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Abstract

This thesis describes the determination of the recovery time of di�erent silicon photo-
multipliers. The experimental setup uses two LEDs to �rst �re all the pixels of the SiPM
and then probe the recovery process with a second identical light pulse. The SiPM re-
covers with an exponential process with two time constants. The recharge of the pixels
attributes to the dominating fast time constant and the recharge of the bulk attributes
to the slow time constant, which dominates the tail of the recovery. The pixel recovery
time is approximately between 7 ns and 50 ns and is smaller for small pixel sizes. The
bulk recovery time is between approximately 100 ns and 200 ns and is more dominant for
a large pixel size. An increase of the recovery time as a function of the overvoltage has
been observed.

Zusammenfassung

Diese Arbeit beschreibt die Bestimmung der Erholungszeit von verschiedenen Silizium-
Photomultipliern. Der experimentelle Aufbau benutzt dazu zwei LEDs, um erst alle
Pixel des SiPMs auszulösen, um dann mit einem zweiten, identischen Lichtpuls den Er-
holungsvorgang des SiPMs zu untersuchen. Der Erholungsprozess des SiPMs folgt einem
exponentiellen Modell mit zwei Zeitkonstanten. Die schnelle und dominierende Zeitkon-
stante kann dem Au�adevorgangs der einzelnen Pixel zugeordnet werden. Die langsame
Zeitkonstante dominiert die letzten 10% der Erholung und kann dem Au�aden des SiPM-
Substrats zugeordnet werden. Die Pixel-Erholungszeit liegt zwischen ungefähr 7 ns und
50 ns und nimmt mit kleiner werdenden Pixelgröÿen ab. Die langsame Erholungszeit liegt
zwischen ungefähr 100 ns und 200 ns und hat einen gröÿeren Ein�uss auf die Erholung
bei groÿen Pixeln. Die Erholungszeit nimmt mit steigender Betriebsspannung des SiPMs
zu.
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1. Introduction

Photodetectors play a crucial role in many particle physics experiments as light is of-
ten used for an indirect measurement of primary high-energy particles. When a particle
passes through matter there are several processes which emit light. For instance there
is scintillation which is often used by particle detectors at particle accelerators. Nu-
clear medicine imaging uses scintillators and photodetectors as well in positron emission
tomography (PET).
Photodetectors are used to measure Cherenkov radiation by many astroparticle physics

experiments, e.g. the Pierre Auger Observatory and the IceCube Neutrino Observatory.
The Pierre Auger Observatory uses also photodetectors for a �uorescence telescope, which
observes cosmic ray induced air showers.
Another example is transition radiation which is often used to distinguish between

di�erent primary particles as for example by the Transition Radiation Detector (TRD)
of the Alpha Magnetic Spectrometer (AMS-02) on the ISS.
Therefore, developing and understanding photodetectors is crucial for experimental

particle physics, In this thesis I will investigate the relatively new Silicon Photomultiplier
(SiPM), which is a small and high gain photodetector for small light �uxes, which is
meant to partly replace the well-established photomultiplier tubes (PMTs). The goal of
this thesis is to determine the recovery time of silicon photomultipliers.

1.1. Introduction to Semiconductor Photodetectors

There are several books and papers which give a thorough introduction to semiconductor
physics and detectors and which were used as references for this section [1, 2, 3, 4, 5].
A silicon photomultiplier is made of doped silicon, as the name indicates, and belongs

therefore to the class of a semiconductor photodetectors. Although there is a wide range
of semiconductor photodetectors, they all have the same basic functionality, so the physics
of light detection with doped semiconductors will be brie�y explained �rst.
Pure semiconductors have a band gap of approximately 1 eV between the valence band

and conduction band. By doping the semiconductor a new energy level is created inside
the band gap. For an n-type semiconductor the new energy level of the donators is close
to the conduction band, so a small energy of approximately 25 meV (e.g. thermal energy)
is su�cient to excite electrons into the conduction band. For a p-type semiconductor
the newly introduced energy level of the acceptors is close to the valence band, so ex-
citation into the acceptor band creates holes in the valence bands, which account for
the conductance. The Fermi energy level of an unbiased semiconductor lies between the
donor and the conduction band for an n-type semiconductor and between the acceptor
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1. Introduction

and the valence band for a p-type semiconductor. When joining an n-type and p-type
semiconductor to form a p-n-junction the Fermi energy level of the two semiconductors
has to be the same, so the n-type semiconductor has a lower level of the valence and
conduction band compared to the p-type semiconductor. This induces a concentration
gradient of electrons and holes, which causes di�usion. This creates a depletion zone and
an electric �eld, which opposes the di�usion process, so an equilibrium with a di�usion
potential ϕB ≈ 0.7 V is reached. Figure 1.1 shows the bent valence and conduction bands
as a consequence of a constant Fermi energy.
Such p-n junctions are used in most semiconductor devices such as diodes and transis-

tors. The photodiode is probably the most simple semiconductor photodetector and the
basis of more sophisticated semiconductor photodetectors. The basic photodiode consists
of a p-n-junction with a large but thin depletion zone. When the depletion zone is struck
by a photon of su�cient energy an electron is excited, thus creating an electron-hole pair.
Due to the di�usion potential ϕB, the electron moves to the cathode and the hole to the
anode and produces a photocurrent instead of recombining.
One characteristic property of photodiodes is the quantum e�ciency η. The quantum

e�ciency is the ratio between the number of generated electron-hole pairs, which reach
the anode and cathode without recombining, and the number of incoming photons, which
hit the depletion zone.
The p-i-n photodiode is a widely used special case of the p-n photodiode. It has a

lightly doped intrinsic semiconductor between the p- and n-doped area, so there is a p-i-n
junction. To optimize the quantum e�ciency and frequency response the width of the
depletion region can be adjusted with the intrinsic layer.
Photodiodes can be used in di�erent operation modes. In the photovoltaic mode the

photodiode is operated with zero bias voltage to achieve low noise and maximum energy
e�ciency. A popular example for this kind of device is the photovoltaic solar cell, which

A C

Figure 1.1: Band structure for p-n junction diode at zero bias. Original picture has been
taken from [6], I have added the diode at the bottom.
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1. Introduction

is basically just a large-area p-n junction.
The photodiode can also be reverse biased to increase the width of the depletion zone,

which decreases the capacity of the depletion zone. An increase of the depletion zone
width results in a higher transit-time of the electron-hole pairs so a compromise has
to be made to minimize the product of capacitance and transit-time for achieving a
fast response speed. Such high bandwidth p-i-n photodiodes are ubiquitous in optical
communication, which drives todays internet and information society.
A p-i-n was also used in the experimental setup to measure the light �ux as explained

in section 2.6.2.
All the described kinds of photodiode have a gain of 1 (i.e. no gain), therefore a high

light �ux and very sensitive electronic equipment is required for light detection. So for
a measurement setup, which is sensitive to a few photons, an internal high gain of the
photodetector is required. An internal gain can be activated by applying a high reverse
bias voltage below the breakdown voltage of the diode. The resulting high electrical �eld
accelerates the electrons and holes, which hit other electrons and holes and excite them
to the conduction band, thus ionizing the semiconductor and creating new electron-hole
pairs. The new electron-hole pairs are accelerated as well and increase the ionization
rate, so the number of charge carriers increases exponentially. This process is called
avalanche multiplication, hence such diodes are called avalanche photodiodes (APD).
The noise increases rapidly with the overall multiplication factor M , thus the highest
signal-to-noise ratio is reached by only M ≈ 10 [1]. However, a gain of 100 to 1000 is
possible by increasing the reverse bias voltage. Despite the internal gain of APDs, they
still need to be hit by about 20 photons simultaneously for a detectable light pulse [3].
When the reverse bias voltage is increased beyond the breakdown voltage, the produced

avalanche extends over the whole depletion layer, so the p-n junction becomes conduct-
ing. Thus, the diode current rises fast resulting in a high and fast signal. A quenching
circuit is required, which reduces the bias voltage below the breakdown voltage shortly
after the avalanche to quench the breakdown [7]. The operation mode above the break-
down voltage is called Geiger-mode in analogy to the Geiger-Müller counter, hence the
avalanche photodiode becomes a Geiger-mode avalanche photodiode (G-APD) or single
photon avalanche diode (SPAD). The amplitude of the generated signal depends mainly
on the capacitance of the G-APD, as an avalanche discharges the G-APD. Thus every
primary photoelectron is ampli�ed by the whole charge of the G-APD, which results in a
gain of 106 to 107 [8]. Like a Geiger counter, such devices are binary and can only give a
signal whether one ore more photon has hit the diode. So for counting photons an array
of G-APDs is needed, which leads us to silicon photomultipliers (SiPM) or multi-pixel
photon counters (MPPC). The functionality and properties of silicon photomultipliers is
the subject of the next section.

3



1. Introduction

1.2. Silicon Photomultiplier (SiPM) Description

1.2.1. Topology

A silicon photomultiplier is a matrix of Geiger-mode avalanche photodiodes connected in
parallel, which are the pixels of the SiPM. When a photon strikes a pixel it can trigger
the Geiger discharge of the G-APD, which results in a current. The currents of the pixels
add up, so the charge of the output signal is proportional to the number of simultaneously
�red G-APDs which is proportional to the number of incoming photons for small light
�uxes. For high luminosities the SiPM amplitude reaches a saturation, because each
pixel can be �red only once until it is recharged [9].
The pixels consist of a n-type silicon substrate with an p-type layer above [7]. The

typical depletion layer is very thin with about 0.7 µm, which produces the very high
electric �eld of about 5 · 105 V/cm for the Geiger discharge [10]. The pixels are connected
in parallel with aluminium stripes to read out the combined pulse, which is the sum of
all pixels. The pixels are electrically decoupled by polysilicon resistive stripes between
the pixels.
Currently most SiPMs have a size of 1 mm× 1 mm and 3 mm× 3 mm and pixel sizes

of 100 µm, 50 µm and 25 µm, which is also called the pitch of the SiPM. The actual active
pixel size is smaller than the pitch due to trenches, quenching resistors and the Al contact
grid between the pixels. The ratio between the active area and the square of the pitch is
called the geometrical �ll factor ε, which is typically between approximately 80% down
to 30%. Current SiPMs have between 100 and 14400 pixels [11].

1.2.2. Electrical Model

The SiPM is an electrical device, so an electrical model has to be developed to under-
stand the behaviour and properties of SiPMs. Several electrical models with di�erent
elaborateness have been introduced and simulated so far [12, 13, 14].
The depletion zone introduces a capacitance to the pixel as it is basically a parallel-

plate capacitor. The pixel can be regarded as a parallel circuit of a reverse biased diode
and a capacitor with the pixel capacitance Cd. When the pixel is �red, the resulting
avalanche makes the diode conducting so the capacitor is shorted and discharges.
The breakdown of the diode has to be quenched. Most of the time this is done passively

with a quenching resistor. After the discharge of the pixel capacitance, the current starts
�owing over the quenching resistor, which reduces the bias voltage Ubi at the diode below
the breakdown voltage Ubr. This stops the breakdown and the diode blocks the current
again. The quenching resistor is made of polysilicon and has a quenching resistance in
the order of Rq ∼ 100 kΩ. The quenching resistor also introduces a parasitic capacitance
Cq. The quenching capacitance increases the pulse amplitude of the SiPM by introducing
a spike component, since it is discharged during the breakdown of the pixel [13, 15].
All the pixels are connected to the bias voltage source over the bulk, which introduces

the bulk resistance Rb. In addition the bulk introduces its own parasitic capacitance, the
bulk capacitance Cb.
Figure 1.2 shows a schematic of the SiPM's electrical model.
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Ubi
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Cq
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Cq
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Cd

Signal

SiPM

Figure 1.2: Schematics for the electrical model of the SiPM

After the breakdown of the pixel is quenched, the recharge of the pixel capacitance
starts. The charging of a capacitor or rather of an RC circuit follows an exponential
function:

U(t) = U0

(
1− exp

(
− t
τ

))
with τ = R · C (1.1)

Therefore, the smaller the resistance and the capacitance, the faster the capacitor
is recharged. The parasitic quenching capacitance Cq is recharged nearly immediately,
because Rb and Cq are much smaller than Rq and Cd [15]. The pixel capacitance Cd
has to be recharged via the quenching resistor Rq. When the full SiPM is �red, the bulk
capacitance is also discharged. This introduces a second and larger time constant to the
recovery process, which is dominant in the tail of the recovery function of the SiPM.
Simulations of the electrical model of the SiPM have shown, that the pulse shape of the

SiPM mostly depends on the electrical properties of the SiPM and not on the avalanche
properties. These simulations have also con�rmed the described electrical model, as they
were able to reproduce the measured SiPM pulse shapes [16]. For instance adding the
bulk capacitance Cb to the simulations introduced a second slow time constant in the
tail of the pulses. Increasing the quenching capacitance Cq increased the pulse height
but had only a very slight e�ect on the pulse shape.
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1. Introduction

Therefore, by studying the recovery time of the SiPM one can deduce electrical prop-
erties like the pixel capacitance.

1.2.3. Properties of SiPMs

1.2.3.1. Dark Noise

The noise of a photodetector in total darkness is called the dark noise. SiPMs have a
relatively high dark noise rate of about 1 MHz per mm2 of active detector area at 25 ◦C.
The dark noise events are triggered by thermally generated free charge carriers. The
dark noise decreases by a factor of 2 for every 8 K when the SiPM is cooled down [3].
The dark noise is distributed randomly, so the probability that several pixel �re si-

multaneously is very low, even when optical crosstalk is included (see section below).
Therefore the dark noise is no issue if one sets a trigger threshold to events with several
simultaneously �ring pixels. However, this reduces the sensitivity of the SiPM, so it is not
possible to detect single photons with SiPMs, because one can not distinguish between
those single photon events, which were caused by an actual photon and those which were
caused by a thermally generated electron.

1.2.3.2. Photo Detection E�ciency

The ratio of detected photons to incoming photons, which hit the detector area, is called
the photo detection e�ciency (PDE). The photo detection e�ciency is the product of the
quantum e�ciency η, the geometrical �ll factor ε and the probability that an electron-hole
pair initiates a breakdown Ptrigger [3].

PDE = η · ε · Ptrigger

SiPMs typically have a PDE of 30% [17], which is competitive to photomultiplier tubes.

1.2.3.3. Afterpulsing

Afterpulses are caused by charge carriers, which are captured during the avalanche by
deep level traps in the depletion area. After a statistically �uctuating delay these charge
carriers are released and may trigger a new breakdown [7].
The probability of an afterpulse after a breakdown is typically about 20% and increases

with rising temperature and overvoltage [18].
Afterpulses increase the e�ective recovery time of the SiPM, as each afterpulse starts

the recovery process anew.

1.2.3.4. Optical Crosstalk

Measuring the spectrum of dark noise events shows, that for approximately 10% of events
more than one pixel �res. This is signi�cantly more than one would expect by random
coincidence. The explanation for this excess is optical crosstalk.

6
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As photons may create electron-hole pairs, the recombination of electron-hole pairs
may also create photons. Hence, every avalanche may create a number of photons which
in turn can trigger avalanches in the neighbouring cells. The probability that this occurs
is called crosstalk probability, which is approximately the aforementioned 10%.

1.2.4. Advantages and resulting possible Applications

The obvious contender of SiPMs is the well-established photomultiplier tube. The crucial
property of photo detection e�ciency is comparable with 30% for both PMTs and SiPMs,
although there are promising hints, that a higher PDE may be possible with SiPMs.
One disadvantage of SiPMs is the much higher dark noise as compared to PMTs and the
correlated noise as optical crosstalk and afterpulsing.
So in direct comparison PMTs may still seem like the better alternative at ideal con-

ditions. Nevertheless, SiPMs have a few unique advantages over PMTs.

• Una�ected by magnetic �elds: Large detectors at particle accelerators always use
a strong magnetic �eld and the operation of photomultipliers in a magnetic �eld is
problematic.

• Compact: Space is very much limited in most particle detectors and PMTs are
much larger.

• Relatively low complexity and thus cheap: In contrast PMTs are handmade and
require a vacuum inside.

• Very good timing resolution of about 30 ps.

• Relatively low operation voltage of 30 V to 70 V compared to O(kV) of PMTs.

The �rst application of SiPMs which comes to mind are the places were PMTs are not
usable due to a strong magnetic �eld and severe spatial constrains, which are particle
detectors at accelerators as for example the CMS detector at the LHC. CMS currently
uses APDs for its electromagnetic calorimeter. The disadvantage of APDs is, that they
have a threshold sensitivity of 10 to 20 photons, so triggering on faint signals as minimum
ionizing particles (MIP) is di�cult. Thus the perspective to build a new CMS muon
trigger with SiPMs for the sLHC upgrade is currently evaluated.
When upgrading the LHC for higher luminosities it is planned to possibly decrease

the bunch spacing intervals down to 12.5 ns. For a high trigger e�ciency it is crucial
that the dead time of the trigger is shorter than the time to the next event. Therefore,
a profound understanding of the recovery time of the used SiPMs is required to verify if
SiPMs are fast enough for that purpose. An exact model of the recovery process of the
SiPM could help to enhance the accuracy of the SiPM's measurements, since e�ects of
the recovery processed as a reduced pulse height could be corrected in dependance of the
time elapsed since the last event. A thorough calibration of the SiPM has to regard the
in�uence of the previous events on the measured pulse. The �rst step to achieve that, is

7



1. Introduction

the determination of a simple model for the recovery process of the SiPM including the
recovery time as a parameter of the model.
The very good time resolution of SiPMs makes it a viable photodetector for positron

emission tomography (PET) or for time-of-�ight spectrometers. For instance the nuclear
medicine group of our partner institute uses SiPMs for a time of �ight spectrometer to
determine the cross section of proton and carbon scattering [19].
A group at our institute is developing a prototype �uorescence telescope which uses

SiPMs for the detection of cosmic-ray-induced air showers at the Pierre Auger Observa-
tory. This also requires an as short as possible recovery time, because a shower evolves
over a longer period of time during which the SiPM must not be saturated [20].

8



2. Experimental Setup

2.1. Idea

The recovery time of the SiPM is measured by �rst blinding it with a light pulse and then,
after a variable time delay, �ashing it with an identical probing light pulse. By measuring
and comparing the two SiPM pulses in dependance of the relative time di�erence between
light pulses the recovery process of the SiPM is investigated.
Figure 2.1 shows a block diagram of the experimental setup.

LED

L
E
D

SiPM
Integrating
Sphere

Function
Generator

Pulse

Pu
lse

SourceMeter

Ubi

Oscilloscope
Signal

Trigger

Figure 2.1: Block diagram of the experimental setup

An arbitrary function generator produces the two pulses with a variable time di�erence
∆t. The light sources are LEDs, which have the advantage of being cheap and easy to
handle. The LEDs and the SiPM are attached to an integrating sphere, which distributes
the light di�usely.
An oscilloscope measures the two SiPM pulses, which are compared for varying time

di�erences ∆t.
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2. Experimental Setup

2.2. Setup Description

I investigated the S10362 SiPMs which are developed by Hamamatsu [33]. Measure-
ments were done for SiPMs with a size of 1 mm× 1 mm and 3 mm× 3 mm with pitches
of 25 µm, 50 µm and 100 µm. I had two SiPMs of each type and therefore 12 SiPM in
total. Each available SiPM was studied to compare the results and to get a systematic
characterization of all SiPMs.
Additionally a 3 mm× 3 mm SiPM with 50 µm pitch and 3600 pixels made by Ketek

[34] is researched to get a comparison with a di�erent type of SiPM.
To identify the SiPMs I use an identi�er of the form Area, Pitch, Serial Number. So

�3× 3 mm2, 50 µm, 2888� would refer to an SiPM with an active area of 3 mm× 3 mm
and a pitch of 50 µm with a serial number of 2888. Such an SiPM would have n =
32 mm2/502 µm2 = 3600 pixels.
If not mentioned otherwise, I operate the SiPMs at the recommended bias voltage,

which equates to a overvoltage ∆V of 1.9 V to 2.5 V depending on the SiPM.
The used LEDs have a wavelength of (465± 10) nm and are manufactured by Thor-

labs [35]. At this wavelength the photo detection e�ciency (PDE) of the analyzed
SiPMs reaches its maximum, so it is easier to blind the SiPM.
The LEDs are mounted inside 1" (2.54 cm) lens tubes with matching LED mounts.

The circuit board with one serial resistor (see section 2.6) is also put inside the lens tube.
The lens tube is sealed with an end cap, in which a hole for a Lemo plug is milled.
For producing di�use light with both LEDs I used an integrating sphere. This is a

sphere with a di�use re�ective inner surface and four ports. The light enters at one
port and is di�usely re�ected until it hits any port. I attached the two LEDs at the
opposing ports and mounted the SiPM to the upper port. The spare port can be used
for an additional light sensor which can measure and monitor the light �ux inside the
integrating sphere (see section 2.6.2). The used integrating sphere IS200-4 is made by
Thorlabs [36]. It has a diameter of 2" (5.08 cm) and has a re�ectivity of approx.
99% for most wavelengths. The ports of the integrating sphere have a diameter of 0.5"
(1.27 cm), so a 0.5"-to-1" adapter is used to attach the LED tubes and the SiPM to the
integrating sphere. The SiPM mounts for the two SiPM sizes were made by the workshop
of our institute and have a diameter of 1" to be compatible with the lens tubes.
As a light sensor the calibrated p-i-n photodiode S9195 by Hamamatsu [37] is used,

which has an active area of 5 mm× 5 mm. (See sections 2.6.2 and 2.7 for more details.)
The pulses are generated by the AFG3252 arbitrary function generator by Tektronix

[38], which allows full control over the pulse shape and the time di�erence between the
pulses. The AFG is programmed via USB using the USBTMC Linux kernel driver. (See
section 2.3 for more details.)
As a voltage source for the bias voltage of the SiPM the SourceMeter 2400 by Keith-

ley [39] is used. As this device provides also high precision measurements of the supplied
current, it is used for the measurement of the characteristic U-I curves of the LED and
the SiPMs as well. (Compare section 2.6 and 2.8.)
For the measurements with the p-i-n photodiode, which require an even higher preci-

sion of the measured electric current, the Picoammeter 6485 by Keithley [40] is used.
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2. Experimental Setup

The SiPM pulses are measured by the LeCroy WavePro 725Zi oscilloscope [41] which
can do online pulse analysis as for example determining the pulse height or the peak-
to-peak amplitude. The communication with the oscilloscope is done over TCP/IP with
the proprietary VICP1 protocol. (See section 2.3 for more details.)
Figure 2.2 shows a photo of the experimental setup including the used devices.
Ideally I would have done the measurements in a temperature controlled environment,

because nearly all properties of SiPMs show a strong temperature dependance, which is
characteristic for any semiconductor device. Unfortunately this was not possible in our
laboratory, so there is a systematic e�ect of the temperature in all measurements. All
measurements were done at a temperature between 22 ◦C and 30 ◦C.

Figure 2.2: The experimental setup including the used devices

2.3. Data Acquisition

2.3.1. Communication with the Devices

The WavePro 725Zi oscilloscope provides an Ethernet interface for remote control. The
communication uses the proprietary VICP protocol by LeCroy, which is implemented
on top of TCP/IP. I implemented the VICP protocol as a new module in LibLAB.

1VINES2 Internet Control Protocol
2Virtual Integrated NEtwork Service

11



2. Experimental Setup

LibLAB is a laboratory software framework which is developed at our institute with
the purpose of collecting source code for the control and operation of laboratory devices.
It provides a similar API for di�erent devices and encourages code reuse for related
devices. Following this philosophy the implementation of the VICP module allows using
it with any device which supports the VICP protocol.
Unfortunately the WavePro 725Zi provides only a very limited set of commands for

remote control. For more sophisticated features of the oscilloscope one has to use the
provided Visual Basic API on the device. Fortunately there is a remote control command
for sending Visual Basic code to the oscilloscope, which is then executed on the device. In
this way there is granular access to the state of the device in an object-oriented manner.
The AFG3252 function generator is controlled over the USB Test and Measurement

Class (USBTMC) interface. The USBTMC standard speci�es the communication with
measurement devices via USB, so the communication with any device which implements
the USBTMC speci�cation can be done with the same driver. Here the USBTMC Linux
kernel driver is used for communicating with the function generator. This driver provides
a device under /dev/usbtmc, which can be read and written like any regular �le.

2.3.2. Description of the Measurements

The measurement starts with setting up the arbitrary function generator. The function
generator is set to burst mode with a trigger interval of 1 ms, i.e. every 1 ms the pro-
grammed waveform is emitted and an external trigger is sent. Both output channels are
programmed to emit the desired pulse shape, but they are set to a di�erent trigger delay
so that the second pulse comes delayed.
The measurement of the SiPM pulses by the oscilloscope is triggered externally by the

arbitrary function generator to minimize trigger jitter. The pulses are analyzed in real
time by the oscilloscope and the absolute pulse height, the peak-to-peak amplitude and
the area under the pulse is measured and saved in a histogram.
Each iteration of the measurements starts with setting the trigger delay of the function

generator's second output channel to change the time di�erence between the two pulses.
This variation of the time di�erence is done with a cubic scale, so I get more data points
for smaller time di�erences than for large time di�erences. I expect that the second pulse
changes faster at small time di�erences, because I expect an exponential recovery of the
SiPM. By default the measurement starts at ∆t = 1000 ns and ends at ∆t = 5 ns.
Then the oscilloscope collects statistics of the above described values for a con�gurable

amount of time. For most measurements that time was set to two seconds, which results
in approximately 200 analyzed pulses. With a pulse trigger rate of 1 kHz one would
rather expect 2000 measured pulses, but apparently the oscilloscope has a dead time of
about 10 ms.
The pulse measurements are done for both pulses, by changing the trigger delay of the

oscilloscope to the time di�erence of the two pulses. After the measurements the mean,
the standard deviation and the number of measurements of each measured value is read
over Ethernet and written to a �le together with the set time di�erence of the pulses.
Additionally the histograms of the values are saved, so that I can verify the distribution

12



2. Experimental Setup

of an outlying data point later. This process is repeated until the two pulses become
indistinguishable.
Beside the sweep of the time di�erence I also save a con�gurable amount of raw wave-

forms of the SiPM pulse for doing a more sophisticated pulse analysis later, as for example
a �t to the tail.
This whole measurement can be repeated n times to accumulate more statistics and

to obtain an empirical statistical error.
The oscilloscope allows to de�ne gates for the online pulse analysis. These gates restrict

the range in which the measurement is performed. Since I know where the pulse will
be located and can set the trigger delay of the oscilloscope accordingly, I can de�ne a
gate in which the pulse maximum will be located. This prevents errors and allows a
better measurement of the second pulse, when it moves into the tail of the �rst pulse and
becomes nearly indistinguishable from the �rst pulse. Of course any pulse measurement
method needs a di�erent gate, i.e. the peak-to-peak measurement needs a gate which
includes the start of the peak and the peak maximum, while the absolute pulse height
measurement should just include the peak maximum.
As intended, the gates have an in�uence on the results of my measurements. Since

the choice of the gates is ambiguous, this choice induces a systematic uncertainty to my
measurements. To estimate this uncertainty I carry out multiple measurements with
di�erent gate setups. Later a separate analysis is done for each of the gate setups and
the resulting values are compared to estimate the systematic e�ect of the gate setup.

2.4. Arbitrary Function Generator Performance

2.4.1. Bandwidth

As I want to produce as short pulses as possible, it is necessary to understand the
bandwidth limit of the function generator. The bandwidth of a device or a circuit is
usually de�ned as the frequency at which the attenuation of the signal reaches 3 dB for
a harmonic signal.
For the measurement of the bandwidth I con�gured the function generator to output

a sine signal with a given frequency. This signal is measured by the oscilloscope which
determines the amplitude of the signal and saves it into a histogram. Then the frequency
of the signal is increased and for each frequency the measured amplitude and its standard
deviation is saved. The used oscilloscope has a very high bandwidth of 2.5 GHz, so the
e�ect of the oscilloscope's bandwidth on the measurement is negligible.
The frequency response of a system is usually visualized in a so called Bode plot as

shown in �gure 2.3. In this plot the logarithmic attenuation in dB is plotted against the
frequency of the signal in a logarithmic scale.
The measured bandwidth is (262.0± 0.1) MHz. The error was determined by repeating

the measurement �ve times and computing the statistical error on the mean. The man-
ufacturer speci�es the bandwidth of the function generator as 240 MHz, so the measured
value is a bit higher.

13
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This measurement shows, that pulses with a width of approx 250 MHz−1 = 4 ns should
be possible, if a steep edge is not necessary.
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Figure 2.3: Bode diagram of the arbitrary function generator. The measured 3 dB band-
width is (262.0± 0.1) MHz, which is a bit higher than the speci�ed bandwidth of 240
MHz.

2.4.2. Pulse Generation

As shown in section 2.4.1 the limited bandwidth of the function generator becomes an
issue when generating nanosecond pulses. At a pulse width of approx. 5 ns the pulse
height starts to drop dramatically. To increase the pulse height, I start the pulses at a
baseline of +1 V. Light measurements with a p-i-n photodiode (see section 2.7) showed,
that at this voltage the LED does not yet emit light.
Figure 2.4 shows a plot of the pulse as it's saved in the arbitrary function generator.

From the baseline of +1 V the voltage goes to +4 V. The pulse width is 5 ns and after this
time the voltage drops to −1 V. These reverse bias voltage is used, to inhibit possible
afterpulses of the LED. After that the voltage rises very slowly back to the baseline
of +1 V. This approach uses the function generator's maximal possible peak-to-peak
voltage capability of 5 V.
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Figure 2.4: The pulse as it's set in the function generator

Figure 2.5 shows the actually created pulse of the function generator. The plot was
created by measuring 500 waveforms of the output signal with the oscilloscope and �lling
these waveforms in a 2D histogram. The measured pulse di�ers from the set pulse in �gure
2.4. It isn't a rectangular pulse with sharp edges but a rather smooth nearly sinusoidal
pulse. This is expected due to the limited bandwidth of the function generator, as the
rectangular pulse has high harmonics in its frequency spectrum. 4 V is also not quite
reached because of the short pulse width.
Additionally there are oscillations after the edges. This shouldn't be an issue though,

because these oscillations are mostly at the reverse bias voltage of −1 V and should
therefore not produce any light in the LED.
Altogether the generated pulses are su�cient for my measurements, although a shorter

and higher pulse would be preferred.

2.4.3. Time Calibration

2.4.3.1. Measurement Description

Obviously for a precise measurement of the recovery time a profound understanding of
the precision of the time di�erence between the blinding and probing pulses is required.
This time di�erence is controlled by the function generator by changing the trigger delay
of the second output channel as explained in section 2.3.2.
So a time calibration of the function generator was performed by measuring the time

di�erences between the two pulses which are used for pulsing the LEDs. As a calibrated
measurement device the oscilloscope is used, i.e. it is assumed that the time measurement
of the oscilloscope is calibrated correctly.
For this measurement both output channels of the function generator are directly con-

nected to the oscilloscope and the function generator is set up with the same con�guration
as described in section 2.3.2. The oscilloscope is con�gured to show both input channels
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Figure 2.5: Overlay of measured waveforms of the generated pulse. The waveforms are
plotted in a 2D histogram to imitate a persistence display to show the noise of the
pulse. As you can see on the small line width of the waveform, the signal has a low
noise, but there are stable oscillations after the edges. Due to the limited bandwidth
of the function generator the generated signal isn't a rectangular pulse but has a more
smooth and sinusoidal form.

and the time scale is chosen in such a way that it measures both pulses in one waveform.
Then the time di�erence between the two pulses is measured and saved into a histogram.
This measurement is done at two di�erent heights in the edge of the pulse to compare
the time stability of the pulses at di�erent heights. The whole con�guration resembles
the features of a time to digital converter (TDC).
The sweep of the time di�erence between the pulses is done in the same way as de-

scribed in section 2.3.2, with the only di�erence being that the time scale of the oscillo-
scope is changed to always measure both pulses no matter how big the time di�erence
is.

2.4.3.2. Data Analysis

A �rst plot of the set time di�erence ∆t of the AFG versus the measured time di�erence
shows a very linear behaviour with a slope of virtually one. So to make any deviation
from the linear function more visible �gure 2.6 shows a plot of the di�erence between
the measured ∆t and the set ∆t in dependance of ∆t. Every data point is the mean of
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Figure 2.6: This plot shows the di�erence between the measured time di�erence ∆t and
the set time di�erence of the function generator in dependance of the time di�erence
∆t of the pulses. Below that the histogram of the di�erence is shown, i.e. the projection
of the data. In the histogram one can clearly see the discreteness of the time di�erence
which shows the digital nature of the function generator. The mean di�erence between
the measurement and the AFG time di�erence is (−0.276± 0.003) ns, which is small
but signi�cantly di�erent from zero. Due to the digital resolution the set time di�erence
of the function generator has an uncertainty of 0.14 ns, which is su�ciently accurate
for my measurements.

about 180 measurements and the drawn errors are the statistical errors on the mean.
The plot shows that there is a signi�cant systematic discrepancy between the set

∆t of the function generator and the measured ∆t. The mean of this di�erence is
(−0.276± 0.003) ns so in later measurements with the function generator this di�erence
will be subtracted from ∆t to correct this error. The more important fact is, that the
di�erence is virtually constant, although the �t shows a slope which is contradicting to
zero but this slope is negligible and insigni�cant compared to the error due to digitization.
It is clearly visible, that the data points vary more than their statistical errors would

allow for di�erent ∆t. But they do so in a discrete manner, which implies an uncertainty
by digitization. One can set the trigger delay of the pulser with an accuracy of 0.1 ns,
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but the real output signal only changes when the trigger delay is changed by 0.5 ns.
This explains the 5 peaks which you can see in the histogram of the data. The measured
standard deviation σ = (0.143± 0.002) ns of the data also �ts extremely well the expected
digitization error which is σdig = 0.5 ns√

12
≈ 0.144 ns. Therefore the error on ∆t is σ∆t =

0.144 ns which is accurate enough for my measurements.
This measurement was repeated a few times with the same results inside the error

margins.
To determine the noise or rather the jitter of ∆t the �xed time di�erence between two

pulses was measured for a long time with 3.8 million measurements. Figure 2.7 shows
the distribution of ∆t with a �t of a gaussian. As you can see the histogram resembles
extremely well a gaussian distribution with a standard deviation σ = (0.0206± 0.0001) ns
which is negligible compared to the standard deviation due to the digitization of the
function generator. Additionally the digitization of the oscilloscope is not visible which
is not unexpected at a remarkably high sampling rate of 40GS/s.
This measurement shows also that pulses of the function generator are very stable over

a long period of time.
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Figure 2.7: This histogram shows the distribution of the time di�erence ∆t between two
pulses as measured by the oscilloscope. As the �t shows, the data �ts to a gaussian
model even with very large statistics. The time di�erence is also stable over a long
duration as the measurement lasted over an hour.
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2.5. SiPM Readout

The SiPM is connected to the circuit described in �gure 2.8. The applied bias voltage
is �ltered with a π-�lter for getting a smooth DC signal without distortion from other
power supplies at 50 Hz. The circuit for getting only the AC signal of the SiPM by
capacitative coupling is suggested by Hamamatsu in their data sheets [11].

UB
+

210Ω 100Ω 10kΩ SiPM 100nF

Signal

100nF 100nF 100nF 100nF 50Ω

π Filter Hamamatsu Circuit

Figure 2.8: Schematic diagram of the circuit for operating the SiPM. The purpose of the
π-�lter is to �lter distortions with about 50 Hz from the applied bias voltage from and
the Hamamatsu circuit provides the SiPM signal with capacitative coupling to only
get the AC signal.

The cables for the bias voltage and the SiPM signal are connected with Lemo connec-
tors, which are soldered to the circuit board. The whole circuit is wrapped in aluminium
foil to provide electrical shielding against distortions.
No ampli�er is used, because the blinded SiPMs provide pulse heights from 25 mV to

1000 mV depending on the SiPM size and number of pixels. This amplitude is su�cient
for our oscilloscope which has an 8-bit resolution on a minimal range of 10 mV. Without
any ampli�er there aren't any of the usual problems with shifting baselines or a low
bandwidth of the ampli�er. Measurements of the bandwidth of the used circuit showed
a bandwidth of approximately 500 MHz [21], hence there isn't any systematic e�ect on
the recovery time due to the used circuit.
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2.6. LED Characteristics

2.6.1. Characteristic I-V Curve

For achieving nanosecond pulses, the LED circuit needs a high bandwidth and thus every
electrical component needs to be terminated properly. Electrical termination means, that
the impedance of our circuit is matched by a resistor to prevent interference of the pulses
by signal re�ection. As described by the Telegrapher's equations the signal re�ections
disappear if the impedance of the termination resistor is the same as the impedance of
the circuit.
Unfortunately I didn't have the equipment to measure the complex impedance of our

LED, so measuring the resistance of the LED for di�erent applied voltages had to su�ce.
I made a sweep of the applied voltage and for each voltage the electric current was
measured �ve times to get an estimate of the statistical errors by calculating the standard
deviation of the measured values. This measurement was performed with the sourcemeter
[39].
To get the resistance R of the LED in dependance of the applied voltage and current,

R = dU
dI is calculated by deriving the data numerically. Figure 2.9 shows the measured

resistance in dependance of the applied voltage. The resistance shows an exponential
behaviour, as one would expect for an LED. As you can see, 18 Ω is a realistic working
point of the LED. As expected, the resistance of the second used LED shows the same
characteristic curve.
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Figure 2.9: Resistance of the LED as function of the applied forward bias voltage. The
resistance was calculated by numerical derivation of the characteristic I-V curve.
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As a compromise of a minimal total resistance and an ideal terminator resistor I use
a resistor with R = 18 Ω as a passive terminator of the LED by connecting this resistor
in series to the LED. The measured physical resistances of the used components are
(18.2± 0.1) Ω and (18.1± 0.1) Ω. This compromise provides both su�cient luminosity
and prevents any signal re�ections, as shown later in section 2.6.2.
These resistors are soldered on a circuit board with connectors for the LED and the

signal. The circuit board is put inside the lens tubes and is connected to the signal plug
in the end cap and to the LED in the LED mount on the other side. You can see a photo
of the attached LED tube in �gure 2.2.

2.6.2. Pulsing

2.6.2.1. Light Flux

To check if it is possible to blind the SiPM (i.e. to �re almost all pixels) with my setup,
I measured the light �ux inside the integrating sphere to determine the average number
of photons per pulse and area.
To determine the light �ux inside the integrating sphere a calibrated p-i-n photodiode

is used. A p-i-n photodiode has a p-i-n junction instead of a p-n junction with a lightly
doped intrinsic semiconductor between the p- and n-doped areas. When a photon hits
the depletion zone an electron-hole pair is created with a probability in the order of 50%,
which is called the quantum e�ciency η. Thus the light-induced current is proportional
to the light �ux Φ with I = 2 η(λ) · e ·Φ. The factor 2 takes into account, that a negative
electron and a positive hole is created by the photon. For a more thorough description
of semiconductor light detectors see section 1.1 in the introduction.
The p-i-n photodiode is operated without any reverse bias voltage and the current is

measured by a picoammeter [40]. The circuit for the readout of the p-i-n photodiode
includes a π-�lter for �ltering power-grid-induced noise at 50 Hz. The p-i-n photodiode
and the circuit board is put inside 1" lens tube and is attached to the integrating sphere
as shown in �gure 2.2.
From the measured current I calculate the light �ux by using the calibration data

supplied at 465 nm, which is the wavelength of the used LEDs. The average number of
photons per pulse and area is determined by dividing by the used pulse rate of 10 kHz
and by dividing by the area of the photo diode, which is 25 mm2.
Figure 2.10(a) shows the measured distribution of photons per pulse and area for the

�rst LED.
The average number of photons per pulse and area is n = (34.6± 1.7) · 103 mm−2 with

a standard deviation of σ = 49 mm−2. The given error is the systematic error on the
calibration of the photodiode as given by the manufacturer. The statistical error on the
mean is negligible.
The SiPMs with a pitch of 25 µm have the highest pixel density of 1600 mm−2, which is

more than one order of magnitude smaller than the photon density in the pulse. Therefore
in most cases nearly all pixels should �re, so the SiPM is blinded by the pulse.
Figure 2.10(b) shows the light �ux of the second LED, which is signi�cantly lower,
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than the light �ux of the �rst LED with n = (29.4± 1.5) · 103 mm−2 photons per pulse.
However, this is not unexpected, as the LEDs are manufactured with tolerances, so
distinct LEDs may di�er. This di�erence in the light �ux is acceptable though, as both
LEDs provide enough light to blind the SiPM.
A measurement with a pulse rate of 1 kHz yields the same number of photons per

pulse, so the amount of photons per pulse is independent of the pulse rate.
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Figure 2.10: The distribution of the number of photons per pulse and area measured by
a p-i-n photodiode. The mean light �ux of the two LEDs di�ers signi�cantly but both
LEDs produce enough light for my purpose.

2.6.2.2. Coupling between LED and SiPM

When a small SiPM (1 mm× 1 mm, 100 µm pitch) with a small output amplitude is used,
large distortions of the SiPM pulse become visible. These oscillations in the pulse are
stable for thousands of pulses, as you can see in the persistence display in �gure 2.11,
which implies that these distortions are not an e�ect of statistical noise but rather a
systematic oscillation.
The reason for this distortion is the electrical coupling between the LEDs and the SiPM.

Apparently the LEDs emit, besides the light, an electromagnetic wave at approximately
300 MHz which is picked up by the SiPM. Basically the LEDs and the SiPMs are antennas.
The above hypothesis was tested and proven by taping a patch of black felt in front of

the SiPM, so that no light could hit the SiPM but the electromagnetic signal could still
transit through the felt. The measured signal was just the above showed oscillations on
the pulse without the actual pulse. As expected, I got the same signal, when I set the
bias voltage of the SiPM to zero, so the pixels of the SiPM didn't �re anymore but the
SiPM was still an antenna.
The solution for inhibiting the electrical coupling between the LEDs and the SiPM

was to put the LEDs outside the dark box and to transport the light by an optical �ber.
A �ber with a big diameter of 1 mm [42] was connected to the lens tubes of the LEDs
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Figure 2.11: Waveform of a pulsed 1 mm× 1 mm, 100 µm pitch SiPM. With low ampli-
tude the oscillations due to electric coupling between the LED and the SiPM become
visible.

and to the integrating sphere with compatible adapters. With this setup, the distortions
disappeared as expected. Unfortunately the �ber reduces the light �ux by a factor of
30± 1 as a measurement with the photodiode showed. This light �ux isn't su�cient
anymore to blind the big SiPMs with high pixel densities. However, the pulses are bright
enough to blind the small SiPM, which also shows the largest distortions. Hence only a
few measurements could be done using the �ber.
A number of measurements were done to compare the measurements of the recovery

time with and without �ber to determine the e�ect of the distortions on the recovery
time. These measurements showed, that the distortions do not a�ect the recovery of
the SiPM. They only increase the di�culty of the data analysis a bit, as they induce
systematic discrepancies to the expected exponential model. These measurements will
be discussed more thoroughly later.
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2.6.2.3. LED Pulse Shape

It is important, that there isn't any post-pulse oscillation in the light pulse, as these
additional photons could �re pixels on the SiPM and thus disturb the SiPM's recovery
process. This would lead to a systematic increase in the measured recovery time.
The �rst idea was to measure the pulse shape of the LED directly with the p-i-n

photodiode and the oscilloscope. Unfortunately the oscilloscope is not sensitive enough
to measure the tiny currents of the photodiode on such short timescales.
So the alternative idea was to measure the pulse shape of the light pulse with a SiPM

using a �lter to attenuate the light. The used �lter absorbs 50% of the light. In addition
the light is transmitted over a �ber, to minimize the electrical distortions in the pulse,
as explained in section 2.6.2.2.
A 3 mm× 3 mm SiPM with 3600 pixels is used. With the full light pulse the pulse

height for this SiPM is 513 mV. After attenuating the light pulse with the �ber and the
�lter, the measured pulse height is 112 mV, so approximately 20% of the pixels of the
SiPM are �red. If there is any afterpulsing or correlated noise due to the light pulse, the
SiPM should still be sensitive enough to measure this.
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Figure 2.12: Attenuated light pulse measured with a 3 mm× 3 mm SiPM with 50 µm
pitch. About 20% of the pixels �red. The smooth tail of the pulse shows, that there
isn't any correlated afterpulsing or noise in the light pulse.
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Figure 2.12 shows the measured SiPM pulse. The pulse shape is smooth and there
aren't any oscillations or spikes as in �gure 2.11. The random noise is relatively high,
but this is mostly due to the lower signal and because the SiPM is sensitive to the random
number of photons per pulse.
The conclusion from this measurement is, that the LED produces sharp light pulses

without any post-pulse oscillations and the recovery of the SiPM is not disturbed by
additional light. The distortions in �gure 2.11 are only due to electrical coupling between
SiPM and LED.

2.6.2.4. SiPM Saturation

Another question was, if the light pulse was really bright enough to �re all pixels of
the SiPM, as estimated before. To test this, I attached the LEDs and the 3 mm× 3 mm
SiPM with 25 µm pitch directly to the integrating sphere. Then I slowly reduced the pulse
height of the function generator while measuring the SiPM pulses with the oscilloscope.
The measured SiPM pulse height stayed virtually constant, until reducing the pulse

height by approximately 200 mV. When I further reduced the pulse height, the pulse
height of the SiPM changed dramatically in an exponential manner.
The brightness of the LED changes approximately exponential with the applied voltage.

Therefore this measurement shows, that virtually all pixels of the SiPM must �re, because
reducing the amount of incoming light does not immediately change the pulse height,
which is proportional to the number of �red pixels. Only after a speci�c threshold of
light per pulse is reached, the SiPM pulse height starts to decrease with the incoming
number of photons. Thus the SiPM is saturated and blinded by the light pulses.

2.7. Light-Tightness of the Setup

My experimental setup must be light-tight, because every photon which hits the SiPM
during the recovery may cause an avalanche and thus extend the recovery process of
the SiPM. As explained before, the SiPM has an intrinsic noise rate in the order of
1 MHz mm−2. The external noise rate due to randomly distributed photons should be
well below this intrinsic noise rate, so that I can neglect the light noise.
The darkness is determined by measuring the light �ux with the p-i-n photodiode as

described in section 2.6.2. The light �ux is measured with the two LEDs and the SiPM
attached so the conditions are the same as in later measurements.
The calibration data for the p-i-n photodiode is wavelength dependant but the ex-

pected light noise is mostly caused by daylight, which has a very broad spectrum. To
deduce the light �ux from the measured current I assume that the wavelength distribu-
tion of the noise photons is uniform between 300 and 1000 nm and I calculate the mean
of the calibration factors in that range. The range of light sensibility of the p-i-n photo-
diode matches that of the SiPM, so the wavelengths for which I will underestimate the
light �ux probably won't trigger the SiPM.
The distribution of the measured light �ux is shown in �gure 2.13(a). The measured

mean is Φ = (75.6± 5.0) · 103 s−1 mm−2, which shows that light is leaking into the
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Figure 2.13: The distribution of the light �ux in the integrating sphere measured by a
p-i-n photodiode. The measurement was taken in daylight with ceiling lamps turned
on.

integrating sphere. The light probably enters through the attached SiPM and LEDs.
The measurement was taken in daylight with additional ceiling lamps turned on.
To increase the darkness of the experimental setup I put the whole setup in a cardboard

box which was sealed against light with black felt. As �gure 2.13(b) shows, the light �ux
drops below zero with a mean of Φ = (−16.9± 4.1) · 103 s−1 mm−2, which shows that
there must be a signi�cant systematic o�set in our measurement probably caused by a
systematic error of the picoammeter.
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Figure 2.14: The distribution of the light �ux in the dark box measured by a p-i-n pho-
todiode. The measurement was taken in day light with the ceiling lamps turned on.

To get an estimate to what degree the dark box darkens the setup I put the exposed
p-i-n photodiode without the integrating sphere into the dark box. Figure 2.14(a) shows
the light �ux while the dark box is open. As you can see in �gure 2.14(b), the light �ux
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is reduced by a factor of (30± 2) · 106 when the dark box is closed.
So if I naively assume, that the darkening factor of the dark box and of the in-

tegrating sphere does not depend on the light �ux, I get a rough estimate of Φ ≈
2.5 · 10−3 s−1 mm−2. However naive that estimate may be, even if it would be o� by
a few orders of magnitude, my experimental setup would still be light-tight enough to
neglect the in�uence of the light noise on the recovery of the SiPM. Therefore I assume
that my experimental setup is light-tight.

2.8. SiPM Characteristics

As explained in section 1.2.2, to determine the capacitance of the SiPM's pixels from
the recovery time the resistance Rq of the quenching resistor is required. In addition the
breakdown voltage Vbr is required to calculate the overvoltage ∆V from the applied bias
voltage.
Both values can be acquired by measuring the characteristic I-V curves of the SiPM.

Rq can be determined by measuring the resistance of the SiPM at high voltages when the
resistance of the diode of the pixels vanishes. This happens at approx. 1 V in forward
bias and at approx. 75 V in reverse bias. The breakdown voltage Vbr is determined by
measuring the voltage at which the current rises signi�cantly.
The measurement of the characteristic curves is done with the sourcemeter [39] analog

to the LED characterization described in section 2.6. The sweep of the voltage was done
from approx. −1 V to 75 V.
Because the quenching resistors are made of polysilicon, the resistance strongly de-

pends on the temperature. Additionally the breakdown voltage of semiconductor diodes
also shows a strong dependance on the temperature. Thus the whole measurement was
conducted in a temperature controlled environment at (16.0± 0.1) ◦C.
For a proper characterization of the SiPM an actual measurement of the (complex)

impedance would be required. For this one would need an AC voltage source with high
voltages of up to 80 V. Unfortunately such equipment is not available at our institute.
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3.1. Pulse Analysis

3.1.1. Introduction

Before a more thorough discussion of the systematic analysis of the SiPM pulses I want
to discuss and visualize the most important features of the SiPM pulses, especially the
probing pulse.
Figure 3.1 shows two close pulses of a completely �red 3× 3 mm2, 25 µm SiPM. The

light pulses had a time di�erence of ∆t = 50 ns and the second pulse is on top of the tail
of the �rst one.
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Figure 3.1: Two SiPM pulses with a time di�erence of ∆t = 50 ns. The second pulse is
as high as the �rst pulse, so the recovery time is mainly an e�ect of the tail of the �rst
pulse, i.e. only the peak-to-tail amplitude decreases for small ∆t.
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The plot shows a few remarkable and to some extent surprising features of SiPM pulses.
First of all, the absolute pulse height of the second pulse is about as high as the �rst
pulse. The whole shape of the second pulse resembles the shape of the �rst pulse very
much with the only di�erence, that the second pulse sits on top of the tail of the �rst
pulse.
Thus, the only pulse parameter, which is signi�cantly di�erent for the second pulse,

is the peak-to-peak pulse height or rather the �peak-to-tail� pulse height. The change in
the peak-to-tail amplitude is nearly exclusively an e�ect of the tail of the �rst pulse, since
the absolute pulse height of the second pulse stays constant. Therefore I concentrate my
further analysis on the peak-to-tail amplitude and on the tail of the pulse itself.
The whole recovery process occurs on a timescale of a few tens of nanoseconds, which

is surprisingly fast.
Another useful feature is the distinguishability of the two pulses. Even when reducing

the time di�erence of the two pulses to 15 ns, the second pulse stays distinguishable from
the �rst pulse, so triggering on that pulse might still work.
This results are already surprising, as the literature so far reports recovery times in the

order of microseconds [22, 23, 24, 3]. Additionally they report a decrease in the absolute
pulse height after the SiPM is completely �red. They even de�ne the recovery time with
the decrease in pulse height of the probe pulse.
In contrast the pulse height of the Ketek SiPM [34] reduces signi�cantly for small

∆t as you can see in �gure B.1. So the results in the literature could be explained by
di�erent or older SiPM types than the one I used [33].

3.1.2. Peak-to-Tail

As explained in section 2.3.2 the peak-to-peak amplitude of the two pulses is measured
about 200 times for every time di�erence ∆t. To analyze the recovery process I plot
the ratio A

A0
of the probing pulse amplitude A and the blinding pulse amplitude A0 as a

function of the time di�erence ∆t as shown in �gure 3.2.
One can clearly see the exponential drop in the amplitude for small ∆t. However, �tting

a single exponential function to the data shows, that the data actually di�ers signi�cantly
from the �tted function in the tail at large ∆t. The data can better be described by a
superposition of two exponential functions, with two di�erent time constants:

f(∆t) =
A

A0
− exp

(
−∆t− t1

τ1

)
− exp

(
−∆t− t2

τ2

)
(3.1)

There are �ve parameters in this model, namely τ1, τ2, t1, t2 and A
A0
.

As brie�y described in section 1.2.2 τ is the recovery time of the SiPM, as it quanti�es
in which time the amplitude recovers to a certain level. I de�ne τ1 as the smaller time
constant by initializing the �t with a small value of τ1 and a larger value for τ2. The
dominating time constant τ1 is the recovery time which corresponds to the recovery of
the pixel capacitances Cd (see �gure 1.2) and τ2 is probably the recovery time of the bulk
capacitance Cb. Simulations of the electrical model show, that the parasitic capacitance
of the quenching resistor has only a negligible e�ect on the pulse shape [16], so the two
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Figure 3.2: Peak-to-tail ratio of the blinding and probing pulse for the 3× 3 mm2, 100 µm
SiPM. Every data point is the mean of about 200 pulses. The applied �t is the
superposition of two exponential functions.

measured time constants probably correspond to the pixel capacitance Cd and the bulk
capacitance Cb.
The time parameters t1 and t2 represent both the time delay and the amplitude of the

exponential summand, because for exponential functions one cannot separate phase and
amplitude, as they are the same. However, t1 mostly accounts for the time after which
the recovery of the SiPM starts.
The time constant t2 acts more as an amplitude, as it is the reason that τ2 is only

dominant in the tail of the recovery, where the �rst summand is already converging.
Hence the �rst summand with τ1 is responsible for about 90% of the SiPM's recharge.
The smaller t2, the smaller is the in�uence of the second term.
The parameter A

A0
is the ratio of the peak-to-peak amplitudes when the SiPM is fully

recovered. Ideally this would be 1, but as shown in section 2.6.2.1, the two LEDs don't
emit the same light �ux, so I expect a slight di�erence in pulse amplitudes of the SiPM.
The discrepancy between this parameter and 1 is small (approximately 1%), which is
another proof that the SiPM is nearly completely �red.
For ∆t smaller than 50 ns the data deviates too much from the exponential model,
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because the second pulse moves into the shoulder of the �rst pulse. The SiPM pulse
shape will be discussed in section 3.1.3.
Example plots of the peak-to-peak data with �t of every SiPM model are shown in the

appendix in �gure B.2 to B.8.
Almost every �t results in a χ2/ndf > 1, which shows that there are greater deviations

from the �tted model as the statistical errors would allow. The residual plots show nearly
the same systematic deviations for each measurement due to a systematic oscillation in
the SiPM pulses. These distortions of the signal are an e�ect of the coupling between the
LED and the SiPM, as explained in section 2.6.2.2. Because the distortions are mostly
symmetrical, they should only have a slight e�ect on the �t results, as the �t averages
them out.
I suspected that the errors on the �t parameters are underestimated due to the too

large χ2. To collect more empirical evidence of the statistical standard deviation of the
�t parameters I repeated every measurement and the corresponding analysis 10 times.
Then the weighted mean of each �t parameter is calculated and both the error of the
weighted mean and the standard deviation of the 10 �t parameters are computed.
Table A.1 in the appendix shows the weighted mean and errors of all �t parameters.

The �t parameters of measurements with the same con�guration spread more than the
statistical errors would allow i.e. there are a number of measurements which deviate
by more than 5σ. However, on a short timescale the spread of di�erent measurements
is always within the expectation of the statistical deviation, as the mostly matching
values in the columns σstat and σfit show. But when the measurement with the same
con�guration is repeated on the next day, I often observe recovery times which di�er by
several σ from the previously measured value. This is most probably due to changes in
temperature, which varies on a larger timescale.
Section 3.4 shows an overvoltage dependance of the recovery time. The overvoltage

strongly depends on the temperature, because the breakdown voltage itself is dependant
on the temperature [25]. Hence, a temperature dependance of the recovery time is
expected and further measurements in a temperature controlled environment are needed
to quantify this dependance.
Therefore each result in table A.1 has to be regarded as a measurement at di�erent

conditions. The given recovery times are correct within their errors, but the exact con-
ditions in which the SiPMs have this recovery times are unknown. Therefore I can only
give a range for the recovery time of each SiPM type, as listed in table 3.1. Additionally
the mean statistical error of the recovery time is given, so one can see that the range of
determined recovery times spans over several σ.
As expected, the pixel recovery time τ1 decreases with smaller pixel sizes, because the

capacitance of the pixel decreases with the area. However, the area of the pixel changes
by a factor of 4 between di�erent SiPM types while the recovery time only decreases by
a factor of approximately 1.8 to 2.5. Additionally the relative di�erences in the recovery
time are larger for the 1× 1 mm2 SiPMs. Another surprise is the higher pixel recovery
time of the 3× 3 mm2 SiPMs, as both SiPM sizes have the same pixel size. This implies,
that either the quenching resistance Rq increases for smaller pixel sizes or the naive model
of a simple capacitor does not correctly describe the pixel capacitance.
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SiPM Type τ1 (ns) στ1 (ns) τ2 (ns) στ2 (ns)
min − max min − max

1× 1 mm2, 100 µm 37.5 − 44.7 1.3 115 − 203 17
1× 1 mm2, 50 µm 13.5 − 14.1 0.1 79 − 111 8
1× 1 mm2, 25 µm 7.6 − 8.8 0.1 41 − 144 14
3× 3 mm2, 100 µm 46.2 − 48.9 0.1 217 − 236 3
3× 3 mm2, 50 µm 19.1 − 19.8 0.1 96 − 129 3
3× 3 mm2, 25 µm 11.1 − 12.0 0.1 86 − 154 21

Ketek 3× 3, 50 µm 83.0 − 83.7 0.1 451 − 482 15

Table 3.1: Summary of measured recovery times of di�erent SiPM types. A range of
recovery times is given, because the recovery time changes with the temperature. The
given range is the recovery time for a temperature between 22 ◦C and 30 ◦C. This table
is the summary of table A.1 in the appendix.

The bulk recovery time τ2 is a little larger for the 3× 3 mm2 SiPMs, but again not
even close to an expected factor of 4.
It looks as if τ2 decreases with smaller pixel sizes but the signi�cance of the bulk

recovery time τ2 decreases also for smaller pixel sizes. For 50 µm and 25 µm pitches the
actual e�ect of τ2 on the tail of the recovery becomes too small, so the �t will sometimes
result in a probably too low τ2 with an also too small amplitude t2. Therefore I can't
make a statement if τ2 really decreases with smaller pitches and the values for τ2 shouldn't
be trusted too much for small pixel sizes.
The larger statistical error on τ1 for the 1× 1 mm2, 100 µm SiPM is probably due

the lower pulse height of the SiPM, which makes the measurement more sensitive to
distortions due to coupling.
Di�erent SiPMs of the same SiPM type have the same recovery times within the

systematic uncertainties due to the temperature �uctuations. This indicates, that the
tolerances of the producer are probably below 10%, so di�erent SiPMs of the same type
have similar electrical properties.
As already mentioned in section 3.1.1 the Ketek SiPM [34] has a very di�erent re-

covery process compared to the six di�erent Hamamatsu SiPMs [33]. The measured
recovery times are both higher than any of the Hamamatsu SiPM's recovery times de-
spite the small pitch of 50 µm. Additionally the large recovery time τ2 ≈ 460 ns is much
more dominant, so it takes microseconds until the SiPM is fully charged again. This
is more consistent with reports of the recovery time in literature [22, 23, 24] than the
nanosecond recovery time of the Hamamatsu SiPM.

3.1.2.1. Dependance of the Recovery Time on the Amplitude

To investigate a possible amplitude dependance of the recovery time I performed a num-
ber of measurements with di�erent light pulse amplitudes. I started with an LED pulse
amplitude of 3.0 V and increased the pulse height in steps of 0.1 V to the maximal peak-
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to-peak capability of 5 V. For these measurements the �ber was used because at low
amplitudes the distortions due to LED-SiPM-coupling became too dominant (see section
2.6.2.2). The LED pulses via �ber resulted in an SiPM pulse amplitude of 50 mV to
380 mV so 10% to 75% of the SiPM's pixels were �red.
Figure 3.3 shows the recovery time τ1 in dependance of the SiPM pulse amplitude. Each

�red pixel contributes to an increase in the pulse amplitude of about 530 mV/3600 ≈
0.15 mV under the naive assumption, that the pulse amplitude increases linearly with
the number of �red pixels. This relation is used to convert the measured pulse amplitude
to the number of �red pixels in this section.
There is a rather linear increase in the recovery time with a slope of

m = (0.0025± 0.0003) ns/pixel and the y-intercept is n = (12.8± 0.6) ns. The y-
intercept is a rough estimate for the single-cell recovery time, but a more thorough
research of single cell pulses is needed, because the slope might change drastically when
only very few pixel �re. The single-cell recovery time could be determined by study-
ing afterpulsing events and a single cell recovery time of approximately 9 ns has been
reported for a 1× 1 mm2 SiPM with 50 µm pitch [26].
The increase of τ1 could be explained by the coupling between the di�erent pixels. If

only a few pixels are �red, the charge of the not �red pixels could leak over the decoupling
resistors of approximately 500 kΩ [27], thus recharging the �red pixels faster. If nearly
all pixels are �red, the pixels have to be recharged by the voltage source and with charge
from the bulk capacitance.
The bulk recovery time τ2 is roughly constant as you can see in �gure 3.4. There is a

slight decrease in τ2 though, but this is probably not signi�cant.
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Figure 3.3: Recovery time τ1 in dependance of the SiPM pulse height. The recovery time
increases fairly linearly with the pulse height, i.e. the number of �red pixels with a
slope of m = (0.0025± 0.0003) ns/pixel and an y-intercept of n = (12.8± 0.6) ns.
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Figure 3.4: Bulk recovery time τ2 in dependance of the SiPM pulse height, which shows
that τ2 is roughly constant.
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3.1.3. Pulse Tail

The absolute pulse height of the probing SiPM pulse stays nearly constant, so the decrease
of the peak-to-peak amplitude described in the previous section is mainly an e�ect of the
pulse tail of the �rst blinding pulse. Hence, an analysis of the SiPM pulse tail should
result in the same time constants as the analysis of the peak-to-peak measurements.
The determination of the recovery time from the pulse tails has the advantage of a much
simpler experimental setup, since only a single blinding light source would be required. In
addition, the measurement can be performed very fast, because only the measurement of
a number of SiPM pulses, without a sweep of the time di�erence ∆t between two pulses,
is required. Such a measurement could be performed in under 1 ms inside a detector to
recalibrate the SiPM if the bandwidth of the front-end electronics is su�cient high.
To reduce statistical noise the mean of 200 measured waveforms is calculated for each

data point in the waveform. The superposition of the two exponential functions as written
in formula 3.1 is �tted to the tail of this average pulse. The used errors are the calculated
errors on the mean.
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Figure 3.5: Average of 200 SiPM pulses with a �t of the pulse tail. The χ2/ndf of the
�t is too large due to the systematic oscillations on top of the pulse, which are much
larger than the statistical noise.

As an example the �t of the pulse tail of the 1× 1 mm2, 100 µm SiPM is shown in
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�gure 3.5. Example �ts for the other SiPMs are shown in �gure B.10 to B.15 in the
appendix. All pulses are modulated by an oscillation, due to coupling between the SiPM
and the LED (see section 2.6.2.2). This leads to a much too large χ2/ndf , because these
distortions are systematic and stable for the duration of the measurement, so the statistic
errors on the data do not account for these distortions. The bottom plot of �gure B.9
shows a zoomed plot of the residuals, on which the systematic oscillations can be clearly
seen.
The errors on the �t parameters are underestimated due to the too large χ2, so it

is necessary to repeat the measurement and the analysis several times to determine
statistical errors. Table A.2 in the appendix shows a collection of �t parameters for
di�erent SiPMs and di�erent �t ranges. The given �t parameters are the mean of 10
di�erent measurements and �ts. The given statistical errors are the errors on the mean.
Unfortunately τ2 could not be determined for 3× 3 mm2, 100 µm SiPM, because the

measurement gate was too short, so the tail of the waveform was missing.
The choice of the �t range has a strong e�ect on the results of the �t. The �t range was

chosen such that the deviations in the residual plot are minimal with a �t range as large
as reasonable. However, this criterion isn't well-de�ned, so this introduces a systematic
error on the �t parameters due to the choice of the �t range. In order to estimate this
systematic error, the analysis was repeated with three di�erent �t ranges. First a �t
with a moderate and most reasonable �t range was performed. Then I made �ts with
the widest reasonable �t range and with the narrowest reasonable �t range. The actual
most reasonable and correct �t range should lie somewhere between the narrow and the
wide �t range.
The �t parameters in table A.2 show, that the �narrow� �t range systematically yields

the smallest recovery times while the �wide� �t range yields the largest recovery times.
The true recovery time should lie somewhere between these largest and smallest results.
The result of the �moderate� �t is an estimate for the true value of the recovery time and
the results of the �wide� and �narrow� �t give the systematic uncertainties.
These systematic uncertainties on the �t range outweigh the statistical uncertainties

and even the �uctuation due to temperature changes (see section 3.1.2), as one can see
in the �rst 12 rows of table A.2. Due to that I don't list all results of the analysis in
table A.2, because this wouldn't provide any additional information.
Table 3.2 shows a summary of table A.2. The recovery time τ1 is systematically smaller

than the results of the peak-to-tail analysis in table 3.1. Most of the ranges don't overlap
or barely overlap. So even if the �wide� �t range would be the true �t range, the recovery
time would still be smaller most of the time.
One reason for this could be, that a wider �t range of about 50 ns to 1000 ns is used for

the peak-to-tail analysis, while the �wide� �ts on the pulse tail are done between about
60 ns and 200 ns. The deviations from the model become too large for smaller t, so that
the �t wouldn't converge anymore. So for small t the peak-to-peak amplitude di�ers from
the pulse, at least partly due to a decreased absolute pulse height (see section 3.1.4).
The determination of the bulk recovery time τ2 is rather inaccurate, because the signal-

to-noise ratio gets low in the end of the pulse tail, where the bulk recovery time dominates.
Nevertheless, the determined τ2 roughly matches to the previously determined values,
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SiPM Type τ1 (ns) στ1 (ns) τ2 (ns) στ2 (ns)
min − max min − max

1× 1 mm2, 100 µm 34.5 − 41.8 0.4 94 − 163 9
1× 1 mm2, 50 µm 11.0 − 13.2 0.6 42 − 142 14
1× 1 mm2, 25 µm 5.9 − 7.2 0.2 28 − 65 3
3× 3 mm2, 100 µm 43.1 − 50.3 0.2
3× 3 mm2, 50 µm 17.6 − 18.9 0.2 61 − 128 14
3× 3 mm2, 25 µm 10.4 − 11.3 0.1 32 − 132 12

Ketek 3× 3, 50 µm 76.9 − 96.0 0.4 625 − 1159 19

Table 3.2: Results of the pulse tail �t. The �t range is not well-de�ned, so �ts with
di�erent ranges were made and the resulting range of parameters is given. The given
statistical errors are the standard deviation of 10 measurements with the same con�g-
uration. This table is the summary of table A.2 in the appendix.

although the values again are systematically smaller than in the peak-to-tail analysis.

3.1.4. Absolute Pulse Height

To take a closer look on the change of pulse height ratio of the two SiPM pulses I do
the same analysis as explained in section 3.1.2 for the measured absolute pulse heights
of the SiPM pulses. As shown in �gure 3.6 and B.16 to B.21 in the appendix, there is
only a small decrease in the ratio of the pulse height. This has already been observed by
looking at the raw SiPM pulses with the oscilloscope, as shown in section 3.1.1.
The biggest decrease in pulse height for the Hamamatsu SiPMs is observed (approxi-

mately 10%) for the SiPMs with 100 µm pitch. The pulse height of the SiPMs with 50 µm
pitch decreases only by about 5% and for the SiPMs with 25 µm pitch the pulse height
stays constant for every ∆t (see for instance �gure B.18).
The Ketek SiPM is the only investigated SiPM whose pulse height drops heavily by

about 50% (see �gure B.22). A larger decrease can not be observed, because at this
low pulse height the SiPM pulse becomes indistinguishable from the tail of the previous
pulse.
Table A.3 shows all �t parameters of the analysis as described in section 3.1.2. For the

SiPMs with 100 µm pitch the �ts showed that there are two time constants, but for the
50 µm pitch only one time constant could be determined. Performing the �ts is di�cult
and rather inaccurate for this data due to the weak decrease in pulse height, so the results
are more a rough estimate to do a consistency check with the rest of the analysis.
The recovery time of the pulse height roughly matches the previous results, although

the pulse height recovery time mostly is a little smaller. Only the Ketek SiPM has a
signi�cantly larger pulse height recovery time than peak-to-tail recovery time (approxi-
mately 15%).
Altogether this analysis con�rms the previous results.
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Figure 3.6: Amplitude ratio of the blinding and probing SiPM pulse. Every data point is
the mean of about 200 pulses. The applied �t is the superposition of two exponential
functions.

SiPM Type τ1 (ns) στ1 (ns) τ2 (ns) στ2 (ns)
min − max min − max

1× 1 mm2, 100 µm 37.8 − 55.4 3.4 101 − 112 125
1× 1 mm2, 50 µm 11.9 − 13.1 0.3
3× 3 mm2, 100 µm 37.0 − 52.9 0.6 153 − 379 21
3× 3 mm2, 50 µm 15.6 − 18.8 0.2

Ketek 3× 3, 50 µm 95.2 − 95.5 0.1

Table 3.3: Summary of the �t parameters for the pulse height data. The pulse height
drops only slightly for small ∆t so this analysis is more a consistency check for the
data in table 3.1
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3.2. Characteristic Curves

The aim of this analysis is to determine the resistance of the quenching resistor Rq by
analysing the measured characteristic I-V curves of the twelve used SiPMs.
Figure 3.7 shows logarithmic plots of the characteristic I-V curves of reverse biased

SiPMs. Di�erent SiPMs of the same model have nearly indistinguishable characteristic
curves, so only one plot per SiPM type is shown in the �gure.
The characteristic curves of all SiPMs show the same basic structure. At voltages

below the breakdown voltage there is a small leakage current, which is around 0.1 nA.
For the 1× 1 mm SiPMs the leakage current is below the measurement sensibility of the
picoammeter, so it isn't visible in the plot.
Then at the breakdown voltage the current increases exponentially by about two orders

of magnitude. After that the current rises slower for about one order of magnitude. For
smaller pixel sizes this plateau gets larger, i.e. more voltage is needed to reach the next
regime with a higher slope. In the end the slope decreases again. In this regime at about
1 mA the quenching resistors become the dominant resistance, so the determination of
the quenching resistance is possible.
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Figure 3.7: Characteristic I-V curves of di�erent SiPM types

An avalanche model, which explains the shape of the characteristic I-V curve and the
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systematics of the di�erent SiPMs, has not yet been developed. This would be beyond
the scope of this thesis, as I only want to determine the quenching resistance to calculate
the capacitance from the recovery time.
The next measurement was done at a very high overvoltage to make sure, that the

resistance of the diode is negligible compared to the quenching resistance. In this regime
the current is expected to be proportional to the voltage, as implied by Ohm's law, so I
can determine the resistance by doing a linear regression.
Figure 3.8 shows an example linear �t for the 3× 3 mm2, 25 µm, 2888 SiPM. As you

can see, the �t works well and the current is very linear.
Unfortunately, there are also measurements which show a more parabolic shape of the

current, as you can see in the residual plot of �gure 3.9. This means, that the resistance
decreases with an increasing voltage and current.
Because it is not known, which range of the curve yields the correct quenching resis-

tance, I introduce a systematic error on the resistance. This error is determined by �rst
doing a �t in a range with a smaller slope. For the example in �gure 3.9 the �rst �t is
done between 73 V and 74 V. Then a second �t is done in the range which has a larger
slope, which corresponds to 74.5 V to 75.5 V in the example. The systematic error on
the resistance is half of the di�erence between the parameters of the two �ts.
As an average resistance I take the result of the �t over the whole range and the

statistical errors on the average resistance are the errors of the �t parameters.
The analysis described above was done for all twelve SiPMs and the results are listed

in table 3.4.

SiPM Type nPixels Rmeas (Ω) σstatR (Ω) σsysR (Ω)

1× 1 mm2, 100 µm, 1549 100 2450 2 69
1× 1 mm2, 100 µm, 1550 100 2570 2 82
1× 1 mm2, 50 µm, 1926 400 1775 3 160
1× 1 mm2, 50 µm, 1927 400 1755 2 168
1× 1 mm2, 25 µm, 1067 1600 1195 4 65
1× 1 mm2, 25 µm, 1068 1600 1148 3 65
3× 3 mm2, 100 µm, 0551 900 665 3 0
3× 3 mm2, 100 µm, 0552 900 733 3 0
3× 3 mm2, 50 µm, 2888 3600 653 1 0
3× 3 mm2, 50 µm, 2889 3600 698 1 0
3× 3 mm2, 25 µm, 0149 14 400 438 1 10
3× 3 mm2, 25 µm, 0150 14 400 384 1 4

Table 3.4: This table lists the measured resistances, which were determined by linear
regression on the characteristic I-V curves. The given systematic errors result from
the uncertainties of the �tting range.
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Figure 3.8: Linear �t on the characteristic curve with a high reverse bias voltage of the
3× 3 mm2, 50 µm, 2888 SiPM. The current is linear and the �t results in an unam-
biguous value of (653.5± 1.1) Ω.
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3.2.1. Determination of Bulk and Quenching Resistances

The next step is to determine the quenching resistance Rq from this results. For this
we have to look at the electrical model of the SiPM as shown in �gure 1.2. The whole
resistance Rmeas of the SiPM consists of the bulk resistance Rb and n parallel quenching
resistors Rq, where n is the number of the SiPM's pixels. Thus, I get the following
formula for Rmeas:

Rmeas = Rb +
Rq
n

(3.2)

This explains why the measured resistance decreases with more pixels. The problem
is, that I have one measured resistance for two resistance parameters for each SiPM, so
I have to make two assumptions to determine the bulk and quenching resistances.

1. Every SiPM with the same bulk size of either 1× 1 mm2 or 3× 3 mm2 has the same
bulk resistance R1×1

b or R3×3
b .

2. The quenching resistance depends only on the pixel size and geometry, so SiPMs
with the same pitch have the same quenching resistance Rpitchq .

With these two assumptions I have �ve di�erent resistances for my six types of SiPMs.
For every SiPM type there is a di�erent version of equation 3.2, so I have a system of
six linear equations with 5 variables. I did measurements of two di�erent SiPMs for each
SiPM type, so I can use the average of the two measured resistances as values for Rmeas.
These six equations can't be solved analytically, because the measured resistances are

not exact, so there isn't any solution, which solves all six equations. However, I can try
to determine the best solution of the equations, i.e. those resistances for which the right
side of equation 3.2 is as close as possible to Rmeas.
The �rst step is simplifying the equations by eliminating Rq. This yields three equa-

tions with the two variables R1×1
b and R3×3

b . Finding the best solution for these three
equations is equivalent to determining the values for which the following function becomes
minimal:

χ2(R1×1
b , R3×3

b ) =
3∑
i=1

(
Rimeas − 9Ri+3

meas −R1×1
b + 9R3×3

b

)2
(3.3)

This is similar to a least-squares �t of a model to measured data points. Fortunately
minimization of functions is a well-established numerical problem, for which several al-
gorithms exist. I used SciPy's [28] implementation of the nonlinear conjugate gradient
algorithm [29, p. 120-122] for minimizing 3.3.
The resulting parameters for the found minimum are R1×1

b ≈ 460 Ω and R3×3
b ≈ 450 Ω,

which results in the quenching resistances listed in table 3.5.
The determined resistances can be only rough estimates, because it is unclear how accu-

rate the used assumptions are. In addition, three data points are normally not su�cient
for a good least-squares minimization with two parameters, because the minimization
has only one degree of freedom.
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3.2.2. Forward Bias

Another problem is, that the resistance of the diode probably isn't negligible as a constant
avalanche is needed to make the diode conducting in reverse bias. So as a consistency
check a few measurements with a forward bias voltage were performed.
These measurements showed also the aforementioned quadratic relation between cur-

rent and voltage, so the resistance decreases linearly with the current, as you can see in
�gure 3.10. One reason for this non-Ohmic behaviour could be a locally rising tempera-
ture of the SiPM due to the current. The temperature dependance of the semiconductor
resistance is exponential [5, p. 488] though, so this doesn't explain the linear behaviour
of the resistance. There are papers which report a voltage-dependant characteristic for
polysilicon resistors, which are also used in SiPMs [30, 31].
The measured resistance of the forward biased SiPM doesn't match the resistance in

table 3.4 most of the time. For example �gure 3.10 shows a resistance between 250 Ω
and 450 Ω while the same 1× 1 mm2, 25 µm SiPM has a resistance of (1195± 65) Ω in
reverse bias, so the measured resistance in forward bias is signi�cantly lower.
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Figure 3.10: Resistance of the 1× 1 mm2, 25 µm, 1067 SiPM. The measurements were
done with a forward biased SiPM and the resistance was determined by numerically
calculating dU

dI . Surprisingly the resistance is not constant but depends on the current
and the applied voltage.
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Measurements with other SiPMs showed a higher resistance in forward bias, as for
example the 1× 1 mm2, 100 µm SiPM, whose measured resistance was approximately
3000 Ω in forward bias and (2450± 69) Ω in reverse bias at the same current.
All of this shows, that the above determined values for Rq and Rb are only rough

estimates. Further research is needed to understand the inconsistencies between forward
and reverse biased and the voltage dependance of the polysilicon resistors. However, this
would go beyond the scope of this thesis, so a �rst estimate of these values must su�ce.

3.3. Determination of SiPM Capacitances

The pixel capacitances can be determined from the previous determined quenching re-
sistances and the pixel recovery times with C = τ1/Rq as formula 1.1 implies. For the
pixel recovery time τ1 I take the values from the peak-to-tail �ts and calculate the mean
of the range in table 3.1. The quenching resistance is determined as described in the
previous section and the used quenching resistance for the di�erent pixel sizes is given in
table 3.5.
It is expected, that the capacitance per active pixel area C/Ap is approximately con-

stant, because the same silicon material is used for each SiPM type and each SiPM type
has the same lateral pixel size. Therefore, the capacitance per pixel area can be used
to do a useful consistency check, because I know that the determined resistances are
inaccurate. The active pixel area Ap is the product of the pitch size and the geometrical
�ll factor, which is given by the manufacturer.
Another consistency check is the terminal capacitance, which is given by the manu-

facturer as 35 pF for the 1× 1 mm2 SiPMs and 320 pf for the 3× 3 mm2. The terminal
capacitance is the overall capacitance of all pixels, so it is the product of the pixel ca-
pacitance and the number of pixels. I suppose though, that the manufacturer didn't
actually measure the terminal capacitance but rather calculated it using the known ma-
terial and geometrical properties of the SiPM. Hence, the given terminal capacitance may
be inaccurate and shouldn't be trusted too much.

SiPM Type Rq (kΩ) CPixel (fF) C/Ap (pF/mm2) CTerminal (pF)

1× 1 mm2, 100 µm 205 200 26 20
1× 1 mm2, 50 µm 521 27 17 11
1× 1 mm2, 25 µm 1136 7 38 12
3× 3 mm2, 100 µm 205 232 30 209
3× 3 mm2, 50 µm 521 37 24 134
3× 3 mm2, 25 µm 1136 10 53 146

Table 3.5: Capacitances of di�erent SiPM types. The determined pixel capacitances can
only be regarded as rough estimates, because the quenching resistances have a very
high systematic uncertainty. The capacitance per pixel area should be approximately
constant, so this indicates that the determined capacitance for the SiPMs with 25 µm
pitch is probably too high.
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Table 3.5 lists the determined pixel capacitances. The capacitance drops more than
expected between the SiPMs with 100 µm and 50 µm pitches and less than expected
between the SiPMs with 50 µm and 25 µm pitches, as the capacitance per area shows.
The reason for this is probably an inaccurate value for the quenching resistance. The
determination of the quenching resistance becomes more di�cult for higher number of
pixels, because the relative in�uence of the bulk resistance increases.
The determined terminal capacitance is smaller than the manufacturer's value, but of

the same order of magnitude. This can be interpreted as a validation that the determined
capacitances have the correct order of magnitude, but the exact values should not be
trusted. The correct quantitative determination of the pixel capacitances would require
a better understanding of the pixel resistances, which was not feasible during the short
time of this thesis.

3.4. Overvoltage Dependance of the Recovery Time

The recovery time of the 3× 3 mm2, 50 µm SiPM was measured at di�erent bias voltages
to investigate the overvoltage dependance of the recovery time. The peak-to-tail data
was analysed as described in 3.1.2 and the breakdown voltage was determined from the
characteristic I-V curve of the SiPM (see section 3.2).
Figure 3.11 shows the recovery time τ1 as a function of the applied overvoltage. There

is a signi�cant increase in τ1 when increasing the overvoltage. Linear �ts show, that the
recovery time increases by something between 1 ns/V and 2 ns/V in the measured range.
The breakdown voltage of the SiPM depends linearly on the temperature with a slope

of β ≈ 0.06 V/K [25, 32]. This e�ect causes a temperature dependance of τ1 of approx-
imately −0.1 ns/K. This could explain the discrepancies of about 0.5 ns for this SiPM
between di�erent measurements of the recovery time as discussed in section 3.1.2, as such
a change of the recovery time could be caused by a change in the temperature of 5 K,
which is not unrealistic. However, this is not the only source of temperature dependance,
but it may be the most signi�cant.
Another known source of temperature dependance is the temperature dependance of

the polysilicon quenching resistors. The resistance of semiconductors decreases with the
temperature, so this should also decrease the recovery time, which is τ = R·C. Therefore,
this e�ect adds to the overvoltage dependance, which implies that the overall recovery
time decreases with rising temperature.
The linear temperature dependance of the breakdown voltage could be compensated

by adjusting the bias voltage, so that the overvoltage stays constant. With such a control
system one could investigate the temperature dependance of the recovery time without a
bias by the overvoltage dependance and quantify how much the overvoltage dependance
of the recovery time contributes to the overall temperature dependance.
The bulk recovery time τ2 increases faster with the overvoltage, as �gure 3.12 indicates.

Linear �ts with di�erent ranges show an increase of τ2 by something between 75 ns/V
and 90 ns/V.
One possible reason for the overvoltage dependance of the recovery time is an increased
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number of afterpulses, which interrupt the recovery of an SiPM cell and thus increase
the overall SiPM recovery time (see section 1.2.3.3). The size of the avalanches increases
with the overvoltage, so with increasing overvoltage more deep level traps in the pixel
are �lled, which causes more afterpulses when the trapped charge carriers are released
[22].
This model also explains the beginning of a saturation in �gure 3.11 and 3.12. The

avalanche can't grow larger than the full pixel size, so at some overvoltage the maximal
avalanche size is reached and thus the number of �lled charge carrier traps can't increase
anymore.
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Figure 3.11: Overvoltage dependance of the pixel recovery time constant τ1. The over-
voltage has a systematic error of ±0.1 V.
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Figure 3.12: Overvoltage dependance of the bulk recovery time constant τ2. The over-
voltage has a systematic error of ±0.1 V.
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The recovery times of seven di�erent SiPM types have been determined. Two LEDs were
used to �rst �re the whole SiPM with a blinding light pulse and then after a variable
time delay �ash it with a probing light pulse. Both SiPM pulses were measured with an
oscilloscope.
The LEDs have proven to have a su�cient brightness and bandwidth to �re nearly all

pixels of the SiPM with a pulse width of approximately 5 ns. The limiting factor with
regards to bandwidth and amplitude was the arbitrary function generator, so shorter and
higher pulses might be possible with a di�erent pulse source.
An issue was the unwanted electrical coupling between the LEDs and the SiPMs,

which distorted the SiPM pulses. Separating the LEDs and the SiPM using �bers for
the light transport reduced this distortions to a minimum, but unfortunately the light
�ux via �ber wasn't longer su�cient for blinding the larger SiPMs. Maybe with higher
pulse amplitudes one could perform all measurement with the �ber, which would greatly
reduce systematic deviations from the ideal pulse models.
The �rst observation was, that the absolute pulse amplitude of the second SiPM pulse

stays nearly constant, when the time di�erence between the two light pulses is reduced
until the two pulses become undistinguishable. However, SiPM pulses have a tail, so the
peak-to-tail amplitude of the second pulse decreases signi�cantly when the time di�erence
is reduced.
To analyze this decrease, the ratio of the peak-to-peak amplitude of the two pulses

was plotted as a function of the time di�erence and the superposition of two exponential
function was �tted to the peak-to-peak ratio, because there are two time constants in the
recovery process of the SiPM. The fast and dominating recovery time can be assigned
to the recharge of the SiPM pixels and the slow recovery time can be assigned to the
recharge of the SiPM bulk. The pixel recovery time attributes to more than 90% of the
recovery process, while the bulk recovery time dominates the tail of the recovery process.
The bulk recovery time is more dominant for SiPMs with large pitches.
The same �ts have been made on the tails of the SiPM pulses which resulted in slightly

lower recovery times. However, the systematic uncertainties for these �ts are large due
to di�culties in the choice of the �t ranges. The oscillations on top of the pulses due
to coupling between the LED and the SiPM cause a too large χ2 and complicate the �t
process.
Plots of the ratio of the absolute pulse heights showed a small decrease by about 5%

for the SiPMs with 100 µm and 50 µm pitches. Fits of exponential function resulted in
approximately the same recovery time as the peak-to-tail analysis. The SiPM by Ketek
was the only SiPM for which a signi�cant decrease in absolute pulse height by about
50% was observed. Both recovery times of this SiPM are over four times higher than the
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recovery times of the SiPMs by Hamamatsu with the same geometry. Additionally, the
bulk recovery time is more dominating for this SiPM.
In order to determine the pixel capacitances from the pixel recovery times the quench-

ing resistances had to be determined, because the pixel capacitance is recharged via
quenching resistors. The e�ective resistance of the SiPM was determined by measuring
the SiPM's characteristic I-V curves above the breakdown voltage. The determined re-
sistances have high and partially unknown systematic uncertainties, because a voltage
dependance of the resistance has been observed. Additionally the measurements of the
resistance in forward and in reverse bias were partially inconsistent. A few assumptions
had to be made to determine the bulk resistance and the quenching resistances from
the measured e�ective resistance. This yielded a system of linear equations which were
solved by least-square minimization. This method introduced additional uncertainties.
In conclusion, the determination of the quenching resistances is inaccurate and must

only be regarded as a rough estimation. Further research is needed to determine the
internal resistances of the SiPMs.
The pixel capacitance has been determined to approximately 10 fF to 200 fF, depending

on the pixel size. The capacitance per active pixel area is in the order of approximately
30 pF/mm2. These values are only rough estimates as well, since the determination of
the capacitances depends on the resistances.
The pixel recovery time decreases when only part of the SiPM's pixels �re. The

recovery times increase when the overvoltage is increased. This introduces a temperature
dependance of the recovery time, because the breakdown voltage increases linearly with
the temperature. Another source of temperature dependance of the recovery time is the
temperature dependance of the polysilicon quenching resistors. This implies a decrease
in the recovery time with rising temperature.
The temperature dependance of the recovery time was a large problem. Repeating

measurements on the next day often produced results which had a discrepancy of several
σ to previous measurements. Therefore, only ranges of measured recovery times were
given for each SiPM type. The statistical precision of the recovery time was mostly
below 1%. Therefore, the determination of the recovery time with a precision of 0.1 ns
could be possible in a temperature controlled environment. Further research is required
to quantify the temperature dependance of the recovery time.
Another interesting point of research is the �rst part of the pulse. Before the tail

starts, there are structures in the pulse shape, which could perhaps be explained by
the parasitic quenching capacitance and by the pulse width of the LED. This has to be
studied to achieve a better understanding of the electrical model and parameters of the
SiPM. The goal should be, to experimentally verify the presented electrical model in
�gure 1.2 and to develop measurements for determining all parameters of this model.
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B. Additional Plots
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Figure B.1: Two Ketek SiPM pulses with a time di�erence of ∆t = 50 ns. The pulse
height of the second pulse is signi�cantly reduced in contrast to the pulses of the
Hamamatus SiPM in �gure 3.1.
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B. Additional Plots

B.1. Peak-to-Tail Pulse Ratio

t [ns]∆
210 310

0
A

/A

0.5

0.6

0.7

0.8

0.9

1

 / ndf 2χ  48.69 / 35
  0A/A  0.001687± 1.032 

    1t  0.7669± 24.25 
 1τ  1.964± 40.77 
    2t  105.5± -369.2 
 2τ  32.02± 186.2 

 / ndf 2χ  48.69 / 35
  0A/A  0.001687± 1.032 

    1t  0.7669± 24.25 
 1τ  1.964± 40.77 
    2t  105.5± -369.2 
 2τ  32.02± 186.2 

)
2τ

2t - t∆
) - exp(-

1τ
1t - t∆

 - exp(-0A/A

mµ, 100 2Peak-to-Tail, 1x1 mm

)
2τ

2t - t∆
) - exp(-

1τ
1t - t∆

 - exp(-0A/A

210 310
-0.013

-0.0039
0.0051

0.0141

Figure B.2: Peak-to-tail ratio of the 1× 1 mm2, 100 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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Figure B.3: Peak-to-tail ratio of the 1× 1 mm2, 50 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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B. Additional Plots
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Figure B.4: Peak-to-tail ratio of the 1× 1 mm2, 25 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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Figure B.5: Peak-to-tail ratio of the 3× 3 mm2, 100 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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B. Additional Plots
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Figure B.6: Peak-to-tail ratio of the 3× 3 mm2, 50 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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Figure B.7: Peak-to-tail ratio of the 3× 3 mm2, 25 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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B. Additional Plots
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Figure B.8: Peak-to-tail ratio of the 3× 3 mm2, 50 µm Ketek SiPM pulses with the �t
of two superpositioned exponential functions.
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B. Additional Plots

B.2. Pulse Tail
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Figure B.9: Fit on the pulse tail of the 1× 1 mm2, 100 µm SiPM. The zoomed in residuals
show the systematic oscillations on the pulse, which have been observed for every pulse.
The data is the average of 200 measured pulses, which shows that the oscillations are
stable and systematic. These systematics are the reason for the much too large χ2/ndf
and the underestimated errors on the �t parameters.
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B. Additional Plots
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Figure B.10: Fit on the pulse tail of the 1× 1 mm2, 50 µm SiPM. The plotted SiPM pulse
is the average of 200 pulses.
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Figure B.11: Fit on the pulse tail of the 1× 1 mm2, 25 µm SiPM. The plotted SiPM pulse
is the average of 200 pulses.
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B. Additional Plots
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Figure B.12: Fit on the pulse tail of the 3× 3 mm2, 100 µm SiPM. The plotted SiPM
pulse is the average of 200 pulses.
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Figure B.13: Fit on the pulse tail of the 3× 3 mm2, 50 µm SiPM. The plotted SiPM pulse
is the average of 200 pulses.
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B. Additional Plots

t [ns]
0 20 40 60 80 100 120 140 160 180 200 220

U
 [V

]

-210

-110

1

 / ndf 2χ  1.919e+05 / 1995
A         5.898e-06± -0.0007776 

    
1

t  0.004956± 54.13 
 1τ  0.002209± 10.92 
    

2
t  0.1493± -170.8 

 2τ  0.03171± 56.16 

 / ndf 2χ  1.919e+05 / 1995
A         5.898e-06± -0.0007776 

    
1

t  0.004956± 54.13 
 1τ  0.002209± 10.92 
    

2
t  0.1493± -170.8 

 2τ  0.03171± 56.16 

)
2τ

2t - t
) + exp(-

1τ
1t - t

A + exp(-

mµ, 25 23x3 mm

)
2τ

2t - t
) + exp(-

1τ
1t - t

A + exp(-

80 100 120 140 160 180-0.0024
-0.0008
0.0009
0.0025

Figure B.14: Fit on the pulse tail of the 3× 3 mm2, 25 µm SiPM. The plotted SiPM pulse
is the average of 200 pulses.
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Figure B.15: Fit on the pulse tail of the Ketek 3× 3 mm2, 50 µm SiPM. The plotted
SiPM pulse is the average of 200 pulses.
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B. Additional Plots

B.3. Absolute Pulse Height Ratio
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Figure B.16: Amplitude ratio of the 1× 1 mm2, 100 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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Figure B.17: Amplitude ratio of the 1× 1 mm2, 50 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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B. Additional Plots
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Figure B.18: Amplitude ratio of the 1× 1 mm2, 25 µm SiPM pulses.
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Figure B.19: Amplitude ratio of the 3× 3 mm2, 100 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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B. Additional Plots
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Figure B.20: Amplitude ratio of the 3× 3 mm2, 50 µm SiPM pulses with the �t of two
superpositioned exponential functions.
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Figure B.21: Amplitude ratio of the 3× 3 mm2, 25 µm SiPM pulses.
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B. Additional Plots
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Figure B.22: Amplitude ratio of the Ketek 3× 3 mm2, 50 µm SiPM pulses with the �t
of one exponential function. This is the only SiPM type where a considerable drop in
the pulse height has been observed.
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