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Abstract

The CMS experiment at the LHC produces a vast amount of data: Each second
about 20 TB of information is generated by the detector hardware. Accordingly,
analysis of the data also requires a lot of computing power. Using a chain of several
algorithms, the detector signal is interpreted as physical meaningful data, on which
state-of-the-art analyses are performed.

The Model Unspecific Search in CMS (MUSiC) is an analysis carried out on a wide
spectrum of final states. Kinematic distributions of these final states are aggregated
and compared to the expectation from Standard Model Monte Carlo simulations.
By searching for deviations, MUSiC is sensitive to indications of physics beyond the
standard model.

This thesis proposes, implements and validates an additional step in the MUSiC
analysis, which drastically reduces the runtime.

Kurzdarstellung

Das CMS Experiment am LHC produziert sehr große Datenmengen: Pro Sekunde
werden rund 20 TB an Daten von der Detektorhardware generiert. Folglich erfordert
auch die Auswertung viel Rechenleistung. Mithilfe mehrerer Algorithmen wird dem
Detektorsignal eine physikalische Bedeutung zugewiesen, aufgrund derer modernste
Analysen durchgeführt werden.

Die modellunspezifische Suche MUSiC (engl: Model Unspecific Search in CMS) ist
eine Analyse, die auf einem breiten Spektrum von Endzuständen arbeitet. Dabei
werden kinematische Verteilungen der Endzustände erstellt und mit Erwartungen
aus Monte-Carlo-Simulationen des Standardmodelles verglichen. Die Suche nach
Abweichungen macht MUSiC sensitiv auf Anzeichen von Physik jenseits des Stan-
dardmodelles.

Diese Arbeit erklärt, implementiert und validiert einen zusätzlichen Arbeitsschritt
der MUSiC-Analyse, der die Rechenzeit drastisch reduziert.
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1Introduction

1.1 Units

Throughout this work, a natural unit system will be used, as it is convention in high
energy particle physics. The speed of light and the reduced Planck constant are
fixed to c = 1 and ~ = 1, and as such they are omitted in equations. Additionally,
energy is expressed in GeV, where 1 GeV is the energy gain of an electron which
is accelerated across a 1 GV potential (1 eV ≈ 1.602× 10−19 J). These conventions
induce a change in units for the other dimensions, most importantly mass and
momentum, both of which are notated in GeV. Benefits of this choice of units are
simpler equations, the possibility of a direct comparison between energy and masses,
and typical quantities of O(1 GeV).

1.2 The Standard Model

The standard model (SM) is a theory that represents our current knowledge of
elementary particles, their forces and interactions, excluding gravity.

Particles in the standard model can be classified into two separate classes: Fermions,
which make up matter and possess a spin of 1/2, and bosons, which are mediators of
forces and possess an integer spin. Three elementary forces arise, each from their
separate theory: electrodynamic (described by Quantum Electrodynamics, QED),
strong (described by Quantum Chromo Dynamics, QCD) and weak (described by
Quantum Flavor Dynamics). The forces are induced by corresponding charge-like
properties: electrodynamic charge, color charge and weak isospin. These charges
can then be used to further subdivide fermions into quarks and leptons, which will
be described in the following sections.

The standard model also provides theoretical predictions about the relations be-
tween particles, their masses and the probabilities of certain processes to happen.
Because the probability is proportional to the number of times that a process occurs,
experimentalists can validate the standard model by counting events with certain
outcomes.
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1.2.1 Leptons

There are three charged leptons: the electron (e), the muon (µ) and the tau (τ ).
They carry the electric charge of −1 e and participate in electrodynamic and weak
interactions. For each charged lepton, there is one neutrino counterpart (νe, νµ,
ντ ). Neutrinos are electrically neutral, weakly interacting, massless particles. They
remain undetected in current collider detectors. The leptons do not carry color
charge and are thus excluded from the strong interaction. An overview about the
leptons and their masses can be found in table 1.1.

electron (e) muon (µ) tau (τ )

mass 511.0 keV 105.7 MeV 1.777 GeV

charge −1 −1 −1

e neutrino (νe) µ neutrino (νµ) τ neutrino (ντ )

mass < 2 eV < 0.19 MeV < 18.2 MeV

charge 0 0 0

Table 1.1: Leptons in the standard model [1, p. 30, p. 690f.].

1.2.2 Quarks

Similarly to the leptons, quarks can be divided into three generations. The first
generation contains the stable up and down quarks, the second generation the charm
and strange quarks and the third generation contains the heavy top and bottom
quarks. Quarks carry a fractional electric charge of either 2/3 e or −1/3 e. They also
carry color charges and take part in the strong interaction as well as in the weak
interaction. The three quark generations and their properties are shown in table 1.2.

up (u) charm (c) top (t)

mass 2.3 MeV 1.28 GeV 173.2 GeV

charge 2/3 2/3 2/3

down (d) strange (s) bottom (b)

mass 4.8 MeV 95 MeV 4 GeV

charge -1/3 -1/3 -1/3

Table 1.2: Quarks in the standard model [1, p. 33].
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1.2.3 Bosons

Gauge bosons are mediators of the elementary forces. The electromagnetic force is
mediated by the massless photon (γ), the strong force by the massless gluon (g) and
the weak force by the massive Z and W± bosons. They couple to the corresponding
charges. To account for the massive boson masses, the Higgs mechanism is intro-
duced. The Higgs field gives rise to the Higgs boson (H), for which a candidate has
been found in 2012 [2]. All bosons and their properties are listed in table 1.3.

Photon (γ) Gluon (g) Z-Boson (Z) W-Bosons (W±) Higgs (H)

mass 0 0 91.2 GeV 80.4 GeV 126 GeV

charge 0 0 0 ±1 0

interact. el.-mag. strong weak weak Higgs

Table 1.3: Bosons in the standard model [1, p. 27].

1.2.4 Antiparticles

For each SM particle, there exists one counterpart with the same mass but an opposite
sign for all charge-like properties, called antiparticle. Unlike fermions, bosons are
their own antiparticles, called Majorana particles.

1.2.5 Ranges

While the electrodynamic and weak couplings decrease with increasing distance,
the strong force only grows stronger with a larger distance. This gives rise to the
phenomenon of quark confinement: as two quarks are separated from each other,
new quark-antiquark pairs are created from the energy in between. Because of
this, outgoing quarks with high energies form jets consisting of hadrons from newly
created quarks.

1.3 The Large Hadron Collider

Elementary particles and the standard model are commonly studied using scattering
experiments. Such an experiment can be separated into two basic parts: an accel-
erator and a detector. Inside the accelerator, the particles are accelerated to high
energies using an electric field. They collide with their target inside the detector,
which records various properties of the deflected or created particles, such as di-
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rection, momentum and energy. One can either accelerate particles on a straight
line (linear accelerator) or on a circular trajectory (ring) which is enforced by dipole
magnets. The latter option allows for longer acceleration time but is limited by the
emission of Bremsstrahlung. There are also two options for the collision. Either a
fixed target can be irradiated or two accelerated particle beams can be brought to
collision (collider). Because of kinematic reasons, a collider experiment can achieve
higher energies.

H+

LINAC 2

ALICE

ATLAS

LHCb

CMS

SPS

BOOSTER

LHC

PS

Figure 1.1: The CERN accelerator complex [3, modified]. Shown are the LHC ring, the
preaccelerators (Linear Accelerator 2, BOOSTER, Proton Synchrotron, Super
Proton Synchrotron) and the four main LHC experiments: CMS, ATLAS, ALICE
and LHCb.

The Large Hadron Collider (LHC) is a proton-proton ring collider experiment of the
European Organization for Nuclear Research (Conseil Européen pour la Recherche
Nucléaire, CERN), situated between 45 m and 170 m underground near Geneva,
Switzerland. The LHC has been installed in the tunnel of the former Large Electron
Proton Collider (LEP), having a circumference of 26.7 km [4, 5]. The two proton
beams are injected into the LHC after passing a series of preaccelerators, as shown in
figure 1.1. It has been designed to provide an energy of 7 TeV per beam, resulting in
a center-of-mass energy

√
s = 14 TeV. It is currently (2015) running at

√
s = 13 TeV,

the data analyzed in this work were taken in 2012 at
√
s = 8 TeV with a total

integrated luminosity of 19.7 fb−1 [6].

1.4 The Compact Muon Solenoid Detector

The Compact Muon Solenoid Detector (CMS) is an experiment at the LHC. The
CMS detector [7] consist of a barrel section along the beam pipe, which is closed
off by two end caps. Collisions happen in the center of the barrel at the interaction
point. The detector parts and particle footprints can be found in figure 1.2. Close
to the interaction point, the inner part of the barrel contains a silicon tracker used
to record trajectories of charged particles. The inner tracker is surrounded by
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an electromagnetic calorimeter (ECAL) made of lead tungstate crystals. The ECAL
measures energy deposited by electrons and photons, combined with the tracker it
can distinguish between the two particle types. After the electromagnetic calorimeter
follows the hadron calorimeter (HCAL). It is a sampling calorimeter composed of
layers of brass absorber plates and plastic scintillator fibers. Due to the high density
of the brass absorbers, hadronic showers deposit most of their energy inside the
HCAL. The HCAL is surrounded by the most important feature of the CMS detector,
the solenoid magnet. The solenoid coil is cooled down below 10 K, where the NbTi
(Niobium-Titanium) conductor becomes superconducting, allowing for currents up to
19 kA. The resulting field strength in the center of the coil is 4 T. The strong magnetic
field causes the charged particle tracks to bend, this effect is used to measure the
momentum of charged particles. In the outer part one finds the iron return yoke
interspersed with muon drift chambers, cathode strip chambers and resistive plate
chambers. Since only muons and neutrinos pass through the solenoid and iron yoke
and neutrinos remain undetected, the drift chambers can precisely identify muons
and assess their momentum.

2T

4T

PhotonElectron

Charged hadron (e.g. pion)Muon

Neutral hadron (e.g. neutron)

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed
with muon chambers

Figure 1.2: Slice through the CMS detector. The different detector layers (tracker, ECAL,
HCAL, magnet, muon chambers) are shown, alongside schematic tracks of an
electron, a photon, a charged and neutral hadron and a muon. [8, modified]
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1.4.1 Coordinate System

The CMS collaboration has defined a spherical coordinate system inside the detector,
as illustrated in figure 1.3. The origin is located in the interaction point, the z-axis
points along the beam pipe towards the Jura mountains. The x-axis is defined
towards the center of the LHC ring. To complete the right-handed orthogonal
coordinate system, the y-axis points upwards, orthogonally from the x-z-plane. An
azimuthal angle φ is defined from the x-axis in the x-y plane. The polar angle θ is
measured from the z-axis. One can also define a radial coordinate r in the x-y plane,
as distance from the z-axis. [7, p. 2]

θ φ

r

x
(center of LHC)

y

z
Interaction 

Point
Beam 
Pipe

Detector

Figure 1.3: The CMS coordinate system.

1.5 Commonly Used Quantities

The proton is a composite particle consisting of quarks and gluons, which each carry
an unknown momentum fraction. Because a collision can only occur between these
constituents, the initial momentum sum along the z-axis is unknown. Thus, most
of the kinematic variables are defined in the transverse (x-y) plane. A particle is
assigned a transverse momentum ~pT which only contains the transverse component
of its momentum vector. Analogous, only a fraction of the energy is regarded, the
transverse energy ET. The sum of all transverse momenta in a final state is usually
not equals to zero since invisible neutrinos carry away some of the momentum.
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This is accounted for by the negative sum of the transverse energy, which is called
missing transverse energy /ET. Another commonly used quantity is the pseudo-rapidity
η = − ln tan(θ/2), which has the property that distances ∆η are Lorentz invariant.

1.6 Bunch Crossings, Events, Collisions and Pileup

For acceleration purposes, the protons circulating in the LHC beam pipe are grouped
into 2808 bunches [5, p. 4]. A bunch crossing happens every 50 ns (2012), defining
an event. During an event, multiple pp-collisions can occur. The collision containing
the vertex with the largest transverse momentum is called hard interaction. All other
collisions that do not correspond to the physics process of the hard interaction are
classified as pileup.

1.7 Trigger

Since the raw data for each event is about O(1 MB), the throughput required to
transfer all data would be O(20 TB) per second. This amount of data is too much
for current hard- and software, thus a selection mechanism is introduced to match
the amount of recorded data to the networking, processing and storage capabilities.
This system is called trigger. The CMS trigger system consists of two layers, the
"Level-1 Trigger" (L1), implemented in hardware on site, and the software "High-
Level-Trigger" (HLT), located at a computing farm close to the detector. The triggers
process the limited input from the detector and decide whether an event is worth
storing on disk, based on physics arguments. These requirements reduce the data
amount by O

(
106

)
.

1.8 Event Reconstruction

Various reconstruction (RECO) algorithms are executed offline to reconstruct physics
objects from the recorded data. The most important inputs are the bending radius
of the particle tracks, energy deposits in the calorimeters and hits in the muon
chambers. A notable algorithm that ensures that each input is linked to exactly one
physics object has been developed by CMS and is called Particle-Flow [9].
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2Model Unspecific Search in CMS

The Model Unspecific Search in CMS (MUSiC) [10–12] is an analysis procedure that
compares observed data to the standard model expectation from Monte Carlo (MC)
simulations. Unlike dedicated analyses that usually only regard a few final states, an
unspecific search covers a broad spectrum of final states. This is especially useful
since some theories predict small deviations in many final states, which on their own
would not be classified as significant, but are relevant in sum.

This chapter will focus on the MUSiC workflow. First, the motivation behind an un-
specific search will be illustrated, then the three analysis steps skimming, classification
and scanning will be explained.

2.1 Motivation

Since a Higgs boson candidate has been discovered at the LHC [2], all particles
predicted by the standard model have been observed. Nevertheless there are many
unsolved problems in modern particle physics. The most noticeable examples are
the Higgs mass hierarchy problem, the matter/antimatter asymmetry, dark matter
and energy and the possibility of unification theories. Various theories, such as
supersymmetric extensions (SUSY), propose solutions, but they are currently lacking
evidence. Expected signatures of these models could show up in a large range of
final states. For some models, narrow resonances are predicted, others result in small
deviations in the high-energy tail of the distributions. The MUSiC analysis is sensitive
to these kinds of deviations. Additionally, MUSiC can identify deviations between
MC and data that originate from non-physics sources, uncovering weaknesses in the
Monte Carlo simulation.

2.2 Data Preprocessing

The goal of preprocessing is to gather events from different data sources and convert
them to a unified format containing only information relevant to MUSiC. AOD
(analysis object data) files of observed as well as simulated events are stored on
non-local parts of the computing grid, and preprocessed there. The stripped results
are contained in PXL I/O files [13] and returned to the local computing grid.
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2.3 Object Identification

During the object identification step, criteria are applied to the objects identified by
Particle-Flow during the reconstruction. A summary of the identification require-
ments, which are developed by dedicated groups within the CMS collaboration, is
shown in table 2.1. More detailed information can be found in [6].

Object ~pT/ GeV |η| Identification Summary

µ >25 <2.1 track quality, isolation, dedicated high-~pT

e >25 <2.5 track quality, isolation, dedicated high-ET

γ >25 <1.442 isolation, veto against e from conversions

jet >50 <2.4 anti-kt algorithm (R = 0.5)

/ET >50

Table 2.1: Identification criteria for MUSiC physics objects [6].

2.4 Classification

During the classification step, events are grouped into event classes (EC) according to
their physics object content in the final state, with the definitions from the previous
section.

There are three types of event classes: exclusive, inclusive and jet inclusive. Final
states of events in exclusive event classes contain exactly the objects indicated
in the event class name. Events in the exclusive EC 1e + 1MET contain only
1 electron and missing transverse energy in the final state, but no other physics
objects. Events in the inclusive EC can contain any other objects besides the indicated
ones. 1e + 1MET + X contains at least 1 electron and missing transverse energy.
Additionally, there are jet inclusive event classes (e.g. 1e + 1MET + Njet ), that
exclusively contain the mentioned objects and zero or additional jets, making the
analysis more robust to initial and final state radiation caused by the emission of
gluons in the initial or final state.

These definitions imply that each event is contained in exactly one exclusive EC, at
least one inclusive EC and at least one jet inclusive EC.

The classification algorithm automatically adjusts the possible event classes to the
events actually present in the dataset, dynamically creating new classes.
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If the dataset originates from MC simulations, some properties of the simulated
processes are shifted within their uncertainties to estimate their impact on the
classes. Additionally, the amount of simulated events is rescaled to match the data
luminosity.

2.4.1 Kinematic distributions

Three kinematic variables are analyzed: the scalar sum of the magnitudes of all
observed momenta

∑
|~pT|, the total invariant mass Minv = |

∑
p| and the missing

transverse energy /ET. For each event class and each kinematic variable, one his-
togram is filled. The histograms are created with variable bin sizes according to
the detector resolution [11, p. 52]. Note that the vertical axis of histograms shown
in this work carries the unit "Counts per 10 GeV", so to get the absolute number of
events in a bin, the vertical data point has to be multiplied by the width of its bin in
units of 10 GeV.

2.5 Scanning

The scanning algorithm (scanner) searches for the connected bin region with the
most significant deviation between the data and MC yield in each histogram.

2.5.1 Region Building

For each histogram, the scanner probes all connected bin regions and calculates a
p value for each one.

The set of connected bin regions can be defined and calculated as

R = {(s, e) ∀e ∈ (s+m, l)∀s ∈ (0, l −m)} (2.1)

where the histogram spans the bins 0 to l and m denotes a minimal number of bins
per region which can be configured.

For each region, a p value is calculated. The region of most deviation (smallest p) is
called region of interest.

2.5.2 The p value

Given the number of total observed events in a regionNobs and an expectationNSM±
σSM, the p value expresses the probability of obtaining a deviation at least as
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significant as the observed one, given only the standard model expectation. Since
the calculation deals with results of counting experiments, a Poisson distribution is
assumed. The probability of making an observation N given the Poisson mean NSM

is

P (N) = e−NSMNSM
N

N ! (2.2)

To include observations that are more extreme than the observation, the probabilities
are summed away from the expectation:

p =



∞∑
N=Nobs

e−NSMNSM
N

N ! if Nobs ≥ NSM

Nobs∑
N=0

e−NSMNSM
N

N ! if Nobs < NSM

(2.3)

Since the Poisson mean is usually not exactly known, due to insufficient simulation
and measurement uncertainties (e.g. luminosity), it is evaluated for multiple possible
values θ which are weighted by a Gaussian distribution of width σSM around NSM.
This final probability is called p value:

p :=



∞∑
N=Nobs

C ·
∞∫

0

dθ exp
(
−(θ −NSM)2

2σSM
2

)
· e
−θθN

N ! if Nobs ≥ NSM

Nobs∑
N=0

C ·
∞∫

0

dθ exp
(
−(θ −NSM)2

2σSM
2

)
· e
−θθN

N ! if Nobs < NSM

(2.4)

The constant C denotes a normalization factor that compensates for using 0 as the
lower limit of the integral. This is necessary since the Poisson distribution with a
negative expectation is not physical.

2.5.3 The p̃ value

For a dedicated analysis looking at one fixed histogram region only, this p value
would be sufficient to describe the statistical significance of the deviation. But since
the scanning algorithm regards many regions to choose the most significant one
from, the probability of finding a deviation somewhere in the distribution is larger
than p. This is called look elsewhere effect. Since MUSiC is actually interested in
the global significance of the distributions deviation, the look elsewhere effect has
to be corrected. Therefore the scanning algorithm is applied multiple (105) times
on randomly diced pseudo-data. For each pseudo experiment, first the expected
mean NSM

′ is randomly shifted from a Gaussian distribution around NSM, having
the width of the systematic error σSM. Taking this new pseudo-mean, a random
Poisson number is chosen as new observed value Npseudo which takes the place of
Nobs. The dicing of pseudo experiments is performed in a correlated way, the chosen
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deviation in units of σSM is shared between all distribution in all event classes. The
complete scanning algorithm is repeated for each pseudo-experiment, finding a
region of interest and its p value. Finally, the amount of pseudo experiments with

0 2 4 6 8 10

−log10(p)

10-1
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r 
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p
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n
ts pdata

p̃=199/10000

MC pseudo-experiments

MC pseudo-experiments 
with p<pdata

Figure 2.1: Illustration of a p̃ calculation. 10 000 pseudo-experiments have been conducted.
The 199 experiments on the right of pdata have shown a more extreme deviation
somewhere in the distribution, resulting in p̃ ≈ 0.02.

more significant deviations than the observed one pdata is compared to the total
amount of pseudo experiments conducted:

p̃ := number of pseudo-experiments with p < pdata
total number of pseudo experiments

(2.5)

This calculation is illustrated in figure 2.1.

2.5 Scanning 13





3Motivation for a Fast Search
Algorithm

The calculation of the p value includes integration over a series. The p value is
calculated for each connected bin region, resulting in a runtime of O

(
n2
)

with the
number of bins in a distribution. Additionally, the runtime increases linearly with
the number of classes, distributions and pseudo-experiments.

The typical number of integrals computed during a full scan of 2012 data, one kine-
matic variable and 105 pseudo-experiments is O

(
109 − 1010

)
. The computation of

each single integral takes about 200µs (see table A.1 in the appendix), which results
in a total computation time of about 2 to 20 CPU-days. The scan is automatically
parallelized between worker processes and usually performed on a 64 core machine,
thus taking 1 to 9 hours.

The calculation of the integral is performed using simple adaptive integration (QAG,
from the GNU Scientific Library). Since this implementation is already highly
optimized, further improvement of the integral calculation is difficult.

Since the ultimate quantity of interest is the p̃ value, the goal of this works fast
search algorithm, called Quickscan, is to reduce the time spent on scanning pseudo-
experiments. This will be achieved by reducing the amount of candidate regions, for
which the p value integral is calculated.

The new algorithm shall not reduce the amount of regions too far, such that the
"true" region of interest is not included anymore, since this would highly impact
statistical accuracy. Thus, the deviation of p̃ with and without Quickscan will be
observed in the remainder of this work.

Shortening the total scanning time will eventually enable the MUSiC project to
increase the number of pseudo experiments and remove other requirements that
have been made for optimization, but have a higher impact on statistical accuracy.
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4A Fast Search Algorithm

In this chapter, the basic concept and method of the Quickscan algorithm is sum-
marized. Arising problems are described and their solutions within the algorithm
are proposed. Finally, other approaches are mentioned, which have not been imple-
mented in this work’s version of Quickscan.

4.1 Concept

The goal of the Quickscan algorithm is to make the scanning process of pseudo-
experiments more efficient. The efficiency improvement is achieved by preselecting
interesting regions as RoI (region of interest) candidates and discard most other
regions before the costly p value calculation. The selection is performed by evaluating
a less computation intensive estimator over all possible connected regions, and
making a selection of the most significant deviations according to this estimator.
Finally, the full p value and its integral are only calculated for the few candidate
regions returned by the estimator.

4.1.1 The Estimator

The choice of the estimator plays an important role in the efficiency of the selection.
A commonly used quantity in particle physics is

χ = |Nobs −NSM|
σSM

′ (4.1)

Here the value σSM
′ describes the expected deviation. This is not σSM which only

includes systematic uncertainties, e.g. finite Monte-Carlo statistics, and has been
rescaled to match the data luminosity. σSM

′ consists of the expected statistical
deviation

√
NSM and the systematical error σSM. The two errors are added in

quadrature. Because NSM ≥ 0, the expression can be simplified:

σSM
′ :=

√
σSM

2 +
(√

NSM
)2

=
√
σSM

2 +NSM (4.2)
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This value incorporated into the χ-value gives

χ = |Nobs −NSM|√
σSM

2 +NSM

(4.3)

4.1.2 Selection

In each distribution, the χ value is calculated for each connected bin region. The
most significant regions are stored in a list. This introduces a parameter of the
Quickscan algorithm, nregions, which denotes the number of candidates kept in the
list.
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Figure 4.1: Example distribution: Pseudo experiment of the 2e
∑
|~pT| distribution, without

special treatment of nested regions. The upper panel shows the distribution
with the bin number (not the physical quantity) on the horizontal axis and the
number of events in each bin on the vertical axis. The lower panel shows the
100 selected candidate regions, sorted by χ. The regions chosen by the different
approaches are indicated in the upper panel. p denotes the full scan p value,
while χ indicates value of the Quickscan estimator. One can see that especially
in the regions where the Poissonian approach σN =

√
N fails, the χ value is too

sensitive. The nested regions suppress different regions in the candidate list,
such that the "true" RoI (as found without the Quickscan) is not detected.
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4.1.3 Nested Region Handling

Using only the estimator and the selection of top nregions candidates, the algorithm
tends to focus around single data points in the tail of the distribution, where the
Poissonian approximation σN =

√
N does not hold due to a low event count.

This effect is illustrated in figure 4.1. The pseudo experiment of the 2e
∑
|~pT|

distribution shows a single event above a low background expectation. The regions
with the highest χ gather around this excess. Comparison with a scan without the
new algorithm shows that the "true" region of interest is found further left in the
distribution, as a deficit with only 1 observed event in 9 expected.

To suppress this behavior, an additional list of criteria is introduced, comparing
region A with region B:

• A is nested inside of B

• Excess of data in A: Nobs(A) > NSM(A)
• Excess of data in B: Nobs(B) > NSM(B)
• No additional data in B \A: Nobs(A) = Nobs(B)

If all these conditions are met, then region A is more significant than region B. The
mathematical proof for this criterion is difficult, but it can be motivated as follows:
If a region contains an excess of observed event yield over MC event yield, and
the region is extended while the amount of observed events remains the same, the
difference between NSM and Nobs stays equal or is reduced. Since the error σSM can
only stay the same or increase, the total significance of the extended region must be
less than the original region, as long as it still contains an excess.

Based on this comparison, regions are immediately rejected if a more significant
subregion is already included in the candidate list. The results of this treatment can
be observed in figure 4.2. The distribution is exactly the same as in 4.1, but the
algorithm does not focus overly on the event in the tail, leading to the correct RoI to
be found.
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Figure 4.2: Example distribution: pseudo experiment of the 2e
∑
|~pT| distribution, with

special treatment of nested regions. The scheme is explained below figure 4.1.
This time, only two candidate regions in the high energy tail are selected.

4.2 The Final Algorithm

The solutions suggested in this chapter are combined in the final algorithm: The
Quickscan algorithm maintains a single list of nregions candidates for each distribution
in each class. Every time a new candidate is considered for insertion into the list,
first the nested region criteria are evaluated. If a parent region is found for which the
criteria are fulfilled, the candidate immediately replaces the parent region already in
the list. Otherwise, its χ value is computed and compared to the candidates in the
list. If it is larger than the lowest χ inside the list, the region is also inserted.

After all connected regions have been considered, the p value is evaluated for the
candidate collection and the final region of interest is determined as one of the
candidates.
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4.3 Running on Pseudo-Experiments Only

The Quickscan method is only applied to pseudo-experiments, not when calculating
the p value of measured data, since there might still be cases in which a scan using
Quickscan does not find the same region of interest as without. This assures that the
data region of interest and its p value are definitely correctly computed.

4.4 Other Investigated Approaches

Another method that has been considered during this work is Magnitude Binning.
This ad-hoc solution also targets the low-statistic regions by individually treating
regions with different NSM. Instead of keeping one candidate list for an entire
distribution, Magnitude Binning keeps one candidate list for each magnitude of NSM.
The magnitude index is calculated as

i =
⌊
lognbase

(NSM)
⌋

=
⌊ log(NSM)

log(nbase)

⌋
(4.4)

This introduces a new parameter, nbase, which indicates the size of a magnitude
bin. Additionally, the total number of candidate regions is increased by an unknown
amount, since the number of orders of magnitude are originally unknown.

This method has been dropped since the other methods proposed in this chapter
sufficiently satisfy the Quickscan goals. The Magnitude Binning extension only
introduces unnecessary complexity and an additional parameter.
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5Optimization of the Algorithm

In this chapter, the optimal value for the Quickscan parameter nregions is determined.
This value highly impacts performance and statistical accuracy. Possible approaches
for a trade-off between speed and quality will be proposed.

5.1 Metrics

The optimization is performed in regard of the goals described in chapter 3: Statisti-
cal performance and required computation time. The comparison reference in both
cases is the execution of the scanning algorithm without Quickscan. This scenario is
called full scan here.

5.1.1 Statistical Sensitivity

The statistical sensitivity is measured as deviation of p̃. To calculate this deviation,
the trial scanning run is compared to a reference run with the same settings. Since
the p̃ value is only evaluated for distributions with a RoI p value of < 0.3, the
reference as well as the sample run only contain p̃ values for a subset of event classes
(usually about half).

For each event class, the p̃ value of the reference run is compared to the correspond-
ing p̃ value of the trial run:

σrel = ∆p̃
p̃reference

=
p̃sample − p̃reference

p̃reference
(5.1)

Usually, a full scan is used for p̃reference, while a run with the Quickscan yields
p̃sample.

Figure 5.1 shows a comparison between two separate full scans. Here, one full scan
is used as reference, the other one as sample. The visible deviation of σrel is caused
by the random dicing of pseudo experiments while calculating p̃ (see section 2.5.3).
The conclusion of this illustration is that dicing the pseudo-experiments introduces a
statistical uncertainty of O(5 %) on the p̃ value. This value will act as guideline for
the Quickscan parameter choice.
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Figure 5.1: Random deviation of σrel. Obtained by comparing two sets of scan results
without the Quickscan algorithm. The distribution spread of O(5 %) originates
in the random means of the pseudo experiments. This also demonstrates that
only a few classes show no deviation at all.

5.1.2 Computation Time

There are various approaches to comparing the computation costs of computer
programs: A commonly used option is to count the number of CPU cycles that a
program has used. This method allows for comparisons with a high resolution, but
this "pure" CPU time does not represent the time spent on a real-world application.
Additionally, it is difficult to implement, especially in an environment like the MUSiC
scanning algorithm because of multitasking and the usage of various technologies
(Python and C++).

The alternative technique used in this work is wall-clock time. The measurement
of wall-clock time is performed by acquiring a timestamp before and after the
execution of the program. The elapsed time is the difference between those two
timestamps. The results of such measurement can be directly transfered to the real-
world application because it is performed in the same environment as an execution
on a user machine.

This method introduces the following systematic uncertainties:

• CPU usage by other processes: The measurement is performed on a system
shared by multiple users. The operating system distributes the available CPU
resources between the user processes. Thus, the benchmarked program runs
significantly slower if other computation intensive processes are present. In
order to suppress this effect, it is ensured that at the time of the measurement,
the machine is not occupied by other users. The influence can be lowered this
way, from O

(
10−1

)
to O

(
10−2

)
.
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• IO throughput: The files required by the scanning algorithm are stored on
shared network drives. Similarly to the CPU usage, the behavior of other users
influences the measured wall-time (also O

(
10−2

)
).

• Static overhead: The measurement includes operations that are not being
optimized and contribute a constant amount of time. Examples are reading and
parsing of parameters and configuration, creating and destroying multitasking
worker processes and writing output files. This takes up O

(
10−2

)
of the total

time but is expected to be almost constant.

• Timestamp resolution: Although the operating system’s internal clock has a
high resolution, the results are only written to file with a resolution of 1 s. In
comparison to the other uncertainties, this is negligible (O

(
10−4

)
).

• Time adjustments: The time on the computing host is managed by the Network
Time Protocol (NTP). It ensures time synchronization inside the datacenter. If
the NTP daemon notices that either the time of the host has shifted or if leap
seconds are introduced, the host time is adjusted. This has an effect on the
acquired timestamps but is highly negligible in this scenario (O

(
10−6

)
).

The computation improvement is quantified by the ratio between the wall-clock time
measurement of the full scan and the Quickscan algorithm:

speedup = Tfull

Tquickscan
≥ 1 (5.2)

5.2 Optimization Environment

The optimization is performed in 60 processes on a 64-core MUSiC host, whose
specifications are listed in table 5.1. The wall-time is measured for the entire
execution of the main scanning script (MISMaster.py).

As shown earlier, σrel deviates by about 5 % through random dicing. The optimization
should occur isolated from this deviation.

The first measure against random influences is to seed the pseudo random number
generator (PRNG) with a fixed value. Additional non-determinism is introduced by
the parallelization implementation. An optimization called hit-threshold allows the
Quickscan to stop generating pseudo-experiments once the p̃ value is determined to a
sufficient precision. Not all parallelized workers can be terminated in a deterministic
sequence, the actual order depends on uncontrollable external factors. Subsequently,
the PRNG state is not deterministic. To counteract this effect, the hit-threshold
method is turned off.
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processors AMD Opteron Processor 6272

clock speed 2.1 GHz

cores per CPU 8 logical (4 physical)

total number of cores 64

memory ≈ 250 GB

operating system Linux

kernel version 2.6.32-504.16.2.el6.x86_64

distribution Scientific Linux release 6.5 (Carbon)

CMSSW version 5.3.14

GCC version 4.7.2

Python version 2.6.4

Table 5.1: Specification of the 64-core machine on which the computation measurement is
performed.

Because of degraded overall performance, only 103 pseudo-experiments are gener-
ated and evaluated, as opposed to up to 105 in normal operation mode.

Determinism of this configuration is evaluated by comparing the results of two full
scans. The comparison yields absolutely no deviation in σrel.

5.3 Execution

The optimization run is performed on a subset of data from 2012 taken at
√
s = 8 TeV.

Only the
∑
|~pT| distribution of all exclusive event classes is regarded. Additionally, for

a given combination of leptons, all events containing at least 2 jets are summarized
in one event class ... + 2jet + Njet . In order to save time, classes with a data
p value above 0.3 are excluded from the p̃ calculation and thus excluded from the
Quickscan, which is only applied on pseudo-experiments. This reduces the number
of regarded classes from 214 to 108. The full settings are listed in the appendix, in
the left column of table A.2.

For each parameter value, the scanning step is executed 5 times using 60 processes
each. The raw measurement results can be found in tables A.3 and A.4 in the ap-
pendix. Figure 5.2 illustrates these results. The horizontal axis shows the parameter
value for nregions, the vertical axes show the runtime speedup and the number of
classes where the Quickscan p̃ value does not deviate from the full scan p̃ within
its uncertainty. The vertical error bars on the speedup measurement indicate the
uncertainty of the mean speedup value and have been obtained by calculating the
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sample error of the 5 trial results. As expected, this deviation is up to O
(
10−1

)
due

to the uncertainties discussed above.
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Figure 5.2: Combined results of the runtime and ∆p̃ measurement for varying numbers
of Quickscan RoI candidates. The error bars on the speedup measurement
indicate the uncertainty σT = σT /

√
N on the mean T during the 5 trial runs.

As expected with a deterministic run, there is no uncertainty of ∆p̃.

5.4 Analysis

The results match the expectations: a larger number of candidates raises the chances
of including the "true" RoI inside the number of candidates. This improves the
accuracy of p̃, such that more classes show no deviation (∆p̃ = 0, σrel = 0). Thus,
the number of classes without deviation converges to the total number of classes
(108). In the same limit, the speedup value tends towards 1, which indicates that
the Quickscan takes the same amount of time as the full scan in that case.

Figure 5.2 shows that even for 1 500 candidates, one class has ∆p̃ 6= 0. The affected
event class is 3e , which has a full scan p̃ = 0.735 and shows a deviation of
∆p̃ = −0.001. Since this difference is insignificant, it is not further discussed here.
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To obtain a recommendation value for nregions, the ∆p̃ result should be compared
with figure 5.1, which showed that the spread induced by random dicing only
preserves p̃ for a few classes. Taking 5 candidates, the spread induced by the
Quickscan has a similar magnitude. Figure 5.3 shows that for nregions > 100 the
width of the distribution is negligible.

Note that while the p value of data pdata is unaffected by the Quickscan, a pseudo
experiment’s p value obtained with the Quickscan is larger or equal to the p value
which would have been obtained by the full scan. The full scan calculates the p value
for all connected regions, while the Quickscan calculates the p value only for its
candidate regions. Thus, for the Quickscan less pseudo experiments show a more
significant deviation than pdata, resulting in a smaller (or equal) overall p̃ value.
Because of that, the σrel distribution of Quickscan results is asymmetric.

UF -0.05 0 0.05 OF
σrel

0

10

20

30

40

50

60

70

80

N
um

be
r o

f C
la

ss
es

1 candidates
10 candidates
100 candidates
1000 candidates

Figure 5.3: Deviation of σrel due to the Quickscan algorithm. When taking more than 10
candidates, the spread is less than 1 % and can be neglected compared to the
other random influences.
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5.5 Optimization Conclusion

Concluding, this analysis can make two suggestions for the choice of nregions: one
could either argue conservatively and require that the Quickscan influence becomes
completely negligible. A possible choice then would be e.g. nregions = 1 000, but this
only provides a moderate speed-up factor of ≈ 2.5 times. If more performance is
needed, one could require that both the random influence as well as the influence
induced by the Quickscan algorithm become comparable. This is the case at about
nregions = 10, where the speedup is already in the saturation region of 6 times.

A sensible choice will be somewhere in between those two extrema:

nregions = 200 (5.3)

This choice will be evaluated during the validation run in the following chapter.
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6Running on a Validation Sample

After the entire optimization has been performed on the
∑
|~pT| distribution of

exclusive event classes, the validations must run on a separate subset of data. There
are two options: the analysis of inclusive event classes or scanning of a different
distribution. The latter option is favored and chosen because it keeps the number
of event classes approximately the same. Thus, the validation run is performed on
the Minv distribution. As proposed in the previous chapter, the Quickscan number of
candidate regions is fixed to nregions = 200.

The other settings for the validation run can be found in table A.2. This configuration
does not allow for a deterministic run, thus some random deviation of p̃ is expected.
When comparing the result of the Quickscan run with a full scan, the random
deviation of p̃ will show up as a finite width of the σrel distribution. This width is
then compared to a σrel distribution obtained by comparing the results of two full
scans.

The results of this validation run are illustrated in figure 6.1. The top figure shows
the comparison between the two full scan runs. As expected, the σrel distribution
shows a finite width due to random influences. The other six histograms show the
comparison between the full scans and each of the three Quickscan results. None
of the distribution means is significantly shifted away from 0. The distribution
widths are within their deviations compatible with the broadening due to random
fluctuations.

Since the number of pseudo-experiments is significantly greater in this scenario,
the constant computation overhead has less influence on the computation time. As
shown in table 6.1, a speedup of 9.2± 0.5 times is achieved.

Overall, the validation run has shown that the parameter choice nregions = 200 is
reasonable. With the aid of the Quickscan, the computation time could be decreased
by a factor of about 9 without changing the results.
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Measurement / s Combined / s Speedup

Full Scan 1 28 684
30 373± 1 689

9.2± 0.5

Full Scan 2 32 062

Quickscan 1 3 386

3 310± 52Quickscan 2 3 212

Quickscan 3 3 334

Table 6.1: Results for the computation time measurement in seconds. Two full scan tri-
als and three Quickscan trials are performed. The second column shows the
combined result as mean and its error.
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Figure 6.1: Distribution of the relative p̃ deviation σrel.
Top: comparison between two full scan runs.
Left side: comparison between full scan run 1 and the Quickscan runs 1 to 3.
Right side: comparison between full scan run 2 and the Quickscan runs 1 to 3.
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7Conclusion

The aim of this work was to develop a fast search algorithm for the MUSiC framework.
After assessing the current performance situation, the concept of a region preselection
step was considered. Multiple aspects of the algorithm were adapted to problems
arising in the current implementation. The emerging solution is called Quickscan.
The Quickscan algorithm uses a less computation intensive estimator to assemble a
list of candidate regions. Problems due to low statistics in the high-energy-tail of the
kinematic distributions are suppressed by dedicated handling of nested regions. The
original p value is subsequently only computed for the few collected candidates. The
algorithm has been implemented and tested in this work. A value for the number
of candidate regions, nregions = 200 has been proposed here. It has been obtained
by an optimization run over a wide parameter range. The choice was additionally
validated over a separate subset of data. During this validation run, a performance
gain of 920 % was observed. This is mostly due to the smaller number of integrals
which remain to be computed after the Quickscan selection.

Additionally, the Quickscan has not only been developed and validated, but also
implemented and integrated into the existing MUSiC framework.

7.1 Outlook

Even though the result of this work increases scanning efficiency by almost 10 times,
there is room for improvement:

The Quickscan algorithm could greatly benefit from an estimator that improves
handling of regions with a low number of events. A possible solution could be to
use a Poisson distribution around the number of MC events and calculate its p value
back to a Gaussian statistic before combining with the systematical uncertainty. This
could lead to a better mathematical understanding of the algorithm, especially since
the ad-hoc nested region handling may turn out to be superfluous.

Furthermore, the parallelization of the general scanning algorithm could be im-
proved. The correlated dicing of the pseudo-experiments requires communication
between the worker tasks. The correlation could instead be handled by a fixed seed
of the worker’s pseudo-random number generators. This would make the scanning
step trivially parallelizable (either over the classes or over the pseudo-experiments),
enabling it to run on a computing grid instead of the 64-core MUSiC host.
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AAppendix

Time per Integral

Histograms Number of Integrals Runtime / s Per Integral / µs

2 369 23 110 209 5 179.87 224.1

2 374 23 146 885 5 190.3 224.2

2 390 22 968 240 5 198.89 226.4

2 375 23 089 566 5 218.37 226.0

2 355 22 741 383 5 204.23 228.8

2 357 23 079 630 5 172.68 224.1

2 377 23 119 389 5 183.55 224.2

2 389 23 208 732 5 194.77 223.8

2 361 23 288 752 5 221.18 224.2

2 368 22 925 427 5 217.4 227.6

18 991 81 734 778 16 983.6 207.8

19 017 80 847 194 16 970.2 209.9

18 945 80 976 157 16 990.5 209.8

18 993 81 748 828 16 987.3 207.8

19 079 81 471 964 16 985.9 208.5

18 853 81 188 030 16 982 209.2

18 906 81 149 116 17 019.2 209.7

18 960 81 354 379 17 003.4 209.0

18 976 81 185 262 16 967.9 209.0

19 089 81 772 747 16 987.6 207.7

Table A.1: Benchmarking results of the original scanning process. The timing has been
measured on a data subset, using a single CPU and includes setting up the
process and writing out the results. The agreement of the time per integral
between the runs motivates the rough estimate of 200µs per integral.
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MUSiC Scanner Configuration

Optimization Validation

Data 2012,
√
s = 8 TeV

Luminosity L = 19.7 fb−1

Event classes excl. excl.

Distribution
∑
|~pT| Minv

N-jet threshold 2 -

p threshold 0.3 0.3

Dicing rounds 1 000 100 000

Hits threshold - 100

Fill-Up yes yes

Table A.2: MUSiC configuration values for the optimization and validation runs.
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Optimization p̃ Results

nregions Classes with ∆p̃ = 0 Percentage of Total Classes

1 8 7.4

2 10 9.3

5 27 25.0

10 63 58.3

20 89 82.4

50 95 88.0

100 103 95.4

200 104 96.3

300 106 98.1

400 107 99.1

500 107 99.1

800 107 99.1

1 000 107 99.1

1 500 107 99.1

2 000 108 100.0

Table A.3: Result of the optimization ∆p̃ measurement. There are 108 classes in total for
which the p̃ value is computed and as such for which the Quickscan is applied.
All 5 trial runs yield exactly the same results, thus they are not separately listed
here.
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Optimization Timing Results

nregions T1 / s T2 / s T3 / s T4 / s T5 / s T ±∆T Speedup

Full 5 379 5 500 5 331 5 371 5 396 5 395± 28 1.0± 0.0

1 1 460 880 973 912 885 1 022± 111 5.3± 0.6

2 1 054 870 871 900 886 916± 35 5.9± 0.2

5 945 1 038 898 909 869 932± 29 5.8± 0.2

10 1 142 861 985 907 879 955± 51 5.7± 0.3

20 930 886 889 919 913 907± 9 5.9± 0.1

50 940 1 073 952 937 915 963± 28 5.6± 0.2

100 1 555 987 1 031 993 975 1 108± 112 4.9± 0.5

200 1 406 1 120 1 111 1 171 1 130 1 188± 56 4.5± 0.2

300 1 251 1 330 1 251 1 248 1 247 1 265± 16 4.3± 0.1

400 1 373 1 507 1 375 1 395 1 364 1 403± 27 3.8± 0.1

500 1 474 1 594 1 489 1 481 1 487 1 505± 22 3.6± 0.1

800 1 792 1 860 1 826 1 816 1 846 1 828± 12 3.0± 0.0

1 000 3 254 2 045 2 064 2 022 2 041 2 285± 242 2.4± 0.3

1 500 3 203 2 544 2 505 2 466 2 518 2 647± 140 2.0± 0.1

2 000 2 971 2 765 2 820 2 787 2 863 2 841± 36 1.9± 0.0

Table A.4: Result of the optimization computation time measurement. The numbers show
the wall-clock time. The combined result T ±∆T consist of the sample mean

T = 1
N

∑
i Ti and its deviation ∆T = 1√

N

√
1
N

∑
i(Ti − T )2. As expected, the

wall-clock time is subject to fluctuations of about 1 % to 10 %. The resulting
speedup TFull

TQS
is calculated using the mean values and is up to 5.9 times.
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