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1. Introduction

In order to gain further understanding about the universe, the arrival direction,
composition and energy of cosmic rays are studied. While travelling through the
universe, cosmic-rays are deflected by magnetic fields and no longer contain inform-
ation about their original direction. However, the highest energy cosmic-rays are not
significantly deflected by magnetic fields and can thus be used to determine sources
of cosmic-rays. As the high energy particle interacts with the atmosphere, a cascade
of secondary particles is produced. These secondary particles can be be measured by
ground-based detectors and information about the primary particle can be gathered.

Large scale experiments as the Pierre Auger Observatory in Argentina measure
(amongst other) the arrival direction of the most energetic cosmic rays. In order to
distinguish a preferred arrival direction of ultra high energy cosmic rays (UHECR),
one has to analyse the collected data. This analysis can be done using a wavelet
analysis.

Wavelets are mathematical functions used to extract information from a given signal.
In the early 1980s, the Wavelet analysis was used in geophysics to analyse seismic
signals [1]. The Wavelet analysis has proven useful in astrophysical problems, it was
used to study the cosmic microwave background data collected with the WMAP
experiment [23], [24].

There are different kinds of wavelets, for example the Mexican Hat wavelet or the
Needlet. In this thesis, the Needlet wavelet will be used.

Needlets are spherical wavelets with a lot of promising properties. They were suc-
cessfully used to analyse Auger data collected from 01. January 2004 to 28. February
2011 by Matthias Plum [25].

In order to study the validity of wavelets for different kinds of probable sources of
UHECRs, the Needlet analysis has been performed on simulated Monte Carlo data.
A Gaussian signal with varying intensity and smearing was hidden in isotropic back-
ground. A Needlet analysis with different needlet parameters was performed, and a
Signal to Noise Ratio was calculated to quantify the best parameters. Furthermore
the effect of intensity and smearing of the source was studied, as well as the effect
that different resolutions have on the Needlet analysis.
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2. Cosmic Rays

During his balloon-flights in 1912, Victor Hess measured an unexpected increase in
radiation at altitudes of roughly one kilometre from the ground. He realized that
this radiation originates from outside our atmosphere and postulated cosmic rays
[2]. In 1938, Pierre Auger performed coincidence measurements in the Swiss Alps
and measured coincident signals at different positions. He concluded that these
signals originated from one cosmic ray particle which, upon reaching the Earth’s
atmosphere and interacting with nitrogen, oxygen or argon, induced an extensive
cosmic ray shower [3].

2.1 Air Showers
Air showers consists of different components, a hadronic, a muonic, a neutrino and
an electromagnetic component [5]. Figure 2.1 shows an extensive air shower. As the
extensive air shower propagates through the atmosphere, fluorescence- and cherenkov
light as well as radio emission are produced.

2.2 Energy Spectrum of cosmic-rays
Cosmic-rays have been observed with energies from 1010 eV up to over 1020 eV.
Cosmic-rays are usually characterized by its flux I, which defines the number of
cosmic particles arriving per square meter, angle and unit of time. The particle flux
depends on the energy E by a simple power law:

dI

dE
= E−γ (2.1)

γ is the spectral index. This dependency has been measured by different experiments
over the years.

Figure 2.2 shows the flux as a function of the energy. The featured called ’knee’ and
’ankle’ describe a change of the spectral index γ. The ’knee’ refers to a change in
slope (steepening) between energies of 1015 eV and 1016 eV. The ’ankle’ characterizes
the feature around 1018.5 eV, where the slope decreases [4].

2.3 Origin of cosmic-rays
Sources of high energy cosmic rays have not been confirmed yet. In 2007, the Pierre
Auger Observatory showed a correlation between the arrival direction of cosmic rays
with energies above 6·1019 eV and the positions of active galactic nuclei (AGN) lying
within ∼ 75 megaparsecs (2.31 · 1021 km) [7].
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Figure 2.1: Composition of extensive air showers, [5]. Air showers consist of a
hadronic, a muonic a neutrino and an electromagnetic component. Fluorescence-
and cherenkov light, as well as radio emission are produced as the extensive air
shower propagates through the atmosphere.
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Figure 2.2: Spectrum of cosmic-rays [6]. The flux is shown as a function of the
energy. The slope changes at different features of the spectrum, these featured called
’knee’ (between 1015 eV and 1016 eV) and ’ankle’ (around 1018.5 eV) describe a change
of the spectral index γ.

2.4 Acceleration of cosmic rays

Cosmic particles can be accelerated by different features in the universe.

Acceleration up to 1020 eV can be provided by neutron stars with strong magnetic
fields (> 1012 G), jets of Active Galactic Nuclei (AGN), gamma-ray bursts (GRB),
radio galaxies and clusters of galaxies. Figure 2.3 shows the magnetic field strength
plotted against the size of astrophysical objects. The lines drawn in this figure show
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protons that can be accelerated to a given energy for a shock front velocity β by
astrophysical objects located above this line [9].

The acceleration of cosmic rays is described by the first and second order Fermi
acceleration [8].

In the second order of Fermi acceleration, the particles find themselves in magnetised
clouds, originating from jets of active galactic nuclei, or shock waves of supernovae
remnants. The particles are deflected by magnetic inhomogeneities and gain energy.
In the first order, the particles are accelerated in the propagating plasma of shock
fronts of supernovae remnants (SNR). The particle travels from a shock front to
unshocked plasma (which moves faster) and back to the shock front. A particle
who travels through a shock front gains energy until the energy of the shock front
is consumed. The particle then breaks free and may be detected on earth.

Figure 2.3: Hillas plot [9]. The magnetic field strength is plotted against the size of
astrophysical objects. Astrophysical features that can accelerate protons to a given
energy for a fixed shock front velocity β, are located above the corresponding line.



3. The Pierre Auger Observatory

The Pierre Auger Observatory is an international experiment which detects and
studies cosmic rays. It allows the reconstruction of primary particles in an energy
range from 1017 eV to 1021 eV [10]. As the flux of particles with energies above
1019 eV is approximately one particle per square kilometre per year, a large array is
needed to get statistical significant results. The Pierre Auger Observatory, shown
in figure 3.1, is located in the Pampa Amarilla, province of Mendoza, in Argentina.
It is an hybrid experiment, measuring air showers with both fluorescence telescopes
(Fluorescence Detector FD) and Water-Cherenkov-detectors (Surface Detector SD)
[11],[12]. Furthermore, radio emissions of extensive air showers are measured by the
AERA experiment.

3.1 Surface Detector

1660 SD stations are arranged in an 3000 km2 array [14]. The Cherenkov-detectors
are filled with 12 t of pure water. Particles travelling faster than light in pure water
emit cherenkov light, which is collected by 3 photomultiplier tubes. As secondary
particles of one air shower are measured in multiple SD stations, a difference in the
detection time between the different detectors is used to calculated the trajectory
of the incoming cosmic ray. Furthermore, the energy of the primary cosmic ray
particle can be calculated based on the amount of light which is detected in the
photomultipliers. The surface detector array has a 100% duty cycle.

3.2 Fluorescence Detector

The 24 Fluorescence Telescopes are placed at 4 different stations overlooking the
SD array [15]. In moonless nights the development of a shower can be observed,
as charged particles of the shower excite the nitrogen molecules, which emit ultra-
violet fluorescence light. This light is collected by the telescopes and measured
by photomultipliers. This provides information about the energy and the arrival
direction of the primary particle.

3.3 Enhancements

In the last few years, three additional detectors were added to the Pierre Auger
Observatory.
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Figure 3.1: Auger Array in Argentina,[12]. The red dots represent the SD stations,
with 4 telescope buildings (containing 6 telescopes each) situated at Coihueco, Loma
Amarilla, Los Leones and Los Morados overlooking the array.

AERA

The Auger Engineering Radio Array (AERA) detects UHECRs with energies above
1017 eV by triggering on the radio emission produced in the associated air showers
[13], [16].

AMIGA

AMIGA (Auger Muons and Infill for the Ground Array) is an enhancement for
the Auger Observatory to study both the energy spectrum of cosmic rays down to
1017 eV and the muonic component of showers [17].

HEAT

To measure cosmic rays with energies down to 1017 eV, three High Elevation Auger
Telescopes (HEAT) have been installed at Coihueco, with a viewing angle tilted
30◦ upwards compared to standard FD. HEAT provides the possibility to study
the cosmic ray energy spectrum and mass composition in a very interesting energy
range, where the transition from galactic to extragalactic cosmic rays is expected to
happen [18].



4. Wavelet Analysis

4.1 Introduction

Wavelets are mathematical functions of the L2 space, and can be seen as wave-like
oscillating functions which are used to extract information from data. A signal
is decomposed into wavelets without loss of information (i.e. reversible). These
different wavelets are obtained from a mother wavelet by changing its dilatation and
translation parameters [19], [20].

4.2 Multipole Expansion

The multipole expansion is a standard method for anisotropy studies. In spherical
coordinates (θ, φ), the spherical harmonics are used.

Ylm(θ, φ) =

√√√√2l + 1

4π

(l −m)

(l +m)
Pm
l (cos(θ))eimφ (4.1)

Pm
l are the associated Legendre polynomials with coefficients l = 0,1,2,... and m =

0, ± 1, ± 2, ..., ± l. l = 0 describes a monopole, l=1 a dipole, l=2 a quadrupole
and so on [21]. Spherical data f(θ, φ) is expressed by the multipole expansion

f(θ, φ) =
∞∑
l=0

l∑
m=−l

al,mYl,m(θ, φ) (4.2)

with the multipole coefficients al,m for the spherical harmonics Yl,m(θ, φ). The infinite
sum defines the angular precision.

4.3 Healpix software

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a
sphere [22]. As astrophysical data is recorded in spherical coordinates, HEALPix
provides a handy subdivision of a spherical surface in equal-size bins. The pixels are
distributed on constant latitudes, which enables a faster analysis involving spherical
harmonics. Figure 4.1 shows the pixelisation scheme for different resolutions. A
HEALPix map consists of Npix = 12·N2

side pixels, with an equal area of Ωpix = 4π
12N2

side

per pixel. Nside is the number of divisions along the side of a base-resolution pixel
that is needed to reach a desired high-resolution partition [22].
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Figure 4.1: HEALPix pixelisation scheme for different resolutions (12, 48, 192, and
768 pixels). To obtain a higher resolution, one pixel is divided into four new pixels.

4.4 Wavelet Analysis

Wavelets have been used to extract non-Gaussian data of the Cosmic Microwave
Background (CMB) recorded by WMAP [23] [24]. Wavelets are wave-like oscilla-
tions, they either have a finite length or are fast decaying. The decay is achieved by
an exponentially decreasing term [21]. The wavelet transform consists of a combina-
tion of wavelet and unknown signal, in order to extract information from the signal.
It is a convolution of the wavelet function ΦR of different scales with the signal trace.
Figure 4.2 shows the procedure of a wavelet analysis [25]. A conversion in spherical
harmonics is applied to both the mother wavelet and the data (signal and noise)
that is going to be analysed. Wavelet and signal are multiplied, this product is then
transformed back into the spatial domain.

4.5 The Needlet

Needlets are a form of spherical wavelets which offer a lot of advantages over other
wavelets [26]. They enjoy good localization properties in both spatial and frequency
domain. For a full-sky analysis, the different needlet coefficients are, at a fixed
angular position, asymptotically uncorrelated [27]. Needlets are also adapted to the
HEALPix package.
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Noise
&

Signal
f(θ, ϕ)

Wavelet
ΦR(θ, φ)

Multiplication
Inverse Trans-

formation

filtered
Signal
f ′(θ, ϕ)

Signal

Spherical

Harmonics

Wavelet

Spherical

Harmonics

Figure 4.2: Flowchart of Wavelet analysis , [25]. The Wavelet as well as the data
f(θ, ϕ) are transformed into spherical harmonics. They are then multiplied and
transformed back into the spatial domain, which yields the filtered signal f ′(θ, ϕ).

The range of the needlet is defined by the parameters j (needlet scale) and B (needlet
width) [25]. As the needlet is localized on a finite number of multipole moments l,
the multipole expansion (formula 4.2) can be truncated. The equatorial coordinate
system is used. The spherical needlet is defined as [28]

Ψjk(δ, α) =
√
λjk

∑
l

b

(
l

Bj

)
l∑

m=−l
Y ∗lm(δ, α)Ylm(ζjk) (4.3)

α is the right ascension, δ the declination. Ylm(ζjk) and Y ∗lm are the spherical harmon-
ics, with

∑l
m=−l Y

∗
lm(θ, φ)Ylm(ζjk) being the spherical harmonics expansion. {ζjk}

denotes coordinates of the pixel center of the Healpix scheme, k is the pixel number.
ζjk is the pixel center in the HEALPix scheme. λjk is the scaling factor, and can
be approximated by 1/Npix, with Npix being the number of pixels for the chosen
HEALPix resolution.

Needlets should be seen as a product of the projection operator
∑l
m=−l Y

∗
lm(θ, φ)Ylm(ζjk)

with a suitably chosen window function, called needlet kernel function b( l
Bj ) [25].

It corresponds to a filter with values between zero and one. The filter is based on
the multipole moment l, the needlet width B and the needlet scale j. As seen on
figure 4.3 and 4.4, higher multipole moments are used for increasing needlet scales
and widths.
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Figure 4.3: Needlet kernel function b( l
Bj ) plotted against the multipole moment l

from different needlet widths B at a fixed needlet scale j = 2. For increasing needlet
width, higher and also more multipole moments are used.
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Figure 4.4: Needlet kernel function b( l
Bj ) plotted against the multipole moment l

from different needlet scales j at a fixed needlet width B = 1.9. For higher needlet
scales additional multipole moments are used.
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The angular resolution of a Needlet analysis depends on the Nside used. The angular
resolution can be calculated for an Nside of 64 (corresponding to a map of 49152
pixels) as follows [22]:

α ≡
√

Ωpix =

√
4π

12N2
side

= 0.016 rad (4.4)

The angle, converted into degrees is α = 0.916◦. As the angular resolution α depends
on the range of the multipole moments, higher multipole moments can distinguish
smaller structures. Equation 4.6 can be used to calculate the maximal multipole
moment lmax considering Healpix resolution and limiting computing time.

α ' 180◦

l
(4.5)

lmax '
180◦

α
= 196.5 (4.6)

For a map containing 49152 pixels, a maximum multipole of 250 has been used.

As for a lower resolution, a Nside of 32 (corresponding to 12288 pixels) leads to an
angular resolution of α = 1.83◦ [22].

Transforming a signal f(δ, α) into spherical harmonic coefficients alm leads to fol-
lowing formula for the needlet power value βjk, where k is the HEALPix pixel and
j the needlet scale.

βjk :=
√
λjk

∑
l

b

(
l

Bj

)
l∑

m=−l
almYlm (4.7)
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5. Needlet Analysis of
Monte-Carlo Data

In this chapter, the needlet analysis is applied to various Monte Carlo data. Different
needlet widths B and maximum needlet scales jmax are used and the result of their
respective analysis compared. The equatorial coordinate system is used.

5.1 Monte Carlo Simulation

The following analysis was done for a full-sky exposure, which means that no cover-
age mask was applied and the sphere was uniformly weighted.

30000 events were distributed in the HEALPix skymap containing 49152 pixels, this
corresponds to an angular resolution of α = 0.916◦. The number 30000 was chosen
because it corresponds to the number of anisotropy data collected by the Pierre
Auger Observatory. 50, 100, 150 or 200 source events were randomly generated,
following a Gaussian distribution. 29950, 29900, 29850 or 29800 background events
respectively were isotropically simulated and added to the signal events.

The Monte Carlo maps were generated with a Gaussian source situated at 90◦ right
ascension (α) and −30◦ declination (δ). Different Gaussian source smearings were
simulated, namely 3◦, 6◦ and 12◦. 6◦ corresponds to the size of Centaurus A, the
nearest AGN, who is suspected to be a source of UHECRs. A smearing of 3◦(12◦) was
chosen as it is half(double) of Centaurus A’s size. As a different approach, a rougher
binning of the HEALPix map was set up, namely 12288 pixel, which corresponds to
an angular resolution of α = 1.83◦ [22]. Table 5.1 shows the different settings.

In addition, each analysis was done with thirteen different needlet Parameters. Need-
let width B and maximum needlet scale jmax were varied. Table 5.2 shows the

number of pixels number of signal entries number of background entries smearing
49152 50 29950 3◦,6◦,9◦

49152 100 29900 3◦,6◦,9◦

49152 150 29850 3◦,6◦,9◦

49152 200 29800 3◦,6◦,9◦

12288 150 29850 3◦,6◦,9◦

Table 5.1: Different settings (resolution, intensity and smearing) used for a needlet
analysis.
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needlet width
B

maximum
needlet scale

jmax

maximum
multipole
moment l

1.7 7 69
1.8 7 110
1.9 5 47
2.0 5 63
2.1 5 85
2.15 5 98
2.2 5 113
2.3 5 148
2.4 4 79
2.6 4 118
2.8 4 172
3.0 4 242
3.1 3 92

Table 5.2: Different B and jmax parameters used in the wavelet analysis, as well
as maximum multipole moment used.

different B and j factors used, as well as the maximum multipole moment l used
in the analysis. In appendix A.2, an additional table shows the different multipole
moments used for each needlet scale.

Figure 5.1 shows the signal density distribution. A Gaussian source located at
α = 90◦ (right ascension) and δ = −30◦ (declination) with a smearing of 6◦. In this
example, 150 signal events were randomly distributed based on this distribution,
which is shown in figure 5.2. Figure 5.3 shows the same events projected in a two-
dimensional histogram.
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Figure 5.1: Signal density distribution for a Gaussian point source located at
α = 90◦ (right ascension) and δ = −30◦ (declination) with a smearing of 6◦.
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Figure 5.2: Monte Carlo signal skymap
with 150 events and a 6◦ smearing.
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Figure 5.3: Monte Carlo signal with 150
events and a 6◦ smearing, projected in a
two dimensional histogram.

To obtain a total of 30000 events in one map, 29850 background events were iso-
tropically distributed. Figure 5.4 shows the obtained map containing signal and
background entries, figure 5.5 the corresponding two-dimensional histogram.
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Figure 5.4: Monte Carlo skymap with
150 signal events, a 6◦ smearing and 29850
isotropic background events.
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Figure 5.5: Monte Carlo with 150 signal
events, a 6◦ smearing and 29850 isotropic
background events, projected in a two di-
mensional histogram.

As a comparison, figure 5.6 shows 150 entries simulated following a Gaussian distri-
bution with a smearing of 3◦ and 12◦.
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(a) 3◦ smearing.

-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
events

(b) 12◦ smearing.

Figure 5.6: 150 singal events simulated following a Gaussian distribution with a
smearing of 3◦ and 12◦.

5.2 Analysis

In a first step, the needlet analysis is applied to the skymap containing both signal
and background events. As an example, the needlet values B = 2.3 and jmax =
5 were chosen. A separation in spherical harmonics of the data was done (as the
needlet is already defined in the frequency domain), then signal and wavelet were
multiplied and transformed back into the spatial domain. Figure 5.7 shows the
procedure.

Noise
&

Signal
f(θ, ϕ)

Needlet
B, j

Multiplication
Inverse Trans-

formation

filtered
Signal:
power
βj,k

Signal

Spherical

Harmonics

Figure 5.7: Flowchart of needlet analysis, [25]. The data f(θ, ϕ) is transformed
into spherical harmonics, as the needlet is already defined in spherical harmonics.
They are then multiplied and transformed back into the spatial domain, which yields
the filtered signal f ′(θ, ϕ).

During the spherical harmonics expansion, the skymap is split into the different
needlet scales, which are shown in figure 5.8. The power βjk, with j being the scale
and k the pixel, is shown in arbitrary units (a.u.). The reconstructed source is not
visible in every needlet scale. The scales j = 4 and j = 5 are sensitive to structures
smaller than the one simulated, in these scales, only isotropic fluctuations are visible.
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As for scales j = 0 and j =1, they are sensitive to structures larger than the one
simulated. The source is clearly visible in the scales j = 2 and j = 3.

5.2.1 Significance

In a second step, the previously calculated power βjk is converted into a significance
Sjk by comparing it to isotropy. For this, 25000 MC-samples with a random number
(between 0 and 50000) of isotropic background events are simulated and afterwards
analysed with the different needlet parameters B and jmax used. For every needlet
scale, 4 random pixels out of every of the 25000 maps were taken and filled in a two
dimensional histogram in figure 5.9, histogram (a). As this analysis is done for a
full-sky exposure, it is possible to select random pixels out of every map. For every
number of entries bin, a one-dimensional Gaussian function is fitted to the power
distribution in this particular bin. Histograms (b),(c) and (d) of figure 5.9 show

mean 〈βjknoise
〉, standard deviation σjknoise

and χ2

ndf
respectively of the fit. As 30000

events were simulated in this study, only the bin corresponding to number of events
= 30000 is relevant.

To recalculate the power βjk of the needlet analysis (figure 5.8) into a significance,
the standard deviation of the Gaussian fit (figure 5.9, histogram c)) is needed.

The Significance Sjk is calculated as follows [25]:

Sjk =
|βjk − 〈βjknoise

〉|
σjknoise

(5.1)

This leads, for every needlet scale, to a skymap normalized on the corresponding
value σjknoise

.
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(a) Analysis result at needlet scale j = 0.

-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°

0.00012 0.00008 0.00004 0.00000 0.00004 0.00008 0.00012 0.00016
power β1  in a.u.

(b) Analysis result at needlet scale j = 1.
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(c) Analysis result at needlet scale j = 2.
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(d) Analysis result at needlet scale j = 3.
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(e) Analysis result at needlet scale j = 4.
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(f) Analysis result at needlet scale j = 5.

Figure 5.8: MC data sample analysed with needlet parameters B = 2.3 and jmax
= 5, split into different needlet scales. The power βjk is shown in arbitrary units.
The different needlet scales are sensitive to different sizes of sources, the simulated
source is clearly visible in the scales j = 2 and j = 3. The scales j = 0 and j = 1 are
sensitive to structures larger than the one simulated, whereas the scales j = 4 and j
= 5 are sensitive to smaller structures. In the needlet scales j = 4 and j = 5, only
isotropic fluctuations are visible.
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Figure 5.9: 25000 isotropy maps were simulated, with varying number of events.
In this study, only the bin corresponding to 30000 number of events is relevant.
In histogram a), the entries of four random pixels out of one fixed needlet scale in
every isotropy map were filled in. In every bin, a one-dimensional Gaussian χ2 fit
was performed, with histograms b), c) and d) showing the resulting mean, standard

deviation and χ2

ndf
. This example shows isotropy maps analysed with the needlet

paramters B = 2.3, jmax = 5, zeroth needlet scale.
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5.2.2 Threshold cut

As all of the needlet scales are normalized, a threshold cut is applied to select data
which is not conform with isotropy. Only values above 3 standard deviations are
kept, which (for a Gaussian distribution) corresponds to a 0.0027 probability that
these values are conform with isotropy. The threshold cut is done using the standard
deviation of the Gaussian fit on isotropic maps, as shown in figure 5.9.

The significance S∗jk is determined by the following threshold condition

S∗jk = 0 for |Sjk| < 3 (5.2)

S∗jk = Sjk for |Sjk| ≥ 3 (5.3)

(5.4)

This is applied to every scale of figure 5.8, which leads to figures 5.10.

As this analysis is designed to search for point sources of cosmic-rays in Auger SD
Data and we have no a priori information about the size of possible sources, all
needlet scales have to be taken into account. This is done by summing up the
different scales:

S∗k =
jmax∑
j=0

S∗jk (5.5)

Figure 5.11 shows the final result of this analysis with the applied threshold cut for a
map containing 150 signal events, 29850 noise events and a Gaussian smearing of 6◦.
Figure 5.12 and 5.13 show the result for a smearing of 3◦ and 12◦. In this example,
the needlet parameters used are B = 2.3, jmax = 5. For all the simulated smearing,
the source was successfully reconstructed by the wavelet analysis.
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(a) Results after threshold cut,needlet scale j = 0.
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(b) Results after threshold cut,needlet scale j =
1.

-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°

3.0 1.5 0.0 1.5 3.0 4.5 6.0
S ∗

2  in a.u.

(c) Results after threshold cut,needlet scale j = 2.
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(d) Results after threshold cut,needlet scale j =
3.
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(e) Results after threshold cut,needlet scale j = 4.
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(f) Results after thresholdcut,needlet scale j = 5.

Figure 5.10: MC data sample analysed with Needlet parameters B = 2.3, jmax
= 5, split into different needlet scales, after performing a 3σ threshold cut. The
Significance S∗jk is shown in arbitrary units. In the first two needlet scales, all pixels
are set to zero due to the threshold cut. In the scales j = 2 and j =3, the source
has been clearly distinguished from isotropy, in the two last scales j = 4 and j = 5,
isotropic fluctuations are still visible after the threshold cut.
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Figure 5.11: Result of a needlet analysis with an 3σ threshold cut. The sample
contained 150 signal events (gaussially distributed at 90◦ right ascension and −30◦

declination with a smearing of 6◦) and 29850 background events. The needlet para-
meters used for this analysis were B = 2.3, jmax = 5.
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Figure 5.12: Result of a needlet analysis
for a source with 3◦ smearing, simulated
with 150 signal events, 29850 background
events. The needlet parameters used for
this analysis were B = 2.3, jmax = 5.
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Figure 5.13: Result of a needlet analysis
for a source with 12◦ smearing, simulated
with 150 signal events, 29850 background
events. The needlet parameters used for
this analysis were B = 2.3, jmax = 5.
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5.2.3 Log-Likelihood fit

Figure 5.14 shows the reconstructed signal in a two-dimensional histogram. A log-
likelihood fit of a two dimensional Gaussian function was done to verify if the
source was reconstructed at the right position. Table 5.3 shows the result of a
Log-Likelihood Fit applied to the result of a needlet analysis with the parameters
B = 2.3 and jmax = 5, compared with the simulated location and smearing of the
source. The source has been successfully reconstructed at the simulated coordinates,
the smearing also corresponds with the simulation within the uncertainties.
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Figure 5.14: Reconstructed source with log-likelihood fit of a two dimensional
Gauss, showing the result of a needlet analysis with an 3σ threshold cut. The
sample contained 150 signal events (gaussially distributed at 90◦ right ascension
and −30◦ declination with a smearing of 6◦) and 29850 background events. The
needlet parameters used for this analysis were B = 2.3, jmax = 5. The source
has been successfully reconstructed at the simulated coordinates, with the expected
smearing.
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Simulation Reconstruction
right ascension 90◦ (91.04± 0.29)◦

declination −30◦ (−29.25± 0.29)◦

smearing 6◦ (6.38± 0.28)◦

Table 5.3: Simulation of a Gaussian source with 150 signal entries, 29850 noise
entries, compared to a Log-Likelihood fit of a two-dimensional Gaussian of the ana-
lysed sample with the needlet parameters B = 2.3, jmax = 5 or a map containing
49152 pixels. The uncertainty includes the uncertainty from the fit and the angular
resolution divided by

√
12.

5.3 Reconstruction of the simulated source posi-

tion

The reconstruction of the source position for sources with different properties has
been studied on examples. The position of the reconstructed source as well as
the smearing is studied for different resolutions. The different resolutions (49152
pixels and 12288 pixels) were compared, as well as different smearings. An average
over 500 analysed MC maps was calculated. For an example of 150 source events,
29850 noise events, figure 5.15 shows the right ascension of the reconstructed source.
For both resolutions, the reconstructed right ascension corresponds well with the
expected position of 90◦. For the declination shown in figure 5.16, the reconstructed
position also corresponds to the simulated position of −30◦. For both coordinates,
the reconstruction for both resolutions was successful.
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Figure 5.15: Reconstructed right ascension for different resolutions. For both
resolutions (49152 and 12288 pixels), the reconstructed right ascension corresponds
well with the expected position of 90◦.
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Parameters (B, jmax)
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Figure 5.16: Reconstructed declination for different resolutions. For both resolu-
tions (49152 and 12288 pixels), the reconstructed declination corresponds well with
the expected position of −30◦.

In figure 5.15 and 5.18, sources of different smearings have been successfully re-
constructed at the expected position, although for a smearing of 12◦, the spatial
reconstruction is not as precise as for the the smearings of 3◦ and 6◦. This can
be explained by the fact that 150 signal events distributed along a Gaussian with
a smearing of 12◦ leads to 150 events spread in a large area, which complicates a
precise reconstruction.

Figures 5.19 and 5.20 show the reconstructed smearing of the Gaussian source. In
figure 5.19, the expected smearing of 6◦ was not successfully reconstructed, but
rather a smearing of 8◦ to 9◦. Nevertheless, for the reconstruction of the smearing,
no significant discrepancies between the two resolutions occurred. In figure 5.20, the
reconstructed smearing of sources with a Gaussian smearing of 3◦, 6◦ and 12◦ has
been studied. Sources with a simulated smearing of 3◦ have been reconstructed as 7◦

to 8◦, whereas sources with a simulated smearing of 12◦ have been reconstructed with
approximately the expected size. The result of a wavelet analysis for a simulated
source with a smearing of 12◦ is shown in figure 5.13. This figure shows that the
Log-likelihood Fit might be over-sensitive to sources with a smearing 7◦ to 9◦. For
a simulated source with a smearing of 3◦, the wavelet analysis clearly yields a small
source, as can be seen in figure 5.12, so that it can be stated that the bad results for
the reconstructed smearing of a small source as due to the Log-Likelihood fit, and
not due to the wavelet analysis.
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Parameters (B, jmax)
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Figure 5.17: Successful reconstructed right ascension for smearings of 3◦ and 6◦.
For a smearing of 12◦, the reconstructed position of the source has higher uncertain-
ties and does not coincides perfectly with the simulated position.
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Figure 5.18: Successful reconstructed declination for the different smearings 3◦

and 6◦, although for a smearing of 12◦, the reconstructed position of the source is
not as precise as for the other smearings and has a higher uncertainty.
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Parameters (B, jmax)
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Figure 5.19: Reconstructed smearing for different resolutions. No difference in
the reconstructed smearing between the two resolutions can be seen, although the
reconstructed smearing is overestimated in all needlet scales.
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Figure 5.20: Reconstructed smearing for different smearings. For a source with
a smearing of 3◦, the reconstructed smearing has been severely overestimated in
all the needlet scales, this is a feature of the Log-Likelihood fit, not of the wavelet
analysis. The source simulated with a smearing of 12◦ has been reconstructed to
approximately the right size, but with a large uncertainty.
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5.4 Signal to Noise Ratio

The Signal to Noise Ratio (SNR) was used to compare the result of the wavelet
analysis for sources with different properties as well as for the different parameters.

SNR =
〈SBinMax

〉
〈RMS〉

(5.6)

with 〈SBinMax
〉 being the maximum significance in one bin associated to the source

in the analysed map, 〈RMS〉 being the root mean square (RMS) of the analysed
background map.

To calculate this RMS, a map containing only noise events was simulated. The exact
analysis as done to a map containing a source was done. The root mean square of
the obtained map was calculated. 500 of these maps were analysed and the mean
with standard deviation was calculated.
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Figure 5.21: Noisemap after analysis and thresholdcut, RMS = 0.618. The isotropy
map was analysed using the needlet parameters B = 2.3 and jmax = 5.



6. Results

The needlet analysis has been performed for Gaussian sources of different smearings
and various numbers of signal events. The thus created Monte Carlo maps were
analysed with different needlet coefficients B and jmax. Figure 6.1 shows the Signal
to Noise Ratio plotted against the needlet parameters.

Figure 6.1 shows the results of the different numbers of signal entries used. The
Signal to Noise Ratio is highest for maximum signal entries (200) and minimum
smearing (3◦), as naively expected.

Parameters (B, jmax)

B = 1.7, jmax = 7

B = 1.8, jmax = 7

B = 1.9, jmax = 5

B = 2.0, jmax = 5

B = 2.1, jmax = 5

B = 2.15, jmax = 5

B = 2.2, jmax = 5

B = 2.3, jmax = 5

B = 2.4, jmax = 4

B = 2.6, jmax = 4

B = 2.8, jmax = 4

B = 3.0, jmax = 4

B = 3.1, jmax = 3

S
N

R

20

40

60

80

100

120

140

160

180

Signal to Noise Ratio for different Needlet Parameters Signal Entries, Source smearing
°Signal = 200, Smearing = 3

°Signal = 200, Smearing = 6

°Signal = 200, Smearing = 12

°Signal = 150, Smearing = 3

 °Signal = 150, Smearing = 6

°Signal = 150, Smearing = 12

°Signal = 100, Smearing = 3

°Signal = 100, Smearing = 6

°Signal = 100, Smearing = 12

°Signal = 50, Smearing = 3

°Signal = 50, Smearing = 6

°Signal = 50, Smearing = 12

Signal to Noise Ratio for different Needlet Parameters

Figure 6.1: Signal to Noise Ratio for different needlet parameters B and jmax.
The SNR is best for high number of signal events and small smearing. An overall
feature can be observed for nearly all sources: for small needlet with (up to B =
2.6), the SNR is nearly in the same level. For B = 2.8, jmax = 4 and B = 3.0,
jmax = 4, a clear decrease in the SNR can be observed. The SNR rises again for the
last parameter set, B = 3.1, jmax = 3. The needlet scale j = 4 which has not been
considered for the last parameter set, causes a lot of fluctuations in the analysed
map, as well as in the analysed noise map. This leads to a higher 〈RMS〉 of the
analysed noise map, and so to a lower SNR in the bins B = 2.8, jmax = 4 and B =
3.0, jmax = 4
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Parameters (B, jmax)

B = 1.7, jmax = 7

B = 1.8, jmax = 7

B = 1.9, jmax = 5

B = 2.0, jmax = 5

B = 2.1, jmax = 5

B = 2.15, jmax = 5

B = 2.2, jmax = 5

B = 2.3, jmax = 5

B = 2.4, jmax = 4

B = 2.6, jmax = 4

B = 2.8, jmax = 4

B = 3.0, jmax = 4

B = 3.1, jmax = 3

S
N

R

20

40

60

80

100

120

140

160

180

Signal Entries, Source smearing

°Signal = 50, Smearing = 3

°Signal = 50, Smearing = 6

°Signal = 50, Smearing = 12

Figure 6.2: Signal to Noise Ratio for different needlet parameters B and jmax, for
MC-maps simulated with 50 signal events. The SNR is best for small smearing, for
a smearing of 6◦ and 12◦, no significant difference regarding the SNR is visible.
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Figure 6.3: Signal to Noise Ratio for different needlet parameters B and jmax for
MC-maps simulated with 100 signal events. Smaller smearing leads to a higher SNR.
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Figure 6.4: Signal to Noise Ratio for different needlet parameters B and jmax,
for analysed MC-maps simulated with 150 signal events. As in figure 6.3, a smaller
smearing leads to a higher SNR.
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Figure 6.5: Signal to Noise Ratio for different needlet parameters B and jmax, for
analysed MC-maps simulated with 200 signal events. A small smearing (3◦) and the
high number of signal events (200) leads to a maximum SNR.
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For higher B values, one observes a decay of the SNR. It rises again for the last
parameter set, B = 3.1, jmax = 3. The main difference between the second to last
(B = 3.0, jmax = 4) and the last parameter set is that the needlet scale j = 4 has
been omitted.

In figure 6.6, a noise sample is analysed by two different needlet parameter sets ( B =
3.0, jmax = 4, in comparison to B = 3.1, jmax = 3 ). In the first figure, considerably
more isotropic fluctuations are visible than in the second figure. This is due to the
additional needlet scale, sensitive to very small anisotropies. A higher 〈RMS〉 has
been calculated for the map containing 5 needlet scales (scale zero to scale 4) which
leads to a lower SNR.
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(a) Noise sample analysed with needlet paramet-
ers B = 3.0, jmax = 4, RMS = 0.708
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(b) Noise sample analysed with needlet paramet-
ers B = 3.1, jmax = 3, RMS = 0.409

Figure 6.6: Noise sample after analysis and threshold cut. For the needlet para-
meters B = 3.0, jmax = 4, a RMS of 0.708 is calculated for this map, whereas for
the parameters B = 3.1, jmax = 3, a lower RMS of 0.409 is calculated. The addi-
tional needlet scale (j = 4) causes additional isotropic fluctuations in the analysed
noisemap, which leads to a higher RMS and thus a lower SNR.

Comparison of the Signal to Noise Ratio for different resolutions

Figure 6.7 shows the SNR for different needlet parameters at a fixed intensity (150
signal events) for different resolutions, 49152 pixels (angular resolution: 0.92◦ ) in
comparison to 12288 pixels (angular resolution: 1.83◦). For all bins except the
one for B = 3.0, jmax = 4, no significant SNR discrepancy is visible between the
different resolutions. For B = 3.0, jmax = 4, the SNR for lower resolution is a lot
better than for higher resolution. Figure 6.8 shows analysed noise maps of different
resolution (49152 pixels and 12288 pixels). The RMS for the lower resolution is
lower compared to the higher resolution, as a lot more fluctuations can be seen in
the higher resolution map. This is due to the fact that different standard deviations
are needed for the threshold cut of these maps. Figures 6.9 show the power β for
two different resolutions. This power has been obtained out of isotropy MC-samples
containing 30000 background events. The power of each pixel (for a needlet width
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B = 2.3 and a needlet scale j = 2 shown in this example) has a Gaussian shape.
A Gaussian χ2 fit is performed on the histograms containing the power values. As
the high resolution map has a lot more pixels, but the same amount of events as
the lower resolution map, more pixels contain no events at all, which leads to a lot
more entries in the bins around β = 0 bin in the histogram. This results in a smaller
standard deviation for the isotropy MC-sample on a map with higher resolution.
The calculated significance Sjk is higher for a lower standard deviation, therefore in
the map containing 49152 pixels, more pixels survive the Sjk ≥ 3 cut. This causes
the fluctuations seen in figure 6.8 (a), which leads to a higher RMS and thus a lower
SNR for a map containg 49152 pixels as comparison to 12288 pixels.
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Figure 6.7: Signal to Noise Ratio for different resolutions. For all bins except the
one for B = 3.0, jmax = 4, no significant SNR difference is visible. For B = 3.0,
jmax = 4, the SNR for lower resolution is a lot better than for higher resolution.
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(a) Noise sample containing 49152 pixels, RMS =
0.675
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(b) Noise sample containing 12288 pixels, RMS =
0.499

Figure 6.8: Noise sample of different resolutions after analysis and threshold cut.
For a higher resolution (49152 pixels), a higher RMS is calculated than for the lower
resolution (12288 pixels). The standard deviation needed for the threshold cut of
these maps differ for the two resolutions, this is explained in figure 6.9.
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Figure 6.9: Gaussian fit on the power calculated out of MC-isotropy maps of
different resolutions. Due to the fact that 30000 events were randomly distributed
in the maps of different resolutions, the map containing 49152 pixels has a lot of
empty pixels compared to the map containing 12288 pixels. This leads to many
entries in the bin for a power of about zero in the histogram for a higher resolution
and thus a smaller standard deviation in the fit. This leads to a higher significance
Sjk in the analysed noise map an so to more pixels passing the Sjk ≥ 3 condition.
The RMS of a map containing 49152 pixels is higher than for one containing 12288
pixels, and thus the SNR is better for the low resolution map.



7. Conclusion

In this Bachelor thesis, the wavelet analysis was successfully used to find anisotropies
in maps generated by Monte Carlo. One Gaussian source of varying intensity and
smearing was simulated and isotropic noise was added, in maps with 49152 (angular
resolution: 0.92◦) or 12288 pixels (angular resolution: 1.83◦). An analysis using the
needlet wavelet was applied to the simulated maps, separating the MC-data into
different needlet scales. The needlet analysis yielded a power βjk in arbitrary units,
which was converted into a significance Sjk by comparing the resulting power of the
analysed map to the one of maps containing isotropy. Furthermore a threshold cut
was applied to the significance, setting all pixels to zero whose entries are within 3σ
conform with isotropy, yielding the significance after the cut, S∗jk. As the different
needlet scales represent sensitivities to anisotropies of different scales, and for a
study on real data no a priori information about the size of the possible anisotropies
is known, all needlet scales are added up. The simulated source was found by this
analysis and could be clearly distinguished.

To be able to compare the result of the wavelet analysis for different parameters, the
Signal to Noise Ratio was introduced. For simulated sources having a high intensity
and a small smearing, the best Signal to Noise Ratio was calculated. As for the
different needlet parameters, it was shown that the wavelet analysis works for all
the tested parameters, whereas smaller needlet widths yield slightly better results. It
is noteworthy that higher needlet scales cause isotropic fluctuations in the resulting
map, as all needlet scales are added up and these high needlet scales are not sensitive
to the size of simulated source.

A lower resolution of the map did not cause a distinguished change for the resulting
map as well as for the Signal to Noise Ratio. For higher needlet widths and scales,
the lower resolution enhances the wavelet analysis, as less isotropic fluctuations are
present in the higher needlet scales.

In a further study, it might be interesting to look at the different needlet scales
instead of summing them up. For a knows size of an astrophysical object suspected
to emit ultra high energy cosmic rays, the one needlet scale sensitive to this size
could only be considered.
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A. Appendix

A.1 List of abbreviations

AGN Active Galactic Nucleus
AERA Auger Engineering Radio Array
AMIGA Auger Muon-detectors and Infill for the Ground Array
CMB Cosmic Microwave Background
FD Fluorescence Detector
GRB Gamma-Ray Burst
HEAT High Elevation Auger Telescope
PMT Photomultiplier tube
SD Surface Detector
SNR Signal to Noise Ratio
UHECR Ultra-High Energy Cosmic Ray
WMAP Wilkinson Microwave Anisotropy Probe

A.2 Multipole moments used for different needlet

parameters
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