AugerPrime Upgrade

A big upgrade to the Pierre Auger Observatory, called AugerPrime, is currently under

construction [30]. A key feature of this upgrade is the deployment of a Surface Scintillator

Detector (SSD) on top of each WCD. A picture and a sketch of an upgraded SD station

are shown in figure 3.6.

(a) One station of the AugerPrime Engineering Array with a SSD
on top of the WCD.

(b) Sketch of the final version of a SD station
including the WCD, SSD and radio antenna.

Figure 3.6: Picture (left) and sketch (right) of one upgraded surface detector station.
Taken from [31].

17



The Pierre Auger Observatory

The complementary measurement with this plastic scintillator furnishes different responses

to the muonic and electromagnetic components of the air shower compared to the WCD.

The SSD is more sensitive to electromagnetic particles whereas the WCD detects more

muons. This means that, with both measurements, a separation between these two com-

ponents is possible. Since the fraction of these components is different for photon and

hadron-induced EASs, a much better separation power is expected with AugerPrime. To

estimate this possible improvement, a method using data which are comparable to those

obtained by AugerPrime will also be discussed in this analysis (see section 7.6). Other

features of the upgrade are an Underground Muon Detector (UMD) in the infill array,

upgraded new electronics for the SD and a new operation mode of the FD to increase its

duty cycle, which will increase the statistics of hybrid events.

3.5 Standard event reconstruction

When an extensive air shower hits the Pierre Auger Observatory, a coincident signal de-

tection in multiple SD stations or FD pixels triggers the readout of the shower data. The

geometry of such an event can be seen in figure 3.7. For each SD station or FD pixel,

respectively, the arrival time, the signal-over-time and calibration information are stored.

Using complex reconstruction algorithms, the air shower can be reconstructed and quanti-

ties like the primary energy, the arrival direction and Xmax can be determined. There are

methods which use only SD or FD data. These methods are mainly used when only one

of the two detectors triggered, e.g. during daytime when no FD data is available. How-

ever, for a better reconstruction with lower uncertainties, it is meaningful to do a hybrid

reconstruction taking SD and FD data into account. With the amount of signal and its

arrival time in the SD, the lateral distribution of the air shower and from this the shower

core position on the ground can be reconstructed. This allows the arrival direction of the

cosmic ray to be determined, so that a reconstruction of the zenith and azimuth angles of

the shower axis is possible. Since the FD measures the longitudinal shower development in

the atmosphere, the profile of the deposited energy and with it Xmax can be reconstructed.

With the amount of signal in the SD or FD, the primary energy can be calculated. Correc-

tions must be applied, because - although the signal is proportional to the primary energy

- particles such as neutrinos do not contribute any signal. Since these reconstructions and

corrections depend, among other things, on the type of the cosmic ray, the weather and

the fluorescence yield, systematic uncertainties may occur. The statistical uncertainty of

the hybrid energy reconstruction is in the order of ∼ 10%, for Xmax it is ∼ 20 g cm−2 and

the arrival direction can be reconstructed within 1◦ [32].
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Figure 3.7: Example of a reconstructed event observed by one telescope at each telescope site in
coincidence with the surface detector. Taken from [3].
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Chapter 4

Simulation

Before applying machine learning algorithms to data, it is necessary to train and test

them in simulated detector measurements, as the true attributes of the air shower and the

primary particle, especially the type of the particle, are known. In order to simulate the

shower development in the Earth’s atmosphere, the COsmic Ray SImulations for KAscade

(CORSIKA) [33] was used, which was developed for the KASCADE experiment [34] in

Karlsruhe. These simulated air showers are then given to the Offline Software Framework

[35], which is the standard simulation and reconstruction framework of the Pierre Auger

Observatory. It simulates, for each CORSIKA air shower, all detector measurements and

then reconstructs all shower parameters.

4.1 CORSIKA

CORSIKA is a useful tool for the simulation of air showers. It simulates the primary

particle propagating through the Earth’s atmosphere and its interactions with the air

molecules. Furthermore, the propagations and interactions of all secondary particles in-

cluding photons, electrons and positrons, muons and hadrons are simulated individually.

This approach makes CORSIKA simulations both accurate and computationally expen-

sive, nevertheless there are some mechanisms to reduce calculations. For example, neutri-

nos will not be simulated after creation because, most probably, they would not interact

anyway. The same is valid for all particles below a certain energy threshold, as they would

not make any significant contribution to the shower anymore. The simulations of hadronic

interactions are problematic, because they are based on research at the LHC. This means

that those hadronic interaction models must be interpolated over several orders of magni-

tude in energy. Different hadronic interaction models are available, namely EPOS LHC,

QGSJetII-04 and Sibyll 2.3c, using different approaches and interpolations. EPOS LHC is
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used here, because it is, currently, the best fitting model compared to data [36]. In order to

be able to assess possible artefacts of the simulation and to make sure that the developed

methods are robust against them, smaller samples using QGSJetII-04 and Sibyll 2.3c were

simulated. At low energies, Fluka2011.2x [37] was used as the hadronic interaction model.

The simulation sample was taken from the Napoli+Praha library [38].

In total, 36 000 CORSIKA air showers were simulated using EPOS LHC with a primary

energy ranging from 1017.0 eV up to 1019.5 eV equally distributed in logarithmic scale

(E−1 spectrum). The arrival direction is isotropically distributed on a spherical surface

with a zenith angle of up to θ = 65◦. Half the simulated primary particles were photons

and the other half were protons, because, as already mentioned, we focus on the distinction

between photons and protons since they are most alike. For QGSJetII-04 and Sibyll 2.3c,

5000 proton-induced air showers were simulated, each with the same energy and zenith

distribution. Photons were not simulated in the QGSJetII-04 and Sibyll 2.3c test sample.

4.2 Offline Software Framework

The Offline Software Framework [35] is the standard tool for detector simulation and air

shower reconstruction of the Pierre Auger Observatory. After the development of the

air shower in the Earth’s atmosphere has been simulated using CORSIKA, the output is

given to Offline which then simulates all measurements of all detectors of the Pierre Auger

Observatory. In this step, the Cherenkov light induced by charged particles of the air

shower in the water of the SD tank is simulated, as well as its propagation through the

water, reflections at the walls, its measurement by the three PMTs up to the digitalization

of the signal in the electronics. Furthermore, it is simulated how the fluorescence light

reaches the FD telescope, is reflected in the mirrors, measured in the PMTs and again

how the signal trace is digitalized.

Offline also provides reconstruction tools which can then be applied to the fully simulated

event. In this step, for example, the primary energy, the arrival direction and Xmax are

reconstructed. In the end, a sample of events covering all detector measurements as well

as reconstructed high-level observables is obtained.

The shower core is selected to be randomly distributed inside the infill array, because, for

the chosen energy range, the infill array is much more sensitive. In order to increase the

statistics, each CORSIKA shower is used five times in Offline, with different random core

positions to make sure that the events are not too similar. So in the end, the number

of events in the sample is five times that of the CORSIKA showers. Simulation of even

more CORSIKA showers would be too time-consuming and would require much more

space to store.
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4.3 Data set selection

Before applying the methods used to the simulated data sample, several cuts have to be

made to remove events which are unwanted for different reasons. Some cuts only reject

certain SD tanks or FD pixels, others will remove the whole event. Of course, the same

cuts would have to be applied when switching to data. In table 4.1 all cuts that are made

are listed with a short description.

Cut Description

Golden Hybrid
The event must be fully reconstructable with SD and FD
to guarantee that all high level observables are recon-
structed properly.

SD Rejection Status = 0

An SD signal is only accepted if the so-called rejection
status is equal to zero which means that there is no re-
jection like, for example, no trigger or no calibration data.
Otherwise, the SD tank will be ignored.

SD ID
SD tanks which do not belong to the infill or main array
are ignored, e.g. if they are off grid or test stations.

Length of
VEM trace > 100 entries

Some VEM traces of the SD are shorter than 100 entries
(normal ones have 768). SD tanks with this issue will be
ignored, because at least 100 entries in the signal trace
are needed for the deep learning methods.

Has SD VEM trace
If no SD tank survives the upper cuts, the whole event
will be removed, because then there is no useful SD signal.

Inner radius cut:
Distance of SD tank to

shower axis > 100 m

Due to the huge amount of particles and their computa-
tional costs, CORSIKA reduces the accuracy of the sim-
ulation inside a certain radius around the shower axis.
In this case, this radius is 100 m. Due to the fact that a
proper simulation of SD signals inside this radius cannot
be guaranteed, the whole event is removed if the clos-
est station is less than 100 m away from the shower axis.
Mere removal of this SD tank is not useful, because it
is the most important tank, because it has most signals
and is therefore crucial for energy reconstruction. The
impact of this so-called inner radius cut can be seen in
figure 4.1.

FD Pixel Status = 4
If the status of an FD pixel is not 4, which means that it
is part of the time fit, it will be ignored.

Table 4.1: List of all cuts applied to the simulated data sample
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Figure 4.1: Histogram of the distance of the closest SD tank to the shower axis. With the inner
radius cut, all events are removed where this distance is smaller than 100 m.

The numbers of events after all cuts have been made and data selection has been done are

shown in table 4.2. Due to the golden hybrid cut, a large fraction of events in the first

energy bin was cut out. For these low-energy events, it is much harder to reconstruct all

shower properties properly, as they do not trigger enough SD stations or FD pixels.

EPOS LHC QGSJetII-04 Sibyll 2.3c

Energy bin γ p+ p+ p+

1017.0 eV − 1017.5 eV 3279 2560 343 378

1017.5 eV − 1018.0 eV 12 286 12 585 1689 1775

1018.0 eV − 1018.5 eV 14 613 14 630 2040 2076

1018.5 eV − 1019.0 eV 15 263 15 193 1980 2081

1019.0 eV − 1019.5 eV 15 264 14 944 2087 2082

Total 60 705 59 912 8139 8392

Table 4.2: Number of simulated air shower events per energy bin and particle type and hadronic
interaction model after data selection.

24



Simulation

4.4 Preprocessing

In all methods that will be discussed later, the output will be the type of the particle,

precisely whether it is a proton or a photon. The input, on the other hand, will vary from

approach to approach. The inputs that will be used are the following: for every SD tank

as well as for every FD pixel the signal traces over time, the arrival time of the signal

and the total signal. Furthermore, the zenith angle of the shower axis, the calorimetric

energy and the depth of the shower maximum Xmax, all reconstructed by FD, the number

of triggered SD stations and the SD related observable Sb are used.

In order to optimize the results of machine learning and, especially, deep learning methods,

preprocessing of the data samples is very important. This includes the geometry and

shape of multidimensional input arrays as well as numerical ranges. Is has been shown

that the results turn out to be better when the ranges of numbers in the input and output

arrays are not too large. Therefore, the normalization and transformation of the data is

described below.

Type of particle. To translate the type of the primary particle to different values it has

been chosen that a photon (signal) has a value of 1 and a proton (background) has a

value of 0. Later, all methods will output a float value between 0 and 1 that reflects the

uncertainty of the method or how photon-like an event looks like.

Geometry of the SD. Using all SD tanks as an input would be computationally inefficient,

especially because most tanks would not provide a signal and thus no information. A bet-

ter approach is to take out only a 13×13 window of the array, for each event independently,

with the station with the highest signal in its center. This size has been chosen, because

only a negligible number of events have triggered stations outside this window. Addition-

ally, the triangular grid of the SD tanks must be transformed into a squared Cartesian

grid, in order to apply convolution techniques later. In figure 4.2, this transformation can

be seen. Although there are also other alternatives to this transformation, it has been

found that this has no significant impact during training.

Geometry of the FD. A similar procedure is followed for the hexagonally arranged FD

pixels. Since all air showers are located in the Infill array, almost no event contains FD

signals which do not originate from Coihueco or HEAT. Therefore, it is reasonable to ignore

all other FD telescopes and just focus on HECO. The most inclined air showers trigger

four out of six eyes of Coihueco and two out of three eyes of HEAT. Each eye consists of

22×20 pixels, so a good way to reduce the size of the FD data set is to take only four eyes

of Coihueco (a 22 × 80 array) and 2 eyes of HEAT (a 22 × 40 array) into account. As in

the case of the SD grid, these two arrays where transformed into a Cartesian tensor (see

figure 4.3).
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Figure 4.2: Example event with the triangular orientation of the SD tanks (left) and its trans-
formation to Cartesian coordinates (right). The color indicates the arrival time; a
darker color corresponds to a later signal.
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Figure 4.3: Example event with the hexagonal orientation of the FD pixels (left) and its trans-
formation to Cartesian coordinates (right). Left: Representation of the event using
the event browser with HEAT (above) and Coihueco (underneath). Right: After
transformation, HEAT and Coihueco are stored in two separate arrays. The color
indicates the arrival time; a darker color corresponds to a later signal.
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Arrival time. The arrival times, both for every SD station and FD pixel, have been shifted

in such a way that the first triggered SD tank and FD pixel respectively got the arbitrary

value 1:

T̃ = T −minevent(T ) + 1 (4.1)

The arrival times of all tanks and pixels with no signal at all were set to zero. After that,

all values were normalized by division by the global maximum arrival time of all events

and all SD tanks or FD pixels:

T̃X =
TX

max(TX)
(4.2)

where max(TX) is max(TSD) = 22 301 ns, max(TCoihueco) = 343.3 ns and max(THEAT) =

130.4 ns.

Signal trace. The signal traces from Offline of SD contain 768 values per station, while FD

has 1000 per pixel. Offline itself provides a method which determines the starting point of

the signal in the trace. A time window of 100 time steps (corresponding to 2.5 ms) for SD

and 50 time steps (5 ms) for FD was chosen, starting 5 time steps before the starting point

calculated by Offline, to make sure that no signal is lost. The FD trace array is chosen to

be of half the length of SD, because the FD signals are shorter and a larger array would

be too computationally expensive. Signal traces of detectors without any received signals

are set to zero, as well as signals below zero, since these values are only noise effects. The

range of these signals covers several orders of magnitude which is, as already mentioned,

suboptimal for DNNs. Therefore, the logarithmic transformation

S̃ = log10(S + 1) (4.3)

is applied, where an offset of 1 has been added to avoid negative values and keep no

received signal at zero. The signal traces are then normalized with

S̃X =
SX

log10(max(SX) + 1)
(4.4)

where, in analogy to the arrival time, max(SX) are the maximum values of all traces of all

events (max(SSD) = 164.5, max(SCoihueco) = 20 164.8, max(SHEAT) = 18 074.6).

Total signal. We are also interested in the total signal per SD tank and per FD pixel,

since it contains important information such as e.g. the primary energy. For this, each

individual untransformed time trace is summed up and then the same transformation as

for the signal traces

S̃total,X =
log10(Stotal,X + 1)

log10(max(Stotal,X) + 1)
(4.5)

is applied where max(Stotal,X) is max(Stotal,SD) = 3929.9, max(Stotal,Coihueco) = 121 421.4

and max(Stotal,HEAT) = 102 599.4.
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BDT variables. To compare the results of DNN methods with a previous BDT analysis

[7], five additional variables have also been taken into account. These are: the FD recon-

structed zenith angle of the shower axis θ, the calorimetric energy Eγ , the depth of the

shower maximum Xmax, the number of triggered SD stations Nstat and the observable

Sb =
∑
i

Si

(
Ri

1000 m

)b
(4.6)

where b = 4, Si is the signal in VEM and Ri is the perpendicular distance to the shower

axis of the i-th station. Since Sb and Eγ cover several orders of magnitude, they were

logarithmized as well. All five variables were normalized with

X̃ =
X −min(X)

max(X)−min(X)
. (4.7)

The values of the minima and maxima are listed in table 4.3.

Variable Minimum Maximum

Sb 0.21 9909.76

Xmax 190.68 2342.24

Nstat 2 59

θ 0.0046 1.3549

Eγ 4.38× 1016 1.11× 1020

Table 4.3: Values of the minima and maxima that were used to normalize the five BDT variables.

In summary, the input data consist of the arrival times of each SD tank (13 × 13 array),

each pixel of Coihueco (22 × 80) and HEAT (22 × 40), the corresponding total signals

of each tank and pixel with the same array shapes, the signal traces of each SD tank

(13× 13× 100), each pixel of Coihueco (22× 80× 50) and HEAT (22× 40× 50) and five

BDT variables (Sb, Xmax, Nstat, θ and Eγ). Figure 4.4 and 4.5 show one example event

with all input data after the preprocessing procedure.
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(a) Three dimensional representation of the example event.
The shower axis, the triggered stations of the infill array
and the field of views of the FD can be seen.
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(b) Total signals of all SD stations.
A darker color corresponds to a higher signal.
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(c) Arrival times of all SD stations.
A darker color corresponds to a later signal.
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(d) Signal traces over time of all SD stations.

Figure 4.4: Example event: All SD input variables of a photon-induced air shower with a primary
energy of E = 2.88× 1019 eV. The BDT input variables are Nstat = 45, θ = 55.96◦,
Xmax = 973.92 g cm−2, Sb = 4499.25 and Eγ = 2.66× 1019 eV. After preprocessing,
all variables are normalized and in arbitrary units. All FD variables are shown in
figure 4.5.
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(b) Arrival times of all pixels of Coihueco.
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(c) Signal traces over time of all pixels of Coihueco.
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(d) Total signals of all pixels of HEAT.
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(e) Arrival times of all pixels of HEAT.
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(f) Signal traces over time of all pixels of HEAT.

Figure 4.5: All FD input variables of the same event as in figure 4.4. Figure 4.3 on the left shows
how this event looked like before preprocessing.
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Chapter 5

Photon search with machine

learning

Machine learning is a widespread field of algorithms with the capability of solving various

problems without explicit instructions on how to solve them. Instead, the computer learns

on its own. The key idea is learning by gaining experience. In order to train the algorithm,

a dataset with all input variables is provided. In the case of the so-called supervised

learning, the dataset also contains the output data, which the algorithm should predict.

During the training, the algorithm predicts an output, based on the given input, and

compares the result with the true output. Then, the parameters of the algorithm are

adapted so that the prediction gets closer to the true value. By repeating this with a

sufficient number of different data samples, the algorithm learns to make the optimal

prediction for a dataset whose true output is unknown. Since this makes it possible

to process and analyze huge datasets with multiple interconnected variables, where the

development of a phenomenological analysis would be extremely complicated, machine

learning algorithms are today used in almost all fields of data processing. Their growing

popularity in the last years is based on the increasing computational power, the growing

amount of stored data and more sophisticated methods.

Machine learning techniques have also become more common in physics applications. Of-

ten, it can be hard to analyze several measured interconnected variables. In the case of

EASs, it is not possible to understand all relations of the numerous reconstructed shower

properties and make a clear decision about the type of the particle. Instead, a BDT with

a few observables as an input provides the best accuracy so far attainable for the decision

between photon and proton-induced air showers. Hence, the methods presented in this

analysis will be compared to the performance of a BDT, which was implemented as in

previous analyses [6, 7].
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Boosted decision trees are an ensemble of many separate decision trees, usually with only

a few branches and sub-branches. The idea is that a set of weak classifiers creates a single

strong classifier. This is done by combining the results of all decision trees to an output

value. During the training process, all parameters of the trees have to be adjusted in such

a way that the prediction gets as close as possible to the true output value. For that,

a loss function is defined, which rates the deviation or quality of the prediction. When

the loss function reaches a minimum and does not change anymore after further training

iterations, the training is completed.

As already mentioned in section 4.4, five variables were used as an input for the BDT:

the zenith angle of the shower axis θ, the calorimetric energy Eγ , the depth of the shower

maximum Xmax, the number of triggered SD stations Nstat and the observable Sb. The

distributions of these variables, separated for protons and photons, are shown in figure 5.1.

While photon and proton-induced showers have different distributions in Xmax, Nstat and

Sb, the distributions are the same for θ and Eγ , due to the simulation setup. Nevertheless,

these two variables add important information for the BDT, as the other three are energy

and zenith dependent.

The analysis was coded in Python [39], and scikit-learn [40] was used for the BDT algo-

rithm. The initialization and training of the BDT was implemented as follows:

1 from sklearn.ensemble import GradientBoostingRegressor

2 BDT = GradientBoostingRegressor(n_estimators =1500)

3 BDT.fit(input_variables , type_true , 1/ energy)

The least squares regression was used by default as the loss function, and 1500 boosting

stages to perform were chosen in order to make sure that the training was long enough.

The variable input_variables is the array of the five input variables for all events that

were used during the training, and type_true is the corresponding array of the true type

of the primary particle, i.e., the desired output of the BDT. The events were weighted with

1/energy in order to get an E−2 spectrum, which is also assumed in the later analysis. The

complete simulation sample from section 4.3 was divided into two parts: one larger sample

with 100 574 events for the training process and a smaller sample with 20 043 events for

testing. By testing the methods on events, which the respective method has not seen during

training, it is ensured that the method has not just memorized the events, but is indeed

able to generalize to unknown events. In order to ensure a meaningful comparison, this

separation between test and training sample is fixed for all methods in this analysis. Both

samples contain approximately the same fraction of protons and photons (∼ 50%/50%).
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Figure 5.1: Histograms of the five BDT input variables. Proton-induced showers tend to have a
lower Xmax (top), more triggered SD stations Nstat and a higher Sb (middle). The θ
and Eγ distribution (bottom) are very much the same for photons and protons, since
these are specified by the simulation settings.
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After the training has been performed, the BDT is applied to all events of the test set.

In an ideal case, all protons would be set to zero and all photons to one. Since a perfect

distinction is not possible and the output of the BDT is a float value, the result is a

distribution between these two values, which is shown in figure 5.2.
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Figure 5.2: Histogram of the output values of the BDT for all events in the test sample. Clearly
visible is the peak of the proton events at zero and of the photon events at one.

It can be seen that most events were classified correctly, though there are also a few events,

where the BDT outputs a value close to the wrong type. A boundary value was chosen

where every event with an output value greater than this will be classified as a photon.

The higher this value is, the lower is the chance that a proton gets wrongly classified as

a photon. But, on the other hand, also more photons will be classified as protons. These

two factors must therefore be weighed up against each other. This can be illustrated by

so-called receiver operating characteristic (ROC) curves. There, for all possible boundary

values, the fraction of photons (signal) that are classified correctly (signal efficiency) and

the fraction of protons (background) that are classified correctly (background rejection)

is evaluated. In the ideal case of perfect distinction, the background rejection would be

equal to one for all signal efficiencies. The energy distribution of the dataset follows an

E−1 spectrum, so each event is weighted with E−1 in order to get an E−2 spectrum, which

is a typical assumption in photon analyses and makes results comparable. This weighting

is done for all upcoming methods. The ROC curve of the BDT is shown in figure 5.3. All

methods presented in chapter 7 using DNNs will be compared with the BDT by comparing

their ROC curves. At a signal efficiency of 50%, the background rejection reaches 99.91%.

This is comparable with 99.85% from [7], though this was applied to a different dataset

and different cuts were made.
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Figure 5.3: ROC curve of the BDT method.
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Chapter 6

Deep neural networks

6.1 Basic principles

In the last decade, deep learning has become a fast growing field in machine learning. The

basic concept of deep learning are artificial neural networks, which consist of nodes and

connections that have variable weights. With multiple hidden layers between the input

and output, deep neural networks (DNNs) are a special class of neural networks. An ex-

ample of the structure of such a network is shown in figure 6.1.

Input

Layer

Hidden Layers Output

Layer

Figure 6.1: Illustration of a deep neural network with three input nodes (green), one output
node (red) and four hidden layers (yellow) in between. All nodes are connected with
independent weights to all nodes of the next layer.
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As for almost all machine learning techniques, it is necessary to train the DNN first.

Although there are also applications with unsupervised learning, where no explicit label

is given during training, this analysis focuses on supervised learning, where each training

sample consists of pairs of inputs and true outputs, which the DNN has to predict on the

basis of the inputs. During the training process, the weights of the DNN are adapted so

that the predicted output, dependent on the given input, fits the true value as well as

possible. After the training, the DNN is then able to make predictions on unknown data.

How exactly this works is explained in this chapter.

Mathematically, neural networks can be described as several affine transformations. The

transformation from layer ~li with N nodes (so ~li is an N -dimensional vector) to the next

layer ~li+1 with M nodes (M -dimensional vector) can be written as

~li+1 = ~σ(Wi
~li + bi) (6.1)

where Wi is the M ×N weight matrix, containing the weights of all connections between

the two layers and bi is the M -dimensional bias vector as an offset. Since multiple linear

transformations can be described as a single one, a non-linear activation function ~σ is

necessary in order to break the linearity. Popular examples of an activation function are

the sigmoid function, the rectified linear unit (ReLU) f(x) = max(0, x) or the scaled

exponential linear unit (SELU) [41], which is defined as

f(x) =

s · x x ≥ 0

s · α · (exp(x)− 1) x < 0
(6.2)

where α and s are predefined constants, which are chosen so that the mean and the

variance of the inputs are preserved between the two layers. With that, it is possible to

create a DNN with a nearly arbitrary number of layers. So for each event, the respective

input variables can be given to the network and then, layer by layer, with all the weight

parameters, the output can be calculated.

The typical approach for a binary classification problem is to have one output node with

two possible values corresponding to the two classes. As mentioned in section 4.4, the

value 0 for a proton and 1 for a photon has been chosen. In order to keep the output of

the DNN within the interval [0,1] which then corresponds to the probability of a photon,

the sigmoid function

sig(x) =
1

1 + e−x
(6.3)

is applied to the last layer.
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To evaluate the quality of the prediction of the network, a loss function is defined, which

compares the prediction with the true value. For a classification problem with only two

classes, the binary cross entropy

L(ytrue, ypredict) = −ytruelog(ypredict)− (1− ytrue)log(1− ypredict) (6.4)

is the standard choice for the loss function. The objective is to adjust the parameters

of the DNN so that L(ytrue, ypredict) is minimized. The larger the difference between the

prediction of the DNN ypredict and the true value ytrue is, the larger is the output of the

binary cross entropy. It especially penalizes predictions that are confident and wrong,

for example when the DNN predicts a value close to one for a proton event, because

the loss function increases rapidly for |ypredict − ytrue| ≈ 1. A perfect model would have

L(ytrue, ypredict) = 0 for every event.

To minimize the loss function, its partial derivative with respect to all parameters is

calculated. The parameters are then adapted using backpropagation of the gradients. In

other words, the goal is to find a local minimum in a hypersurface with the dimension

of the number of parameters. The optimizer minimizes the loss function by using the

derivative and changing the parameters in the direction of descent. The learning rate

defines the step size of the optimizer in the hypersurface. So-called adaptive optimizers

use changing learning rates, which makes them less sensitive to local fluctuations, leading

to better performance and faster convergence.

During one so-called epoch, the training set is shuffled and split into many batches, which

are gradually given to the DNN. The predictions of the DNN and the loss are calculated

for one batch. Then the optimizer adapts the weights and the next batch is loaded.

This is repeated until all events of the training set were used, which marks the end of

one epoch. A whole training process can last several hundreds of epochs, until the DNN

has reached the smallest loss. It is useful to control this process by crosschecking the

performance of the DNN after each epoch with another separate dataset, the so-called

validation set. Although this smaller data set is never used for training, it should achieve

a similar performance as the training set. If it performs significantly worse, this is an

indicator for inadvertent memorizing of the training events, which is called overtraining.

In the following section, methods to prevent overtraining are explained.

39



Deep neural networks

6.2 Regularization

Overtraining is an important challenge to be mastered during training, because it can

significantly worsen the final result. It becomes noticeable when the accuracy of the

test and validation sample is worse than that of the training sample. Then the DNN

has started to memorize the individual events and gets worse at generalizing. There are

different reasons for the occurrence of this problem, but also many methods to prevent it;

these are described below.

Number of events and parameters. Overtraining can be a sign that the training sample is

too small. The number of events required for a good training without overtraining depends

on the number of input variables as well as on the size of the DNN, i.e. the number of

its parameters. A larger DNN does not necessarily lead to a better result. In fact, more

parameters lead to more dimensions of the hypersurface, which makes it more difficult to

find a minimum. Furthermore, overtraining is more likely if the network is larger or if

there are fewer input variables or events in the training sample. So it is helpful to pay

attention to the size of the DNN in order to prevent overtraining.

Dropout. One of the most common techniques for preventing overtraining is dropout.

During the training, ∼ 10 − 50% of the nodes are dropped. This fraction is randomly

selected again after each batch. This means that there can no longer be certain weights that

are excessively important for the DNN, and the input of the following layers is constantly

changing. This ensures a more consistent weighting within the network and prevents

memorizing of the training sample. After the training, for testing and applying the DNN,

no dropout is used, so that the DNN can perform unthrottled.

L1 and L2 regularizers. Overtrained DNNs tend to have few connections with extremely

large weights. In order to penalize this, L1 and L2 regularizers are used. The L1 regularizer

adds the sum of the absolute values of all weights to the loss function, the L2 regularizer

adds the sum of all squared weights. This means that large weights increase the loss

function and the weights are pushed to smaller values, in order to minimize it. It is

important to balance the prefactors of these extra terms. A factor that is too small has no

effect, and a factor that is too large gives a significantly worse result due to underfitting.

Early stopping. At some point during the training, the validation accuracy of the DNN does

not improve further. It might happen, that training beyond this point only improves the

performance of the DNN on the training sample, but not on the validation sample. Thus

the DNN might start to overtrain. In this case, it is necessary to use the early stopping

function, which stops the training as soon as the result does not improve anymore or

even deteriorates. It must be carefully adjusted after how many epochs, in which the loss

function has not improved by a certain value, the training should be stopped.
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Reducing learning rate. Closely related to the early stopping function is the reducing

learning rate function. The learning rate can be reduced by a selectable factor if the

training slows down. This ensures that the targeted local minimum can be approached

more precisely, thus improving the final result. Again, the parameters must be fine-tuned

to achieve optimal improvement.

6.3 Convolutional networks

Convolutional neural networks are a special form of neural networks. Here, not all input

nodes are connected to all output nodes but only spatially adjacent ones are linked. This

makes this type of network more efficient to detect local correlations in spatial or tem-

poral arranged input data, which is why it is often used, for example, in image or video

recognition. The input data are not processed as a vector, but as an N + 1 dimensional

tensor. Convolutional neural networks can be interpreted as small filters that stride across

the image as shown in figure 6.2. Each filter creates a so-called feature map with extracted

features, that were found in the picture while striding over it. With many convolutional

layers in succession, the filters stride over these feature maps and the receptive field ex-

pands. Therefore, this transition from locally correlated features towards more and more

global ones forms a different learning hierarchy compared to standard fully connected net-

works. After several convolutional layers, the tensor of the last layer is usually flattened,

followed by one or more fully connected layers. Each filter has a small set of weights,

which is adjusted during the training. Due to weight sharing over the entire image, sym-

metries in the image can be efficiently exploited. Since much less parameters are needed

for these filters than are required for connecting all nodes with one another, convolutional

layers can be much more efficient than fully connected layers and drastically reduce the

computational costs, especially for large input tensors. Advanced techniques exist that

are used in this analysis; they are explained below.

Input

Fully Connected Layer

OutputFeature Maps

Feature Maps
Feature Maps

Figure 6.2: Illustration of a convolutional neural network. Filters stride over the image creating
feature maps. In the end, a fully connected layer of the flattened tensor leads to the
final output node.
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Striding and padding. Normally, convolutional filters cannot be applied on the border of

the image; as a consequence the size of the tensor is reduced. If the size is to remain the

same, so-called padding is used, which adds zeros around the borders so that the filters

can also be applied at the border of the tensor. But if the tensor is meant to get smaller,

then strides can be used. This determines how big the striding steps of the filter are. If,

for example, the filter does not strides with step size one, but with step size two, then only

half as many positions of the filter are evaluated, which results in a feature map half the

size of the first tensor. Both techniques are useful, for example to transform the tensor

into the desired shape or to reduce the dimensions of the parameter space.

Pooling. The last convolutional layer is then usually flattened using pooling operations.

Global maximum pooling takes the maximum value of each feature map. So a tensor with

N feature maps becomes a vector with N values. This is an efficient method to reduce the

dimensions of the tensor and the total number of nodes; this reduces the computational

costs drastically, increases the learning speed and prevents overtraining.

Separable convolutions. A special form of convolutions are depth-wise separable convo-

lutions [42]. Their spatial and cross-channel correlations are computed separately, which

increases computational and parameter efficiency. Depth-wise separable convolutions per-

form better than normal convolutions, if correlations of different dimensions of the tensor

are sufficiently decoupled.

Densely connected layers. In some cases, the performance of a network can be improved

by increasing the connectivity with densely connected layers [43]. Here, all convolutional

layers are connected to one another, which results in shortcuts through the network. These

shortcuts are an essential property, which allows extracted features of different layers to

be linked. The result is a better training, and an optimum can be found faster due to an

easier backpropagation of the gradient.
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Chapter 7

Photon search using deep neural

networks

7.1 Network architecture

In this chapter, different approaches to separate proton and photon-induced air showers

using deep learning techniques are discussed. Each approach has different input variables,

therefore also the architecture of the DNN has to be optimized for the respective input.

Each DNN has, therefore, been fine-tuned, for example the choice of the number of layers,

their individual sizes, the values of all parameters of the regularizers and so on. Although

all networks are different, they all share the same basic concepts for the architecture, which

is inspired by the Air shower extraction Network (AixNet) [5], where a DNN was applied

on SD measurements. This network architecture can be divided into two blocks.

The first block only processes the signal traces. The second block concatenates the pro-

cessed output together with the arrival times and the total signals as an additional input.

Since the SD and FD data can also be regarded as an image and local correlations between

neighboring stations or pixels are very important, convolutional layers are used. As this

concept has so far only been applied to the SD, this concept must now be transferred to

hybrid measurements. Since both, SD and FD, cover comparable measurements, namely

the signal traces and the arrival times, the idea is to set up a separate block for the FD,

following the same concept as for the SD. Since the input tensors of the SD (13 × 13),

Coihueco (22 × 80) and HEAT (22 × 40) all have different shapes (see section 4.4), it is

not very convenient to put all inputs together into one block. Instead, they are processed

individually by separated blocks. Then, every block outputs a layer of several nodes, con-

taining the extracted features of the respective input. These layers are then stacked and

processed with fully connected layers, leading to one single output node, which is then the
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final prediction. The sigmoid function is used as activation for the output layer, so that

the output is always a floating point number between zero and one. It is zero for a proton

or one for a photon. For all other layers, SELU was used as an activation function.

Since the architecture of the networks for the analysis of the signal traces and arrival times

is basically the same for the SD, Coihueco and HEAT, it is described below exemplary for

the SD. The networks for the FD differ essentially only in different tensor sizes.

As already mentioned, the signal traces form the input of the first block of the convolutional

network. So in the case of the SD, this corresponds to a 13× 13× 100 tensor with 13× 13

stations containing a signal trace with 100 time steps each. Four 3D convolution filters are

used in succession, but each filter has a size of only 1× 1 in the spatial dimensions. This

means that each signal trace of the stations is analyzed on its own first, but with the same

filters for all traces, and the input shape of 13×13 remains the same. This allows to stack

the maps of the arrival times and the total signals to the feature maps. The goal of this

first block is to extract important temporal features from the signal traces, while reducing

the size of the tensor. In this case, it is an advantage of convolutional filters, that the

weight-sharing of each filter across all detectors means, that each signal trace is analyzed

in the same way. This is both physically meaningful and parameter-efficient. After these

four convolutional layers, the network has extracted 30 feature maps.

In the second block, these 30 feature maps are stacked with the maps of the arrival times

and the total signals, thus creating a 13 × 13 × 32 tensor. This is followed by several

layers of densely connected 2D separable convolutions. So every layer is connected to all

previous ones. Each of the initial 32 feature maps contains different extracted features

with different physical meanings. It is thus expected that the spatial and feature-wise

correlations are decoupled. Therefore, separable convolutions can be applied. The size of

the filters is 3 × 3, which also allows to extract spatial correlations and features across

stations. All convolutional layers are initialized using the normal distribution proposed by

K. He et al. [44]. In the end, feature maps are extracted which contain the most important

observables of the signal traces, the arrival times and total signals. Finally, each feature

map is compressed to one node using global maximum pooling. The resulting vector is

fully connected to the output node or concatenated with vectors of other input blocks,

depending on the respective approach.

In summary, the inputs of the different detectors (SD, Coihueco, HEAT) are first analyzed

separately by the DNN using the AixNet architecture. Each of these blocks contributes a

final vector containing the extracted features. They are concatenated and analyzed using

fully connected layers, leading to one final output node.
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For all networks which will be discussed below, the code of the implementation with details

of the architectures can be found in appendix A. Keras [45] is used as the deep learning

framework and the TensorFlow [46] software as a backend. For the training process, the

adaptive optimizer ADAM [47] with an initial learning rate of 10−3 was used. 95 000 events

were used for the training and 5574 events for validation. After the training process, the

final performance of the DNN is checked with the test set of 20 043 events (i.e. 120 617

events in total). Each set consists of approximately 50% protons and 50% photons. It is

impossible to store all input tensors of all events at the same time in the main memory.

Hence, only 10 events were loaded at the same time. This rather small batch size is needed

in order to reduce computational costs.

7.2 Network using only BDT input variables (BDT-Net)

The performance of all DNNs in the following analysis will be compared to a previous

method, which uses a BDT and was described in chapter 5. Hence, before discussing the

AixNet-based networks, it might be an interesting test to check the power of DNNs by

directly comparing the BDT method to a network with the same input variables. So, a

DNN was set up, which has five input nodes, corresponding to the five BDT input variables

(Sb, Xmax, Nstat, θ and Eγ) and seven fully connected layers in total. The distribution of

the predictions on the test set of this network using only BDT input variables (BDT-Net)

is shown in figure 7.1.
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Figure 7.1: Histogram of the output values of the BDT-Net for all events in the test sample.
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The distributions of all other DNNs that will be described below are very similar to this.

A large peak of photon events at an output value close to one and also one of proton

events close to zero is visible. This means that the DNN has successfully learned how

to separate photons and protons. Only a small fraction of events gets a false prediction

value. For each particle type there is also a smaller peak at the opposite end of the output

value range. Especially the peak of photon events at zero is clearly visible. This has two

reasons: first, wrong classification of protons as photons by the method would be worse

than wrong classification of photons as protons. To prevent the former error, a weighting

was applied to the events during training. The protons get half the weight of the photons,

so that the DNN tends to zero as an output rather than to one. This leads to more wrongly

classified photons, but also suppresses the number of protons with one as output. The

second reason is the activation of the DNN in the last layer. As mentioned in the previous

section, the sigmoid function was used as an activation in order to map the output of the

DNN to the interval between zero and one. Considering the shape of this function, it is

clear that the peaks at the edges are due to the fact that values with |x| & 3 are mapped

very close to zero or one. In figure 7.2, the output values of the same test set as before

are plotted, however, before the sigmoid activation was applied. It can be seen that this

distribution has two fading ends and a larger range [−20, 13] of output values. All values

with |x| > 4.6 are stacked in both outermost bins in figure 7.1.
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Figure 7.2: Histogram of the output values of the BDT-Net for all events in the test sample
before the sigmoid activation was applied. Therefore, the output range is unlimited.
The plotted range contains all events.
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In order to compare the performance of the BDT-Net with the BDT method, the back-

ground rejection and signal efficiency for every possible decision value was calculated. The

resulting ROC curve is shown in figure 7.3. The overall performance of the BDT-Net

is better than the BDT. With 99.99% background rejection at 50% signal efficiency, the

BDT-Net performs significantly better than the BDT method (99.91%). This is an in-

teresting result, because the input is exactly the same for both methods. This means

that for this purpose alone it is useful to apply DNNs. Nevertheless, it should be checked

whether the differently chosen event cuts influence the result and how well the simulations

fit. In the following sections, it will be explained how the strength of DNNs and especially

convolutional networks can be used to further improve this result.
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Figure 7.3: ROC curve of the BDT-Net, compared to the BDT method. The BDT-Net clearly
performs better.

7.3 Surface detector network (SD-Net)

The BDT method and the DNN from the previous section use some variables that were

calculated from FD or hybrid data. However, the FD has a duty cycle of only around

15% compared to almost 100% of the SD. A method that uses only SD data and still

is sufficiently accurate would significantly increase the exposure for photon search. This

could make the discovery of a UHEP more likely or could lower the upper limits on the

possible photon flux at these energies. That is why a DNN was set up that uses only the

measurements of the SD. A sketch of this SD-Net is shown in figure 7.4. Since this DNN

only gets the signal traces, arrival times and total signals of the SD, the architecture of the

SD-Net is very similar to the AixNet by which it was inspired, as described in section 7.1.
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Figure 7.4: Sketch of the SD-Net. The signal traces are analyzed with four convolutional layers
first. The resulting feature maps are concatenated with the arrival times and total
signals and analyzed with four densely connected separable convolutional layers. The
feature maps are compressed using global maximum pooling, followed by three fully
connected layers and, finally, the output node.

The ROC curve of the trained SD-Net is shown in figure 7.5. It does not perform as well

as the BDT at higher signal efficiencies, but below 70% signal efficiency, both methods

perform almost equally well. This shows that the AixNet architecture can also be used to

search for photons. With a background rejection of 99.91% at 50% signal efficiency, the

SD-Net achieves the same value as the BDT; this is a good success considering that only

SD data were used. This means that the use of the SD-Net for the UHEP search benefits

from the higher duty cycle of the SD and thus a higher exposure, without losing accuracy.
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Figure 7.5: ROC curve of the SD-Net, compared to the BDT. Both methods perform almost
equally well below 70% signal efficiency.
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7.4 Fluorescence detector network (FD-Net)

In order to check the separation power of the FD, a DNN was set up, called FD-Net, with

the signal traces, arrival times and total signals of the FD as input. A sketch of this FD-

Net is shown in figure 7.6. The architecture is like that of the SD-Net, only the shapes of

the tensors differ, as the SD has a 13×13×100 grid whereas Coihueco has 22×80×50 and

HEAT has 22× 40× 50 inputs. The AixNet principle was applied separately to Coihueco

and HEAT. Then, after the pooling layer, each block provides a layer with 100 nodes,

containing all extracted features. These two layers were concatenated and, after three

fully connected layers, lead to the output node.
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Figure 7.6: Sketch of the FD-Net. The input tensors of Coihueco and HEAT are analyzed sep-
arately in the same way as in the SD-Net. After applying global maximum pooling,
the two resulting layers are concatenated, followed by three fully connected layers
and the output node.

The ROC curve of the trained FD-Net is shown in figure 7.7. The performance of this

DNN is very bad compared to the previously described methods. It seems that the DNN

was not able to extract useful information from the FD traces input. A reason might be

that the arrays are too large, considering in particular that most pixels do not carry any

signal and, as a result, most traces contain zeros only. This is why another smaller net-

work was tested excluding HEAT data. This network has only Coihueco data as an input

and consequently only one convolutional block. As visible in figure 7.7, the ROC curve of

this smaller DNN is almost identical with the one of its extended version. The DNN was

thus not able to extract any important features from the HEAT data. In fact, only about

half of all events have HEAT data at all. With a background rejection of around 75% at

50% signal efficiency, the performance of the FD-Net, both with and without HEAT, is

far from being acceptable. It has not been unequivocally clarified whether these networks
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perform worse because the input contains less useful information, the data are not pro-

vided properly or if it is simply a problem of optimizing the parameters during training. It

is probably a combination of all these reasons, which is why further investigations would

be necessary to fully understand what is the best way to feed FD data to a DNN and train

it. So FD alone currently has no satisfactory separation power, but it might be useful as

supporting information when combined with other inputs.
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Figure 7.7: ROC curve of the FD-Net, compared to the BDT. The dotted line shows the diagonal
that would result if only random guesses were made. Both FD-Nets perform far worse
than the BDT.

7.5 Hybrid network (H-Net)

An important test is to check the performance of a DNN whose input comprises all pos-

sible variables and tensors. This Hybrid network (H-Net) gets the complete data of SD,

Coihueco, HEAT and the five BDT variables. Therefore, it has four separate blocks that

first analyze each input on its own; then the pooled layers with the extracted features are

concatenated and analyzed by several fully connected layers. A sketch of this H-Net is

shown in figure 7.8. In principle, this network is a combination of all DNNs that were

discussed before. Naively, one would expect this network to perform best as it gets the

most information as input. With around 560 000 parameters, it is also the largest network

in this analysis. Due to the large input tensors and the huge amount of parameters, the

training of this DNN is computationally very expensive and takes several days, compared

to a few hours for the other networks.
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Figure 7.8: Sketch of the H-Net with SD data, FD data (Coihueco and HEAT) and the five BDT
variables as input. The tensors of SD, Coihueco and HEAT are processed as in the
SD-Net and FD-Net. After applying global maximum pooling, the three resulting
layers are concatenated with the last layer of the BDT-Net. This is followed by six
fully connected layers and the output node.

The results are shown in figure 7.9. It can be seen, that the performance of the H-Net is in

general better than that of the BDT, although, contrary to expectations, the ROC curve of

the H-Net is very close to that of the BDT-Net, which means that the additional input did

not improve the accuracy. In view of the high computational costs of training, application

of the BDT-Net is more convenient in direct comparison. Furthermore, networks without

HEAT or FD data were trained. These smaller networks again performed almost equally

well as the BDT-Net and H-Net.

This shows that neural networks do not necessarily work better when the amount of

information is increased. More input variables can even worsen the result. It is important

to develop a reasonable architecture that can extract the essential features. To build a DNN

which achieves good accuracy using FD data turns out to be more difficult than for the SD.

Using the AixNet architecture, the FD-Net performance seems to be too bad to provide

improving information when it is included in the H-Net. Therefore, more research has to be

done in order to make use of the additional input. However, the size of the input and of the

DNN, and the resulting long training times make it harder to fine-tune the parameters and
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Figure 7.9: ROC curve of the H-Net, compared to the BDT and BDT-Net. The H-Net has
approximately the same separation power as the BDT-Net.

the general structure of the network. This extends the required time for the optimization

process. Another problem might be the huge discrepancy of the importance of different

inputs. While only five BDT variables already achieve a good accuracy and thus have a

high separation power, the FD tensors have 137 280 variables in total and carry less useful

information like empty pixels. Therefore, it is not surprising that the network is likely

to focus on the BDT variables and has problems to find important features in the large

tensors to further improve the result. It should be noted that the BDT variables were

optimized for years, whereas the detector signals are raw data. This might be the reason

why the H-Net does not perform better than the BDT-Net. For a successful improvement

of this result, more effort must be made to find the right implementation of these data into

the network. For now, the best choice is the BDT-Net for performance reasons. However,

the SD-Net might be useful as well, because of the higher duty cycle. Though, it is also

possible that a limit has already been reached. The fact that the BDT-Net, the H-Net

as well as the other tests with hybrid input all achieve approximately the same accuracy,

might show that these results cannot be improved any further. It is possible that the last

few events that were wrongly classified are indeed indistinguishable. This would mean

that this result is close to the best possible, using the current detector configuration.
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7.6 AugerPrime network (AP-Net)

The upgrade of the Pierre Auger Observatory, AugerPrime, promises improvements of

many measurements and reconstructions of the shower properties. Since the SSDs on each

WCD of the SD have a different response to the muonic and electromagnetic component

of the shower than the WCD, it becomes possible to reconstruct the individual strength

of the signal of these two components. A large improvement for UHEP search is expected,

because photon and proton-induced EASs differ in the fraction of muonic and electro-

magnetic component. To give an outlook of the separation power of AugerPrime, a DNN

was developed with the Monte Carlo numbers of electromagnetic and muonic particles.

A sketch of the architecture of this AugerPrime-Net (AP-Net) is shown in figure 7.10.

The input consists of three maps with 13 × 13 SD stations, containing the true number

of muons (µ±), electromagnetic (γ, e±) and total particles, that had traversed the station.

These particle numbers were preprocessed by logarithmizing and normalizing them with

the transformation

ÑX =
log10(NX + 1)

log10(max(NX) + 1)
(7.1)

where max(NX) is the maximum number of particles of all stations and all events

(max(Nµ±) = 9033, max(Nγ,e±) = 4 652 586, max(Ntotal) = 4 654 171). The resulting

13 × 13 × 3 tensor is then given to the AP-Net as an input. The network consists of

four convolutional layers and, after a global maximum pooling layer, another four fully

connected layers.

Muonic Number
Convolutional Neural Network Global

Maximum

Pooling
13×13×3

Output

Electromagnetic Number

Total Number

Figure 7.10: Sketch of the AP-Net with the stacked maps of the electromagnetic, muonic and
total number of particles per SD station as input. These maps are analyzed by
four convolutional layers. The feature maps are compressed using global maximum
pooling, followed by three fully connected layers and the output node.

The ROC of this relatively small DNN is shown in figure 7.11. As expected, the perfor-

mance of this network by far surpasses all other methods. Since it uses SD data only,

it also benefits from its higher duty cycle and exposure. However, this shows only the

ideal case of the separation power of AugerPrime, assuming that the particle counts of

the two components can be perfectly reconstructed. Therefore, the real separation power

of AugerPrime will be worse. But this result shows that this upgrade can significantly

improve the search for UHEPs.
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Figure 7.11: ROC curve of the AP-Net method, compared to the BDT. It can be seen that the
AP-Net performs far better than the BDT.

7.7 Stability of performance

After having discussed several approaches with different architectures and inputs, it is

important to check the stability of these results. Before these DNNs are applied to mea-

sured data, a lot of tests have still to be made. These include, for example, an analysis if

the networks really train on properties of the shower or just on artifacts of the simulation.

Therefore, more research regarding the differences between data and simulation, especially

for the signal traces, has to be done.

A first test is to check the performance of the DNNs on different hadronic interaction

models. As already mentioned in section 4.1, two additional test sets were simulated,

using QGSJetII-04 and Sibyll 2.3c as hadronic interaction models. As an example, the

ROC curves of all three models for the BDT-Net are shown in figure 7.12. Since only

protons were simulated in the two additional data sets, the signal efficiency cannot be

calculated. Instead, for each chosen decision line, the signal efficiency for the main test set

(using EPOS LHC) was calculated, and the background rejection was calculated on the

test set of the respective model, using the same decision line. It can be seen that, with

some fluctuations, the performance on each interaction model is roughly the same. These

fluctuations are normal and can also be seen for identical networks that are trained indi-

vidually and applied on the same test set. This means that the DNN has not only trained

on specific properties of the EPOS LHC simulation, which gives a certain confidence in

this neural network method.
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Figure 7.12: ROC curves of the BDT-Net for three test sets with different hadronic interaction
models. The curves overlap with only small fluctuations.

Another test is to check the energy dependence of the methods. In order to do that, the

decision line was set arbitrary to a DNN output value of 0.5, i.e. in the middle of the

interval of possible outputs. All output values greater than 0.5 were classified as photons.

The resulting histogram for the BDT-Net applied to the test set is shown in figure 7.13.

17.0 17.5 18.0 18.5 19.0 19.5

log10(E [eV])

10−1

100

101

102

N
u

m
b

er
of

E
ve

n
ts

True: Photon → BDT-Net: Photon

True: Proton → BDT-Net: Proton

True: Photon → BDT-Net: Proton

True: Proton → BDT-Net: Photon

Figure 7.13: Histogram of correctly and wrongly classified events of the test set, using the BDT-
Net. The cuts applied on the data set reduces the statistics below E = 1017.5 eV.
The fraction of wrongly classified events is approximately constant.
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It can be seen that the accuracy of the DNN is almost energy independent. With lower

primary energy of the cosmic ray, it is expected that it becomes harder to distinguish

between photons and protons, since their Xmax distributions get more similar. This de-

pendence can be neglected, because its effect on the test set is very small. Nonetheless, an

energy threshold could reduce possible energy dependencies. Although both tests verify

the stability of methods using DNNs, a lot of tests have still to be made before applying

them on measured data. For example, it is important to fully understand the differences

between data and simulation, as well as what the features are that the DNN takes into

account in its decision.

7.8 Discussion of results

Several approaches of DNNs using different input sets were discussed. The BDT-Net has a

much better performance than the BDT even though both get the same five input variables.

The SD-Net does not quite reach the accuracy of the BDT for high signal efficiencies, but

it is comparable below 70%. This is a good result, considering the higher duty cycle of

the SD. The integration of the FD data is problematic and the FD-Net is by far the worst

method that was developed in this analysis. The H-Net could not use the additional input

in order to outperform the BDT-Net, which leads to the hypothesis that a limit is reached

when these deep learning techniques and detector measurements are used. Though, more

research has to be done to find a better approach to analyze FD data with neural nets. The

ongoing upgrade AugerPrime might increase the separation power of the SD enormously,

as the AP-Net shows as a best case scenario. For better comparison, the ROC curves of

all important DNNs developed are shown in figure 7.14. The methods show good stability

over the tested energy ranges and were also tested on two additional hadronic interaction

models. The performances are all in all stable, which means that the DNNs will probably

provide good results on measured data. However, more tests have to be made to prevent

false discoveries, because of the differences of simulation and data.
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Figure 7.14: ROC curves of all methods in comparison.
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Chapter 8

Estimation of the photon flux

sensitivity

Since this analysis only presents new methods that can improve the separation between

photons and protons, the actual search for photons in the data of the Pierre Auger Ob-

servatory has still to be done in the future. Before, the mismatch between simulation and

data has to be investigated further. The impact on how the energy range of the simulated

data influences the performance of the methods needs to be studied as well.

No UHEP has been found so far. Despite the fact that the developed deep learning

approaches increase the current accuracy, it is unlikely to find a UHEP. The sensitivity

on the photon flux is still orders of magnitudes higher than the predicted flux caused by

the GZK effect (see section 2.1). So it is important to lower the upper limits of a possible

photon flux drastically using improved methods to either prove or disprove the GZK

effect. In order to get an idea of the possible improvement of these limits, an estimation

was calculated for the different approaches. The SD-Net benefits from the higher duty

cycle and, therefore, higher exposure. The performance of the hybrid approaches is better

than that of the BDT. So both might lower the current limits.

The following calculation was redone from [48], where the upper limits on the photon flux

were calculated using the BDT method. First, the effective exposure Eγ,eff above an energy

threshold E0 is calculated:

Eγ,eff(Eγ > E0|E−Γ
γ ) =

∫∞
E0
E−Γ
γ Eγ(Eγ)dEγ∫∞
E0
E−Γ
γ dEγ

(8.1)

where Γ = 2 is the assumed spectral index of the photon flux and Eγ(Eγ) the hybrid

exposure. It is shown in figure 8.1.
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Figure 8.1: Effective exposure Eγ,eff(Eγ > E0|E−Γ
γ ) above an energy threshold E0. The FD

reaches full efficiency at the maximum of the curve. Data taken from [48].

Then the upper limit on the integral photon flux at 95% confidence level Φ0.95
U.L. can be

determined as

Φ0.95
U.L.(Eγ > E0) =

N0.95
γ,cand(Eγ > E0)

εcand × Eγ,eff(Eγ > E0|E−Γ
γ )

(8.2)

where εcand is the signal efficiency of the a-priori photon candidate cut and N0.95
γ,cand(Eγ >

E0) is the upper limit on the number of photon candidate events, according to Feldman

and Cousins [49] with no background subtraction. In order to calculate the upper limit, a

Poisson distribution with background

P (n|µ) =
(µ+ b)n

n!
e−(µ+b) (8.3)

is assumed with the expected background events b, the number of candidate events found n

and the expected number of candidate events µ. In the previous analysis [48], with 99.85%

background rejection at 50% signal efficiency b = 0 background events were assumed. Since

no reduction of zero background events is possible, the only way to improve the upper limits

is to achieve a higher exposure or signal efficiency. Therefore, the signal efficiency εcand

for a background rejection of 99.85% was calculated for each method. The result is shown

in table 8.1.
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Method Back. rej. at 50% sig. eff. Sig. eff. at 99.85% back. rej. (εcand)

BDT 99.85% 50%

BDT-Net 99.99% 70.66%

SD-Net 99.91% 61.17%

H-Net 99.93% 82.07%

AP-Net 100% 92.64%

Table 8.1: Comparison of different methods at 50% signal efficiency or 99.85% background
rejection. The right column was used as εcand in equation 8.2.

For a given n and b, the calculation of the Feldman-Cousins confidence intervals outputs

the maximum possible number of expected candidate events within a certain confidence

interval. In other words, if n photon events are found and b wrongly classified background

events are expected, it is calculated how many true photon events at most can be in the

sample with a certain probability. The assumption that there is no background (b = 0)

and that no photon will be found in the data of the Pierre Auger Observatory (n = 0)

leads to N0.95
γ,cand(Eγ > E0) = 3.095. The effective exposure for methods that only use

SD data (SD-Net, AP-Net) was estimated to be larger by a factor 1
0.13 ≈ 7.69, because

the FD has 13% the duty cycle of the SD. This assumption might differ from the true

SD exposure, because more complex relations like energy dependencies or different angle

acceptances are not taken into account.

The final upper limits for the considered methods, compared to other experiments and

model predictions, are shown in figure 8.2. The BDT-Net and H-Net benefit from a higher

signal efficiency and lower the limits to 70% and 60% respectively of the BDT limit. The

SD-Net has not only an increased signal efficiency but also an increased exposure, which

reduces the limit by one order of magnitude compared to the BDT limit. More information

inside the hybrid data thus cannot compensate the lower exposure, which is why methods

that only use SD data set the lowest upper limits. Therefore, the AP-Net reduces the limits

the most, down to 7% of the BDT limit, which is roughly 0.2 km−2yr−1sr−1. However,

even the AP-Net is not sufficiently sensitive to get close to the theoretical predictions.

Since the signal efficiency can hardly be increased any further, the only way to achieve

these predictions is to significantly increase the exposure.
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Figure 8.2: Upper limits on the integral photon flux Φ0.95
U.L.(Eγ > E0) with different methods

and experiments [6, 50, 51, 52] at 95% confidence level (90% for EAS-MSU [53] and
KASCADE-Grande [54]), compared to model predictions [55].
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Conclusion

In this analysis, the first attempt was made to apply deep learning techniques to SD and

FD data of the Pierre Auger Observatory in order to find ultra-high energy photons. First,

a BDT method based on a previous analysis was applied as a comparison.

Deep neural networks which are able to distinguish between proton and photon-induced

extensive air showers were developed. By training the deep neural networks on simulated

and labeled data, several approaches using different inputs were discussed. An essential

feature of the network architectures, that were inspired by the AixNet, are convolutional

layers that extract local correlations from the signal traces, arrival times and total signals

of each SD station and FD pixel.

Given only the same five variables from the BDT analysis, the BDT-Net achieves a higher

accuracy than the BDT. The H-Net, a very large network with all SD, FD (Coihueco

and HEAT) and BDT variables as input, has approximately the same performance as the

BDT-Net, despite the fact that it has much more information as input. Thus, it turned

out that the improvement of the BDT-Net by use of more input data is challenging. The

huge size of the input and the number of parameters of the H-Net extend the training

duration to several days and complicate the development and fine-tuning of this network

architecture. Furthermore, the FD-Net shows a bad performance, which might indicate

that the DNNs have problems to extract important features from the FD traces. Further

research should therefore be carried out on how this input can be used effectively.

On the other hand, the SD-Net shows very good results, considering that it gets only SD

data. In addition, the developed AP-Net shows the potential of the ongoing AugerPrime

upgrade. Using the number of particles of the muonic and electromagnetic component,

this network increases the separation power between photons and protons significantly.
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However, this is a best case scenario, because the AP-Net has Monte Carlo data as input.

AugerPrime will nevertheless provide a major improvement in UHEP search.

Additionally, all methods were also tested on other hadronic interaction models and their

energy dependence was analyzed. The DNNs show good stability against changes in the

simulation and primary energy. Before applying the methods to measured data, further

investigations are necessary regarding the mismatch between data and simulations.

However, a first estimation of the upper limits on the photon flux shows that the devel-

oped methods using DNNs are indeed able to lower the limits of current methods. The

approaches that only use SD data (SD-Net and AP-Net) reach the lowest upper limits,

because the gain in exposure, due to the higher duty cycle of the SD compared to the

FD, provides a greater improvement than the higher signal efficiencies of the hybrid ap-

proaches. Therefore, currently the best approach in order to get the lowest upper limits

on the photon flux is the SD-Net, an SD-only method using deep convolutional neural

networks. The concept of the SD-Net could also be applied to the whole SD array and not

only to the infill array. The benefit would be a much larger exposure, and this might lead to

improvements of the upper limits, especially at higher energies. The AugerPrime upgrade

with the resulting improvement of the discrimination between muonic and electromagnetic

component will further lower the limit of the SD-Net. Nonetheless, a higher expose is still

required, so that the photon upper limits, reached by the Pierre Auger Observatory, can

clarify the predicted photon flux from the GZK effect.
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Appendix A

Implementing deep neural

networks

A.1 Boosted decision tree network (BDT-Net)

1 from tensorflow import keras as K

2 from tensorflow.keras import regularizers

3 from tensorflow.keras.layers import *

4

5 BDT_input = Input(shape =[5])

6 x = Dense(15, activation="selu")(BDT_input)

7 x = Dense(15, activation="selu")(x)

8 x = Dense(15, activation="selu")(x)

9 x = Dense(15, activation="selu")(x)

10 x = Dense(15, activation="selu")(x)

11 x = Dense(15, activation="selu")(x)

12 output = Dense(1, activation="sigmoid")(x)

13

14 model = K.models.Model([ BDT_input],[output ])

15

16 print(model.summary ())

17

18 model.compile(loss="binary_crossentropy",

19 optimizer=K.optimizers.Adam(lr=1E-3),

20 metrics =["accuracy"])

21

22 batchsize = 10

23

24 model.fit_generator(generator(batchsize = batchsize),

25 steps_per_epoch =95000/ batchsize ,

26 epochs =500,

27 class_weight ={0: 0.5, 1: 1},
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28 verbose=2,

29 validation_data=val_data ,

30 max_queue_size =10,

31 workers=1,

32 use_multiprocessing=True ,

33 callbacks = [

34 K.callbacks.CSVLogger("history.csv"),

35 K.callbacks.ReduceLROnPlateau(monitor="val_acc",

36 min_delta =0.001 ,

37 patience= 30,

38 verbose=1,

39 mode="auto",

40 factor =0.5,

41 cooldown=5,

42 min_lr =0),

43 K.callbacks.EarlyStopping( monitor="val_acc",

44 min_delta =0.001 ,

45 patience =500,

46 verbose=1,

47 mode="auto")])

48

49 model.save("model.h5")
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A.2 Surface detector network (SD-Net)

1 from tensorflow import keras as K

2 from tensorflow.keras import regularizers

3 from tensorflow.keras.layers import *

4

5 SD_input_1 = Input(shape =[13 ,13 ,100 ,1])

6 SD_input_2 = Input(shape =[13 ,13 ,2])

7

8 l12 = 0.0003

9 kwargs1 = dict(activation="selu", kernel_initializer="he_normal")

10 kwargs2 = dict(activation="selu",

11 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12),

12 kernel_size =(3,3),

13 strides =(1, 1),

14 padding="same",

15 depth_multiplier =1,

16 depthwise_initializer="he_normal",

17 pointwise_initializer="he_normal")

18 kwargs3 = dict(activation="selu",

19 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12))

20

21 x = Conv3D (30, kernel_size =(1,1, 5), strides =(1,1,2),

22 padding = "same", ** kwargs1)(SD_input_1)

23 x = Conv3D (50, kernel_size =(1,1, 5), strides =(1,1,2),

24 padding = "same", ** kwargs1)(x)

25 x = Conv3D (70, kernel_size =(1,1, 5), strides =(1,1,2),

26 padding = "same", ** kwargs1)(x)

27 x = Conv3D (30, kernel_size =(1,1,13), strides =(1,1,1),

28 padding = "valid", ** kwargs1)(x)

29 x = Reshape ((13 ,13 ,30))(x)

30 x = concatenate ([x,SD_input_2], axis=-1)

31 x = SeparableConv2D (32, ** kwargs2)(x)

32 xl = [x]

33 for i in range (3):

34 x = SeparableConv2D (2**(i+5), ** kwargs2)(x)

35 xl.append(x)

36 x = concatenate(xl[:], axis=-1)

37 x = GlobalMaxPooling2D ()(x)

38 x = Dropout (0.5)(x)

39 x = Dense (100, ** kwargs3)(x)

40 x = Dropout (0.5)(x)

41 x = Dense(50, ** kwargs3)(x)

42 x = Dropout (0.5)(x)

43 x = Dense(20, ** kwargs3)(x)

44 x = Dropout (0.5)(x)

45

46 output = Dense(1, activation="sigmoid")(x)
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47

48 model = K.models.Model([ SD_input_1 ,SD_input_2 ],[output ])

49

50 print(model.summary ())

51

52 model.compile(loss="binary_crossentropy",

53 optimizer=K.optimizers.Adam(lr=1E-3),

54 metrics =["accuracy"])

55

56 batchsize = 10

57

58 model.fit_generator(generator(batchsize = batchsize),

59 steps_per_epoch =95000/ batchsize ,

60 epochs =300,

61 class_weight ={0: 0.5, 1: 1},

62 verbose=2,

63 validation_data=val_data ,

64 max_queue_size =10,

65 workers=1,

66 use_multiprocessing=True ,

67 callbacks = [

68 K.callbacks.CSVLogger("history.csv"),

69 K.callbacks.ReduceLROnPlateau(monitor="val_acc",

70 min_delta =0.001 ,

71 patience =30,

72 verbose=1,

73 mode="auto",

74 factor =0.5,

75 cooldown=5,

76 min_lr =0),

77 K.callbacks.EarlyStopping( monitor="val_acc",

78 min_delta =0.001 ,

79 patience =80,

80 verbose=1,

81 mode="auto")])

82

83 model.save("model.h5")
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A.3 Fluorescence detector network (FD-Net)

1 from tensorflow import keras as K

2 from tensorflow.keras import regularizers

3 from tensorflow.keras.layers import *

4

5 CO_input_1 = Input(shape =[22 ,80 ,50 ,1])

6 CO_input_2 = Input(shape =[22 ,80 ,2])

7

8 kwargs = dict(activation="relu", kernel_initializer="he_normal")

9

10 l12 = 0.00005

11 kwargs1 = dict(activation="selu", kernel_initializer="he_normal")

12 kwargs2 = dict(activation="selu",

13 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12),

14 kernel_size =(3,3),

15 strides =(1, 1),

16 padding="same",

17 depth_multiplier =1,

18 depthwise_initializer="he_normal",

19 pointwise_initializer="he_normal")

20 kwargs3 = dict(activation="selu",

21 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12))

22

23 y = Conv3D (30, kernel_size =(1,1,5), strides =(1,1,2),

24 padding = "same", ** kwargs1)(CO_input_1)

25 y = Conv3D (60, kernel_size =(1,1,5), strides =(1,1,2),

26 padding = "same", ** kwargs1)(y)

27 y = Conv3D (120, kernel_size =(1,1,5), strides =(1,1,2),

28 padding = "same", ** kwargs1)(y)

29 y = Conv3D (30, kernel_size =(1,1,7), strides =(1,1,1),

30 padding = "valid", ** kwargs1)(y)

31 y = Reshape ((22 ,80 ,30))(y)

32 y = concatenate ([y,CO_input_2], axis=-1)

33 y = SeparableConv2D (32, ** kwargs2)(y)

34 yl = [y]

35 for i in range (4):

36 y = SeparableConv2D (2**(i+5), ** kwargs2)(y)

37 yl.append(y)

38 y = concatenate(yl[:], axis=-1)

39 y = GlobalMaxPooling2D ()(y)

40 y = Dropout (0.4)(y)

41 y = Dense (100, ** kwargs3)(y)

42

43 HE_input_1 = Input(shape =[22 ,40 ,50 ,1])

44 HE_input_2 = Input(shape =[22 ,40 ,2])

45

46 z = Conv3D (30, kernel_size =(1,1,5), strides =(1,1,2),
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47 padding = "same", ** kwargs1)(HE_input_1)

48 z = Conv3D (60, kernel_size =(1,1,5), strides =(1,1,2),

49 padding = "same", ** kwargs1)(z)

50 z = Conv3D (120, kernel_size =(1,1,5), strides =(1,1,2),

51 padding = "same", ** kwargs1)(z)

52 z = Conv3D (30, kernel_size =(1,1,7), strides =(1,1,1),

53 padding = "valid", ** kwargs1)(z)

54 z = Reshape ((22 ,40 ,30))(z)

55 z = concatenate ([z,HE_input_2], axis=-1)

56 z = SeparableConv2D (32, ** kwargs2)(z)

57 zl = [z]

58 for i in range (4):

59 z = SeparableConv2D (2**(i+5), ** kwargs2)(z)

60 zl.append(z)

61 z = concatenate(zl[:], axis=-1)

62 z = GlobalMaxPooling2D ()(z)

63 z = Dropout (0.4)(z)

64 z = Dense (100, ** kwargs3)(z)

65

66 y = concatenate ([y,z], axis=-1)

67 y = Dense (100, ** kwargs3)(y)

68 y = Dropout (0.4)(y)

69 y = Dense(50, ** kwargs3)(y)

70 y = Dropout (0.4)(y)

71 y = Dense(50, ** kwargs3)(y)

72 y = Dropout (0.4)(y)

73 output = Dense(1, activation="sigmoid")(y)

74

75 model = K.models.Model([ CO_input_1 ,CO_input_2 ,

76 HE_input_1 ,HE_input_2 ],[output ])

77

78 print(model.summary ())

79

80 model.compile(loss="binary_crossentropy",

81 optimizer=K.optimizers.Adam(lr=1E-3),

82 metrics =["accuracy"])

83

84 batchsize = 10

85

86 model.fit_generator(generator(batchsize = batchsize),

87 steps_per_epoch =95000/ batchsize ,

88 epochs =300,

89 class_weight ={0: 0.5, 1: 1},

90 verbose=2,

91 validation_data=val_data ,

92 max_queue_size =10,

93 workers=1,

94 use_multiprocessing=True ,
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95 callbacks = [

96 K.callbacks.CSVLogger("history.csv"),

97 K.callbacks.ReduceLROnPlateau(monitor="val_acc",

98 min_delta =0.001 ,

99 patience= 30,

100 verbose=1,

101 mode="auto",

102 factor =0.5,

103 cooldown=5,

104 min_lr =0),

105 K.callbacks.EarlyStopping( monitor="val_acc",

106 min_delta =0.001 ,

107 patience =100,

108 verbose=1,

109 mode="auto")])

110

111 model.save("model.h5")
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A.4 Hybrid network (H-Net)

1 from tensorflow import keras as K

2 from tensorflow.keras import regularizers

3 from tensorflow.keras.layers import *

4

5 SD_input_1 = Input(shape =[13 ,13 ,100 ,1])

6 SD_input_2 = Input(shape =[13 ,13 ,2])

7

8 l12 = 0.0003

9 kwargs1 = dict(activation="selu", kernel_initializer="he_normal")

10 kwargs2 = dict(activation="selu",

11 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12),

12 kernel_size =(3 ,3),

13 strides =(1, 1),

14 padding="same",

15 depth_multiplier =1,

16 depthwise_initializer="he_normal",

17 pointwise_initializer="he_normal")

18 kwargs3 = dict(activation="selu",

19 kernel_regularizer = regularizers.l1_l2(l1=l12 , l2=l12))

20

21 sd = Conv3D (30, kernel_size =(1,1, 5), strides =(1,1,2),

22 padding = "same", ** kwargs1)(SD_input_1)

23 sd = Conv3D (50, kernel_size =(1,1, 5), strides =(1,1,2),

24 padding = "same", ** kwargs1)(sd)

25 sd = Conv3D (70, kernel_size =(1,1, 5), strides =(1,1,2),

26 padding = "same", ** kwargs1)(sd)

27 sd = Conv3D (30, kernel_size =(1 ,1 ,13), strides =(1,1,1),

28 padding = "valid", ** kwargs1)(sd)

29 sd = Reshape ((13 ,13 ,30))(sd)

30 sd = concatenate ([sd,SD_input_2], axis=-1)

31 sd = SeparableConv2D (32, ** kwargs2)(sd)

32 sdl = [sd]

33 for i in range (3):

34 sd = SeparableConv2D (2**(i+5), ** kwargs2)(sd)

35 sdl.append(sd)

36 sd = concatenate(sdl[:], axis=-1)

37 sd = GlobalMaxPooling2D ()(sd)

38 sd = Dense (100, ** kwargs3)(sd)

39 sd = Dropout (0.3)(sd)

40 sd = Dense (50, ** kwargs3)(sd)

41 sd = Dropout (0.3)(sd)

42 sd = Dense (20, ** kwargs3)(sd)

43 sd = Dropout (0.3)(sd)

44 sd = Dense (10, ** kwargs3)(sd)

45

46 CO_input_1 = Input(shape =[22 ,80 ,50 ,1])
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47 CO_input_2 = Input(shape =[22 ,80 ,2])

48

49 co = Conv3D (30, kernel_size =(1,1,5), strides =(1,1,2),

50 padding = "same", ** kwargs1)(CO_input_1)

51 co = Conv3D (60, kernel_size =(1,1,5), strides =(1,1,2),

52 padding = "same", ** kwargs1)(co)

53 co = Conv3D (120, kernel_size =(1,1,5), strides =(1,1,2),

54 padding = "same", ** kwargs1)(co)

55 co = Conv3D (30, kernel_size =(1,1,7), strides =(1,1,1),

56 padding = "valid", ** kwargs1)(co)

57 co = Reshape ((22 ,80 ,30))(co)

58 co = concatenate ([co,CO_input_2], axis=-1)

59 co = SeparableConv2D (32, ** kwargs2)(co)

60 col = [co]

61 for i in range (4):

62 co = SeparableConv2D (2**(i+5), ** kwargs2)(co)

63 col.append(co)

64 co = concatenate(col[:], axis=-1)

65 co = GlobalMaxPooling2D ()(co)

66 co = Dense (100, ** kwargs3)(co)

67 co = Dropout (0.3)(co)

68 co = Dense (50, ** kwargs3)(co)

69 co = Dropout (0.3)(co)

70 co = Dense (20, ** kwargs3)(co)

71 co = Dropout (0.3)(co)

72 co = Dense (10, ** kwargs3)(co)

73

74 HE_input_1 = Input(shape =[22 ,40 ,50 ,1])

75 HE_input_2 = Input(shape =[22 ,40 ,2])

76

77 he = Conv3D (30, kernel_size =(1,1,5), strides =(1,1,2),

78 padding = "same", ** kwargs1)(HE_input_1)

79 he = Conv3D (60, kernel_size =(1,1,5), strides =(1,1,2),

80 padding = "same", ** kwargs1)(he)

81 he = Conv3D (120, kernel_size =(1,1,5), strides =(1,1,2),

82 padding = "same", ** kwargs1)(he)

83 he = Conv3D (30, kernel_size =(1,1,7), strides =(1,1,1),

84 padding = "valid", ** kwargs1)(he)

85 he = Reshape ((22 ,40 ,30))(he)

86 he = concatenate ([he,HE_input_2], axis=-1)

87 he = SeparableConv2D (32, ** kwargs2)(he)

88 hel = [he]

89 for i in range (4):

90 he = SeparableConv2D (2**(i+5), ** kwargs2)(he)

91 hel.append(he)

92 he = concatenate(hel[:], axis=-1)

93 he = GlobalMaxPooling2D ()(he)

94 he = Dense (100, ** kwargs3)(he)
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95 he = Dropout (0.3)(he)

96 he = Dense (50, ** kwargs3)(he)

97 he = Dropout (0.3)(he)

98 he = Dense (20, ** kwargs3)(he)

99 he = Dropout (0.3)(he)

100 he = Dense (10, ** kwargs3)(he)

101

102 BDT_input = Input(shape =[5])

103

104 bdt = Dense(15, activation="selu")(BDT_input)

105 bdt = Dense(15, activation="selu")(bdt)

106 bdt = Dense(15, activation="selu")(bdt)

107 bdt = Dense(15, activation="selu")(bdt)

108 bdt = Dense(15, activation="selu")(bdt)

109 bdt = Dense(15, activation="selu")(bdt)

110

111 x = concatenate ([sd ,co ,he ,bdt], axis=-1)

112

113 x = Dense(40, ** kwargs3)(x)

114 x = Dense(30, ** kwargs3)(x)

115 x = Dense(20, ** kwargs3)(x)

116 x = Dense(15, ** kwargs3)(x)

117 x = Dense(15, ** kwargs3)(x)

118 x = Dense(15, ** kwargs3)(x)

119

120 output = Dense(1, activation="sigmoid")(x)

121

122 model = K.models.Model([ SD_input_1 ,SD_input_2 ,

123 CO_input_1 ,CO_input_2 ,

124 HE_input_1 ,HE_input_2 ,

125 BDT_input],[output ])

126

127 print(model.summary ())

128

129 model.compile(loss="binary_crossentropy",

130 optimizer=K.optimizers.Adam(lr=1E-3),

131 metrics =["accuracy"])

132

133 batchsize = 10

134

135 model.fit_generator(generator(batchsize = batchsize),

136 steps_per_epoch =95000// batchsize ,

137 epochs =200,

138 class_weight ={0: 0.5, 1: 1},

139 verbose=2,

140 validation_data=val_data ,

141 max_queue_size =10,

142 workers=1,
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143 use_multiprocessing=True ,

144 callbacks = [

145 K.callbacks.CSVLogger("history.csv"),

146 K.callbacks.ReduceLROnPlateau(monitor="val_acc",

147 min_delta =0.001 ,

148 patience= 30,

149 verbose=1,

150 mode="auto",

151 factor =0.5,

152 cooldown=5,

153 min_lr =0),

154 K.callbacks.EarlyStopping( monitor="val_acc",

155 min_delta =0.001 ,

156 patience =100,

157 verbose=1,

158 mode="auto")])

159

160 model.save("model.h5")
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A.5 AugerPrime network (AP-Net)

1 from tensorflow import keras as K

2 from tensorflow.keras import regularizers

3 from tensorflow.keras.layers import *

4

5 input = Input(shape =[13 ,13 ,3 ,1])

6

7 kwargs = dict(activation="selu", strides =(1,1,1), padding = "valid",

kernel_initializer="he_normal")

8

9 x = Conv3D (20, kernel_size =(3,3,1), ** kwargs)(input)

10 x = Conv3D (40, kernel_size =(3,3,1), ** kwargs)(x)

11 x = Conv3D (60, kernel_size =(3,3,1), ** kwargs)(x)

12 x = Conv3D (20, kernel_size =(3,3,3), ** kwargs)(x)

13 x = GlobalMaxPooling3D ()(x)

14 x = Dense(20, activation="selu")(x)

15 x = Dropout (0.3)(x)

16 x = Dense(20, activation="selu")(x)

17 x = Dropout (0.3)(x)

18 x = Dense(10, activation="selu")(x)

19

20 output = Dense(1, activation="sigmoid")(x)

21

22 model = K.models.Model([ input],[output ])

23

24 print(model.summary ())

25

26 model.compile(loss="binary_crossentropy",

27 optimizer=K.optimizers.Adam(lr=1E-3),

28 metrics =["accuracy"])

29

30 batchsize = 10

31

32 model.fit_generator(generator(batchsize = batchsize),

33 steps_per_epoch =95000// batchsize ,

34 epochs =300,

35 class_weight ={0: 0.5, 1: 1},

36 verbose=2,

37 validation_data=val_data ,

38 max_queue_size =10,

39 workers=1,

40 use_multiprocessing=True ,

41 callbacks = [

42 K.callbacks.CSVLogger("history.csv"),

43 K.callbacks.ReduceLROnPlateau(monitor="val_acc",

44 min_delta =0.001 ,

45 patience =30,
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46 verbose=1,

47 mode="auto",

48 factor =0.5,

49 cooldown=5,

50 min_lr =0),

51 K.callbacks.EarlyStopping( monitor="val_acc",

52 min_delta =0.001 ,

53 patience =80,

54 verbose=1,

55 mode="auto")])

56

57 model.save("model.h5")
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