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Abstract

In 2015 and 2016, the CMS detector recorded proton-proton collisions at an un-
precedented center of mass energy of

√
s = 13 TeV. The Model Unspecific Search in

CMS (MUSiC) provides an automated search for various possible signatures of new
physics in these data.

In a three step process, MUSiC first classifies events according to the physics content
of the final state, searches a set of kinematic distributions for the most significant
deviations between Standard Model Monte Carlo simulations and observed data and
finally applies a statistical hypothesis test to draw conclusions about indications of
new physics in the observed dataset.

In this thesis, the discovery potential towards new physics is assessed. For this
purpose, a quantification of the test power is defined. Subsequently, the framework is
applied to simulated events of four benchmark models for new physics. Alongside
the discovery potential towards these theories, the influence of several existing and
newly introduced features and parameters on the sensitivity is measured.

Kurzdarstellung
In den Jahren 2015 und 2016 wurden vom CMS-Experiment Kollisionen von Pro-
tonenpaaren bei einer Schwerpunktsenergie von

√
s = 13 TeV beobachtet. Mithilfe

der modellunabhängigen Suche in CMS (MUSiC) können die aufgezeichneten Daten
automatisiert nach Anzeichen neuer Physik durchsucht werden.

Die MUSiC Analyse besteht aus einem mehrstufigen Verfahren, bei dem die auf-
gezeichneten Ereignisse zuerst ihrem Endzustand gemäß in verschiedene Klassen
eingeteilt werden. In jeder Klasse werden daraufhin Histogramme einiger kinemati-
scher Variablen aggregiert und die größten Abweichungen zwischen der beobachteten
Verteilung und einer Erwartung aus Monte Carlo-Simulationen des Standardmodelles
berechnet. Im Rahmen eines statistischen Hypothesentests wird schließlich festgestellt
werden, ob beobachtete Daten Hinweise auf neue Physik beinhalten.

In dieser Arbeit wird das Entdeckungspotential der Analyse untersucht. Zu die-
sem Zweck wird zuerst eine geeignete quantitative Teststärke definiert. Diese wird
anschließend für Simulationsergebnisse vier verschiedener Modelle neuer Physik aus-
gerechnet. Neben dem absoluten Wert in Bezug auf diese Modelle wird der Einfluss
verschiedener Funktionalitäten und Parameter auf die Sensitivität untersucht.





Contents

1 Introduction 1
1.1 Units and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Particles and Interactions . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Extensions of the Standard Model . . . . . . . . . . . . . . . . . . . . 9
1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 The Compact Muon Solenoid . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Detector Geometry and Coordinates . . . . . . . . . . . . . . . 14
1.6.2 Bunch Crossings and Pile-Up . . . . . . . . . . . . . . . . . . . 16
1.6.3 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.4 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.5 Computing Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Model Unspecific Search 21
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Transverse Momentum and Energy . . . . . . . . . . . . . . . . . . . 22
2.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Event Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Reconstruction and Selection of Objects . . . . . . . . . . . . . . . . 25
2.6.1 Particle Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.4 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.5 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.6 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . 28
2.6.7 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.8 b-Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



2.7 Event Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Kinematic Variables and Distributions . . . . . . . . . . . . . . . . . . 30
2.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 Search for Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10.1 Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10.2 Region Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.10.3 Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10.4 Consideration of the Look-Elsewhere-Effect . . . . . . . . . . 38
2.10.5 Minimum Yield . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10.6 Distribution of p̃-Values . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Signal Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.12 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12.1 Lookup-Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Datasets 49
3.1 Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Signal Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Statistical Evaluation 51
4.1 Coverage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Possible Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Log-Normal p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Region Veto Against Overcoverage . . . . . . . . . . . . . . . . . . . 58
4.4 A Global p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Discovery Potential 65
5.1 Evaluation of Features . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Interpretation of the Result Displays . . . . . . . . . . . . . . 66
5.1.2 Validation Using the Standard Model (SM) . . . . . . . . . . . 68
5.1.3 Differences between 2.3 fb−1 and 35.9 fb−1 of Events . . . . . . 71
5.1.4 Effect of the Minimum Yield Threshold . . . . . . . . . . . . . 72
5.1.5 Impact of Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.6 Comparison of Test Statistics t . . . . . . . . . . . . . . . . . . 75
5.1.7 Uniform Reference Distribution for t . . . . . . . . . . . . . . 75
5.1.8 Sensitivity in Few Final States (quantum black hole (QBH) model) 77
5.1.9 Sensitivity in Multiple Final States (black hole (BH) model) . . 81
5.1.10 Dependence on the Luminosity . . . . . . . . . . . . . . . . . 84

5.2 Results by Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.1 Semiclassical Black Hole . . . . . . . . . . . . . . . . . . . . . 84



5.2.2 Quantum Black Hole . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.3 Seesaw Type-III . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.4 W′ → tb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.5 Comparison to Limits of Dedicated Analyses . . . . . . . . . . . 91

5.3 General Validity for New Physics . . . . . . . . . . . . . . . . . . . . 92
5.4 Towards a Higher Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusion 95

B Bibliography 97

G Glossary of Terms 109

A Appendix 111
A.1 Monte Carlo Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1 Standard Model Samples . . . . . . . . . . . . . . . . . . . . . 112
A.1.2 Signal Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Expected Minimal p-Values . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 Derivation of the Log-Normal p-value . . . . . . . . . . . . . . . . . . 120
A.4 Z-score and p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.5 MUSiC Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.6 Performance of the Lookup-Table . . . . . . . . . . . . . . . . . . . . 124
A.7 Adapted Distributions for Coverage Tests . . . . . . . . . . . . . . . . 125
A.8 Comparison of Coverage Results with Thesis by Stefan Schmitz . . . 128
A.9 Additional Coverage Results for θ and θLN . . . . . . . . . . . . . . . 129





1Introduction

This thesis deals with the Model Unspecific Search in CMS (MUSiC), which is a
particle physics analysis aiming to find new physics in data observed by the Compact
Muon Solenoid (CMS) experiment.

In the first chapter, the Standard Model of particle physics and the CMS experiment
are introduced. The introduction is extended in the second chapter, which provides
a description of the MUSiC analysis in its current state. Different strategies and
algorithms of the analysis framework are motivated and explained. Afterwards, the
third chapter serves as a reference of simulations used in this thesis. The remaining
chapters contain new contributions to the analysis: In the fourth chapter, the existing
local test statistic θ is evaluated and a possible alternative are discussed. Additionally,
a global measure for the discovery potential is introduced. It is used in the final
chapter, where simulations of new physics processes are used to assess the discovery
potential of the aforementioned methods.

1.1 Units and Abbreviations
Throughout this work, the natural unit system will be used. This means that the
speed of light and the Planck constant are fixed to 1:

~ = c = 1

It follows that the only unit needed to express most other physical quantities is
the unit of energy. As customary in high energy particle physics, it is notated in
gigaelectronvolts: 1 GeV = 1× 109 eV = 1.60218× 10−10 J. Two exceptions to this
are the cross section and luminosity, which are expressed in femtobarn and inverse
femtobarn respectively: 1 fb = 10−43 m2.

1.2 The Standard Model
Finding the substructure of matter has interested mankind for thousands of years.
Ancient Greek philosophers already contemplated about the basic building blocks of
matter [1]. They coined the term atom for what they thought to be indivisible. Since
then, our understanding of the smallest parts and what holds them together has vastly
improved. This field of science is nowadays called Elementary Particle Physics.
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As of 2017, the most broadly accepted model in particle physics is the so-called
Standard Model of Particle Physics. The Standard Model describes matter and its
interactions through particles and forces. It is based on the mathematical founda-
tion of quantum field theory, exhibiting several concepts such as gauge invariance,
spontaneous symmetry breaking, perturbative and non-perturbative behavior.

Although it has provided accurate predictions, making it a successful theory, recent
observations have yielded some inconsistencies, which motivate the scientific field to
advance. The following sections will be a short introduction to the Standard Model,
its historical development, fundamental ideas and open questions. Motivated by these
questions, possible extensions to the Standard Model will be introduced afterwards.

1.2.1 Particles and Interactions
Elementary particles are described as point-like indivisible structureless objects, much
like the atoms were to the ancient Greeks. These objects are characterized by physical
observables such as mass, charge and spin.

Elementary particles can be subdivided into several groups, as shown in figure 1.1.
At the first level, one distinguishes between two groups: fermions and bosons.

Elementary Particles

Bosons

Hcharged

ZW

gγ

Fermions

Quarks

down-type

tsd

up-type

bcu

Leptons

neutrinos

ντνµνe

charged

τµe

Figure 1.1: Nested groups of elementary particles. The actual particle symbols are indicated
by circles.

Fermions are elementary particles with a spin of 1/2. They follow Fermi-Dirac statistics
and have to obey Pauli’s exclusion principle which states that no more than one
particle can occupy a certain state characterized by its quantum numbers. The group
of fermions can be further divided into quarks and leptons. There are six quarks: up
(u), down (d), charm (c), strange (s), bottom (b) and top (t). Quarks carry color
charge and are the only fermions to take part in the strong interaction. The remaining
fermions are called leptons. There are three charged leptons: The electron (e), the
muon (µ) and the tau (τ ). Each of the charged leptons has a massless, electrically
neutral neutrino (νe, νµ, ντ), associated with it.
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The second group of particles are called bosons. They mediate interactions (also
called forces) and possess an integer spin. Bosons follow Bose-Einstein statistics and
may thus occupy the same quantum state. Each kind of boson is responsible for one
kind of elementary force: the electrodynamic force is mediated by the photon (γ),
the strong force by the gluon (g) and the weak force by the Z and W bosons. In
addition, there is the Higgs boson (H), which uses the Higgs mechanism to give mass
to all mentioned massive elementary particles.1

Lepton Mass

e 511 keV

νe < 2 eV

µ 106 MeV

νµ < 2 eV

τ 1.78 GeV

ντ < 2 eV

Quark Mass

u 2 MeV

d 5 MeV

c 1.3 GeV

s 96 MeV

b 4.18 GeV

t 173 GeV

Boson Mass

γ 0

g 0

W 80.4 GeV

Z 91.2 GeV

H 125 GeV

Table 1.1: Known elementary particles and their masses [2].

1.2.2 Interactions

Quantum Electrodynamics

The theory of electromagnetism at extremely small or extremely high energetic scales
is called quantum electrodynamics (QED). It is a field theory that unifies classical
quantum mechanics, special relativity and gauge invariance.

Because the probability amplitude of a quantum mechanical wave function is in-
dependent of the wave’s phase, two wave functions that only differ in phase are
equivalent. Thus, physics processes should behave exactly the same, regardless of the
phase term. This concept is called invariance under phase transformations and is a
desirable property for quantum field theories.

In 1928, the British physicist Paul Dirac derived an relativistic extension of the
classical Schrödinger equation [3] by substituting observables with corresponding
operators in the relativistic energy-momentum relation E2 = p2 +m2. The resulting
so-called Dirac equation describes the behavior of free spin-1/2 particles and even
predicts the existence of antiparticles. However, the Dirac equation is not invariant
under phase transformations and thus Richard Feynman et al. developed a gauge

1Note that this does not apply to composite particles (like protons) which gain mask mostly through
binding energy.
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invariant extension of Dirac’s theory [4]. This extension, quantum electrodynamics,
was awarded the Nobel Prize in 1965 [5].

The theory of QED evolves around the photon coupling to the electric charge e: The
photon interacts with charged particles with a strength of α ∝ e2. All possible basic
vertices are displayed in figure 1.2: Two charged particles may annihilate into one
photon, a photon may be emitted or absorbed, or an oppositely charged particle-
antiparticle pair may be created from the photon energy. Note that in any case, the
electric charge as well as the fermion type are preserved.

f

f

γ

f f

γ

γ

f

f

Figure 1.2: Basic interaction vertices of QED: Annihilation of a particle-antiparticle pair into
one photon, emission or absorption of a photon, pair production from photon
energy. The time direction is from left to right. Note that for kinetic reasons,
these vertices cannot exist on their own, but are part of larger diagrams.

One challenge that arises during the calculation of interaction probabilities for a
particular QED process is that one has to take into account all possible scenarios that
lead to the same indistinguishable result. This includes diagrams containing fermion
or photon loops, as shown in figure 1.3. In order to calculate the scattering amplitude
for this particular example, one has to integrate over all possible momenta k in the
loop. Unfortunately, this integral diverges quickly. A solution for this problem is
renormalization: By making the coupling strength α(q2) dependent on the momentum
transfer, infinities can be avoided. α(q2), which now "runs" with the momentum
transfer is consequently called running coupling constant. Its value is α(0) ≈ 1

137
in

the low energy limit and increases towards higher energies [6].

p1

p2

p1

q
p2

k

q − k
q

Figure 1.3: Higher order Feynman diagram of electron-positron annihilation. Renormaliza-
tion is required because of divergence of the integral over k.
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Quantum Chromodynamics

After QED, the theory of quantum chromodynamics (QCD) was proposed in the early
1960s, as bubble chamber experiments had unexpectedly discovered large numbers of
hadrons with different masses and physical properties. Instead of assuming that these
particles were fundamental, theorists Murray Gell-Mann et al. proposed a theory
where they were made up of constituents, so-called quarks [7,8]. The theory of bound
states of the three known quarks (u, d, s) and their excitations was able to reproduce
many of the observations. However, the observed ∆++ baryon seemed to violate
Pauli’s exclusion principle: It consists of three u quarks with parallel spins. This
dilemma was resolved in 1964, when Oscar W. Greenberg proposed a new quantum
number, called color charge [9]. Alongside this quantum number, the existence of
a gauge boson was predicted, the gluon, which was discovered at DESY in 1979 in
three-jet events [10].

The basic interaction vertices of QCD are shown in figure 1.4. The charge of the
strong interaction is called color-charge, its possible values are usually called red,
green, blue, antired, antigreen and antiblue2. Quarks carry one unit of color charge,
while gluons carry two units. Color charge is conserved in each interaction vertex.
An important principle of QCD is that all naturally occurring particles are colorless:
A composite particle carries either all colors (red + green + blue) or a color and
its anti-color (e.g. red + antired). The former is found in baryons and the latter in
mesons.

q q

g

g

g

g

g

g

g

g

Figure 1.4: Basic interaction vertices of the strong force: Absorption or emission of a gluon
from a quark, self interactions between gluons. Note that each diagram can be
read in different directions, similarly to figure 1.2.

Similarly as QED, QCD also has to undergo renormalization. But unlike QED, where
only fermionic loops are possible, gluons can also interact with each other, resulting
in gluon loops. Therefore, renormalization in QCD is much more complicated. Its
result is again a running coupling constant, however this time, the strong coupling
constant αs(q

2) decreases at higher energies. In fact, at infinite energies the quarks
appear to be free, therefore this effect is called asymptotic freedom.

The contrary effect at low energies is also visible: As the distance between quarks is
increased, which is equivalent to decreasing the probing energy, the coupling strength

2Note that this concept is completely unrelated to visual perception of color.
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rises. The expended energy in turn allows new quark-antiquark pairs to form from
the vacuum. Each of the created quarks binds with one of the separated quarks such
that all quarks again end up in a bound, color-neutral state. This effect tis called
confinement.

Confinement is also relevant in the experimental context: Quarks and gluons in the
final state of a collision often possess excess kinetic energy and thus move away
from each other. During that process, confinement causes new quarks and eventually
hadrons to form. This effect is called hadronization. Repeated hadronization leads to
the formation of so-called jets, cones of hadrons and subsequent decay products.

Electroweak Interaction

Although theoretical research on the weak interaction started in 1933 when Enrico
Fermi proposed a contact interaction theory explaining the β-decay [11], it was only
further explored in the second half of the 20th century.

In 1968, Sheldon Glashow [12], Abdus Salam [13] and Steven Weinberg [14]
independently formulated a theory unifying QED with the weak interaction, called
electroweak theory. They discovered that instead of classifying particles by their type
and electrical charge, they could be regarded by quantum numbers called weak isospin
and weak hypercharge. The theory introduces four gauge fields, W1, W2, W3 and B
which couple to these charges. It then predicts the existence of four bosons: The
charged massive W+ and W−, which directly correspond to the fields W1 and W2 and
the massive Z and massless photon which arise from mixing of the W3 and B fields.
While the photon had been known for a long time, the predicted vector bosons were
experimentally confirmed by Carlo Rubia’s group at CERN [15, 16] 15 years later.
The mixing angle used for the Z and photon is called Weinberg angle, and in turn also
relates the coupling strengths of the weak interaction and QED with the electroweak
couplings g and g′ [17].

Besides QED, the electroweak theory predicts the weak force, which is mediated by
the heavy gauge bosons W± and Z. The name "weak force" originates from its finite
range and coupling strength which is much smaller than α or αs. Although the weak
interaction would not be able to exist without electroweak unification, it is sometimes
treated as a separate theory, called quantum flavordynamics (QFD).

The basic interaction vertices of QFD are displayed in figure 1.5. As indicated in the
top row, interaction via the W boson allows changing particles’ types (also called
flavor). In the case of leptons, the interaction always contains one neutrino, one
charged lepton and a W boson. For quarks, the W boson couples to a quark pair. Each
quark pair has a predetermined probability interact via the W boson, as expressed
by the CKM matrix [18]. This flavor changing mechanism allows heavy fermions to
decay into lighter decay products, as long as there is a lighter particle to decay into.

6 Chapter 1 Introduction



` ν

W

c s

W

f f

Z

W W

Z

W

W

W

W

W

W

Z/γ

Z/γ

Figure 1.5: Basic vertices of the weak interaction: In the top row, interaction of a W boson
with a lepton and neutrino and a two quarks is shown. The third diagram in
the top row shows the flavor-conserving interaction of a fermion with a Z boson.
The bottom row shows interactions between the bosons, including the photon.
Note that, similarly to figure 1.2, all diagrams can be read in different directions.

Consequently, only the lightest fermions are stable: the electron, the u- and d-quarks
and the neutrinos.

The Z boson interacts similarly to the photon. In fact, every interaction mediated by
a photon can also be mediated by a Z boson. Additionally, the Z boson couples to the
electrically neutral neutrinos.

1.2.3 Higgs Mechanism
The naive introduction of boson mass terms in a theory breaks its gauge invariance.
While this does not pose a problem for QED and QCD, which are mediated by the
massless photon and gluon, QFD, with its massive gauge bosons W and Z, would
not be able to exist. Thus, another mechanism is required to give mass to these
particles.

A solution was independently proposed by Peter Higgs [19], François Englert et.
al. [20] in 1964: a scalar field, called Higgs field, and an additional potential in the
SM Lagrangian. The introduced potential is symmetric, but not around its minimum.
This has far-reaching consequences: Spontaneous symmetry breaking is necessary to
transform into a non-symmetric ground state. This induces mass-like terms in the
Lagrangian for the gauge bosons, as well as a field associated with a spin-0 particle,
the Higgs boson. Furthermore, fermion mass terms can be replaced with interactions
with the Higgs field. Therefore, the Higgs boson couples predominantly to heavy
particles.

1.2 The Standard Model 7



In 2012, the experimental signature of a particle compatible with the predicted Higgs
boson was discovered at the Large Hadron Collider (LHC) [21,22], leading to a Nobel
Prize for Higgs and Englert in 2013 [23].

1.2.4 Open Questions
With the discovery of the Higgs boson, all particles predicted by the Standard Model
have been experimentally observed. The model as described in the previous sections
has proven to be a successful theory. However, as mentioned earlier, in the last decade,
several observations have been made that stand in conflict with its prediction. Addi-
tionally, the Standard Model is subject to some theoretical shortcomings. A selection
of open questions from both areas will be discussed in the following sections.

Astrophysical Observations

One astrophysical research method is to probe whether observed gravitational effects
can be completely accounted for by visible matter distributions. For this purpose,
the rotation curves of galaxies have been measured and shown to be incompatible
with simulations of visible matter only. Also, fluctuations in gravitational lensing
without a visible origin has been observed [24,25]. Furthermore, several experiments
have probed the cosmic microwave background for anisotropies. These data have
subsequently been compared to the matter distributions obtained by simulations of
the early universe according to the ΛCDM model. The results indicated that only
about 5 % of the universe is made up of conventional (baryonic) matter [26].

All of these findings suggest that there must be a large amount of matter in the uni-
verse that only interacts gravitationally. Because of its electromagnetic invisibility, it is
called Dark Matter. Since the Standard Model does not provide a fitting Dark Matter
candidate, this is an active field of research also at particle collider experiments.

Neutrino Masses

Several experiments have been conducted to analyze the influence on particle’s helic-
ity on interactions [27,28]. The results indicate that only left-handed particles (and
right-handed antiparticles) take part in the weak interaction. Neutrinos, which can
only interact weakly, therefore are believed to only exist as left-handed particles. For
that reason, the Standard Model was crafted in a way that only left-handed neutrinos
exist. Recent observations of neutrino oscillations [29–32], however, indicate that
neutrinos are massive. For the theory to remain renormalizable, neutrinos must
thus also exist in their right-handed state [33], which demands for an extension or
modification of the Standard Model.
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Theoretical Considerations

From a theoretical point of view, the SM shows several deficiencies.

First, there is no consensus about unification of the gauge interactions. Unification
of the electroweak and strong interactions would require the coupling strengths to
converge at very high energy scales (∼ 1015 GeV). However, the Standard Model does
not predict a common point of convergence [34].

A second open question is how to combine gravity with the Standard Model. Although
it is possible to derive a quantum field theory of gravity, which includes the prediction
of a graviton, this theory is not renormalizable, i.e. infinities that appear during the
calculation cannot be absorbed into a running coupling constant [35].

In any case, if there were a theory of quantum gravity, it would be expected to become
relevant at the Planck scale MPl ≈ 1018 GeV, where a particle’s Compton wave length
is comparable to its Schwarzschild radius. However, all processes that have been
observed so far appear at the electroweak scale mEW ≈ 103 GeV. If the Standard
Model is believed to hold up to the Planck scale, the Higgs mass would require very
precise cancelation terms to result in the observed effective mass of 125 GeV. This
problem is called mass hierarchy problem [34] and will be addressed in the context of
the black hole SM extension in the following chapter.

1.3 Extensions of the Standard Model
Some solutions have been proposed to these problems. In this work, four extensions
beyond the Standard Model will be relevant and thus introduced in the following
sections.

Extra Dimensions and Black Holes

One class of approaches addressing the mass hierarchy problem is the introduction of
additional spatial dimensions. Within the Arkani-Hamed-Dimopoulos-Dvali (ADD)
model [36], in addition to our three known spatial dimensions, n extra dimensions
are assumed to exist. These dimensions are compactified on a length scale of R.
On this scale and below, gravity is able to penetrate multiple dimensions, making it
stronger than it appears in the classical four dimensions. Thus, the true Planck scale
for n extra dimensions MPl(4+n) is much lower than the four-dimensional Planck scale
MPl:

M2
Pl ∼M2+n

Pl(4+n)R
n (1.1)
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An interesting consequence of these assumptions is the possibility to produce black
holes at collider experiments [37]: As derived from a semiclassical perspective, the
Schwarzschild radius of a black hole with MBH ∼ TeV is larger than the minimum
separation distance of two partons at the collision. Thus, a microscopic black hole
can form.

This thesis will deal with two different models of black holes at the LHC: semiclassical
black holes and quantum black holes.

• A semiclassical black hole is presumed to behave similarly to a classical astro-
nomical black hole, except for the fact that it can only exist through additional
extra dimensions: After formation, it reaches thermal equilibrium (thermalizes)
and subsequently evaporates via Hawking radiation. During this phase, a large
number of SM particles is produced. The relative abundance of these particles
is expected to follow the number of degrees of freedom per SM particle. Among
the possible final states are many that violate the lepton number conserva-
tion and thus make excellent experimental signatures with low expected SM
contribution [38].

• A quantum black hole is too short-lived to thermalize. Instead, it behaves like a
quantum object and decays into few particles, as illustrated in figure 1.6. Similar
to the semiclassical case, lepton flavor violating final states are accessible in this
model. For this thesis, a benchmark model has been chosen that decays solely
into a e + µ pair. As this final state violates conservation of lepton number,
there is no irreducible SM contribution. However, through experimental reality,
particles from an SM process such as the decay of a t t-pair can be misclassified
and contribute to the event yield [39].

d
µd black hole

e

Figure 1.6: e µ signature of the quantum black hole (QBH) model. A black hole is created
from the annihilation of two down quarks. The black hole subsequently decays
into an e µ pair, violating the lepton number.

Seesaw Type III Model

The so-called Seesaw model aims to explain the low neutrino masses. In this model,
the neutrino masses are considered to arise via the mediation of massive fermion
partners. Two additional charged partners Σ± are predicted alongside a neutral Majo-
rana particle Σ0. Within the LHC, the particles are produced in pairs as electroweak
decay products as shown in figure 1.7.
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Each of the Σ particles is assumed to decay into a pair of SM particles. The most
important decay channels are:

• Σ0 →W±`∓

• Σ± →W±ν
• Σ0 → Zν
• Σ± → Z`±

• Σ0 → Hν
• Σ± → H`±

Subsequent decays of the gauge bosons as well as the τ lepton allow for a plethora of
accessible final states. The highest sensitivity is expected to arise from final states
with at least three leptons, as the number of SM processes contributing to these final
states is very low.

p

p

Z/γ∗/H Σ+

Σ−

p

p

W± Σ±
Σ0

Figure 1.7: Production of heavy fermions Σ±,Σ0 from proton-proton collisions in the Seesaw
Type-III model.

Sequential Standard Model and W′

Heavy gauge bosons are postulated by several extensions of the SM, most promi-
nently by grand unification theories [40]. In order to provide a consistent simplified
benchmark model, the Sequential Standard Model (SSM) [41] has been constructed,
which introduces heavier copies of the SM W and Z bosons, consequently called W′

and Z′. The heavier copies interact with SM particles just like their SM counterparts,
but because of the much larger mass, decays into the t and b-quarks are accessible.
In some theories, this decay channel is even assumed to dominate as the W′ boson
couples more strongly to fermions of the third generation [42,43].

In this thesis, a variant of the SSM has been chosen where only the right-handed
W′ boson (W′R) exists. Possible decay channels are W′R → `νR and W′R → tb. To
further enhance the sensitivity, the hypothetical right-handed neutrino νR is assumed
to be heavier than the W′ boson, therefore the former decay channel is kinematically
forbidden and the branching ratio to t + b is 1. This corresponds to the scenario used
in dedicated analyses performed by the CMS and ATLAS collaborations [44–46].

u

bd W′
t

Figure 1.8: Experimental signature of the W′ model. The heavy boson is created from the
annihilation of a quark pair and subsequently decays into a t + b pair.
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1.4 Experiments
Beginning with Rutherford’s experiments in the early 20th century [47], there have
been an abundance of particle physics experiments using the approach of particle
collisions. Today, most scattering experiments can be classified in two groups: Fixed
target experiments and collider experiments. In the former case, accelerated particles
collide with a fixed target, such as Rutherford’s gold foils. In the latter case, two beams
of particles are brought to collision at an interaction point. This allows for a higher
center of mass energy and is thus favorable whenever the technical circumstances
allow.

In both cases, outgoing scattered particles are registered. Because of the statistical
nature of quantum mechanics, the Standard Model only describes scattering processes
in terms of probabilities. These probabilities depend on particle properties before and
after the collision. Controlling the incoming particles and counting outgoing particles
with certain properties is thus a very efficient way of testing the theory.

1.5 The Large Hadron Collider
The to date largest particle collider experiment is located in a tunnel about 100 m
underground between Geneva and the Jura mountains. It is operated by the European
Organization for Nuclear Research (CERN) and is called Large Hadron Collider (LHC).
The Large Hadron Collider [48] is a proton-proton collider with a circumference of
26.7 km. It has been built in the early 2000s in the tunnel of the former Large Electron
Positron Collider (LEP). The tunnel contains the storage ring as well as accelerator
structures and experiments. Within two beam pipes, in an ultra-high vacuum (about
10−11 mbar), groups of protons circulate in opposite directions. They are accelerated
using radio-frequency cavities and kept on track by 1 232 superconducting dipole and
450 quadrupole magnets.

The protons are then brought to collision at one of the four interaction points along the
ring (see figure 1.9). The energy of each accelerated proton before collision is 6.5 TeV
in the rest system, resulting in a total center-of-mass energy of

√
s = 13 TeV.

Around each interaction point, a detector has been constructed. The task of two of
the experiments is to perform very specialized measurements with lead ions (ALICE)
and hadrons made of c or b quarks (LHCb). The other two experiments are aimed
at more general measurements. These so-called general purpose experiments are the
Compact Muon Solenoid (CMS) and the ATLAS experiment.

This work will focus on the CMS experiment, which will be discussed in the next
sections.
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CMS

ALICE

LHCb

ATLAS

Cleaning

Cleaning

Dump

Acceleration

SPS

PS
PSB

LINAC 2

LHC

Figure 1.9: Schematic illustration of the CERN accelerator complex [49–51]. Protons first
pass through several stages of preacceleration at the linear accelerator (LINAC)
2, Proton Synchrotron (PS), the Proton Synchrotron Booster (PSB) and the Super
Proton Synchrotron (SPS). Eventually, they are injected into the LHC where
they circulate in opposite directions. The two beams are further accelerated in
radio-frequency cavities and their shape is restored within the cleaning sections
of the ring. At each revolution, some of the protons are brought to collision
at one of the four experiments CMS, ATLAS, LHCb and ALICE. Once they are
not needed anymore, the remaining protons can be dumped into massive metal
blocks at the dump site.
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1.6 The Compact Muon Solenoid
The CMS detector consists of multiple particle detector subsystems surrounding the
interaction point. Its goal is to measure outgoing particles created at proton-proton
collisions. The observed properties include particle type, direction, momentum,
energy and charge. Each of the detector subsystems is dedicated to measuring one
or more of these characteristics. The subsystems are read out electronically and the
data are later analyzed on a computing grid.

An overview of the detector can be seen in figure 1.10. The discussion of the
detector subsystems in the following sections is based on [52] if not explicitly stated
otherwise.

2T

Silicon
Tracker

Electromagnetic
Calorimeter

Hadron
Calorimeter

Superconducting
Solenoid Iron return yoke interspersed 

with muon chambers

MuonNeutral hadron (e.g. neutron)

Electron Charged hadron (e.g. pion)

Photon

Figure 1.10: Slice through the CMS detector barrel. From left to right the following subsys-
tems are drawn: the silicon tracker, the electromagnetic and hadron calorimeter,
the superconducting solenoid coil, and the iron return yoke with the muon
chambers. The solid lines represent charged particles which are bend due to
the magnetic field [53, modified].

1.6.1 Detector Geometry and Coordinates
In a region starting at 23 m before the detector, both beam pipes are united [48].
The proton groups traveling in opposite directions share the same beam pipe, which
defines the z-axis of the detector coordinate system. The collisions occur approx-
imately at the interaction point at z = 0. The detector forms a barrel around the
beam pipe. The barrel is subdivided into seven slices: five evenly sized wheels and
one so-called endcap on each open side of the barrel. The central wheel is centered
at z = 0. Detector layers in the wheels are mostly arranged in a cylindrical manner
around the beam pipes, while the layers in the endcaps are mounted orthogonally to
the beam pipe.
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The direction of an outgoing particle originating in the interaction point can be
characterized either using right-handed cartesian coordinates (x, y, z) or a spherical
coordinate system (φ, θ). The x-axis connects the interaction point with the center
of the LHC ring. The y-axis is perpendicular to the other axes, pointing upwards.
Regarding spherical coordinates, the azimuthal angle φ is measured in the x-y plane
with φ = 0 along the x-axis. θ indicates the polar angle between the z-axis and
the direction of interest. However, θ is rarely used because it is not invariant under
Lorentz-boosts in the z direction. Instead, the Lorentz-invariant pseudo-rapidity
η := − ln

[
tan
(
θ
2

)]
is used to describe the angular separation between a particle and

the beam pipe. The detector components in context of η ranges can be found in
figure 1.11.

To indicate angular separation between particles, the quantity R =
√

∆η2 + ∆φ2,
which is Lorentz-invariant, can be defined. η and R will be relevant in context of
particle reconstruction.

Figure 1.11: Schematic view of a CMS quadrant, taken from [54]. Besides the angle θ, the
values for |η| are shown around the frame. This illustration focuses on the muon
system, which consists of barrel (MB) and endcap (ME) stations. It extends to
|η| = 2.4.
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1.6.2 Bunch Crossings and Pile-Up
For acceleration reasons, protons in the LHC are grouped into packets called bunches.
At the interaction point, proton bunches from both directions collide every 25 ns,
defining the so-called bunch crossing. During each bunch crossing, multiple proton
pairs may interact with each other. This multitude of collisions is called pile-up
effect.

Similarly, the collision of a single proton pair may result in multiple partons interacting
with each other. This ambiguity is resolved by only analyzing the interaction with the
highest momentum transfer, called hard interaction. Other interactions contribute to
the so-called underlying event.

1.6.3 Subsystems

Inner Tracking System

The inner tracking system [55] is used for precise measurements of the direction and
curvature of charged particles. It is composed of silicon semiconductor pixel layers
surrounded by strip modules.

Each pixel cell consists of a silicon semiconductor in reverse bias direction. Charged
particles passing through the semiconductor induce ionization and thus allow small
currents to flow. These currents are amplified and read out by dedicated electronics.
There are about 66 million pixel cells, each with a size of 100µm× 150µm, allowing
for a high spatial resolution.

The strip modules function similarly to the pixel cells. For reduced production costs,
typical cell sizes are 10 cm× 80µm. There are 24 244 silicon strips in the tracker.

A very high spatial resolution around the interaction point is necessary for finding
the origin of decay products. This is achieved by tracing the particle tracks back to
the location of their parent particles. The information is later used to discard particle
tracks originating in pile-up events or the underlying event (see section 1.6.2), as
well as for identifying decays of B-mesons (see section 2.6.8).

Electromagnetic Calorimeter

The goal of the electromagnetic calorimeter (ECAL) [56] is to measure the energy of
outgoing electrons, positrons and photons.

It consists of multiple layers of dense, transparent lead tungstate (PbWO4) crystals
with a total thickness of 25 radiation lengths. Within these crystals, high energetic
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electrons and photons cause electromagnetic cascades: Electrons emit photons in
the process of bremsstrahlung, while photons convert to electron-positron pairs
in the process of pair-production. This leads to large numbers of lower-energy
electrons and photons, until the electron energy loss is dominated by ionization losses
and the photon energy is below the pair-production threshold of 2me = 1 022 keV.
Low energetic photons and those emitted by ionization or excitation are eventually
registered using photodiodes. The initial particle energy is calculated from the light
yield [2].

The energy resolution of the ECAL has been studied on Z → e + e and H → γγ

simulations. The electron energy resolution (at ET ≈ 45 GeV) is below 2 % in the
center of the barrel and 2 % to 5 % elsewhere. The photon resolution (at Et ≈ 60 GeV)
has been determined to be below 3 % in the barrel and 2 % to 5 % in the endcaps
[57].

Hadron Calorimeter

In combination with the ECAL, the energy of hadrons produced during the collision
is measured by the hadron calorimeter (HCAL) [58].

It is designed as a sampling calorimeter with alternating layers of brass absorbers and
plastic scintillator tiles. Hadrons passing through the calorimeter scatter on nuclei of
the denser brass absorbers and cause hadronic showers [2].

The shower products are detected via scintillation. In the plastic scintillators, the
passage of charged particles excites electrons of the scintillator. During the subsequent
deexcitation, optical photons are emitted, which are guided through wavelength-
shifting fibers to photodiodes.

Because of the short nuclear interaction lengths in the absorber material, sampling
calorimeters are more space efficient than homogeneous calorimeters. However, as
some of the energy is deposited within the absorber material, the total shower energy
can only be estimated from the scintillation light. Overall, the HCAL has a thickness
of 7 to 11 interaction lengths, depending on η.

Similarly to the electromagnetic calorimeter, a high resolution can be achieved only
as long as the showers do not leak out of the calorimeter.

Solenoid Magnet

The CMS solenoid magnet [59] is designed to deliver a magnetic field strength of
4 T. This is achieved by cooling the 220 t cold mass to 4.6 K, such that the NbTi
wires become superconducting and the current can reach up to 19.5 kA. The magnet
surrounds the calorimeters and has a diameter of 6 m. Within the coil, the magnetic
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field is approximately uniform with the field lines being parallel to the beam pipe.
Outside, the magnetic flux is returned using an iron yoke, which is interspersed with
the muon system.

Particles passing the field are subject to the Lorentz force which subsequently bends
their tracks into helices. This effect allows to distinguish between charged and neutral
particles and enables measurement of particle momenta.

Muon System

The goal of the muon system [60] is to detect muons and measure their tracks, from
which the muon momenta are calculated.

Because of their high mass compared to electrons, muons are less affected by the
electromagnetic fields within matter, reducing their radiative losses. This makes
them the only detectable particles to pass through all inner detector subsystems as
well as the solenoid coil. For this reason, the muon system is the outermost part of
the detector. It surrounds the solenoid coil and consists of resistive plate chambers
(RPCs), drift tubes (DTs) in the barrel section and cathode strip chambers (CSCs) in
the endcaps. The muon barrel section extends in |η| up to 1.2, the endcap region
lies between |η| of 0.9 and 2.4. In the range between 0.9 and 1.2, the muon systems
overlap.

Drift tubes have a length of about 2 m and a cross section of 13 mm × 42 mm. In
the center of each tube, there is an anode wire. Between the wire and the tube
walls exists a high electric potential. The tubes are filled with a gas mixture. As the
charged muons pass through the gas, they ionize a few of the gas atoms. The released
electrons drift along the electric field lines towards the anode wires. Eventually,
the accumulated charges are deposited in the wires and are measurable as current
spike [2]. By measuring the drift time and combining results from several layers, a
spatial resolution of less than 100µm can be achieved. However, determining the
location in the wire direction is not possible with this arrangement.

In the endcap region, the muon system consists of cathode strip chambers instead of
drift tubes. CSCs are gaseous detectors that contain several wires and cathode strips
that are aligned orthogonally and read out separately. CSCs do not make use of drift
effects, therefore are able operate under non-uniform magnetic fields and at high
rates of muons, which makes them suited for use in the endcap region.

In both barrel and endcap, the DTs and CSCs are complemented with RPCs. Similarly
to DTs and CSCs, RPCs are gaseous detectors, but are operated in avalanche mode.
They possess a low spatial resolution but an excellent timing resolution, which helps
to assign tracks to a bunch crossing.
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The overall muon momentum resolution has been determined from measurements
of cosmic muons and is approximately 7 % for a pT range of 350 GeV to 2 000 GeV
[61].

1.6.4 Trigger System
As mentioned in section 1.6.2, the LHC delivers collisions about every 25 ns, resulting
in around 40 million events per second. Even with a raw event size of about 500 kB
[62], storing all events would require a bandwidth of 20 TB s−1. Neither the read-out
chips of the submodules nor the computer network between the detector and storage
can currently handle data traffic of this magnitude.

Therefore, the rate of events accepted for storage and analysis has to be drastically
reduced. This is the task of the triggering system. Based on the physics content,
statistics and bandwidth restrictions, triggers decide whether or not to store an event
to disk.

Triggering is implemented in a two step process: First, the level-1 (L1) trigger is
consulted. It is implemented in dedicated hardware and uses information from the
calorimeters and the muon system to reject low-energetic events. Events passing
L1 will be read out, temporarily stored and further evaluated by the high level
trigger (HLT). The HLT is implemented in software and runs on computers next to
the detector cavern. It has access to the full detector information to decide whether
an event is eventually to be stored or rejected [62].

1.6.5 Computing Grid
Reconstruction and analyses are ran on the stored events. For this purpose, the
Worldwide LHC Computing Grid (WLCG) project was founded, which consists of
several computing facilities operated by the CERN member states.

The facilities are organized in layers called tiers. There are two tier 0 computing
centers, one at the CERN data center in Geneva and one at the Wigner Research
Centre for Physics in Budapest, which store and reconstruct raw data. From there,
the data are distributed to one of the 13 tier 1 data centers worldwide, where they
are further processed, stored for safe-keeping and distributed to tier 2 facilities.

There are about 160 tier 2 computing centers, most of which are operated by uni-
versities and other scientific institutes. Their task is to provide computing power for
event generation and analyses [63, 64]. One of these tier 2 centers is operated at
the physics department of the RWTH Aachen University, currently providing around
5 200 processing cores and 3 PB of storage [65].
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2Model Unspecific Search

2.1 Motivation
A collision at a center-of-mass energy of

√
s = 13 TeV can create a large amount of

different particles. Solely by combinatorics, it follows that a lot of different final
states are accessible.

Most dedicated searches tend to focus on one or a few final states that represent
the signature of the theory under investigation. This leaves many final states not
examined, either because they are not covered by any new physics model or because
there is no analysis group currently working on the corresponding theory.

One of the goals of the model unspecific search is to gain knowledge from these
additional final states. Furthermore, the model unspecific search aims to obtain a
global interpretation of the agreement between simulation and observed data across
a broad range of final states.

2.2 Previous Works
The approach of a model unspecific search is not a new concept: In 1998, a note
about an unspecific search has been written at the L3 experiment (LEP) [66], and
in 2004, a similar approach has been applied to data of the D0-experiment at the
Tevatron proton-antiproton collider at Fermilab [67].

At CMS, the analysis has been developed and regularly applied to observed data
since 2009 [68–79]. This thesis is based on the most advanced implementation of
the MUSiC analysis, which has recently been applied to analyze the dataset of the
2015 LHC run [76] containing events with an integrated luminosity of 2.3 fb−1 at√
s = 13 TeV.

A similar approach is also being pursued by the ATLAS collaboration, which published
analyses using a model unspecific search at the LHC at

√
s = 7 TeV [80], 8 TeV [81]

and 13 TeV [82].
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2.3 Procedure
In the following sections, the existing analysis will be outlined.

The analysis starts out with reconstructed events of observed as well as Monte
Carlo (MC) simulated data which have been centrally preprocessed by the CMS
collaboration. As first step, requirements on events and physics objects are applied,
discarding unwanted events and extracting particles for the MUSiC analysis (sections
2.5 and 2.6).

Afterwards, each event is sorted into so-called event classes, sets of events that share
the same final state (section 2.7). For each event class, a set of kinematic variables of
each event is calculated and kinematic distributions are aggregated (section 2.8).

Subsequently, an automated search algorithm finds the largest deviation between
data and simulation in each kinematic distribution of each event class (section 2.10).
The significance of each deviation is corrected for the look-elsewhere-effect using
pseudo-experiments from SM-only simulations (section 2.10.4).

Finally, the observed deviations are aggregated and the distribution of deviations is
compared to the expected distribution given the SM-only hypothesis as a measure for
the global agreement between simulation and data (section 2.10.6).

2.4 Transverse Momentum and Energy
As prerequisite for the following sections it is helpful to introduce the so-called trans-
verse quantities transverse momentum and transverse energy. This section provides a
motivation and definition for both.

Interaction cross sections generally depend on the amount of momentum transferred,
which can be obtained by calculating the combined invariant mass of the decay
products. In order to achieve this goal, one must know all four components of the
momentum of all created particles. If the final state contains neutrinos, which are not
detectable by the detector, this is not achievable.

In other experiments like LEP, one could use conservation of momentum and the
known momentum of colliding particles to reconstruct the momentum transfer for
processes involving one neutrino. At the LHC this is impossible: The total longitudinal
momentum of the proton is distributed unevenly between the constituent quarks and
gluons and thus the momentum involved in a collision is only known up to statistical
probability.
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A mitigation is to ignore the longitudinal component altogether. This approach
is pursued by many analyses at CMS by only regarding the kinematics in the
transverse plane, orthogonally to the beam pipe. The projection of the kinematic
(three-)momentum onto the transverse plane gives the transverse momentum ~pT.

There are other properties of the transverse momentum that make it an interesting
quantity: It can be straightforwardly measured from the tracks since the magnetic
field lines are approximately parallel to the beam direction and the Lorentz force
only acts in the transverse plane. Additionally, the transverse momentum is not only
invariant to the actual distribution of momenta in the proton, but also to Lorentz
boosts along the z-axis.

Assuming px, py, E and m can be observed directly (e.g. via track curvature) or
indirectly (e.g. via particle identification), one can define the transverse momentum
and transverse energy as follows:

~pT :=
(
px, py, 0

)T
pT := |~pT|

~ET := E · ~pT

|~p|
=

~pT√
1− (m/E)2

ET :=
∣∣∣ ~ET

∣∣∣
Note that in the approximation of massless (m ≈ 0) particles: ~pT = ~ET .

An additional quantity that is commonly defined in this context is missing transverse
energy, denoted by ~Emiss

T :

~Emiss
T := −

∑
i

~ET,i

Emiss
T :=

∣∣∣ ~Emiss
T

∣∣∣
This quantity denotes the imbalance of transverse momentum. If all particles in
the final state can be correctly reconstructed, the imbalance is Emiss

T = 0. But
there are several possible causes for this quantity to become non-zero: Incorrect
measurements, such as noisy, dead or asymmetric modules, and non-detectable
particles like neutrinos. If one or more neutrinos are produced during the interaction,
one can observe only their combined four momentum as ~Emiss

T . The same applies to
hypothetical new physics particles which do not interact with the detector, making
~Emiss

T an interesting quantity to work with.
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2.5 Event Selection
The following section will discuss how events are selected to be used for the MUSiC
analysis. Since this thesis aims to be a general evaluation of the MUSiC approach,
it will not go deeply into detail about the algorithms used, nor the exact parameter
values. For the sensitivity studies in chapter 5, however, specific values have to be
chosen. If not explicitly stated otherwise, values of the 2015 analysis run are used
and can be found in [76].

2.5.1 Triggers
In section 1.6.4 the triggering system has been introduced, a dedicated system that
decides whether observed events are recorded to disk. In the vocabulary of an analyst,
the term "trigger" does not only refer to the system itself, but also to the set of rules
that are applied. In practice, triggering hardware is configured to run multiple sets of
rules in a so-called trigger menu, in order to maximize the usage of readout bandwidth
without overloading the available resources. The triggering decision is also simulated
on MC generated events: Using the same information available to the triggering
system and a trigger emulator, each event is assigned tags about which decision lead
to it being stored.

Because multiple trigger configurations are running at the same time, the same event
might end up in two separate trigger streams. Such duplicate events are removed
in the analysis. An additional problem arises within the first few GeV beyond the pT

threshold: In this so-called turn-on region, disagreement between observed data and
simulation has been found which is attributed to insufficiencies in the simulation.
Because of this, an additional minimum pT threshold close above the trigger threshold
is applied.

Stream Name trigger pT, min custom pT, min

HLT_Ele115_CaloIdVT_GsfTrkIdT 115 GeV 120 GeV

HLT_DoubleEle33_CaloIdL_GsfTrkIdVL_MW 33 GeV, 33 GeV 50 GeV, 50 GeV

HLT_Mu50 50 GeV 53 GeV

HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ
17 GeV, 8 GeV 35 GeV, 35 GeV

HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ

Table 2.1: Triggers used in the MUSiC analysis. Listed are the HLT names. The second, fourth
and fifth triggers require two particles, where the second minimal threshold lies
much lower than the first. Additional identification requirements are applied as
indicated by the name [76]. Note that the single electron trigger pT threshold is
higher than the one used in [76] to be comparable to the 2016 scenario.
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Table 2.1 provides a reference of triggers used in the analysis. In comparison to the
2015 analysis, the pT threshold of the single electron trigger has been raised from
105 GeV to 115 GeV. This choice ensures consistency between the 2015 and 2016
analysis for the study of the discovery potential.

2.5.2 Event Filters
Event filters are used to mask off events that contain observations of unwanted
detector behavior rather than physics content from a collision. Undesirable experi-
mental effects include defective modules, anomalous electronics noise, saturation of
subsystems by calibration lasers or particles scattered on residual gas in the beam
pipe. They sometimes mimic real particles and events and thus cause the trigger
to store the event. In the offline analysis, these events are recognizable by a large
momentum imbalance of the reconstructed particles, resulting in large values for
Emiss

T . Using a set of rules (so-called Emiss
T -filters) established at CMS, these events

are excluded from the analysis. The list of applied filters can be found in [76].

2.6 Reconstruction and Selection of Objects
Now that a set of events to analyze has been established, this section will focus on
the reconstruction and selection of the particles from an event for the analysis.

In practice, the reconstruction is performed centrally by CMS working groups. For
each particle, several reconstructed candidates are stored, from which the analyst can
select. Besides selecting only the particles relevant for the analysis, one often chooses
a working point for particle identification criteria. The possible options are "tight",
"medium" and "loose". Tight criteria are more strict, limiting the rate of misclassified
particles at the cost of discarding some legitimate particles. On the other hand, loose
criteria allow for more events, reducing the statistical uncertainty, with a higher
probability of misclassification. As the name indicates, "medium" aims to provide a
compromise between the two extremes.

For certain final states, it has been found that the probability of events being misclas-
sified differs between MC simulation and observation. However, the scaling factor
to correct this effect has not been determined in all final states regarded by MUSiC.
Thus, to evade deviations that are caused by different misclassification rates, the
particle selection generally requires tight identification criteria, except for light jets,
which are selected with loose criteria to ensure a complete event description.

The following paragraphs aim to give a short overview over the reconstruction
methods and object selection criteria used in the analysis.
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2.6.1 Particle Flow
MUSiC uses the so-called Particle-Flow (PF) algorithm [83], which aims to combine
measurements from separate detector subsystems into a consistent picture of all
stable particles in the event. This is achieved by allowing the separate particle
reconstruction algorithms to use shared definitions and communicate, avoiding
duplicate interpretation of the same data.

The PF algorithm can be divided into three steps: Fitting of tracks and clustering,
linking of tracks and clusters, reconstruction of particles.

In the first step, clusters of tracker cells that observed a current spike during the event
are linked between the layers using a Kalman-filter, yielding reconstructed tracks.
The same algorithm is also applied to the tracks of muons in the muon chambers. In
the same step, clusters are found in the energy deposits of the calorimeters using a
greedy clustering algorithm.

In the second step, tracks and clusters from the first step are linked to each other.
Tracks from the inner tracking system are extrapolated to find matching clusters in the
calorimeters. Similarly, clusters observed in the ECAL as well as the HCAL are related.
Finally, tracks are matched between the inner tracker and the muon system.

The final step builds the actual particle candidates from the available information.
First, muons are identified if the momentum of linked tracks is compatible. Tracks
that have been successfully associated to a muon are then removed from the track
collection. Electrons are next: The tracks are refit using a Gaussian-Sum Filter and
matched to energy deposits in the ECAL. Again, information that has been related
to an electron is removed from the track and cluster collections. The remaining
tracks are afterwards associated to charged hadrons. Finally, the remaining energy
clusters in ECAL and HCAL give rise to reconstructed photons and neutral hadrons
respectively.

2.6.2 Jets
Jets form during the hadronization of quarks and gluons from the final state. The goal
of jet reconstruction is to obtain the mass, energy and momentum of the originating
parton or gluon.

In the detector, jets are measured as tracks and clusters of stable particles. Starting
with the PF objects, in the first step, charged contributions from pile-up are removed.
The undesired tracks are selected by displacement from the primary vertex and then
removed from the set of candidate particles. After the correction, a jet clustering
algorithm arranges the remaining particles into clusters. Within the MUSiC analysis,
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the anti-kt algorithm [84] with the characteristic radius R = 0.4 is deployed. It uses
pairwise recombination to form cone-like clusters around the hardest particles.

As output, one obtains a set of clusters, each containing multiple PF objects. The
combined four-vector of all particles within each cluster is calculated and assigned to
the jet.

Measurements have shown that the energy resolution of jets is worse in observed data
than in the MC simulation. As a mitigation, the transverse momenta of simulated jets
are smeared with a pT and η-dependent factor [85]. After the jet energy correction,
the jets used in the MUSiC analysis are selected using established jet-id criteria at
the tight working point [86]. It ensures high data quality and low misclassification
rates by requiring a minimum pT threshold of 50 GeV and poses certain additional
requirements on the composition of the jet.

2.6.3 Muons
Muons are reconstructed from tracks in the inner tracker and in the muon system.
For low energetic muons (pT < 200 GeV), the momentum resolution of the inner
tracker is superior to the muon chambers. Therefore, the momentum information is
extracted from the tracker measurement, while the muon chambers are only used
for selecting the tracks used. At high momenta (pT ≥ 200 GeV), the resolution can
be increased by adding curvature measurement from the muon chambers and is
therefore reconstructed using a combined methods.

The algorithms used for identification also depend on the muon momentum. Low
energetic muons are identified using a series of cut-based criteria with a tight working
point. High energetic muons are identified by a dedicated high-pT algorithm which
attempts to combine information from multiple muon chambers to achieve the best
resolution [87].

Both identification criteria require the muon to be fully contained in the detectable
range (|η| < 2.4). The second main goal of the identification is to ensure that the
muon candidate originates from the hard interaction. Secondary muons from jets or
from pile-up collisions are vetoed based on displacements from the primary vertex,
isolation criteria and a pT threshold.

After a muon has been successfully selected for the analysis, close-by low-energetic
electrons, photons and jets are removed from the event description. This avoids
double-counting of physics content and thus strives to restore a consistent event
description.
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2.6.4 Electrons
Electrons are recognized by their curved track in the tracker and energy deposit
in the ECAL. For the reconstruction of low energetic electrons (below 100 GeV),
the momentum information from the tracker and the ECAL are combined using
the estimated uncertainty as a weight. At higher energies, using only the ECAL
measurement has been shown to improve performance, thus the tracker momentum
information is discarded.

The selection of electrons for the analysis is also applied in a piecewise manner: In
the low energy regime, the tight cut-based electron identification criteria are required,
while for high energies, the high energy electron pairs (HEEP) requirements [88] are
imposed.

Both criteria aim to differentiate between electrons from the hard interaction and
electrons from jets or pile-up. Again, a maximum displacement from the primary
vertex is required, as well as a minimal isolation and a minimum pT value. Jets are
also suppressed by vetoing energy contributions in the HCAL.

In addition, converted electrons and photons are vetoed by settings tight quality
requirements on the electron track.

2.6.5 Photons
Photons do not leave tracks in the inner tracker. Besides that, their experimental
signature resembles the signature of electrons. Therefore, photons are selected
and identified in a similar matter. The MUSiC analysis uses the cut-based photon
identification criteria [89] over the entire energy range.

In order to veto photons emitted as bremsstrahlung, photons with more than one
signal in the tracker are discarded.

2.6.6 Missing Transverse Energy
As mentioned earlier, neutrinos and possible new physics particles that do not leave a
signature in the detector can be grasped via the momentum imbalance in the detector.
This momentum imbalance is characterized in the missing transverse energy ~Emiss

T ,
which can be treated just like other physics objects in this section.

All corrections that change the pT value of PF candidates (e.g. jet energy corrections)
are passed onto the ~Emiss

T calculation to preserve a consistent event description. Using
similar arguments as for the other particles, only Emiss

T with pT ≥ 100 GeV is identified
as object in the analysis.
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2.6.7 Possible Extensions
The existing analysis can be extended to identify more particle types by their decay
products, called tagging. Possible tagging choices are b-tagging, τ -tagging or Z-
tagging. This thesis will investigate the increase of sensitivity using b-tagging, as
discussed below.

2.6.8 b-Tagging
The goal of b-tagging is to distinguish jets from b-quarks ("b-flavored jets") from
those originating from light quarks. One way of achieving this goal is to exploit the
long lifetime of hadrons formed during the hadronization of b-quarks. B-mesons
for example possess a comparably long lifetime of τ ≈ 1.5× 10−12 s [2]. This
allows B-mesons to travel approximately 1 to 10 cm for energies between 100 and
1 000 GeV. With CMS’ tracking resolution of up to 20µm in the transverse and 30µm
in the longitudinal direction [90], a displacement of such magnitude can be resolved
efficiently and is therefore an appropriate discriminator.

To introduce b-tagging in the MUSiC analysis, the Combined Secondary Vertex ver-
sion 2 (CSVv2) algorithm [91] is used in addition to the jet requirements described
in section 2.6.2. The algorithm combines information of displaced tracks with infor-
mation about displaced vertices in a multivariate analysis. The discriminator output
is then compared to a threshold defined by the working point. For the sensitivity
studies, the "tight" working point with a discriminator threshold of 0.935 is used.
Studies of the 2015 data and simulation have found that with the tight working
point, approximately 50 % of jets originating from b-quarks are correctly identified
as such, while less than 0.5 % of the b-tagged jets do not actually originate from b
decays [92].

2.7 Event Classes
An event class is a set of events sharing the same final state. The final state is indicated
by the name of the event class: All events in the class named 2e + 1µ, for example,
contain two electrons and one muon in the final state.

There are three types of event classes: exclusive, inclusive and jet inclusive.

Events in the exclusive event classes contain exactly the indicated (and no additional)
particles in their final state. Each event thus belongs to exactly one exclusive event
class.
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Inclusive event classes are denoted with the suffix "+ X" in the name (for example
2e + 1µ + X). Their final state contains the explicitly stated particles plus any number
(including zero) of additional ones. Each event can be assigned any number of
inclusive event classes. One advantage of this procedure is a larger number of events
per class which lower the statistical uncertainty. However, the correct combination of
statistical results across multiple inclusive event classes is not trivial.

Jet inclusive event classes are denoted with the suffix "+ Njets" in the event class name
(e.g. 2 e + 1µ + Njets). Events contained in a jet inclusive event class may contain
any number of jets in addition to the explicitly stated objects. This increases the
number of events per class, as effects like initial or final state radiation are ignored,
leading to reduced statistical uncertainties.

In any case, the kinematic variables are only calculated from the objects explicitly
stated in the class name, in the example of two electrons and one muon. Event classes
are dynamically generated based on the classified event content. In the next sections,
the total number of generated event classes will be denoted with n.

2.8 Kinematic Variables and Distributions
For each event, the MUSiC classification calculates three scalar variables from the
particles defining the event class: the sum of transverse momenta, the invariant mass
and the missing transverse energy.

As discussed in section 2.4, the sum of transverse momenta is the most directly
observable variable and is invariant to Lorentz-boosts in the z direction. In the
analysis it is denoted by ΣpT and calculated from the scalar sum of the magnitudes of
the transverse momenta of all particles under consideration:

ΣpT :=
∑
i

∣∣~pT,i

∣∣ (2.1)

The invariant mass is, as mentioned before, very sensitive to resonances in the t-
channel. If the event class definition contains missing transverse energy passing the
selection criteria, the invariant mass will not be computed, instead the transverse
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mass is used. The variables are denoted with Minv and MT respectively and defined
as:

Minv :=

√√√√(∑
i

Ei

)2

−

(∑
i

~pi

)2

(2.2)

MT :=

√√√√(∑
i

ET,i

)2

−

(∑
i

~pT,i

)2

(2.3)

The third kinematic variable is missing transverse energy. This variable is only
calculated if the event class definition explicitly contains ~Emiss

T (above the threshold of
100 GeV) and describes the magnitude of the missing transverse momentum, denoted
by Emiss

T (as defined in section 2.4).

From each of the kinematic variables, kinematic distributions, histograms of the
corresponding calculated variable, are aggregated. The bin size of these histograms
is not constant, but instead chosen to match the estimated detector resolution in the
variable under investigation. However, the bins are guaranteed to be at least 10 GeV
wide.

2.9 Systematic Uncertainties
When comparing observed data to simulation, systematic uncertainties have to be
considered. For various reasons, one will never be able to exactly predict how many
events will pass the analysis. Possible causes include inaccuracies in the theoretical
prediction, uncertainty on how a particle affects the detector and statistical uncer-
tainty from performing a counting experiment on independent events. Therefore, it
is only possible to estimate the observable event yield up to a certain interval. In
this analysis, it is assumed that most of the arising uncertainties can be modeled
with a normal distribution and thus they are denoted with a mean value and a 68 %
confidence interval within ±1σ around the mean. The uncertainties are propagated
onto the event yield of each kinematic bin and used in the subsequent automated
search as well as the generation of pseudo-experiments.

There are multiple quantities involved in the calculation of the predicted number of
events N . Here, I will categorize these effects into three groups:

N = σ︸︷︷︸
theory

· L︸︷︷︸
independent

measurements

· A · ε︸︷︷︸
experimental

response

(2.4)
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This categorization will be used in the following sections, which will give an overview
about the currently implemented systematic uncertainties. As with section 2.6, the
concepts are only roughly motivated, more comprehensive information and actual
parameter values can be found in [76].

Theoretical Uncertainties

The dominating theoretical uncertainty stems from the perturbative calculation of
the cross section. In quantum field theory, the interaction potential is expanded in
discrete orders. The computation of higher order terms is analytically impossible
and can often only be estimated up to an uncertainty. Therefore, the cross section
uncertainty is chosen depending on the highest calculated order for a given sample,
and lies between 5 and 50 % of the cross section.

The second considered theoretical uncertainty deals with the parton density function.
Its task is to model the distribution of momentum between quarks and gluons in
a proton. As it is not possible to analytically calculate this distribution, combined
results from various deep inelastic scattering experiments are used and numerically
extrapolated to high momenta. The uncertainty of these predictions is propagated
onto the predicted yield by varying between multiple available prediction sets.

Independent Measurements

The systematic uncertainty on the luminosity directly affects the expected number
of events. The current instantaneous luminosity is estimated by the activity in the
pixel tracker. The measurement is complemented by a calibration from periodical
precise van-der-Meer scans. This procedure is sufficiently accurate, as its uncertainty
is estimated to be only 2.7 % [93].

The number of pile-up interactions in an event can be estimated from the total proton-
proton cross section, combined with the instantaneous luminosity. The uncertainty of
these independent measurements is propagated onto the number of pile-up collisions
using a reweighting method to study the effect on the expected yield.

Event-Dependent Uncertainties

As discussed before, the energy of a reconstructed particle is estimated from the
measured data of various detector components. The uncertainty on this mapping
is called energy scale uncertainty and is considered for all particles: jets, electrons,
muons, photons and Emiss

T . It is determined by studying differences between simu-
lation and observed data of well-known physical processes. The uncertainty is then
propagated onto the event by shifting the object momenta by ±σ(pT) and repeating
the classification. Note that the objects whose pT values have been shifted may
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subsequently pass certain selection criteria and thus contribute to different bins or
even different event classes than the original event.

Similarly to the energy scale uncertainty, the simulated detector resolution is subject
to uncertainty. This uncertainty is determined from independent observations, such
as cosmic muons and Z-decays, and is also propagated by shifting object momenta.
The energy resolution uncertainty is only significant for muons and jets, depends on
η and pT and is 3 to 5 % of the objects’ momentum.

In addition to uncertainties on the measured momenta, the analysis also considers
uncertainties on the identification of particles. Two effects have to be taken into ac-
count: Particles may not be recognized with the correct type (identification efficiency)
or contributions that do not originate from particles might be incorrectly classified
as particles (misidentification rate). Ideally, the probability of these effects occurring
would be the same in simulation as in observed data, therefore there are several
techniques that aim to correct the MC expectation.

To reproduce the identification probability of data in simulation, the expected yield
is multiplied by so-called scale factors. The uncertainties of these scale factors are
propagated by shifting the scale factors and observing the effects on the event yield.

The treatment of incorrectly identified objects is more difficult: For each identified
particle, there is a nonzero chance that it may not actually correspond to the recon-
structed particle type. To account for differences of this behavior between observation
and prediction, incorrectly classified objects are identified by matching simulated
particles to reconstructed candidates. Subsequently, for each incorrectly classified
object, an uncertainty of 1 event is assigned to the corresponding bin (for electrons,
muons and photons) [76]. For b-tagged jets, the mismatch of the misclassification
rate between data and prediction has been studied in 2016 data and found to be up
to 30 % [94, Fig. 73], so 0.3 events of uncertainty are assigned for each misclassified
event.

The actual misclassification rates depend on the final state but are in the order of 1 %
for most event classes.

Statistical Uncertainty

The amount of simulated MC events is limited, mostly by computational costs. When
comparing the scaled number of events to observed data, one has to take into account
statistical effects of the discrete event production. The scaled number of events is
calculated by multiplying the generated number of events N with a scalar s. The
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statistical uncertainty on the generated number of events is derived from the standard
deviation of the Poisson distribution:

n = s ·N, σstat,N =
√
N (2.5)

⇒ σstat,n = s
√
N (2.6)

⇒ relative uncertainty =
σstat,n

n
=
s
√
N

sN
=

1√
N

(2.7)

One can see that an increase in the number of simulated events directly decreases the
statistical uncertainty on the prediction.

2.10 Search for Deviations
After each event has been classified, the kinematic distributions have been aggregated
and the systematic uncertainties have been propagated onto the event yield follows
the automated search for deviations. The search is performed on each distribution of
each event class separately as follows: First, multiple connected bins are combined to
a region, according to the rules in sections 2.10.1 and 2.10.2. Then, a test statistic θ for
each region is calculated (section 2.10.3). Of all possible connected bin combinations,
the region with the lowest value of θ, called θmin, is selected. This region will be
called region of interest (RoI). If two or more regions with the same value of θmin are
found, the smallest one is classified as RoI.

Subsequently, a global p̃-value for the region is calculated. This p̃-value expresses the
probability of finding a deviation with θ ≤ θmin anywhere in the distribution purely
by chance. Details on the procedure can be found in section 2.10.4.

2.10.1 Search Space
The search is performed on so-called regions. A region is a set of adjacent bins and is
represented by the combined number of expected and observed events as well as a
combined uncertainty.

As new physics phenomena are not expected to appear resonantly in the ΣpT and
Emiss

T kinematic distributions, each region in these distributions must consist of at least
3 adjacent bins. Within the Minv and MT distribution, narrow resonant deviations
are possible, thus the minimal number of bins in these distributions is set to 1. In
addition, the MUSiC analysis employs a veto on regions where the simulation is
incomplete, which is described in the next section.
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The combined number of events and the combined uncertainty for each region is
calculated as

Ntotal,exp =
∑
i

Ni,exp (2.8)

Ntotal,obs =
∑
i

Ni,obs (2.9)

σtotal =

√∑
i

σ2
i + 2

∑
i,j

ρi,jσiσj (2.10)

where ρi,j is the correlation coefficient for the uncertainty σ between the bins
i and j.

Some uncertainties, such as the statistical uncertainty on the simulated number of
events, are completely uncorrelated between the bins. The correlation coefficient thus
is ρi,j = 0 and the total uncertainty is the quadratic sum of the bin uncertainties.

Other uncertainties are correlated between bins. An example for this is the uncertainty
on the luminosity measurement, which affects all bins of all distributions the same
way. Any uncertainty that is assumed to be correlated to some extend is treated
as fully correlated (ρi,j = 1) and the combined uncertainty is calculated as linear
sum. This method possibly overestimates the total uncertainty, in case the correlation
coefficient is somewhere between 0 and 1, leading to a lower sensitivity.

2.10.2 Region Veto
Although the analysis aims to cover as much phase space as possible by combining
large amounts of MC events, there are regions where the MC description is incomplete.
Because the null-hypothesis (the Standard Model) is not correctly represented in
some areas, one must not probe for new physics in these regions, i.e. any statistical
inference from these regions would be invalid.

Therefore, several rules have been identified and implemented in order to skip
calculation of θ values for incorrectly modeled regions. These rules may only depend
on the SM values, not on the observed data per region. In addition, note that any
region is usually embedded in a larger region with a higher confidence in simulation.
If this is not the case, i.e. the largest region, which is the integral of the entire
distribution, is vetoed, the event class is excluded from the analysis. A similar
criterion will be introduced in section 2.10.5.

Some of the rules do not only depend on the region itself, but also on a neighborhood.
The neighborhood is defined as combination of adjacent bins below and above the
region boundaries, 4 in each direction. In the neighborhood, a set of dominant
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neighborhood processes is defined as the set of processes with the largest contributions,
which in total make up more than 95 % of the total yield in the neighborhood.

The following rules are tested; if any of them matches, the region is vetoed, no θ

value is calculated and thus not considered for RoI.

• No or negative total MC yield: NSM ≤ 0.

• Any process contributes more than 2 % of the event yield in the negative
direction.

• Any process which has been identified as dominant in the neighborhood has no
or negative total MC yield.

• Region has large total statistical uncertainty: σstat
NSM

> 60 %.

Negative total MC yield can arise from few events with negative weights. In or-
der to account for possible double counting between leading order matrix element
calculations and parton showering, which is for some samples performed by a dif-
ferent application, MC generators may assign negative weights to a small number of
events [95]. Therefore, especially in phase space areas with few simulated events,
situations can occur where only negative event weights contribute to a region. In
these regions the original assumption, having enough events for a regression to the
mean, is not fulfilled, thus the SM is not correctly represented and the regions must
be vetoed.

2.10.3 Test Statistic
For each region, a test statistic is calculated. Its goal is to express "extremity" of a
deviation based on the number of expected events NSM and their uncertainty σSM,
and the number of observed (or pseudo-observed) events Nobs.

The choice of such a measure is ambiguous: All test statistics have strengths and
weaknesses and are more or less sensitive in various areas of their three-dimensional
input domain. For the MUSiC analysis, especially for the subsequent calculation of
p̃, it is desirable to use a test statistic based on a null-hypothesis for which pseudo-
experiments can be reliably generated.

Ideally, the test statistic would express a local p-value directly, in order to be com-
parable to other CMS results. However, as shown in the following section, only the
ordering of θ-values is relevant for the p̃ calculation and thus any test statistic θ(p)

that is monotonous in p will suffice.

The following sections motivate the test statistic as used in the analysis.
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The first (reasonable) assumption in the derivation is that the probability of observing
a certain number of events given an exactly known prediction Ntrue follows a Poisson
distribution:

Pr(Nobs|Ntrue) =
Ntrue

Nobs

Nobs!
e−Ntrue (2.11)

In context of a p-value which expresses the probability of obtaining a deviation equally
or more extreme than the observed one just by chance, one has to sum over all "more
extreme" cases. In case of an excess (Nobs ≥ Ntrue), this is

p(Nobs|Ntrue) =
∞∑

n=Nobs

Ntrue
n

n!
e−Ntrue (2.12)

For a deficit, the sum is finite and corresponds to:

p(Nobs|Ntrue) =

Nobs∑
n=0

Ntrue
n

n!
e−Ntrue (2.13)

In reality, Ntrue can never be known with perfect precision. Instead, the expectation
can be expressed by a probability density ρ(x|NSM, σSM) which is then folded into the
p value:

p(Nobs|NSM, σSM) =

∫ ∞
−∞

p(Nobs|x) · ρ(x|NSM, σSM) dx (2.14)

Here, one can imagine that x takes the role of all possible Ntrue values and ρ assigns
different weights to contributions from equations 2.12 and 2.13.

In the case of MUSiC the smearing procedure is applied after deciding whether
a region contains an excess or a deficit, which allows one to move the piecewise
definition out of the integral:

p(Nobs|NSM, σSM) =



∫ ∞
−∞

ρ(x|NSM, σSM)

Nobs∑
n=0

xn

n!
e−xdx Nobs < NSM∫ ∞

−∞
ρ(x|NSM, σSM)

∞∑
n=Nobs

xn

n!
e−xdx Nobs ≥ NSM

(2.15)

This is turn also implies that contributions of the integral where e.g. NSM < Nobs < x

are treated as if they belong to an excess and thus sum up from Nobs to infinity. This
conservative choice of procedure is not expected to have a high impact to the results
because it is also corrected during the calculation of p̃.
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The choice of the prior ρ(x|NSM, σSM) is not unambiguous. For previous MUSiC
publications and the signal study in this thesis, a truncated Gaussian prior is used:

ρN(x|NSM, σSM) = C(NSM, σSM) ·Θ(x) · exp

(
(x−NSM)2

2σSM
2

)
(2.16)

Here, Θ(x) denotes the step-function and C(NSM, σSM) is a normalization constant to
correct for the truncated (x < 0) part of the normal distribution.

However, it has been under discussion in earlier theses [68] to use a log-normal prior
instead:

ρLN(x|NSM, σSM) =
Θ(x)

√
2π|x| ln

(
1 + σSM

NSM

) exp

−1

2

 ln(x/NSM)

ln
(

1 + σSM
NSM

)
2 (2.17)

The log-normal prior represents the multiplicative nature of uncertainties and features
a larger coverage range, but has disadvantages concerning the generation of pseudo-
experiments. In section 4.2, the alternative of a log-normal prior will be discussed in
further detail. For a rough derivation of this formula, see appendix A.3.

The p-value in equation (2.15) in combination with the Gaussian prior will be denoted
as θ(Nobs, NSM, σSM) = p(Nobs|NSM, σSM) in this thesis. Section 4.1 will discuss to
what extends the aforementioned assumptions match the definition of a p-value.
Furthermore, whenever comparisons to the log-normal prior are drawn, it will be
denoted with θLN.

2.10.4 Consideration of the Look-Elsewhere-Effect
So far, only the local magnitude of a deviation has been estimated. In order to
quantify and compare it, it has to be put in context: As the number of regions n
grows, the probability of finding a deviation with a significance of α increases, roughly
p ∼ 1 − (1 − α)n. The analysis accounts for this so-called look-elsewhere effect by
calculating a corrected post-trial p-value called p̃. It expresses the probability of
finding a deviation equally large or larger than the observed one somewhere in the
distribution, solely by chance.

The simplest way of adapting the local magnitude would be to apply an analytical
correction factor to it. A suitable correction factor could be estimated using combina-
torics if the possible values of the local p-value were uncorrelated. This method is
also called Bonferroni correction [96]. In the case of the automated search, a purely
analytically calculation is not possible because the connected bin regions overlap and
thus the local significances are correlated.
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Instead a simulation-based approach is used: Possible experimental outcomes are
simulated based on the Standard Model, and refer to each simulation round as pseudo-
experiment. During each pseudo-experiment, a substitute observed distribution is
randomly drawn from the expected number of events. The entire automated search
is repeated on each generated distribution and its result θpseudo, min is stored.

Finally, the global p̃-value is calculated by determining the rate of pseudo-experiments
where a more significant deviation has been found: θpseudo, min < θobs, min. Thus, the p̃-
value automatically fulfills the definition of a p-value ("probability to find a deviation
equally large or larger as the observed one by chance, given the null hypothesis") if
the pseudo-experiment generation corresponds to the null hypothesis. For this thesis,
the number of pseudo-experiments has been chosen to be k = 10 000, therefore the
minimal meaningful result is p̃ = 1

10000
= 1× 10−4, which corresponds to a two-sided

Z-score of 3.7σ (see appendix A.4).

Figure 2.1 illustrates the procedure for generating a pseudo-experiment. The pseudo-
experiment generation is performed separately for each bin of the distribution. First,
a possible true value Ntrue is generated from the known SM mean and systematic
uncertainties, then the counting experiment is simulated by drawing from a Poisson
distribution P.

In order to simulate reality as close as possible, during each pseudo-experiment, every
uncertainty assumes a certain value, fully correlated between all event classes and
bins. This is done by drawing a "bias" xi from a standard normal distribution N and
subsequently multiplying it with the magnitude of each uncertainty of each bin σi to
determine its effect on the event yield:

Nobs
′ ∼ P(λ = Ntrue

′) (2.18)

Ntrue
′ = NSM ·

∑
i

xiσi (2.19)

xi ∼ N (µ = 0, σ = 1) (2.20)

2.10.5 Minimum Yield
For further statistical inference it is important to note that any non-zero event yield
in a certain final state will cause the creation of an event class corresponding to that
final state. Therefore, by pure combinatorics, the number of event classes grows as
more simulated events are added to the analysis. These almost empty event classes
cause problems during the pseudo-experiment procedure: As the event yield is very
low, the pseudo-data generation will generate Nobs = 0 in most cases and Nobs = 1
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Input: Ni=1..n: number of expected events in each bin i
Input: corri=1..n,j=0..m: correlated uncertainty j in each bin i
Input: stati=1..n: statistical uncertainty in each bin i
Output: ni=1..n: pseudo-data event yield in bin i

// Once for all distributions: choose systematic uncertainty bias

foreach correlated uncertainty j in distribution do
xj ← RandNormal(µ = 0, σ = 1)

end

foreach bin i in distribution do
// Start with the expected yield

ni ← Ni

// Simulate correlated uncertainties using the pre-chosen bias

multiplied by an individual magnitude

foreach correlated uncertainty j in bin i do
ni ← ni + xj · corri,j

end

// Simulate (uncorrelated) statistical uncertainty by drawing a

number from a normal distribution

ni ← RandNormal(µ = ni, σ = stati)
// Simulate independent counting experiment

ni ← RandPoisson(ni)
end

Figure 2.1: Pseudo-event generation algorithm. The algorithm takes absolute values for
uncertainties and number of events as input and sequentially stacks pseudo-true
values for uncertainties on top of the expected yield. Finally, a random number is
drawn from a Poisson distribution, simulating the physical process of a counting
experiment.
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in very few cases. The 0-case will be insignificant and the few 1-cases will yield a
very significant θpseudo and p̃-value. Because of this discretization, the p̃-value will
not be uniformly distributed, which is one fundamental assumption for the following
statistical inference. For this reason, event classes with a total integrated yield of
NSM < 0.1 are excluded from statistical inference, but are checked by hand if they
contain observed data events.

A similar choice is also applied in a model-independent search in LHC data by the
ATLAS collaboration [81,82].

2.10.6 Distribution of p̃-Values
Similarly to the look-elsewhere effect in a single distribution, the probability of
finding a significant deviation in any distribution increases as the search is extended
to multiple event classes.

Since p̃ fulfills the definition of a p-value, the probability of observing an event class
with a p̃-value of P in the absence of new physics is P , thus p̃-values should be
uniformly distributed. Note, that this also implies that, in the absence of correlations,
among n event classes one expects the most significant class to have a p̃-value of 1

n+1

(see appendix A.2), e.g. p̃ = 0.002, Z = 2.9 with 500 event classes.

This presumption is subsequently used to set p̃-values into context. For this purpose,
the θpseudo, min values of all pseudo-experiments can be reused: In the correction
step, one θpseudo, min value for each pseudo-experiment round in each event class was
calculated. Now, for each event class, each pseudo-experiment result can be corrected
using all other k − 1 pseudo-experiments from the same event class. This procedure
is applied to all n event classes, yielding n · k p̃-values. Then, a histogram of all p̃-
values belonging to one pseudo-round are aggregated (n values). All k histograms are
combined to calculate the mean, median, 68 % and 95 % intervals on each bin content
of the p̃ distribution. Similarly, the distribution of p̃-values of all event classes from
observed data is calculated. Up to this thesis, both distributions are only qualitatively
compared (by eye). In section 4.4, a quantitative solution to this approach will be
discussed.

2.11 Signal Study
The goal of the signal study is to investigate how signatures of new physics propagate
to the result of the analysis. For this purpose, simulated events of new physics
processes are classified into event classes and merged with the classification results
from the Standard Model. Experimental uncertainties between the SM classification
results and the signal results are assumed to be fully correlated and accordingly
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combined. However, no uncertainty on the signal cross section is assumed, because
the signal study investigates one specific cross section scenario.

Subsequently, pseudo-experiments are generated from the combined signal and back-
ground and compared to the SM simulation by the automated search for deviations,
using the pseudo-experiments instead of observed data. Subsequently, the resulting
θmin values are corrected for the look-elsewhere effect using a precomputed set of
SM θ values, resulting one distribution of p̃-values for each signal pseudo-experiment
round.

The interpretation of the p̃-distributions is performed qualitatively, analogous to the
interpretation of real observed data. If the resulting p̃-values are not distributed
uniformly anymore and there is a deviation from SM-only simulation or the uniform
distribution, it is interpreted as sensitivity of the MUSiC analysis towards that specific
model. Because the qualitative inference is very vague, I will discuss an alternative
in section 4.4, where multiple pseudo-experiment rounds are used to calculate the
quantified discovery potential towards the model under investigation.

2.12 Implementation
The analysis combines various tools from different authors (CMS, local institute
collaboration, open source), which are used on a heterogeneous computing environ-
ment (WLCG, local computing cluster, local computer). From raw data to statistical
inference there are many intermediate states which have to be managed. Doing this
manually does not only require manpower, but is also more prone to human error,
such as confusing files or missing steps. Therefore, several levels of automation and
validation are critical for a rapid development of the analysis.

The following sections illustrate the practical steps required to reproduce the analysis
and point out various starting points for automation. In addition, this section intends
to be a reference about the exact software packages and versions used for the signal
study.

Events triggered by the detector are stored on the WLCG. They are centrally recon-
structed by CMS and stored on the grid in the MINIAOD format [97], accessible only
to CMS members. In the first step, these events are preprocessed by the Aachen Insti-
tute IIIA working group and stored by sample on the local Tier-2 storage element in
the Pxl I/O file format [98], which has also been developed in Aachen. The programs
used for preprocessing make use of a software framework for CMS analyses, called
CMSSW. Preprocessing of 2015 SM and signal samples was performed with CMSSW
version 7.6.3. In addition to the Pxl I/O files, a working-group wide shared database
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is used for meta-information about samples (such as cross sections and correction
factors).

The further analysis is performed with version 8.0.26 of the CMSSW framework,
which includes ROOT version 6.06/01 [99], C++11 with GCC 5.3.0 and PYTHON

2.7.11 [100]. The MUSiC analysis starts with the classification of events on the local
computing element. The classification is implemented as plugin in the PXLANALYZER,
a framework written in C++11 collaboratively by the Aachen Institute IIIA working
group. The PXLANALYZER reads Pxl I/O files from the previous step, classifies the
event and stores the resulting event classes in the ROOT file format. Subsequently,
event samples that have been classified separately are merged together. The entire
process is managed by the LUIGI framework [101](version 2.4.0), which allows
automated execution of dependent task such as classification and sample merging.

As next step follows the automated search for deviations. The automated search is
implemented in PYTHON as well as C++11. A custom script converts the classified
ROOT files into JSON files, configuring the automated search. It also distributes
the workload into multiple jobs which are executed in parallel on the local com-
puting cluster. Each job then operates on one or more JSON files, searching for
deviations between simulation and data or optionally generating and evaluating
pseudo-experiments. After retrieval from the computing grid, its output is parsed into
a local SQLITE database for statistical analysis.

Eventually, several tools written in PYTHON perform statistical inference (such as
p̃ and p̂) and creation of figures from the search results. These tools make use
of the libraries NUMPY 1.11.1 [102], which provides fast vectorized math, SCIPY

0.16.1 [103] for statistical analysis and ROOT as well as MATPLOTLIB 1.5.2 [104] for
visualization.

The dependency of intermediate states, from the preprocessed ("skimmed") samples
to results published in this thesis, is illustrated in appendix A.5, which served as
orientation for the employment of automation.

2.12.1 Lookup-Table
During the automated search algorithm, most of the computation time is spent
calculating θ (see appendix A.6), which involves integration and summation over a
large number of terms.

To decrease the amount of time spent in this step, I implemented a three dimensional
lookup table (LUT), as suggested by T. Hebbeker (personal communication, 2015).
The table consists of θ values for the most frequently used input parameters, such that
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the expensive runtime computation is replaced by retrieving a precomputed value
from a static block of memory.

The LUT is generated as a separate file during compilation and is about 80 MB in
size.

Implementation

The precise lookup procedure for θLUT(Nobs, NSM, σSM) is as follows:

1. Determine real-valued indices i, j, k from the parameter values Nobs, NSM, σSM

2. Check whether the calculated indices are valid, e.g. within table bounds

3. Fetch four adjacent values from memory: Nobs entry at bic, NSM and σSM entries
at bjc, dje, bkc, dke1.

4. Use two dimensional linear interpolation in the j, k plane to get a better estimate
for θ:

θLUT(i, j, k) ≈ θ(bic, bjc, bkc)(dje − j)(dke − k)

+ θ(bic, dje, bkc)(j − bjc)(dke − k)

+ θ(bic, bjc, dke)(dje − j)(k − bkc)
+ θ(bic, dje, dke)(j − bjc)(k − bkc)

Note that j − bjc = 1− (dje − j).

5. Discard the result if it is too small (θLUT < 0.005)

If the value can not be found in the LUT, either because of the table bounds or
an otherwise untrusted value, the implementation falls back to the full expensive
calculation of θ. Thus, the efficiency of the LUT is determined by the probability that
a requested value is contained in the table.

In order to improve accuracy around the most commonly used parameters (Nobs =

NSM, Nobs small), the LUT is organized in three regions, as illustrated in figure 2.2.
In the so-called "grid region", the point spacing for the expected number of events is
independent if the observed number of events. This results in a rectangular grid up
to an observed yield of 10 and an expected yield of 20. The second, so-called "linear
region" stretches up to an observed yield of 100. In this region, every integer observed
value corresponds to exactly one index, i = Nobs. Lastly, there is an exponential region,
in which the spacing of observed points gradually becomes less dense, keeping the
relative spacing constant. In the dimension of the expected number of events, the

1bxc denotes the floor, dxe the ceiling function, always rounding down and up respectively.
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LUT is more densely spaced around NSM = Nobs, because this is statistically the most
common scenario. There is an exponential falloff in density which in theory expands
from NSM = 0.1 ·Nobs up to 5.0Nobs. Very distant values, however, are vetoed by the
θLUT > 0.005 threshold. In the third dimension, uncertainty, the grid is exponentially
spaced in terms of relative uncertainty, from σSM = 0.01NSM up to 2.0NSM.

0 10 100
Data

0

20

M
C

Grid Region
Linear Region
Exponential Region

Figure 2.2: Illustration of the point-density for various areas in the LUT. Only the exact
θ values for the values indicated by the black dots are stored, interpolation is
done in-between. The "grid region" is defined with equidistant spacing of exact
Nobs and NSM points. The "linear region" is equidistant in Nobs, but two-sided
exponential in NSM. In the "exponential region", the spacing between exact Nobs

points also grows exponentially.

Validation

The LUT can be easily validated by comparing θ values from the complete calculation
with θ values obtained from the LUT algorithm. Because the input domain for both
algorithms is three-dimensional, the validation is performed on one-dimensional
slices of the input domain and discuss its generality afterwards. The parameter values
have been chosen to ensure the relative deviation |θLUT−θ|

θ
between the algorithms is

less than 1 %.

First, the relative uncertainty is varied while keeping Nobs and NSM fixed. The results
are shown in figure 2.3. On the left hand side, Nobs is fixed to 0, while NSM = 1.
One can see that over the entire range of covered relative uncertainty (from 0 % to
130 %), the relative deviation between LUT and full calculation is below 0.1 %.

Similarly, figure 2.4 shows results from varying NSM over a fixed value of Nobs and
relative uncertainty. The dashed black line indicates the requirement of 1 %.
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In both cases the relative differences show a repetitive pattern mostly below 0.1 %.
Except for a non-differentiable feature at NSM = Nobs and extreme values of NSM

and low uncertainties, the maximum of the deviation lies below 1 %, fulfilling the
requirement. In the case of the extreme values, the low θ value (< 0.005) causes the
LUT value to be vetoed and the full calculation to take place. The repetitive pattern
is also expected as it shows the high accuracy close to exactly calculated points and
lower, but sufficient, accuracy in the linearly interpolated regions in between.
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Figure 2.3: Relative difference between the complete calculation of θ and results from the
LUT, varying the relative uncertainty while keeping Nobs and NSM fixed. The
relative difference is below 0.1 % over the entire covered range.

Discussion

Within the validated regions, the LUT has only shown small deviations from the
results of a full computation, orders of magnitude below the previously set threshold
of 1 %. Under these conditions it is therefore believed to provide a suitable alternative
to the full computation of θ values.

Performance measurements (see appendix A.6) indicate that the time spent on
calculating θ values, which was previously the dominating computational expense,
has been reduced by a factor of ≈ 8. However, additional expenses arise, such as
transferring the file to worker nodes and subsequently reading the file from the hard
drive. The total gain will thus be less.

Overall, the LUT contributes great value to the automated search, as a reduction in
computing time allows the analyst to increase the number of pseudo-experiments,
enhancing the resolution of p̃-values. In future developments of the analysis, I would
suggest further optimization of the LUT parameters, as they have only been roughly
chosen to match the given requirements.
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Figure 2.4: Relative differences between the complete calculation of θ and results from the
LUT, varying NSM while keeping Nobs and the relative uncertainty fixed. The
relative difference between the algorithms is below 1 % (dashed line) in almost
all regions.
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3Datasets

3.1 Monte-Carlo Simulations
The MUSiC analysis aims to search for deviations in a large number of final states and
a wide kinematic phase space. Deviations are expected in any area under investigation
and therefore there is no signal-free region that could be used for validation or fine
tuning. Thus, MUSiC avoids data-driven methods as much as possible and rely on
theoretical predictions in form of Monte Carlo simulations.

The Monte Carlo simulation is performed on an event-by-event basis. Each event is
generated in multiple steps [105]: First, the sharing of proton momentum between
partons is simulated. This is done sampling momenta from the empirically deter-
mined parton density functions. Afterwards, the hard scattering process is simulated.
Similarly as with the momentum distribution, different scenarios are possible, each
with a probability corresponding to the predicted scattering probability. In the next
step, parton showering and hadronization is applied: Since the required higher order
terms of QCD cannot be computed exactly, several parametrized models are used
to simulate the formation of hadrons from quarks and gluons. In the last step, the
detector response is simulated, also using parametrized interactions of the final state
particles with detector components.

In practice, events of different physics processes are simulated in separate sets, so-
called samples. Additionally, some samples only contain events within a certain pT or
mass range. This is done in order to provide a low statistical uncertainty in the tails of
steeply falling distributions. In order to have consistent and validated samples for all
CMS analyses, the MC samples are generated centrally by CMS on the WLCG [106].

In addition to weight assigned by generators, each event is assigned a further weight
during the analysis. It is computed from the expected cross section, an expected
higher order correction factor (k-factor) and the luminosity. Additionally, events
are reweighted to compensate for difference pileup simulation between expectation
and data. The expected event yield with certain properties can now be obtained by
summing the weights of the desired events.

Within this thesis, various luminosity scenarios are analyzed. The MC events have
not been regenerated for each scenario, instead the events are scaled to the described
luminosity with the method mentioned above. This allows for a direct comparison
ignoring hardware changes made to the detector between the data taking periods in
2015 and 2016.
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3.1.1 Standard Model
The SM samples used by MUSiC are produced with the following generator
applications: MADGRAPH 5 [107], SHERPA [108], POWHEG [109, 110], MAD-
GRAPH_AMC@NLO [111], MCFM [112] and PYTHIA 8 [113]. For the generators
MADGRAPH 5, POWHEG, MADGRAPH_AMC@NLO and MCFM, the subsequent
hadronization is applied separately using PYTHIA 8. The detector response is
simulated with Geant 4 [114].

The full list of used MC samples can be found in appendix A.1.

3.1.2 Signal Samples
The signal study uses the same set of signal samples as the corresponding dedicated
analyses [38, 39, 45, 115]. This makes results comparable and also allows reusing
central production and reconstruction by CMS. The mass points are chosen to cover
a broad range including the resulting limits set by the dedicated analyses. However,
since the automated search has to be re-run for each signal sample, computation time
limits the amount of samples analyzed.

• For the QBH model, the Arkani-Hamed-Dimopoulos-Dvali (ADD) model with
n = 4 extra dimensions is analyzed. The chosen mass points M are 1 TeV,
2 TeV, 3 TeV, 4 TeV and 5 TeV. The events are simulated by the QBH 2.0 [116]
generator.

• In the black hole study, the case of a non-rotating black hole is considered.
The fundamental Planck mass is set to MPl(4+n) = 4 TeV with n = 6 extra
dimensions. This choice corresponds to the benchmark result published in [38].
The black hole mass is varied between 6 TeV, 7 TeV, 8 TeV, 9 TeV, 10 TeV. The
MC generator used for the model is BLACKMAX [117].

• For the Seesaw-TypeIII samples, only the mass points MΣ = 380 GeV and MΣ =

500 GeV are tested. The samples are generated with MADGRAPH_AMC@NLO
[111].

• The W′ model is tested for W′ masses of 3 TeV, 4 TeV, 5 TeV. The branching ratio
of W′ → tb is set to 1. This sample uses the CALCHEP [118] generator.

Again, where necessary, hadronization is applied using PYTHIA 8 and the detector
response is simulated with Geant 4.
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4Statistical Evaluation

4.1 Coverage Analysis
This chapter investigates to what extend the test statistic θ introduced in section 2.10.3
can be directly interpreted as p-value, as intended: p = θ. For that purpose, it will
refer to the definition and requirements of a p-value and test whether θ fulfills those
requirements. Additionally, the analysis will be repeated with θLN, using the log-
normal prior (as suggested in section 2.10.3) instead of the Gaussian term in θ and
compare the results.

A p-value is an indicator for the significance of a deviation, where a smaller p-
value corresponds to a higher significance. The p-value of a result is compared to a
significance threshold α, which is fixed before the statistical analysis. If the observed
p-value is smaller than α, the null hypothesis is rejected [119]. In this case, rejection
of the null hypothesis corresponds to falsification of the Standard Model and thus the
discovery of new physics.

Both values are constructed in a way that the null hypothesis is (incorrectly) rejected
by chance with a probability of α:

Pr(H0 rejected|H0) = α (4.1)

⇒ Pr(p < α|H0) = α (4.2)

This equation is tested during the coverage analysis.

In the case of θ, a deviation from this equality is expected. One reason for that is
the truncation of the normal distribution. Usually, the probability of including the
true value in a certain interval around the expected value is the same as including an
expected value in an interval with the same width around the true value:

Pr(NSM − x · σ ≤ Ntrue < NSM + x · σ) (4.3)

= Pr(Ntrue − x · σ ≤ NSM < Ntrue + x · σ) (4.4)

This property holds for all x if the probability density is a (non-truncated) Gaussian
distribution. Truncation however breaks this property. The effect becomes more
visible as the truncated probability increases and therefore should be most dominant
in areas of very large uncertainty.
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4.1.1 Procedure
To test equation (4.2), one can construct pseudo-experiments based on the null
hypothesis H0 and calculate the corresponding p-value, in this case θ or θLN. After
generating and examining sufficiently many pseudo experiments, the rate of signifi-
cant findings can be determined and compared to the claimed significance threshold:

ptrue =
number of pseudo-experiments where p < α

ntoys
= Pr(p < α|H0) (4.5)

The pseudo-experiments are based on MUSiC’s null hypothesis: It is assumed that
there is a constant probability that events end up in a particular region, and thus
a constant true mean value Ntrue. Additionally, it is assumed that this true mean
value is only known up to an expected event yield, NSM. The way that NSM is derived
from Ntrue differs between θ and θLN: For θ, NSM is drawn from a normal probability
density, θLN will use a log-normal distribution instead.

Additionally, the physics process of performing a counting experiment has to be
simulated: Here it is assumed that the event yield is caused by independent statistical
processes with a fixed probability, thus the observed event yield follows a Poisson
distribution around Ntrue.

The way that the assumed uncertainty enters the pseudo experiment also differs
between θ and θLN: For θ, the absolute uncertainty is kept constant: σSM = σtrue. For
θLN, the uncertainty is recalculated after drawing NSM in order to keep the relative
uncertainty constant: σSM = NSM

Ntrue
σtrue. This has been discussed by [68], a more

rigorous discussion can be found in appendix A.7.

In the implementation, each pseudo-experiment begins with drawing NSM from the
probability density around Ntrue. At the same time, Nobs is drawn from a (discrete)
Poisson distribution with a mean of Ntrue. From these two values, as well as the
uncertainty σSM, θ (or θLN) is calculated.

This process is repeated for ntoys pseudo-experiments. An estimation for the true p
value is afterwards calculated using equation (4.5), which yields the left hand side of
equation (4.2).

In order to state the so called "coverage value" for the tuple (Ntrue, σtrue), both
sides of equation (4.2) are translated to Z-scores (see appendix A.4), resulting in
Ztrue = Z(ptrue) representing the observed and Zclaim = Z(α) representing the claimed
rate ob significant results. The coverage is finally reported as

∆Z := Ztrue − Zclaim. (4.6)
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4.1.2 Possible Outcomes
Three different result cases can arise, depending on the coverage value in equa-
tion (4.6):

1. ∆Z = 0 ⇔ Pr(H0 rejected|H0) = α: This is the ideal case. It indicates the
p-value performs according to its definition.

2. ∆Z < 0 ⇔ Pr(H0 rejected|H0) > α: The background hypothesis is rejected
more often than with a probability of α. This case is called "undercoverage" and
corresponds to "liberal" behavior. The p-value overestimates the significance of
deviations.

3. ∆Z > 0 ⇔ Pr(H0 rejected|H0) < α: The background hypothesis is not re-
jected in some cases where it should have been rejected. This effect is called
"overcoverage" and corresponds to "conservative" behavior where the p-value
underestimates the significance of deviations.

4.1.3 Results
Since the MUSiC p-value is required to cover a large range of possible Ntrue and
relative uncertainty σtrue/Ntrue values, the coverage is evaluated on a two dimensional
grid in this parameter space. The computed results for θ can be found in figure 4.1,
for θLN in figure 4.2.

Areas tinted with dark blue color were determined to be overcovered (conservative
behavior), while the bright yellow shows areas of undercoverage. Within the blank
areas, the coverage value could not be determined since no significant result could
be observed. This is expected, especially for deficits below Ntrue = 1, because at
NSM < 1, the only possible deficit is Nobs = 0, which is not significant purely by the
Poisson contribution in θ (p ≥ e−1 = 0.37 with σSM → 0).

Further illustrations in non-logarithmic view can be found in appendix A.9.

Results for θ

For the Gaussian prior in θ, one can see almost ideal coverage for Ntrue > 1 and
σSM/Ntrue < 50 %. This is compatible with the results from earlier studies [68], which
have been reproduced partially in appendix A.8.

As expected, the coverage equality breaks down at large uncertainties: In the deficit
case undercoverage becomes visible, while the excess case shows overcoverage. For
several regions, the θ-value is too conservative, leading to the effect that not a single
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Figure 4.1: Results of the coverage analysis for θ, using the Gaussian prior. The figure on top
shows that coverage for deficits, the bottom figure indicates coverage behavior
for excesses. Within the blank areas, the coverage value could not be determined
since no significant result could be observed.
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Figure 4.2: Results of the coverage analysis for θLN, using the log-normal prior. The figure
on top shows that coverage for deficits, the bottom figure indicates coverage
behavior for excesses.
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significant round can be obtained during the coverage study. In these regions, the
coverage value cannot be computed and therefore the area is displayed blank.

Results for θLN

The log-normal prior shows much better coverage values across the probed range.
There are areas of slight overcoverage, but especially in the excess case the overcov-
erage does not exceed 1σ.

4.1.4 Discussion
A coverage analysis of the local test statistic θ with a Gaussian and a log-normal prior
has been conducted. As expected, the Gaussian prior shows deficiencies especially
at high values of relative uncertainty. One apparent solution would be to correct
the θ-value with a parametrized correction factor to reestablish perfect coverage. In
practice, it is not obvious how to parametrize the coverage difference in all three
(Nobs, NSM, σSM) dimensions. Therefore, this approach is not further pursued in this
thesis.

In comparison, the log-normal prior performs well over the entire tested range, with a
coverage of |∆Z| ≤ 1. Therefore, if the goal of the local test statistic is to correspond
to the definition of a p-value, the log-normal prior is to prefer over the Gaussian
prior.

4.2 Log-Normal p-Value
As observed in the previous section, using the truncated Gaussian distribution as
prior in the p-value has limited validity at high relative uncertainties. At the same
time, it has been observed that using a log-normal prior improves test coverage in
the problematic regions.

In addition, a log-normal prior is more suited for modeling uncertainties in event
numbers: Analogously to the normal distribution, which is generated from a sum of
independent random variables, the log-normal distribution results from the multipli-
cation of independent random variables (see appendix A.3). The latter corresponds
to the situation of event numbers, as most uncertainties on the event yield originate
from shifting the event yield by a multiplicative factor. Also note that in the limit of
NSM →∞ and σSM → 0, the log-normal distribution recovers the shape of a normal
distribution, which explains similar coverage properties in that region.

Changing the prior in the test statistic also implies a new null-hypothesis, namely
that all uncertainties are distributed in a log-normal fashion. Therefore, the pseudo-
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experiment generation, which is based on the null-hypothesis, must also be adapted.
Instead of choosing a new pseudo-mean value using a sum of uncertainties multiplied
by a normally distributed bias (see equation (2.19)), one now has to use a product of
relative uncertainties:

Ntrue
′ = NSM ·

∏
i

(
1 +

σi
NSM

)xi
(4.7)

However, this approach also comes with its disadvantages: When combining multiple
bins into a region, usually, individual bin contents are added. Assuming normally
distributed bin contents, this approach is valid because the sum of two normally
distributed random variables is also normally distributed. Yet, this principle does
not apply to log-normal distributions. The sum of log-normally distributed random
variables is not log-normally distributed.

In the following, some solutions to this challenge are discussed, some of which have
also been considered in previous works on the log-normal prior [68].

• Use Gaussian error propagation in any case: While this solution may approxi-
mately hold for two bins with the same number of events and relative uncer-
tainty, it breaks down with more unequal numbers as the combined distribution
differs significantly from the distribution obtained by summation of two (or
more) random numbers drawn separately.

• Use an approximation: The challenge of approximating a sum of log-normally
distributed random variables is of interest for various applications and has
therefore been thoroughly researched. The oldest, most popular approach is
the Fenton-Wilkinson approximation which is obtained by matching mean and
variance of the sum to a log-normal distribution. Unfortunately, this approach
breaks down when combining more than two bins [120]. Other possible
alternatives are the Schwartz-Yeh approximation [121], which matches the first
two moments of the logarithms with additional weight functions, and a recent
procedure by Mehta et. al. [122] which uses a Gauss-Hermite approximation
and poses the most accurate solution. The downside of the latter approaches is
that they are computationally expensive, involving the calculation of integrals.
Since a region can consist out of up to ∼ 100 bins, the number of regions per
event class can reach up to ∼ 10 000. Thus using a computationally cheap
algorithm is absolutely necessary. Because of the high number of parameters
(two for each bin) using a LUT is also not feasible.

• Combine bins to regions first, generate pseudo-experiments on the complete
regions instead of bins: This approach completely ignores the direct correla-
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tion between overlapping regions, and therefore does not represent the null-
hypothesis.

• Generate pseudo-experiments from a normal distribution, evaluate the θ-value
with the log-normal prior: This approach has been pursued in an earlier signal
study [68]. As this signal study was performed before the start of data taking
at CMS, uncertainties were underestimated. With larger uncertainties, this
procedure is no longer feasible. The problem can be illustrated using an
example from the turn-on region of the distribution. The uncertainty in these
areas mostly originates from distribution shifts and therefore can be very large.
Using a Gaussian prior, the scenario NSM = 1 000 ± 2 000, Nobs = 0 yields a
θ-value of 0.00025, while a log-normal prior would assign 2.5× 10−8. This
tension of 1.9σ causes very significant pseudo-experiments in these regions of
large uncertainties and large event numbers.

Although the problem of combining bins is the only problem arising from a log-normal
prior, it is so grave that the log-normal prior will not be used for the signal study in
this thesis. Instead, an alternative solution to the overcoverage of the normal θ-value
will be presented in the next section.

4.3 Region Veto Against Overcoverage
In section 2.10.2, several rules have been introduced to prevent inference for regions
with incomplete simulation. In this section, add another rule will be added, which
however does not intend to limit the search space because of invalid input for the
test statistic, but to avoid shortcomings of the Gaussian test statistic itself.

In section 4.1, it was shown that the test statistic θ with the Gaussian prior has severe
overcoverage for regions of high relative systematic uncertainty. This section now
introduces a simple rule excluding these problematic regions from the search. In the
bottom plot of figure 4.2, one can see that the contour line coverage = +2σ follows
a straight path in double logarithmic presentation. This line can be approximately
parametrized with

σSM

Ntrue

= 1.2 ·Ntrue
−0.2 (4.8)

Regions with a larger systematic uncertainty (above the line) should be excluded
from the search due to insufficient coverage of the test statistic.

As NSM is the best estimator for Ntrue, Ntrue is replaced with NSM. Additionally,
in order not to unnecessarily veto regions with large Ntrue, and not to diverge at
NSM → 0, this value is restricted to the range between 0.5 and 5.0:

σSM

NSM

= max(0.5,min(1.2 ·NSM
−0.2,5.0)) (4.9)
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The excluded area is illustrated in figure 4.3.

4.4 A Global p-Value
The p̃ distribution provides the ability to notice an increase of not very significant
deviations in many classes by inspecting the central part of the distribution. However,
this manual method is only qualitative. I will now introduce a possible extension
to the analysis which provides a quantitative method of combining all p̃-values of a
search in one kinematic variable for all classes.

This allows the analyst not only to draw conclusions about the presence of new physics
in the observed data set, but also to quantify MUSiC’s sensitivity for simulations of
known benchmark models. Furthermore, an automated analysis can be used as a
regression test to decide whether future modifications to the analysis improve its
sensitivity.

As input, the algorithm takes the look-elsewhere-corrected p̃-values of all classes. In
the case of MC simulation, either for SM or signal studies, such a set of p̃-values can
be provided for each pseudo experiment round, for observed data one only obtains
one list (one value for each class).

The algorithm for the SM distribution performs as follows: For each pseudo experi-
ment round, the distribution of p̃-values (of all classes) is compared to a reference
distribution using a statistical test. The reference distribution is the distribution of
all p̃-values of SM-only pseudo-experiments, of all n event classes and k pseudo-
experiment rounds, as presented in figure 4.4. Note that the distribution features a
spike at p̃ ≈ 1, which originates from the remaining discretization of p̃ discussed in
section 2.10.5.

The statistical test outputs a scalar result t for each of the k rounds, where a larger
value indicates a larger deviation from the reference distribution. The set of k test
statistic values is stored. Given a single observed p̃ distribution, one can analogously
compute the test statistic tobs and a p-value expressing to the significance of the
observation:

p̂ = Pr(t > tobs|H0), (4.10)

where H0 indicates the null hypothesis given by the Standard Model. For a decision
whether or not the null hypothesis should be rejected, p̂ has to be compared to a
significance threshold α. α is equivalent to the type-I error rate, the probability of
incorrectly rejecting the null hypothesis if it were true [119]:

Pr(p̂ < α|H0) = α (4.11)
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Figure 4.3: Illustration of the regions vetoed due to insufficient coverage (areas with red
hatching pattern).
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Figure 4.4: Reference distribution g(p̃), serving as input to the analysis. In this instance, the
ΣpT distribution has been analyzed, shown are all p̃-values of exclusive event
classes.

Equivalently, a critical value tcrit of the test statistic can be defined, such that

Pr(t > tcrit|H0) = α (4.12)

Similarly, the type-II error rate can be identified, which denotes the probability of
incorrectly accepting H0 if it is false [119]:

Pr(p̂ > α|H1) = Pr(t < tcrit|H1) = β (4.13)

The quantity 1− β is called test power [119] and in here indicates the probability of
correctly rejecting the SM if the dataset under investigation contains new physics.
The test power of a test therefore directly describes the sensitivity towards a particular
new physics scenario.

The test power can be calculated from simulations of new physics, such as the
combined signal and background pseudo-experiments as described in section 2.11.
The test power does not only depend on the chosen test statistic and signal model,
but also on α. A larger value of α is less restrictive and will correctly accept the
alternative hypothesis more often, at the cost of incorrectly rejecting the SM.

The choice of α is subjective [123]. Rather than following a strict convention, it is
important to state which significance threshold has been used and, if the test statistic
indicates that the null hypothesis should be discarded, to act accordingly. In the
case of the MUSiC analysis, finding a deviation from the SM would certainly initiate
a dedicated analysis at CMS. Therefore, in this case, an aggressively high value
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of α = 5 %1 can be used, accepting the fact that in 5 % of the cases MUSiC would
incorrectly reject the SM and initiate a dedicated analysis.

So far, the choice of the test statistic t has not been specified. In the following,
multiple options are discussed. The distribution of p̃-values under investigation is
denoted as f(p̃), having Nf = k values, the reference distribution is g(p̃), with Ng

values. The cumulative distribution functions are F (p̃) and G(p̃) respectively.

• χ2-Test [124,125]: This test is used to compare two sets of values, binned into
distributions. For each bin i, the difference between bin contents g′i for the
reference and the sample bin content f ′i is evaluated.

t =
χ2

ndof
=

1

number of bins

bins∑
i

(√
Ng/Nf · f ′i −

√
Nf/Ng · g′i

)2

Nf +Ng

(4.14)

A disadvantage of this method is that binning discards information. Additionally,
the method works best for large number of event classes.

• Kolmogorov-Smirnov [125,126]: This test does not require binning. It compares
the empirical cumulative distribution functions of reference and comparison,
finding the maximal distance between F and G.

t =
(√

Ne + 0.12 + 0.11/
√
Ne

)
· sup

i
|F (p̃i)−G(p̃i)| (4.15)

where
Ne =

Nf ·Ng

Nf +Ng

(4.16)

is an effective number of values.

A disadvantage of this test statistic is that it is most sensitive to deviations in
the center of the distribution. Additionally, only the largest difference is used
for the result, instead of accumulating the difference.

• Anderson-Darling [125–127]: This test belongs to the group of quadratic EDF
(empirical distribution function) statistics. This group consists of test statistics
that integrate over the quadratic difference between the reference and sample
cumulative functions:

t = k

∫ ∞
−∞

(F (x)−G(x))2w(x) dF (x) (4.17)

Here, the weighting term w(x) can be used to focus on specific parts of the
distribution. The simplest possible weight is w(x) = 1, which is used by the

1For comparison, a discovery in particle physics is usually claimed at α ∼ 10−7 [119].
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Cramér-von-Mises test statistic. The Anderson-Darling metric uses a more
sophisticated weight w(x) = [G(x)(1−G(x))]−1 instead, giving more weight to
both tails of the distribution.

For this thesis, the discrete two-sample version is used, which is described
in [128].

• Simple: t is the ratio of p̃-values below a critical value, in this case 0.01.

A thorough comparison of the afore-mentioned test statistics can be found in [127].

Alternatively, the reference distribution can be replaced by a uniform distribution.
This also simplifies the formulas of most test statistics. Additionally, this variant has
the advantage of enabling the analyst to identify whether the SM-only distribution
agrees with the assumption of being uniformly distributed. However, as will be
shown in chapter 5, the comparison to a uniform distribution can only be done with
a higher minimum yield threshold of e.g. NSM ≥ 1.0, which reduces the number of
event classes with p̃ ≈ 1 and therefore brings each distribution closer to a uniform
distribution.

The MUSiC analysis is not the only model-independent search for the LHC striving at
a global measure for sensitivity: A corresponding analysis performed by the ATLAS
collaboration [82] employs a statistical interpretation similar to the newly introduced
"simple test". The approach is also to count the number of pseudo-experiments
which yield a certain fraction of classes beyond a threshold p. However, instead
of determining the fraction of classes tcrit from SM-only simulations, ATLAS uses
tcrit ∼ one class (alternatively also two or three classes). The analysis then uses
the p-threshold as a variable. For any given observed dataset, the p-threshold is
determined at which one (or two or three) event class(es) pass.
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5Discovery Potential

The study of the discovery potential, also called sensitivity study, has multiple pur-
poses: On one hand, its goal is to assess the absolute sensitivity of the analysis
towards certain benchmark models for new physics. On the other hand, it can also be
used to evaluate the sensitivity for a single model using different analysis variants.
This enables the analyst to test which features, such as algorithms or parameters,
have the largest impact on the discovery potential.

The chapter will start with the latter goal: After defining a set of features and key
questions to be answered in this chapter, the corresponding results will be presented
in form of tables and graphics, and the implications for the MUSiC analysis will
be discussed. In the second part, the sensitivity towards the benchmark models
introduced earlier will be explicitly assessed and compared to dedicated analyses
performed on a similar dataset by CMS.

5.1 Evaluation of Features
The goal of the first part of the chapter is to evaluate various features of the analysis,
including some that have been newly introduced with this thesis. The evaluation will
be guided by the following set of key questions that arise in this context:

• Validation: Using only the SM as new physics input, do the results agree with
the SM-only search?

• How does the p̃-distribution of the SM-only search scale with luminosity?

• How does the minimum-yield-per-event-class threshold (section 2.10.5) affect
the SM-only distribution of p̃-values?

• How do the region vetoes (including the overcoverage veto introduced in
section 4.3) reduce the available search space?

• Which test statistic t shows the best sensitivity for the global p-value?

• Can a uniform distribution be used as test statistic reference?

• Is MUSiC sensitive to new physics that is only visible in one or few final states?

• Is MUSiC sensitive to new physics with a small impact on several final states?

• How does an increase in luminosity affect the sensitivity? For which kind of
models does the analysis benefit from a higher luminosity?
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5.1.1 Interpretation of the Result Displays
The result figures presented in the following sections contain a large amount of
information that might be difficult to interpret for readers not accustomed to MUSiC.
Therefore, this section aims to quickly introduce the material used to present the
results and explain how they can be interpreted. An overview of the information
presented is schematically shown in figure 5.1.
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Figure 5.1: Flow of information from the sets of p̃-values to the results presented in this
chapter. The schematic shows the vertical aggregation of p̃-values from k = 4
pseudo-experiments into median p̃-values as well as the horizontal aggregation
of distributions of p̃-values for each round. Furthermore, the test statistic t is
also computed horizontally and aggregated into a distribution.

p̃-Distribution

This illustration has conceptually been introduced in section 2.10.6. One example
can be seen in figure 5.2. It is produced by aggregating − log10 p̃ values: First, for
each of the k rounds, the n results from n classes are sorted into a histogram. This
results in k histograms, therefore k entries per bin. In each bin, the median bin
content, the mean bin content and 68 %- and 95 % quantiles around the median are
calculated. The highest bin serves as overflow bin, as one cannot obtain a precise
value for p̃ < 1× 10−4 from 10 000 SM-only pseudo-experiments.

The aggregation procedure is done for the (corrected) p̃-values originating from
searches for deviations between the SM and pseudo-experiments based on the SM
and its result is depicted in the turquoise and blue bands, as well as the turquoise
line and the black dotted line. Additionally, the illustrations show a dashed green
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line which represents a uniform distribution. Because of the logarithmic binning,
the number of uniform events is not equal for each bin. The uniform distribution
can be used to tell whether p̃ fulfills the requirement of a p-value of being uniformly
distributed.

Results of the pseudo-experiments originating from a signal study (see section 2.11)
are depicted in the same figure as red data points. The vertical error bar around these
points indicate the 68 %-quantiles around the median. This thesis uses 100 signal
pseudo-experiments for each event class, thus 100 bin contents have been used to
calculate the magnitude of the error bar.

Table of Most Significant Classes

The second way of presenting results is the table of median most significant classes.
It is aggregated by regarding the corrected p̃-values of each event class for all rounds.
For each event class, the median p̃-value is computed. Subsequently, the event
classes with the 10 smallest median values are presented, alongside with the Z-score
expressing the deviation in terms of standard deviations of a normal distribution (for
the conversion formula see appendix A.4).

Distributions of t

The third way of presenting the results is to aggregate distributions of t-values. Several
examples are shown in figure 5.3. There are always multiple distributions depicted
in one figure: The histogram filled in gray shows the distribution of t-values from
SM-pseudo-experiments. In addition there are one or more distributions originating
from signal studies, drawn as colored lines.

A vertical dashed line indicates the critical value tcrit. It is defined as the value of t
which separates α = 5 % of the area under the gray SM-only distribution on its right
side. The test power can also be read from the result figure as the area to the right of
tcrit under each signal line. Its numerical value is indicated next to each entry in the
legend below the figure.

Choice of Distributions

The statistical inference, i.e. the aggregation of distributions of p̃-values as distri-
bution, table or test statistic, is performed separately on each type of event class
(exclusive, jet-inclusive and inclusive, see section 2.7) and on each kinematic variable
(Minv, ΣpT, Emiss

T ) separately. Therefore, the result set for each signal study consists
of nine different channels.

All results presented in this chapter have been obtained in regard to the ΣpT kinematic
variable and the inclusive event classes. The former choice was ambiguous, in
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most signal models, the results of all three kinematic variables have shown similar
sensitivity.

The latter choice is motivated by sensitivity: For the majority of investigated models,
the highest sensitivity could be obtained from inclusive event classes. Events in
inclusive event classes can contain any number of objects in addition to the objects
explicitly stated in the event class name. This in turn also means that events usually
are sorted into multiple inclusive event classes, introducing correlations between
the event classes. Due to the way that MUSiC treats correlations in SM-pseudo-
experiments, this is not expected to pose a problem.

Note that in any case, the calculation of the kinematic quantity (here ΣpT) only
considers the objects that are explicitly stated in the event class name.

5.1.2 Validation Using the SM
The automated search takes two sets of event classes as input when performing a
sensitivity study: A set of event classes from classified events of the Standard Model,
and a set of event classes where simulated new physics events have been added to
the Standard Model expectation. In order to validate the analysis, the latter input set
can be replaced by another set of SM-only event classes.

In this case, one expects not to find any significant event classes. Furthermore, there
should be no significant deviation in the distribution of p̃-values between the median
signal rounds and the mean SM-pseudo rounds. The test power of the global test
should be 1− β ≈ α = 5 %.

The results of such a validation run are depicted in figure 5.2. As expected, the
distribution of p̃-values shows no significant deviation between the median bin
contents for the signal study, indicated by the red data points and the median bin
content of the SM-only pseudo-experiments, drawn as black dotted line. The table on
the bottom shows the 10 median most significant inclusive event classes. The median
most significant event class deviates by 0.2σ, thus being in complete agreement with
the expectation.

Figure 5.3 shows results of the newly introduced global p-value. As expected, the
gray SM-only distribution and the blue validation distribution overlap for all test
statistics. Furthermore, the expected test power is 1− β ≈ α = 5 %, which confirms
that the automated search would find a significant deviation in the validation data
set as often as in the SM.
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Event Class Median p̃ Z

1 e + 1 µ + 1 jet + Emiss
T + 3 b-jets + X 4.23× 10−1 0.2

1 µ + 2 γ + 1 b-jet + X 4.28× 10−1 0.2

2 e + 1 µ + 1 b-jet + X 4.29× 10−1 0.2

2 µ + 1 jet + Emiss
T + 3 b-jets + X 4.32× 10−1 0.2

1 e + 4 b-jets + X 4.36× 10−1 0.2

2 γ + 2 jets + Emiss
T + X 4.38× 10−1 0.2

3 jets + 1 b-jet + X 4.42× 10−1 0.1

2 µ + 2 jets + Emiss
T + X 4.42× 10−1 0.1

3 µ + X 4.44× 10−1 0.1

1 e + 1 µ + 6 jets + 1 b-jet + X 4.46× 10−1 0.1

Figure 5.2: Distribution of p̃-values and table of most significant inclusive event classes for
the SM-only validation. For a detailed explanation on the displayed information,
see section 5.1.1. As expected, the distribution does not show any significant
deviation between the validation (red data points) and the SM-only pseudo-
experiments (dotted line). The table below shows the inclusive event classes
with the smallest median of p̃ between the signal simulation rounds. The most
significant class shows a deviation of 0.2σ, which is not significant.
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Figure 5.3: Distribution of t-values of the validation. As expected, the blue line, corre-
sponding to results of the signal study, is in complete agreement with the gray
histogram, as the same SM-only event classes have been specified as signal input.
Consequently, the test power, which is defined as area under the blue curve to
the right of the dashed vertical line at tcrit, is approximately 5 %. Note that the
blue line has been generated from only 100 entries, therefore the test power is
subject to statistical fluctuations.
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5.1.3 Differences between 2.3 fb−1 and 35.9 fb−1 of
Events

To assess the differences between the luminosities of the data taking periods in 2015
(with a luminosity of 2.3 fb−1) and 2016 (35.9 fb−1), one can compare the results
from the p̃-distribution in figure 5.2 to similarly obtained results in figure 5.4. For
this distribution, all event yields have been scaled to the new luminosity and the
automated search was repeated. Because of the increase in the scaled event yield,
more event classes will pass the threshold of NSM ≥ 0.1, therefore more event classes
will be searched for deviations in the 2016 dataset. This also shows e.g. in the
number of exclusive event classes, which rises from 460 to 676 (table 5.2).

The validation procedure presented in the previous chapter was also applied on the
dataset with the luminosity of 35.9 fb−1, as depicted in red in figure 5.4. Again, no
deviation between the validation dataset and the SM-only pseudo-experiments is
visible.
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Figure 5.4: Distribution of p̃-values for the SM-only validation using the 35.9 fb−1. This
illustration should be compared with the distribution in figure 5.2 to illustrate
the increase in inclusive event classes.
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5.1.4 Effect of the Minimum Yield Threshold
The minimum yield threshold was introduced in section 2.10.5 in order to suppress
the creation of almost-empty event classes, as the discretization of the θ- and p̃-values
would invalidate the interpretation of the p̃-value as a probability. This effect has
been analyzed by performing automated searches and aggregating distributions of
p̃-values with several different values of the minimum yield threshold. The results
are presented in figure 5.5 and table 5.2.

The first p̃-distribution has been generated with NSM ≥ 0, only filtering out event
classes if the region veto (section 2.10.2) applies to the entire distribution. The SM-
only distribution clearly shows deviations from the uniform distribution, especially in
the bins containing less significant event classes. This is not the case in the second
figure, showing a distribution generated with a threshold of NSM ≥ 0.1.

Alternatively, one can regard the reduction in the number of event classes between
several threshold values, as shown in table 5.2. Overall, the minimum yield threshold
reduces the number of event classes by more than a factor of two for the 2015
dataset. Because the same MC simulated events were used for the 2015 and 2016
scenarios, the number of initial event classes remains the same between the studies.
The increase in luminosity by a factor of 16 however causes more event classes to
pass the threshold.

For this thesis, a threshold of NSM ≥ 0.1 was chosen, as it brings the p̃-distribution
of the SM-only pseudo-experiments and the uniform distribution into agreement. A
larger value would be impractical as the analyst manually has to review classes that
do not pass the threshold but contain observed data.

5.1.5 Impact of Vetoes
In section 2.10.2, several rules have been introduced that aim to exclude regions
from the automated search where the SM simulation is incomplete and therefore
no inference can be made. The set of rules was expanded in section 4.3 in order to
avoid statistical inference on regions where the test statistic is known to be incorrect
because of overcoverage.

This section assesses the impact of the region vetoes on the number of regions that are
searched for deviations. The numbers in table 5.3 have been obtained by recording
the reason for each veto during an automated search of the ΣpT distribution of
SM-only pseudo-experiments of all event classes. Because the vetoes are evaluated in
a given order, aborting after the first matching rule, the numbers on the latter vetoes
are only an approximation and a lower bound. The total number of vetoes, however,
can be accurately determined using this feature.
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Figure 5.5: Distribution of p̃-values of inclusive event-classes for different minimum yield
thresholds at 2.3 fb−1. The distribution above was created with a threshold of
0, the second one with a threshold of 0.1. Although the standard model and its
validation agree in the upper illustration, neither distribution is in accordance
with a uniform distribution. Therefore, the validity of p̃ without such a threshold
is questionable.
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Event classes created with a luminosity of 2.3 fb−1:

without req. vetoes only NSM ≥ 0 NSM ≥ 0.01 NSM ≥ 0.1 NSM ≥ 1

exclusive 1 249 902 885 647 460 239

jet-inclusive 1 359 988 968 718 508 343

inclusive 1 686 1 236 1 212 915 672 465

Event classes created with a luminosity of 35.9 fb−1:

without req. vetoes only NSM ≥ 0 NSM ≥ 0.01 NSM ≥ 0.1 NSM ≥ 1

exclusive 1 249 902 885 773 676 492

jet-inclusive 1 359 988 968 863 747 549

inclusive 1 686 1 236 1 212 1 085 951 710

Table 5.2: Number of event classes created with several veto combinations at a luminosity
of 2.3 fb−1 (upper table) and 35.9 fb−1 (lower table). As mentioned earlier in
section 2.10.2, in some cases, entire event classes may be skipped if the largest
region is vetoed. This case is illustrated in the second column. The other columns
additionally require the event class to have a minimum total yield, as described in
section 2.10.5. As this threshold is increased, less event classes pass.

veto reason vetoed regions

empty bin added 38.8 %

overcoverage threshold (section 4.3) 4.9 %

negative total yield 1.0 %

large negative contribution of any process 2.5 %

negative/low leading contribution 5.3 %

large statistical uncertainty 6.2 %

total vetoed 58.7 %

Table 5.3: Impact of region vetoes. The vetoes are applied in the order listed here. The first
veto, "empty bin added", which is not explained in section 2.10.2, originates from
an optimization where the test statistic θ is not recomputed after an empty bin
has been added to the region.
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In addition to the aforementioned rules, the entry "empty bin added" is listed. This is
due to an optimization in the automated search, where regions are not reassessed
after an empty bin has been added. The motivation behind this optimization is that
the value of θ would be the same (as neither NSM, σSM or Nobs change) and the region
would be larger, therefore not a candidate to become RoI.

Overall, more than half of the regions (58.7 %) are skipped. However, the optimiza-
tion accounts for 38.8 %, leaving only about 20 % to the rules that prevent an invalid
inference. The newly introduced veto amounts for about 5 % of vetoed regions, which
is an acceptable reduction in the number of regions given that it restores coverage of
the θ-value.

5.1.6 Comparison of Test Statistics t
In this section, the results of using several test statistics on the semiclassical black
hole model are explored. The distributions of the four aforementioned test statistics
can be found in figure 5.6. The test power towards each model is indicated in the
legend and in this case varies between 53 % and 100 % for the given test statistics.

The largest test power of 100 % is given by the "simple" test statistic, which just
measures the fraction of classes with p̃ < 0.01. While this may appear surprising
at first, considering that the other test statistics are much more sophisticated, there
exists a possible explanation: In the past, the MUSiC analysis has been developed
while assessing the sensitivity by eye from the p̃-distribution. The p̃-distribution,
which is binned in logarithmic bin sizes, strongly favors deviations in bins with p̃→ 0.
Therefore, the analysis might have been optimized for this area of sensitivity.

Only now, with the introduction of a quantitative measure for deviations in the bulk of
the distribution, the analysis can be optimized for sensitivity in this region. Therefore,
the test power of these statistical test should be considered alongside the "simple"
test during future design decisions of the analysis.

5.1.7 Uniform Reference Distribution for t
So far, all results from the global p-tilde value have been obtained by comparing
the empirical distribution to a reference distribution given by all SM-only values of
p̃. As mentioned in section 4.4, a uniform distribution can be used as alternative
reference. In this section the challenges are shown that arise when comparing to a
uniform distribution with NSM ≥ 0.1 and how the alternative performs if one requires
NSM ≥ 1.0.

Figure 5.7 shows results of a SM-only validation similar to the results obtained earlier
(figure 5.3), but using a uniform distribution as reference. However, unlike earlier
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Figure 5.6: Comparison of test statistics for the BH model. For demonstration purposes,
the test statistic values of the MBH = 7 000 GeV signal study are drawn. The
deviations between the two distributions in each figure are clearly visible. In this
case, the simple test shows the largest power of 100 %, followed by the χ2 test
with 80 %.
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results, the test power on the validation is not ≈ 5 %, as it would be expected, but
more than 15 %, indicating that using the test statistics in combination with the
uniform distribution yields invalid results under these circumstances. Figure 5.8
presents the situation with NSM ≥ 1.0. This time, the validation results (upper two
figures) indicate a test power of approximately 5 %, as desired. Therefore, one can
continue to perform inferences from these results. The two figures on the bottom
show distributions obtained from pseudo-experiments of the semiclassical black hole
model, similar to figure 5.6 in the previous section. The obtained test power is
comparable to the case of a sampled reference, e.g. 81 % instead of 80 % for the
χ2-test, 75 % instead of 53 % for the Kolmogorov-Smirnov test.

Overall one can conclude that this approach is also feasible, it even seems to be more
sensitive in some cases. However, as the minimal yield has to be increased up to
NSM ≥ 1.0, in practice there will be event classes that do not pass the threshold but
contain data. These event classes will have to be reviewed manually by the analyst.
To reduce the amount of required manual involvement, the uniform approach with a
larger threshold is not further used in this thesis.

5.1.8 Sensitivity in Few Final States (QBH model)
The QBH model introduced in section 1.3 serves as benchmark for new physics
appearing in few final states. Since the simulated black holes are assumed to decay
completely into a e + µ pair, this final state is expected to dominate the list of
significant classes. To illustrate this, the black hole mass of M = 4 000 GeV is
considered. It is the highest mass point for this model which generates a significant
deviation from the SM. The results of the analysis are presented as a distribution
of p̃-values and table of most significant classes in figure 5.9 and the distribution of
t-values in figure 5.10.

As expected, the set of most significant classes is dominated by final states containing
an e + µ pair. The most significant event class 1e + 1µ + X has p̃ < 1× 10−4. The
inequality symbol indicates that in none of the 10 000 SM-only pseudo-experiments,
a more significant deviation has been found.

The second most significant event class is the final state 1e + 1µ + Emiss
T + X. Its

significance in the signal study is 3.5σ, followed by an insignificant event class with
Z = 2.1 < 3.

The p̃-distribution indicates a similar result: There is no apparent deviation within
the bulk of the distribution, but the overflow bin contains two event classes in the
median, occasionally also none or more than two. However, overall the distribution
is compatible with the prediction from SM-only pseudo-experiments. The same
applies to the distribution of t-values in figure 5.10. The only test statistic that
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Figure 5.7: Distributions of t-values, obtained by comparing to a uniform distribution. This
case, calculated with NSM ≥ 0.1, shows a failed validation attempt: Instead of
5 %, the test power is 16 % to 28 %, indicating that the method cannot be used
with these parameters.
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Figure 5.8: Distributions of t-values, obtained by comparing to a uniform distribution, with
an increased minimal yield requirement of NSM ≥ 1.0. The two upper illustra-
tions show the same validation as in figure 5.7. As desired, the test power is
1 − β ≈ α = 5 %. The illustrations below show the results of the black hole
model, suggesting that the test power is comparable to figure 5.6.
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Figure 5.9: Distribution of p̃-values and most significant inclusive event classes for the
quantum black hole decaying to e + µ, M = 4 000 GeV. This model represents
new physics appearing in few final-states. As expected, only one highly significant
event class has been found.
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Figure 5.10: Distribution of t-values for the global p-value. The shown signal model is the
QBH model, which represents a model appearing in few very significant event
classes. None of the test statistics feature a sensitivity comparable to the table
of most significant event classes.
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shows sensitivity to this model is the simple test, with a test power of 86 % for
M = 2 000 GeV. However, this mass is much lower than the most sensitive mass that
could be discovered using the table of most significant classes.

Overall, this study shows that the sensitivity towards a model that appears in one
or a few final states is mostly given by the table of median most significant classes.
Neither the distribution of p̃-values nor the distributions of t-values can provide a
comparable sensitivity in this case.

5.1.9 Sensitivity in Multiple Final States (BH model)
As opposed to the previous section, the goal of this section is to assess sensitivity of
the MUSiC analysis towards a new physic that appear in multiple final states. The
benchmark model for this analysis is the semiclassical black hole model introduced in
section 1.3, with a mass of MBH = 8 000 GeV. Similarly to the previous section, the
results are first presented as distribution of p̃-values and as a table of most significant
classes in figure 5.11.

The table of most significant classes shows, in contrast to the previous case, that there
are multiple event classes that are sensitive to the model. The three most significant
event classes have a Z-score of more than 3.7, followed by five more event classes
above 3σ.

It is noticeable that the table of median most significant inclusive event classes is
dominated by event classes containing several jets and some containing missing
transverse energy. As mentioned in the introductory chapter, the branching ratio
of the semiclassical black hole is proportional to the number of degrees of freedom
of the decay products. Thus, quarks and gluons, which carry additional degrees
of freedom through color charge, are heavily favored, resulting in multiple jets in
the final state. A significant amount of Emiss

T is also expected to appear during the
evaporation of the black hole [38].

For this model, the distribution of p̃-values is very sensitive. During each round, there
were about eleven event classes with p̃ < 1× 10−4, making the deviation from the
SM-only distribution highly significant. Note that the event classes which are sorted
into the last bin vary between pseudo-experiment rounds and therefore do not appear
with the same significance in the results table. Again, a similar result is apparent in
the distribution of t-values in figure 5.12. All test statistics show a median sensitivity
up to a black hole mass of MBH = 7 000 GeV, the simple test is even sensitive up to
MBH = 8 000 GeV, with a test power of 88 %.

The study in this section has shown different behavior than the previous study: For
new physics appearing in many final states, the distribution of p̃-values as well as the
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Figure 5.11: Distribution of p̃-values and most significant inclusive event classes for the
black hole model at the mass of MBH = 8 000 GeV. This model has an effect on
multiple final states. Therefore the distribution of p̃-values shows a deviation
in the bulk of the distribution as well as the highest bin and there are several
event classes with Z > 3.
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Figure 5.12: Distributions of t-values corresponding to figure 5.11. The semiclassical black
hole model represents new physics that appear in multiple event classes. All
test statistics are sensitive to the new physics model, the highest sensitivity is
again obtained by the "simple" test, with a power of 88 % at MBH = 8 000 GeV.
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global p-value display enhanced sensitivity and therefore complement the table of
median most significant classes.

5.1.10 Dependence on the Luminosity
In the previous section, the highest discoverable mass points of the QBH and BH
models have been presented, with respect to a luminosity of 2.3 fb−1. This section
revisits the results, this time with the luminosity scenario of 2016 (35.9 fb−1). The
corresponding distributions are depicted in figure 5.13.

The figure on top shows the result for the QBH model with a black hole mass of
M = 4 000 GeV. At 2.3 fb−1, there were two classes belonging to the overflow bin on
average. One can see that this number has increased at 35.9 fb−1, showing nine event
classes in the same bin on average. The bulk of the distribution, however, remains
unchanged: No significant deviations are apparent in all but the highest histogram
bin.

The second figure shows the distribution of p̃ models from pseudo-experiments based
on the BH model. This model highly benefits from the increase in luminosity. On
average, there are over 100 classes in the overflow bin. This indicates that the analysis
is sensitive to even higher black hole masses, as will be presented in section 5.2.1.

5.2 Results by Model
The following sections aim to present absolute sensitivity results towards the tested
benchmark models. As the cross section of each model decreases with the mass of
the new physics object (black hole, Σ or W′), the results will be shown for the highest
mass that the analysis would be able to discover.

For this purpose, a model will be claimed to be discoverable if any of the following
conditions are met: The distribution of p̃-values shows a considerable deviation, the
most significant event class has a median Z-score larger than 3 or the test power of t
is larger than 50 %, i.e. the median t is larger than tcrit, for any test statistic.

5.2.1 Semiclassical Black Hole
The results for the semiclassical black hole theory have already been presented and
discussed in the previous sections. At a luminosity of 2.3 fb−1, the largest black hole
mass that the MUSiC analysis is very sensitive is about MBH = 8 000 GeV, with eleven
event classes in the overflow bin.
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Figure 5.13: Distributions of figure 5.9 and figure 5.11 for the 2016 scenario with a lumi-
nosity of 35.9 fb−1, using the same models and mass points. On top: quan-
tum black hole model with M = 4 000 GeV, below: black hole model with
MBH = 8 000 GeV.
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As suggested in the previous section, increasing the luminosity from 2.3 fb−1 to
35.9 fb−1 additionally enables sensitivity up to a black hole mass of MBH = 9 000 GeV,
as shown in figure 5.14. At 35.9 fb−1, there are three inclusive event classes with a
median Z-score larger than 3 and a clearly visible deviation in the p̃-distribution.

5.2.2 Quantum Black Hole
Similarly to the semiclassical black hole, the results regarding the QBH model have
also been presented earlier in this chapter. In figure 5.9, sensitivity to the QBH model
up to a black hole mass of M = 4 000 GeV is demonstrated.

With an increased luminosity of 35.9 fb−1, the analysis becomes sensitive up to a
QBH mass of M = 5 000 GeV (figure 5.15), with 1e + 1µ + Emiss

T + X being the most
significant event class (Z = 3.5).

5.2.3 Seesaw Type-III
The results for the Seesaw Type-III signal model are presented in figure 5.16. Because
no sensitivity can be observed in the dataset of 2.3 fb−1, the illustration directly
contains the results corresponding to a luminosity of 35.9 fb−1. At 35.9 fb−1, the
distribution of p̃-values shows a slight deviation from the SM-only distribution in the
overflow bin. The table of median most significant classes shows that the event class
1e + 3µ + X stands out with a significance of Z = 3.4.

To understand the comparably low sensitivity towards this model, it is helpful to
compare the selection and procedure of the MUSiC analysis to the dedicated analysis
which was able to exclude the same model up to a mass of 440 GeV in 2015 [115]
and 790 GeV in 2016 [129].

The dedicated analysis applies several selection criteria to maximize signal efficiency
and suppress the SM contribution in the final states under investigation. First, only
events with three or more leptons are considered. The leptons are expected to pass
comparably low pT thresholds of 25 GeV and less. Subsequently, events are classified
into six statistically independent search channels which correspond to the decay
channels of the Σ fermions. Intermediate Z bosons are reconstructed by matching
pairs of leptons with the same flavor and opposite electrical charges. The pairs
are then additionally binned by the invariant mass. For search channels including
intermediate W bosons, the kinematic variable ΣpT + Emiss

T is considered in order to
combine the momenta of visible leptons and neutrinos. Overall, the search strategy
of the dedicated search is to start with as many events as possible and quickly narrow
them down using precise selection criteria. Therefore, the signal efficiency is larger
than in this analysis while sufficiently suppressing the SM contribution.
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Figure 5.14: Distribution of p̃-values and most significant inclusive event classes for the black
hole (BH) model at the mass of MBH = 9 000 GeV and the 2016 luminosity
scenario of 35.9 fb−1. For comparison, at 2.3 fb−1, the highest discoverable
mass point was at 8 000 GeV.
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Figure 5.15: Distribution of p̃-values and most significant inclusive event classes for the quan-
tum black hole model at the mass of M = 5 000 GeV and the 2016 luminosity
scenario of 35.9 fb−1. For comparison, at 2.3 fb−1, the highest discoverable
mass point was at 4 000 GeV.
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Figure 5.16: Distribution of p̃-values and most significant inclusive event classes for the See-
saw Type-III model at the mass of M = 380 GeV and a luminosity of 35.9 fb−1.
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5.2.4 W′ → tb
The W′ model was originally included in this thesis in order to demonstrate the
increase of sensitivity due to enabling b-tagged jets as analysis objects. However, as
one can see in figure 5.17, even with b-tagged jets and the luminosity of 35.9 fb−1,
the MUSiC analysis is not sensitive to deviations caused by the new physics model:
The p̃-distribution shows no significant deviation between the distribution of p̃-values
from SM-pseudo-experiments and pseudo-experiments involving contributions of the
W′ boson. The median most significant class is insignificant with a Z-score of 0.3.
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Figure 5.17: Distribution of p̃-values and most significant inclusive event classes for the W′

model at the mass of M = 2 000 GeV and a luminosity of 35.9 fb−1.

In order to learn about improvement opportunities, again the search strategy of the
dedicated search [46] should be discussed.

The dedicated analysis focuses on the decay cascade W′ → tb →Wbb → `νbb. The
trigger thresholds used are comparable to the ones used in this analysis. Subsequently,
events are required to contain exactly one lepton with pT ≥ 180 GeV, a significant
amount of Emiss

T and two jets.

The search strategy consists of reconstructing the complete four momentum of the W′

boson as follows: As first step, the four momentum of the W boson is reconstructed
by combining the four momenta of the lepton and Emiss

T , where the the longitudinal
component of ~Emiss

T is calculated from assuming the W invariant mass to be exactly
80.4 GeV. In a similar fashion, the W boson and one of the jets are combined to
form an object with the invariant mass close to the nominal t-quark mass. Finally,
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the top quark candidate is combined with the most energetic remaining jet in order
to reconstruct the W′ boson. Standard Model contributions are further suppressed
by requiring the top quark to have pT > 650 GeV and both jets to have a combined
momentum of pT > 700 GeV. This increases the signal to background ratio, and
therefore the sensitivity.

5.2.5 Comparison to Limits of Dedicated Analyses
Several groups at CMS have optimized and applied dedicated analyses for the new
physics models considered in this thesis. In those instances where these analyses do
not find a significant deviation of the observed data from the SM expectation, limits
are calculated.

The term "limit" is commonly used to describe two distinct quantities: In the first
meaning, the term refers to a cross section limit. Roughly speaking, the cross section
limit denotes the maximal cross section that a new physics process could exhibit while
being in agreement with the observed data. The numerical value is usually stated to
the 95 % confidence level, meaning that the new physics model is incorrectly rejected
in only 5 % of the cases. Note that this is not directly comparable to the discovery
threshold α used in this thesis, where one would incorrectly reject the Standard
Model with a probability of 5 %.

As most theoretical cross sections fall steeply with the mass of the predicted particle,
setting an upper bound on the possible cross section also sets a lower bound on the
particle’s mass. This is expressed in the mass limit, which is derived from the cross
section limit.

The mass limits of the aforementioned dedicated analyses working on the same signal
samples are listed in table 5.9, alongside with the highest sensitive mass points of the
MUSiC analysis as determined in this chapter.

L ≈ 2.3 fb−1 L ≈ 35.9 fb−1

Model CMS Limit MUSiC CMS Limit MUSiC

QBH n = 4 4.2 TeV [39] 4 TeV 5.4 TeV [130] 5 TeV

Black Hole 8.6 TeV [38] 8 TeV - 9 TeV

Seesaw 440 GeV [115] < 380 GeV 790 GeV [129] 380 GeV

W′ → tb 2.4 TeV [45] < 2 TeV 3.4 TeV [46] < 2 TeV

Table 5.9: Comparison of the discovery thresholds determined in this chapter to the expected
mass limits of comparable dedicated analyses published by the CMS collaboration.
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The results indicate that the discovery thresholds for the semiclassical black hole and
QBH correspond approximately to the mass limits obtained by optimized analyses. For
the Seesaw model, the sensitivity by MUSiC is significantly lower than the exclusion
limit by the dedicated analysis. In case of the W′ model, the comparison cannot be
directly performed as the MUSiC discovery threshold is unknown, thus only an upper
limit is given by the lowest object mass under investigation (2 TeV). Possible reasons
for a greater sensitivity of the dedicated analyses have been discussed in section 5.2.3
and section 5.2.4.

5.3 General Validity for New Physics
In this thesis, the sensitivity of the MUSiC analysis towards four simulated models
of new physics has been assessed. For both black hole models it was deduced that
the analysis would discover the presence of this model in observed data for the
luminosity scenarios 2015 and 2016. For one model, the Seesaw theory, only the
enhanced luminosity of 35.9 fb−1 in 2016 enables MUSiC to observe the phenomena,
the discovery threshold is however well below the exclusion limit by dedicated
analyses. For the last model (W′), the analysis fails to reject the Standard Model even
in the presence of new physics.

However, one goal of a model unspecific search is to also be sensitive to new physics
that are not represented by a known theory at the time of the analysis. These theories
in turn cannot be simulated and the ultimate sensitivity cannot be determined.
Therefore it is important to discuss how far the knowledge gained on the tested
models can be transferred to unknown new physics.

There are many possibilities for new physics to be discovered at CMS: If new physics
appears as a new object, its mass could be anywhere between a few GeV up to several
TeV to be produced at the LHC. In some scenarios, it might not even have a well
defined mass and thus not produce a resonance. Subsequently, the object can possibly
decay either into a few SM decay products with high momenta or alternatively into
many low-energetic decay products. A decay might obey conservation laws of SM
quantum numbers, or maybe it violates them. If the new particle only interacts weakly,
the new physics object might even occur as displaced track or leave the detector
unnoticed, leaving behind any amount of Emiss

T .

Unfortunately, the MUSiC analysis cannot cover all possibilities, neither can a study
of the discovery potential. Nevertheless, in this thesis a large range of particle masses,
from ∼ 100 GeV up to ∼ 9 TeV, has been probed. Additionally, several options for the
multiplicity of decay products have been explored, ranging from two decay products
as in the QBH model up to several jets in the BH model.
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Overall, the analysis has been found to be especially sensitive towards new physics
appearing in regions with low SM-contribution, including large values of the kine-
matic variables and final states that violate conservation laws of the Standard Model.
In areas with a large SM contribution, dedicated analyses tend to perform better than
MUSiC because of more sophisticated selection strategies.

5.4 Towards a Higher Sensitivity
The MUSiC analysis has many parameters and inputs that can be optimized to improve
the sensitivity towards certain models. This section aims to provide a few suggestions
based on the conclusions drawn from the study of the discovery potential in this
chapter and with regard to the dedicated analyses of the benchmark models.

In case of the Seesaw Type-III model, it has been discussed that the signal efficiency
of the MUSiC selection is significantly lower than the efficiency determined by the
dedicated analysis [115,129]. One possible explanation is the trigger threshold: The
highest pT requirement imposed by the dedicated analysis is pT > 25 GeV. As shown
earlier in table 2.1, the MUSiC analysis imposes a higher transverse momentum
threshold, possibly discarding signal events with multiple low energetic leptons.
Therefore, in order to increase the sensitivity to these types of new physics models, I
would suggest to use a trigger stream with a lower pT threshold.

The second suggestion would likely increase the sensitivity in both the Seesaw Type-
III as well as the W′ model: Both dedicated analyses make use of combining four
momenta of decay products in order to reconstruct intermediate particles. This
concept, tagging, could also be applied to the MUSiC analysis by extending the set of
analysis objects to t-jets, τ -leptons or Z-bosons.

A final suggestion applies to all signal models, but has especially been presented on
the example of the semiclassical black hole model: An increase in luminosity directly
causes an increase in sensitivity towards new physics. Not only does a larger number
of data events cause lower statistical uncertainties, but it also enables more event
classes to pass the minimum yield threshold and thus participate in the statistical
inference. After all, statistically combining several event classes is one of the largest
advantages that the MUSiC analysis has compared to dedicated analyses. In practice,
the amount of data events to analyze can usually not be influenced by the analyst.
However, this suggestion shall motivate to further pursue a model independent
approach, as the LHC is expected to deliver a total integrated luminosity of about
100 fb−1 of collisions up to 2018 [131].
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6Conclusion

The Model Unspecific Search in CMS (MUSiC) is a complex analysis with the ultimate
goal to discover new physics in LHC data. It consists of a multitude of algorithms
and parameters which have to be implemented and optimized by the analyst. This
process is usually guided by physical intuition and manual inspection of analysis
results. However, it is important to regularly perform a systematic reevaluation of the
state of the analysis and study its discovery potential. In this thesis, the framework
for such a study has been refined and subsequently applied to existing features as
well as newly introduced extensions of the analysis.

Among the evaluated features was the inclusion of b-tagged jets as dedicated physics
objects, which has not been part of the analysis since the increase in collision energy
to
√
s = 13 TeV in 2015. Although the increase in sensitivity could not be explicitly

shown on the provided benchmark models, the feature is predicted to increase
sensitivity towards new physics and therefore should be further investigated in the
future.

On the technical side of the analysis, the complexity of the tool chain has grown.
This has motivated employing further automation, through which it was possible to
cope with the additional workload posed by the exploration of the multidimensional
parameter space. Additionally, a lookup table has been implemented and evaluated
in order to optimize the performance of the automated search for deviations.

Taking up discussions published in a thesis eight years ago [68], the potential of a
log-normal prior within the local test statistic has been evaluated. For this purpose,
a study of the coverage behavior of both the Gaussian- and log-normal prior has
been performed, indicating that the log-normal option features superior coverage
properties. However, several difficulties regarding pseudo-experiments with a log-
normal prior arise. Possible mitigations have been discussed, and it was decided to
maintain using the Gaussian prior with additional constraints on the search space.

Another new feature within the analysis is the computation of a global p-value. It
allows to quantify deviations within the distribution of p̃-values, instead of judging
deviations by eye. The feature enables future analysts to observe whether a certain
change of a parameter value or the implementation of a new feature increases the
sensitivity towards certain benchmark models.

Finally, the sensitivity of the analysis towards four models of new physics has been
assessed. These benchmark models have been chosen to cover a wide range of
possible signatures of new physics. By combining simulated events of these models
with Standard Model processes, generating pseudo-experiments and analyzing the
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resulting distributions with the automated search, the impact of each model on the
statistical inference has been evaluated. In two instances, the W′ and the Seesaw
Type-III model, the sensitivity did not (or barely) suffice to discover the presence of
the simulated events. In these cases, a comparison to the dedicated analyses was
drawn, yielding several suggestions for features that may increase the sensitivity. The
discovery potential for the two other models, semiclassical and quantum black holes,
could successfully be shown. The highest discoverable object masses are in agreement
with mass limits from corresponding dedicated analyses.

In the future, I would like to encourage analysts who pursue a model independent
analysis approach to regularly reevaluate the sensitivity of their analysis to a wide
range of new physics simulations. Furthermore, I would suggest to refine the idea
of a global p-value and a measure of sensitivity, as informed decisions will help the
analysis to remain lean and efficient for discovering new physics.
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GGlossary of Terms

ADD Arkani-Hamed-Dimopoulos-Dvali model
ALICE A Lead Ion Collider Experiment
ATLAS ATLAS experiment (orig. A Toroidal LHC Apparatus)
BH black hole
CERN European Organization for Nuclear Research (orig. Conseil Européen pour

la Recherche Nucléaire)
CKM Cabibbo-Maskawa-Kobayashi matrix
CMS Compact Muon Solenoid experiment
CSC cathode strip chamber
CSVv2 Combined Secondary Vertex version 2 algorithm
DESY Deutsches Elektronen-Synchrotron
DT drift tube
ECAL electromagnetic calorimeter
HCAL hadron calorimeter
HEEP high energy electron pairs selection criteria
HLT high level trigger
L1 level-1 trigger
LEP Large Electron Positron Collider
LHC Large Hadron Collider
LHCb Large Hadron Collider beauty experiment
LINAC linear accelerator
LUT lookup table
MC Monte Carlo simulation
MUSiC Model Unspecific Search in CMS
PF Particle-Flow algorithm
PS Proton Synchrotron
PSB Proton Synchrotron Booster
QBH quantum black hole
QCD quantum chromodynamics
QED quantum electrodynamics
QFD quantum flavordynamics
RoI region of interest
RPC resistive plate chamber
RS Randall-Sundrum model
SM Standard Model
SPS Super Proton Synchrotron
SSM Sequential Standard Model
WLCG Worldwide LHC Computing Grid project
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AAppendix

A.1 Monte Carlo Datasets
The following pages list the MC samples used within the analysis. The column "Group"
indicates the process group. All cross section uncertainties within a process group are
assumed to be correlated. The second column, "Dataset Name" lists the CMS internal
dataset name, which also gives information about the simulated physics process. The
third column shows the cross section in pb. If a higher order correction factor has
been applied, it is listed in the column denoted by k-factor. This is also visible in the
"Order" column, which shows the perturbative calculation order before and, where
applicable, after application of the k-factor. Possible values are "LO" (leading order),
"NLO" (next to leading order), "NNLO" (next to next to leading order). Another
possible value is present only for processes containing the W boson and additional
jets, "NLO_W", which corresponds to the next to leading order but is treated with a
slightly larger uncertainty due to QCD effects. Finally, the filter efficiency indicates
that the samples have already undergone some filtering. The numbers have to be
combined into a total effective cross section for each sample by multiplying the
indicated cross section, k-factor and filter efficiency.
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A.1.1 Standard Model Samples
Process Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

DrellYan

DYJetsToLL_M-5to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 71 310.000 1.23 LO→ NLO 1.00 8 771 481
DYJetsToLL_M-5to50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 224.200 1.23 LO→ NLO 1.00 1 018 459
DYJetsToLL_M-5to50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 224.200 1.23 LO→ NLO 1.00 8 145 474
DYJetsToLL_M-5to50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 37.190 1.23 LO→ NLO 1.00 1 025 157
DYJetsToLL_M-5to50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 37.190 1.23 LO→ NLO 1.00 2 020 586
DYJetsToLL_M-5to50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 3.581 1.23 LO→ NLO 1.00 1 012 963
DYJetsToLL_M-5to50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 1.124 1.23 LO→ NLO 1.00 1 019 394
DYJetsToLL_M-5to50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 1.124 1.23 LO→ NLO 1.00 1 924 359
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 4 895.000 1.23 LO→ NNLO 1.00 8 877 130
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 4 895.000 1.18 LO→ NNLO 1.00 240 499 997
DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 147.400 1.23 LO→ NLO 1.00 2 564 547
DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 147.400 1.23 LO→ NLO 1.00 7 829 684
DYJetsToLL_M-50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 42.750 1.44 LO→ NLO 1.00 962 195
DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 5.678 1.23 LO→ NLO 1.00 1 069 003
DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 5.678 1.23 LO→ NLO 1.00 3 431 833
DYJetsToLL_M-50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 2.210 1.14 LO→ NLO 1.00 1 031 103
DYJetsToLL_M-50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 2.210 1.14 LO→ NLO 1.00 4 058 472
ZToEE_NNPDF30_13TeV-powheg_M_120_200 19.320 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_200_400 2.731 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_400_800 0.241 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_800_1400 0.017 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_1400_2300 0.001 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_2300_3500 0.000 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_3500_4500 0.000 - NLO 1.00 100 000
ZToEE_NNPDF30_13TeV-powheg_M_4500_6000 0.000 - NLO 1.00 99 000
ZToEE_NNPDF30_13TeV-powheg_M_6000_Inf 0.000 - NLO 1.00 97 600
ZToMuMu_NNPDF30_13TeV-powheg_M_120_200 19.320 - NLO 1.00 100 000
ZToMuMu_NNPDF30_13TeV-powheg_M_200_400 2.731 - NLO 1.00 100 000
ZToMuMu_NNPDF30_13TeV-powheg_M_400_800 0.241 - NLO 1.00 99 600
ZToMuMu_NNPDF30_13TeV-powheg_M_800_1400 0.017 - NLO 1.00 97 600
ZToMuMu_NNPDF30_13TeV-powheg_M_1400_2300 0.001 - NLO 1.00 99 200
ZToMuMu_NNPDF30_13TeV-powheg_M_2300_3500 0.000 - NLO 1.00 100 000
ZToMuMu_NNPDF30_13TeV-powheg_M_3500_4500 0.000 - NLO 1.00 100 000
ZToMuMu_NNPDF30_13TeV-powheg_M_4500_6000 0.000 - NLO 1.00 100 000
ZToMuMu_NNPDF30_13TeV-powheg_M_6000_Inf 0.000 - NLO 1.00 99 200

Gamma

GJets_HT-40To100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 20 790.000 - LO 1.00 4 424 830
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Process Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

GJets_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 9 238.000 - LO 1.00 4 877 095
GJets_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 2 305.000 - LO 1.00 10 467 654
GJets_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 274.400 - LO 1.00 2 406 285
GJets_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 93.460 - LO 1.00 2 456 253

QCD

QCD_Pt-50to80_EMEnriched_TuneCUETP8M1_13TeV_pythia8 19 800 000.000 - LO 0.15 22 463 814
QCD_Pt-50to80_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 19 222 500.000 - LO 0.02 20 378 392
QCD_Pt-80to120_EMEnriched_TuneCUETP8M1_13TeV_pythia8 2 800 000.000 - LO 0.13 36 029 628
QCD_Pt-80to120_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 2 758 420.000 - LO 0.04 13 749 024
QCD_Pt-120to170_EMEnriched_TuneCUETP8M1_13TeV_pythia8 477 000.000 - LO 0.13 36 202 409
QCD_Pt-120to170_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 469 797.000 - LO 0.05 7 971 018
QCD_Pt-170to300_EMEnriched_TuneCUETP8M1_13TeV_pythia8 114 000.000 - LO 0.17 11 518 871
QCD_Pt-170to300_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 117 989.000 - LO 0.07 7 910 182
QCD_Pt-300to470_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 7 820.250 - LO 0.10 7 845 620
QCD_Pt-300toInf_EMEnriched_TuneCUETP8M1_13TeV_pythia8 9 000.000 - LO 0.15 7 212 550
QCD_Pt-470to600_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 645.528 - LO 0.12 3 841 262
QCD_Pt-600to800_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 187.109 - LO 0.13 3 984 898
QCD_Pt-800to1000_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 32.349 - LO 0.15 3 666 110
QCD_Pt-1000toInf_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8 10.431 - LO 0.16 3 938 782

TG
TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8 2.967 - NLO 1.00 280 100
TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8 (ext1) 2.967 - NLO 1.00 1 556 996

TTBar

TT_TuneCUETP8M1_13TeV-powheg-pythia8 (ext3) 730.000 1.14 NLO→ NNLO 1.00 97 994 442
TT_TuneCUETP8M1_13TeV-powheg-pythia8 (ext4) 730.000 1.14 NLO→ NNLO 1.00 187 626 200
TT_Mtt-700to1000_TuneCUETP8M1_13TeV-powheg-pythia8 730.000 1.14 NLO→ NNLO 0.09 37 285 071
TT_Mtt-700to1000_TuneCUETP8M1_13TeV-powheg-pythia8 (ext1) 730.000 1.14 NLO→ NNLO 0.09 3 086 786
TT_Mtt-1000toInf_TuneCUETP8M1_13TeV-powheg-pythia8 (ext1) 730.000 1.14 NLO→ NNLO 0.02 1 782 160
TT_Mtt-1000toInf_TuneCUETP8M1_13TeV-powheg-pythia8 (ext2) 730.000 1.14 NLO→ NNLO 0.02 25 182 267

TTG TTGJets_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8 3.697 - NLO 1.00 4 874 116

TTGG TTGG_0Jets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8 0.017 - NLO 1.00 1 466 516

TTW ttWJets_13TeV_madgraphMLM 0.243 - LO 1.00 12 889 768

TTZ ttZJets_13TeV_madgraphMLM 0.259 - LO 1.00 22 157 947

TZQ
tZq_ll_4f_13TeV-amcatnlo-pythia8_TuneCUETP8M1 0.076 - NLO 1.00 2 996 000
tZq_nunu_4f_13TeV-amcatnlo-pythia8_TuneCUETP8M1 0.138 - NLO 1.00 984 600

Top
ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1 3.360 - NLO 1.00 998 400
ST_t-channel_antitop_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1 25.300 - NLO 1.00 1 630 900
ST_t-channel_top_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1 41.900 - NLO 1.00 3 299 200
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Process Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

W

WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 50 690.000 1.21 LO→ NNLO 1.00 47 161 328
WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 1 345.000 1.21 LO→ NLO_W 1.00 10 205 377
WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 1 345.000 1.21 LO→ NLO_W 1.00 28 484 673
WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 359.700 1.21 LO→ NLO_W 1.00 4 692 696
WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 359.700 1.21 LO→ NLO_W 1.00 14 881 357
WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 48.910 1.21 LO→ NLO_W 1.00 1 943 664
WJetsToLNu_HT-600To800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 12.050 1.21 LO→ NLO_W 1.00 3 767 766
WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 5.501 1.21 LO→ NLO_W 1.00 1 568 277
WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 1.329 1.21 LO→ NLO_W 1.00 246 239
WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 1.329 1.21 LO→ NLO_W 1.00 6 709 861
WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 0.032 1.21 LO→ NLO_W 1.00 251 982
WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 (ext1) 0.032 1.21 LO→ NLO_W 1.00 2 300 696
WJetsToQQ_HT180_13TeV-madgraphMLM-pythia8 2 788.000 - LO 1.00 22 689 606
WJetsToQQ_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 95.140 - LO 1.00 1 025 100
WToENu_M-200_TuneCUETP8M1_13TeV-pythia8 6.236 1.34 LO→ NNLO 1.00 998 887
WToENu_M-500_TuneCUETP8M1_13TeV-pythia8 0.214 1.33 LO→ NNLO 1.00 993 370
WToENu_M-1000_TuneCUETP8M1_13TeV-pythia8 0.013 1.33 LO→ NNLO 1.00 998 728
WToENu_M-2000_TuneCUETP8M1_13TeV-pythia8 0.001 1.26 LO→ NNLO 1.00 998 096
WToENu_M-3000_TuneCUETP8M1_13TeV-pythia8 0.000 1.14 LO→ NNLO 1.00 995 350
WToENu_M-4000_TuneCUETP8M1_13TeV-pythia8 0.000 0.45 LO→ NNLO 1.00 993 166
WToMuNu_M-200_TuneCUETP8M1_13TeV-pythia8 6.236 1.29 LO→ NNLO 1.00 993 140
WToMuNu_M-500_TuneCUETP8M1_13TeV-pythia8 0.214 1.27 LO→ NNLO 1.00 997 511
WToMuNu_M-1000_TuneCUETP8M1_13TeV-pythia8 0.013 1.26 LO→ NNLO 1.00 992 260
WToMuNu_M-2000_TuneCUETP8M1_13TeV-pythia8 0.001 1.17 LO→ NNLO 1.00 994 764
WToMuNu_M-3000_TuneCUETP8M1_13TeV-pythia8 0.000 1.04 LO→ NNLO 1.00 996 545
WToMuNu_M-4000_TuneCUETP8M1_13TeV-pythia8 0.000 0.41 LO→ NNLO 1.00 992 708
WToTauNu_M-200_TuneCUETP8M1_13TeV-pythia8 6.236 1.35 LO→ NNLO 1.00 991 772
WToTauNu_M-500_TuneCUETP8M1_13TeV-pythia8-tauola 0.224 - LO 1.00 977 384
WToTauNu_M-1000_TuneCUETP8M1_13TeV-pythia8 0.013 1.33 LO→ NNLO 1.00 999 316
WToTauNu_M-2000_TuneCUETP8M1_13TeV-pythia8-tauola 0.001 - LO 1.00 977 400

WG
WGToLNuG_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 405.271 1.21 LO→ NLO 1.00 6 102 260
WGToLNuG_PtG-500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 0.012 - LO 1.00 1 390 140

WW

WWTo2L2Nu_13TeV-powheg 10.480 1.16 NLO→ NNLO 1.00 1 979 988
WWTo2L2Nu_Mll_200To600_13TeV-powheg 10.481 1.16 NLO→ NNLO 0.11 200 000
WWTo2L2Nu_Mll_600To1200_13TeV-powheg 10.481 1.16 NLO→ NNLO < 0.01 200 000
WWTo2L2Nu_Mll_1200To2500_13TeV-powheg 10.481 1.16 NLO→ NNLO < 0.01 198 400
WWTo2L2Nu_Mll_2500ToInf_13TeV-powheg 10.481 1.16 NLO→ NNLO < 0.01 38 969
WWTo4Q_13TeV-powheg 45.200 1.14 NLO→ NNLO 1.00 2 000 000
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Process Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

WWToLNuQQ_13TeV-powheg 43.530 1.15 NLO→ NNLO 1.00 1 924 400
WWToLNuQQ_13TeV-powheg (ext1) 43.530 1.15 NLO→ NNLO 1.00 6 996 000
WW_DoubleScattering_13TeV-pythia8 1.640 - LO 1.00 844 954

WWG WWG_TuneCUETP8M1_13TeV-amcatnlo-pythia8 (ext1) 0.215 - NLO 1.00 995 400

WWW WWW_4F_TuneCUETP8M1_13TeV-amcatnlo-pythia8 0.209 - NLO 1.00 240 000

WWZ WWZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8 0.165 - NLO 1.00 248 400

WZ

WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8 10.710 - NLO 1.00 19 742 520
WZTo1L3Nu_13TeV_amcatnloFXFX_madspin_pythia8 3.033 - NLO 1.00 1 703 772
WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8 5.595 - NLO 1.00 25 704 656
WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8 4.430 - NLO 1.00 2 000 000

WZG WZG_TuneCUETP8M1_13TeV-amcatnlo-pythia8 0.041 - NLO 1.00 997 400

WZZ WZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8 0.056 - NLO 1.00 249 800

ZToInvisible

ZJetsToNuNu_HT-100To200_13TeV-madgraph 280.470 1.63 LO→ NLO 1.00 5 240 199
ZJetsToNuNu_HT-200To400_13TeV-madgraph 78.360 1.62 LO→ NLO 1.00 2 170 249
ZJetsToNuNu_HT-200To400_13TeV-madgraph (ext1) 78.360 1.62 LO→ NLO 1.00 19 007 186
ZJetsToNuNu_HT-400To600_13TeV-madgraph 10.944 1.46 LO→ NLO 1.00 954 435
ZJetsToNuNu_HT-600ToInf_13TeV-madgraph 4.203 1.39 LO→ NLO 1.00 1 033 818

ZZ

ZZTo2L2Nu_13TeV_powheg_pythia8 0.564 - NLO 1.00 8 785 050
ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8 3.220 - NLO 1.00 15 301 695
ZZTo2Q2Nu_13TeV_amcatnloFXFX_madspin_pythia8 4.040 - NLO 1.00 30 806 034
ZZTo4L_13TeV_powheg_pythia8 1.256 - NLO 1.00 6 669 188
ZZTo4Q_13TeV_amcatnloFXFX_madspin_pythia8 6.842 - NLO 1.00 30 707 868

ZZZ ZZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8 0.014 - NLO 1.00 250 000

A
.1

M
onte

C
arlo

D
atasets

115



A.1.2 Signal Samples
Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

BlackHole_BH1_MD-4000_MBH-5000_n-6_TuneCUETP8M1_13TeV-blackmax 6.700 - LO 1.00 10 000

BlackHole_BH1_MD-4000_MBH-6000_n-6_TuneCUETP8M1_13TeV-blackmax 1.230 - LO 1.00 10 000

BlackHole_BH1_MD-4000_MBH-7000_n-6_TuneCUETP8M1_13TeV-blackmax 0.185 - LO 1.00 10 000

BlackHole_BH1_MD-4000_MBH-8000_n-6_TuneCUETP8M1_13TeV-blackmax 0.021 - LO 1.00 10 000

BlackHole_BH1_MD-4000_MBH-9000_n-6_TuneCUETP8M1_13TeV-blackmax 0.002 - LO 1.00 10 000

BlackHole_BH1_MD-4000_MBH-10000_n-6_TuneCUETP8M1_13TeV-blackmax 0.000 - LO 1.00 10 000

QBHToEMu_M-2000_n4_ADD_TuneCUETP8M1_13TeV-QBH-pythia8 0.744 - LO 1.00 11 706

QBHToEMu_M-3000_n4_ADD_TuneCUETP8M1_13TeV-QBH-pythia8 0.042 - LO 1.00 10 240

QBHToEMu_M-4000_n4_ADD_TuneCUETP8M1_13TeV-QBH-pythia8 0.003 - LO 1.00 9 437

QBHToEMu_M-5000_n4_ADD_TuneCUETP8M1_13TeV-QBH-pythia8 0.000 - LO 1.00 8 898

SeesawTypeIII_SIGMA-SIGMA0HH_M-380_13TeV-madgraph 0.001 1.44 LO→ NLO 0.49 102 022
SeesawTypeIII_SIGMA-SIGMA0HW_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.77 100 340
SeesawTypeIII_SIGMA-SIGMA0HZ_M-380_13TeV-madgraph 0.002 1.44 LO→ NLO 0.36 102 481
SeesawTypeIII_SIGMA-SIGMA0WH_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.12 100 575
SeesawTypeIII_SIGMA-SIGMA0WW_M-380_13TeV-madgraph 0.009 1.44 LO→ NLO 0.25 202 275
SeesawTypeIII_SIGMA-SIGMA0WZ_M-380_13TeV-madgraph 0.004 1.44 LO→ NLO 0.07 99 804
SeesawTypeIII_SIGMA-SIGMA0ZH_M-380_13TeV-madgraph 0.002 1.44 LO→ NLO 0.37 101 795
SeesawTypeIII_SIGMA-SIGMA0ZW_M-380_13TeV-madgraph 0.004 1.44 LO→ NLO 0.63 100 214
SeesawTypeIII_SIGMA-SIGMA0ZZ_M-380_13TeV-madgraph 0.002 1.44 LO→ NLO 0.27 100 897
SeesawTypeIII_SIGMAplusSIGMA0HH_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.50 101 922
SeesawTypeIII_SIGMAplusSIGMA0HW_M-380_13TeV-madgraph 0.008 1.44 LO→ NLO 0.76 99 477
SeesawTypeIII_SIGMAplusSIGMA0HZ_M-380_13TeV-madgraph 0.004 1.44 LO→ NLO 0.36 98 616
SeesawTypeIII_SIGMAplusSIGMA0WH_M-380_13TeV-madgraph 0.008 1.44 LO→ NLO 0.12 98 681
SeesawTypeIII_SIGMAplusSIGMA0WW_M-380_13TeV-madgraph 0.019 1.44 LO→ NLO 0.25 198 335
SeesawTypeIII_SIGMAplusSIGMA0WZ_M-380_13TeV-madgraph 0.010 1.44 LO→ NLO 0.07 138 466
SeesawTypeIII_SIGMAplusSIGMA0ZH_M-380_13TeV-madgraph 0.004 1.44 LO→ NLO 0.36 99 315
SeesawTypeIII_SIGMAplusSIGMA0ZW_M-380_13TeV-madgraph 0.010 1.44 LO→ NLO 0.63 98 330
SeesawTypeIII_SIGMAplusSIGMA0ZZ_M-380_13TeV-madgraph 0.005 1.44 LO→ NLO 0.27 101 633
SeesawTypeIII_SIGMAplusSIGMA-HH_M-380_13TeV-madgraph 0.002 1.44 LO→ NLO 0.82 101 030
SeesawTypeIII_SIGMAplusSIGMA-HW_M-380_13TeV-madgraph 0.005 1.44 LO→ NLO 0.38 99 829
SeesawTypeIII_SIGMAplusSIGMA-HZ_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.71 97 230
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Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

SeesawTypeIII_SIGMAplusSIGMA-WH_M-380_13TeV-madgraph 0.005 1.44 LO→ NLO 0.38 101 206
SeesawTypeIII_SIGMAplusSIGMA-WW_M-380_13TeV-madgraph 0.013 1.44 LO→ NLO 0.03 163 501
SeesawTypeIII_SIGMAplusSIGMA-WZ_M-380_13TeV-madgraph 0.007 1.44 LO→ NLO 0.24 101 459
SeesawTypeIII_SIGMAplusSIGMA-ZH_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.70 100 239
SeesawTypeIII_SIGMAplusSIGMA-ZW_M-380_13TeV-madgraph 0.007 1.44 LO→ NLO 0.24 100 827
SeesawTypeIII_SIGMAplusSIGMA-ZZ_M-380_13TeV-madgraph 0.003 1.44 LO→ NLO 0.53 120 855

SeesawTypeIII_SIGMA-SIGMA0HH_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.51 105 795
SeesawTypeIII_SIGMA-SIGMA0HW_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.78 101 865
SeesawTypeIII_SIGMA-SIGMA0HZ_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.38 106 417
SeesawTypeIII_SIGMA-SIGMA0WH_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.13 108 201
SeesawTypeIII_SIGMA-SIGMA0WW_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.26 208 409
SeesawTypeIII_SIGMA-SIGMA0WZ_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.07 233 526
SeesawTypeIII_SIGMA-SIGMA0ZH_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.38 106 428
SeesawTypeIII_SIGMA-SIGMA0ZW_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.64 100 090
SeesawTypeIII_SIGMA-SIGMA0ZZ_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.28 103 906
SeesawTypeIII_SIGMAplusSIGMA0HH_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.51 105 856
SeesawTypeIII_SIGMAplusSIGMA0HW_M-500_13TeV-madgraph 0.002 1.45 LO→ NLO 0.78 99 020
SeesawTypeIII_SIGMAplusSIGMA0HZ_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.38 105 350
SeesawTypeIII_SIGMAplusSIGMA0WH_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.13 106 154
SeesawTypeIII_SIGMAplusSIGMA0WW_M-500_13TeV-madgraph 0.002 1.45 LO→ NLO 0.26 207 893
SeesawTypeIII_SIGMAplusSIGMA0WZ_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.07 108 745
SeesawTypeIII_SIGMAplusSIGMA0ZH_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.38 106 633
SeesawTypeIII_SIGMAplusSIGMA0ZW_M-500_13TeV-madgraph 0.002 1.45 LO→ NLO 0.64 101 611
SeesawTypeIII_SIGMAplusSIGMA0ZZ_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.28 102 991
SeesawTypeIII_SIGMAplusSIGMA-HH_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.83 102 422
SeesawTypeIII_SIGMAplusSIGMA-HW_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.40 104 469
SeesawTypeIII_SIGMAplusSIGMA-HZ_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.72 100 637
SeesawTypeIII_SIGMAplusSIGMA-WH_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.40 131 607
SeesawTypeIII_SIGMAplusSIGMA-WW_M-500_13TeV-madgraph 0.000 1.45 LO→ NLO 0.04 112 882
SeesawTypeIII_SIGMAplusSIGMA-WZ_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.25 105 665
SeesawTypeIII_SIGMAplusSIGMA-ZH_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.72 103 053
SeesawTypeIII_SIGMAplusSIGMA-ZW_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.25 104 324
SeesawTypeIII_SIGMAplusSIGMA-ZZ_M-500_13TeV-madgraph 0.001 1.45 LO→ NLO 0.55 101 385

WprimeToTB_TToHad_M-2000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.076 1.25 LO→ NLO 1.00 199 200
WprimeToTB_TToLep_M-2000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.031 1.25 LO→ NLO 1.00 199 400

WprimeToTB_TToHad_M-3000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.007 1.25 LO→ NLO 1.00 196 800
WprimeToTB_TToLep_M-3000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.003 1.25 LO→ NLO 1.00 197 600
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Dataset Name Cross Section (pb) k-factor Order Filter Eff. Events

WprimeToTB_TToHad_M-3500_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.002 1.25 LO→ NLO 1.00 199 800
WprimeToTB_TToLep_M-3500_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.001 1.25 LO→ NLO 1.00 199 600

WprimeToTB_TToHad_M-4000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.001 1.25 LO→ NLO 1.00 197 600
WprimeToTB_TToLep_M-4000_RH_TuneCUETP8M1_13TeV-comphep-pythia8 0.000 1.25 LO→ NLO 1.00 196 000
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A.2 Expected Minimal p-Values
The probability of observing a p-value of p (or more extreme) is p, thus the distribution
of p-values is uniform.

I now want to derive the distribution of minimal p-values, depending on the sample
size N : Taking N p-values, the probability that the smallest one has the value pmin can
be calculated by requiring that the other N − 1 p-values are in the range p = [0, pmin):

Pr(pmin = p) = C · (1− p)N−1 (A.1)

The proportionality factor C can be calculated from normalization: C = N .

The entire probability density for minimal p-values as therefore:

Pr(pmin = p) = N · (1− p)N−1 (A.2)

This derivation can be verified using pseudo-experiments: In each pseudo-experiment,
N numbers are drawn from a uniform distribution U([0, 1]) and the minimal value
is stored. This is repeated 10 000 times and the empirical distribution function is
compared to the predicted distribution. This is shown in figure A.1.
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Figure A.1: Minimal p-values from 100 000 pseudo-experiments using N = 100.

One additional study on the probability density is to calculate the expected minimal
value of N uniform p-values:

〈p〉 =

∫ 1

0

N · (1− p)N−1 · pdp =
1

N + 1
(A.3)
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A.3 Derivation of the Log-Normal p-value
Through the systematic uncertainties, the total number of events is scaled by an
unknown factor X, which is a random variable that emerges as product of multiple
other random variables xi. In the following section illustrates a derivation on how X

is distributed.

First, the product can be rewritten in terms of a sum within an exponential distribu-
tion:

X =
∏
i

xi =
∏
i

exp(ln(xi)) = exp

(∑
i

ln(xi)

)
(A.4)

ln(xi) is a random variable, and the central limit theorem implies that the sum is
distributed according to the normal distribution.

Y :=
∑
i

ln(xi)⇒ X = exp(Y ) and fY (y) =
1√
2πσ

exp

(
−1

2

(
y − µ
σ

)2
)

(A.5)

After defining Y as the normally distributed variable with the probability density
fY (y), one introduces a new unknown probability density function gX(x):

fY (y) dy =: gX(x) dx (A.6)

Finally, one can insert all definitions, calculate the derivative and write the distribution
function dependent of x:

gX(x) = fY (y)
dy

dx
(A.7)

= fY (lnx)
d lnx

dx
(A.8)

= fY (lnx)
1

|x|
(A.9)

=
1√

2πσ|x|
exp

(
−1

2

(
lnx− µ

σ

)2
)

(A.10)

The result is known as log-normal distribution and is the probability density function
of a product of random variables.

By performing two substitutions, a parametrization with a more meaningful interpre-
tation is obtained:

σ → ln k = ln(1 + σ/x0) and µ→ lnx0 (A.11)
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gX(x) =
1√

2π|x| ln k
exp

(
−1

2

(
ln(x/x0)

ln k

)2
)

(A.12)

Here, x0 is the expected value of x and k = 1 + σ/µ is the relative uncertainty on
x0.
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A.4 Z-score and p-value
The probability p associated with a Z-score is the cumulative tail probability of a
normal distribution at Z standard deviations from the mean:

p =
1√
2π

∫ ∞
Z

exp

(
−x

2

2

)
dx (A.13)

This yields the conversion formulas:

p =
1

2

(
1− erf

(
Z√
2

))
⇔ Z =

√
2 · erf−1 (1− 2p) (A.14)

A table of values computed according to this formula can be found in table A.3.

Z p

0.0 0.500000
0.1 0.460172
0.2 0.420740
0.3 0.382089
0.4 0.344578
0.5 0.308538
0.6 0.274253
0.7 0.241964
0.8 0.211855
0.9 0.184060
1.0 0.158655
1.1 0.135666
1.2 0.115070
1.3 0.096800
1.4 0.080757
1.5 0.066807
1.6 0.054799
1.7 0.044565
1.8 0.035930
1.9 0.028717
2.0 0.022750
2.1 0.017864
2.2 0.013903
2.3 0.010724
2.4 0.008198

Z p

2.5 0.006210
2.6 0.004661
2.7 0.003467
2.8 0.002555
2.9 0.001866
3.0 0.001350
3.1 0.000968
3.2 0.000687
3.3 0.000483
3.4 0.000337
3.5 0.000233
3.6 0.000159
3.7 0.000108
3.8 0.000072
3.9 0.000048
4.0 0.000032
4.1 0.000021
4.2 0.000013
4.3 0.000009
4.4 0.000005
4.5 0.000003
4.6 0.000002
4.7 0.000001
4.8 0.000001
4.9 0.000000

Table A.3: Conversion table for Z-score to a one tailed p-value.
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A.5 MUSiC Workflow

Figure A.2: Illustration of the dependencies of intermediate products during the analy-
sis. Chronologically, the analysis starts at the top by classifying preprocessed
("skimmed") data and simulation samples. In the following steps, the classi-
fied samples are merged into a consistent set and the search for deviations is
executed. Eventually, the results are stored in a database file and statistical
inference is applied.
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A.6 Performance of the Lookup-Table
The performance of the lookup table (LUT) is evaluated by applying the automated
search on SM pseudo-experiments with and without a LUT. The classification output
contains 4 297 event classes, including event classes with b-tagged jets. The pseudo-
experiments are generated on the ΣpT kinematic distribution.

The LUT under evaluation is 80 MB in size. The performance is measured by wall-
time, therefore is subject to small deviations (±3 %), e.g. due to other processes using
the same core. The test is performed twice, on 10 (table A.4) and 100 (table A.5)
pseudo-experiments, to indicate scaling behavior.

without LUT with LUT

pseudo exp. generation 5 s 5 s

region building / veto 1 373 s 1 337 s

number of regions 223 877 750

number of θ values 92 503 930

LUT hits - 86 681 242 (93.7 %)

time spent calculating θ values 5 220 s (56µs per θ) 561 s (6µs per θ)

other 910 s 1 397 s

total time 7 517 s 3 300 s

Table A.4: Performance results on the automated search on 4 297 event classes, 10 pseudo-
experiments on the ΣpT distribution. All listed durations express wall-time.

without LUT with LUT

pseudo exp. generation 33 s 37 s

region building / veto 13 520 s 13 365 s

number of regions 2 238 777 500

number of θ values 925 039 300

LUT hits - 862 902 004 (93.3 %)

time spent calculating θ values 53 746 s (58µs per θ) 6 165 s (7µs per θ)

other 1 022 s 1 615 s

total time 68 321 s 21 182 s

Table A.5: Performance results on the automated search on 4 297 event classes, 100 pseudo-
experiments on the ΣpT distribution. All listed durations express wall-time.
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A.7 Adapted Distributions for Coverage Tests
A probability distribution parameterized by µ and σ will in general not assign the
same p-value to the value x as the same distribution would do if it were parametrized
by x and σ for the value µ. This quite obvious fact becomes important during coverage
testing: The pseudo-experiments generate a value NSM from a distribution usually
parametrized by Ntrue, but then in the following a distribution around NSM is used in
the evaluation of the significance.

In this section, I want to regard the special cases of a normal probability distribution
and a log-normal distribution and derive a formula for adapting the distribution
width parameter σ such that the p-value to include Ntrue in a (log-)normal distribution
parametrized around NSM will remain the same as for NSM parametrized by Ntrue.
However, some of the ideas mentioned here can be adapted to other distributions
too.

We start by rephrasing the problem as an equation:

Pr(x ≤ NSM|Ntrue, σ) = Pr
(
x ≥ Ntrue|NSM, σ

′) (A.15)

This equation can also be graphically illustrated as in figure A.3. The blue dashed
distribution indicates the initial probability distribution which is used to generate
the pseudo-experiments. The orange distribution is the resulting distribution used
to calculate the p-value, which has been modified according to the recipe from this
chapter, in order to keep the integrals (circled and cross-hatched areas) equal.
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Figure A.3: Difference in widths of distributions while keeping the p-values constant.
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Now, let g(x|Ntrue, σ) be the distribution from which the pseudo-experiments are
drawn and G(x|Ntrue;σ) its cumulative distribution function. The left-hand-side now
spells out:

Pr(x ≤ NSM|Ntrue, σ) =

∫ NSM

0

g(x|Ntrue, σ) dx = G(NSM|Ntrue, σ)−G(0|Ntrue, σ)

(A.16)

The right hand side consists of the distribution used for calculating the p-value:

Pr(x ≥ Ntrue|NSM, σ) =

∫ ∞
Ntrue

g(x|NSM, σ
′) dx = G(∞|NSM, σ

′)−G(Ntrue|NSM, σ
′)

(A.17)
Since G is a cumulative distribution function, one can substitute G(0) = 0 and
G(∞) = 1 and set both sides equal:

G(NSM|Ntrue, σ) = 1−G(Ntrue|NSM, σ
′) (A.18)

The width adaption can now be specified by solving this equation for σ′(Ntrue, NSM, σ).

For this purpose, first a general solution for Φ(x), which is the cumulative distribution
function of a standard normal distribution N (µ = 0, σ = 1), is derived:

Φ(x) = 1− Φ(x′) (A.19)

⇒ x′ = Φ−1(1− Φ(x)) (A.20)

=
√

2 erf−1

(
2 ·
[
1− 1

2

(
1 + erf

(
x√
2

))]
− 1

)
(A.21)

=
√

2 erf−1

(
− erf

(
x√
2

))
(A.22)

=
√

2 erf−1

(
erf

(
−x√

2

))
(A.23)

= −x (A.24)

Here, it has been used that Φ can be expressed in terms of the error function, which
in turn can be further expressed by an integral.

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
(A.25)

Φ−1(x) =
√

2 erf−1(2x− 1) (A.26)

erf(x) =
2√
π

∫ x

0

e−t
2

dt (A.27)
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The error function is odd, i.e. erf(−x) = − erf(x).

Normal Distribution

A general normal distribution N (µ, σ) has the following cumulative distribution
function:

G(µ′|µ, σ) = Φ

(
µ′ − µ
σ

)
; G(µ|µ′, σ′) = Φ

(
µ−NSM

σ′

)
(A.28)

One can now use the expression for Φ derived earlier to solve the initial equation:

Φ

(
NSM −Ntrue

σ

)
= 1− Φ

(
Ntrue −NSM

σ′

)
(A.29)

⇒ NSM −Ntrue

σ
= −Ntrue −NSM

σ′
(A.30)

⇒ σ′ = σ (A.31)

The final result is that the width parameter does not have to be adapted for a normal
distribution, which was expected (as it is symmetrical).

Log-Normal Distribution

The argumentation for the log-normal distribution is similar. The cumulative distribu-
tion of the log-normal distribution is

G(x|Ntrue, σ) = Φ

(
lnx−Ntrue

σ

)
(A.32)

Following the same argumentation, one obtains that again σ must be conserved.
However, in contrast to the case of the normal distribution, σ now only depends on
the relative uncertainty (see equation (A.11)).

Conclusion

Overall, one can conclude that the distributions used for pseudo-experiment gener-
ation and evaluation of the p-value are not necessarily the same. In order to keep
the probabilities to obtain Ntrue from NSM after drawing NSM from Ntrue the same, in
case of the log-normal distribution, the absolute error has to be recomputed with the
newly drawn NSM, such that the relative error remains the same. The normal property
does not need such adaptation as it has the decent property of being symmetrical.
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A.8 Comparison of Coverage Results with
Thesis by Stefan Schmitz
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Figure A.4: Comparison of my results (top) with [68] (bottom). The test settings as well as
plotting options have been chosen to match. From visual inspection I deduce that
the results are very similar and therefore conclude that I can directly compare
results from my implementation with the earlier thesis.
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A.9 Additional Coverage Results for θ and θLN
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Figure A.5: Results of the coverage study of θ, similar to figure 4.1, but evaluated on a
non-logarithmic grid.
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Figure A.6: Results of the coverage study of θLN, similar to figure 4.2, but evaluated on a
non-logarithmic grid.
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