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Chapter 1
Introduction

When Victor Hess discovered the cosmic radiation in 1912 [1],he laid a foundation for the upcoming field
of high energy particle physics. For about 40 years, the cosmic radiation was the only source of particles
with energies of several GeV. The analysis of cosmic rays andtheir reactions with matter led to several
discoveries, for instance the positron in 1933 [2], the muons in 1936 [3], and the pions in 1947 [4].

In the 1950’s, the main focus of particle physicists shiftedtowards man-made particle accelerators,
which offered several advantages over the cosmic radiation. The key development was the synchrotron
as a scalable accelerator for particles up to multi-GeV energies. The Cosmotron, completed in 1953, was
one of the first [5]. Artificial accelerators provide almost monochromatic beams of high intensity with a
defined particle content, in contrast to the cosmic radiation, and overall much more control over the particle
interactions.

Cosmic rays remained of considerable interest for astrophysicists as messenger particles of very pow-
erful astrophysical processes. In 1939, Pierre Auger discovered cosmic ray induced particle showers in the
atmosphere, called extensive air showers [6]. He analysed coincident particle counts in several spatially
separated detectors and estimated from the number of registered particles, that cosmic rays exist with en-
ergies up to1016 eV. His concept of measuring cosmic rays through their extensive air showers in an array
of particle detectors turned out to be extremely scalable and is used till today. In 1963, Linsley found the
first cosmic rays around1020 eV with a large surface detector [7].

It is a downside of the surface detector measurement, that the reconstruction of the energy and mass
of the cosmic ray from the measured signals depend strongly on model calculations of the air shower de-
velopment, which still have quite large theoretical uncertainties. A new detection method, the fluorescence
method, was established with the Fly’s Eye/HiRes experiment in the 1980’s [8], which reduces this model
dependency considerably. The fluorescence method allows tofollow the full air shower development in
the atmosphere. This is achieved by observing fluorescence light with appropriate telescopes which was
emitted by nitrogen molecules after an excitation through the passing air shower.

It was realised eventually that fluorescence and surface detectors are complementary in many ways
so that a combination, a hybrid detector, would be even more versatile. The Pierre Auger Observatory is
such a hybrid detector and currently the world’s largest cosmic ray observatory. Its design focuses on the
detection of ultra-high energy cosmic rays from1018 eV to 1020 eV and above.

The center of mass energy in the first interaction of the most energetic cosmic rays in the atmosphere
reaches almost103 TeV. This is two orders of magnitude larger than the center of mass energy in the
largest artificial accelerator, the Large Hadron Collider [9]. These large interaction energies and the precise
measurement of air showers at the highest energies with the observatory raises new interest in particle
physicists for cosmic rays and air showers.

Like many of its predecessors, the Pierre Auger Observatoryfocuses on the analysis of air showers with
zenith angles up to60◦ although it is sensitive up to90◦. This restricted class of events is called vertical
showers by convention, the remain are called very inclined.Most of the collected events are vertical in this
sense: about75 % of the events in the surface detector and about87 % of the events in the fluorescence
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detector fall into the vertical category.
Very inclined air showers are more difficult to simulate and model. The curvature and the geomagnetic

field of the Earth may be neglected for vertical showers but not for very inclined showers. The muon
component of a very inclined shower dominates the signals measured in the surface detector. The signals
are weaker and have a more complex pattern due to geomagneticdeflections of the muons. Nevertheless,
there is an ongoing effort to reliably reconstruct these events [10–17] so that they may be used in cosmic ray
studies. A reliable reconstruction of very inclined showers would increase the number of detected cosmic
rays by about30 %, as well as the overall sky coverage of the Pierre Auger Observatory.

There are also other gains. The signals in the surface detector generated by very inclined showers are
dominated by the muons in the shower. A proper reconstruction of such events therefore challenges the
understanding of this shower component. Searches for cosmic neutrinos in the surface detector data of
the Pierre Auger Observatory benefit from the understandingof hadron induced very inclined air showers,
which form the main background [18].

This work contributes to the understanding of hadron induced very inclined air showers measured with
the surface detector of the Pierre Auger Observatory. This is done by presenting a full analysis chain from
the simulation of such events, over their reconstruction from the collected data, towards the final goal of a
measurement of the flux of ultra-high energy cosmic rays between1018 eV and1020 eV. A precise energy
calibration of the surface detector measurement with the fluorescence detector is a key step in this chain.

This thesis is structured as follows. Chapter 2 lists the basic conventions used throughout the work.
Chapter 3 provides an overview over cosmic rays, with a focuson cosmic rays at ultra-high energies and
extensive air showers.

The simulation of a large library of very inclined air showers was a major part of the work and is
discussed in Chapter 5. The simulations are used to study andmodel the muon component of very inclined
air showers and the response of the surface detector of the Pierre Auger Observatory to such showers.

The reconstruction of cosmic ray properties from data of thePierre Auger Observatory is discussed in
Chapter 6, whereas the discussion focuses on the reconstruction of surface detector events generated by
very inclined air showers. The reconstruction will make heavy use of the models derived in the simulation
chapter and will be thoroughly tested with simulated events.

The cosmic ray energy reconstructed from the data of the surface detector has large systematic un-
certainties, if it is based only on theoretical models of theshower development. These uncertainties can
be greatly reduced by calibrating the surface detector withthe fluorescence detector. The latter is able to
perform an almost calorimetric measurement of the cosmic ray energy. The calibration is performed with
a small sample of events, which are observed in both detectors simultaneously. A significantly improved
method for this kind of calibration is introduced and applied in Chapter 7.

The last chapter, Chapter 8, discusses the calculation of the cosmic ray flux from the reconstructed
cosmic ray events. An unfolding technique is used to obtain the true flux from the measured flux. The
result is compared with the most recent result obtained fromthe analysis of vertical showers at the Pierre
Auger Observatory.
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Chapter 2
Conventions

This chapter summarises the coordinate system and naming conventions used throughout this work. Most
of the conventions mentioned here are taken from the officialconventions guide of the Pierre Auger Obser-
vatory [19].

Particle notation

The following chapters deal with extensive air showers, particle showers generated through high energy
interactions of a cosmic ray in the atmosphere. During the development of this air shower, particles and
anti-particles are generated in equal amounts. For almost all purposes, the distinction between particles
and anti-particles is irrelevant in this study.

Therefore, terms like “electrons” and “muons” will generally refer to both the particle and anti-particles,
unless explicitely stated otherwise. Another commonly used term in the context of air showers is “electro-
magnetic particles”, which refers to electrons, positrons, and photons (but not muons).

Coordinate systems

Ground coordinate system

Fig. 2.1 shows the main coordinate system to describe the shower. It is a local cartesian coordinate system,
defined at the impact point of the shower axis on the ground. The impact point is called theshower core.

It is not feasible to define a single global rectangular coordinate system for the Pierre Auger Observa-
tory, because Earth’s curvature is relevant over the size ofthe surface array, as demonstrated in Fig. 2.2.

The zenith angleθ has the usual astronomical definition. The definition of the azimuth angleφ in the
coordinate system of the Pierre Auger Observatory differs from the astronomical one. The direction defined
by (θ, φ) points to the origin of the cosmic ray in the sky, not in the direction of shower propagation.

Lateral coordinate system

It is useful to introduce a special coordinate system to describe the lateral profile of an air shower in the
context of this work: theshower front planecoordinate system. It is depicted in Fig. 2.3. The shower front
plane contains the point where the shower axis intersects the ground plane, which is called theshower core.
It is perpendicular to the shower direction and oriented so,that the y-axis is parallel to the geomagnetic
field projected into the plane.

It should be emphasized, that observations and predictionsare always done in the ground plane, and
only projected in the shower front plane. The coordinate system has the advantage, that it preserves some
of the principal symmetries of the shower profile. It helps toseparate geometrical effects from physical
effects.
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Figure 2.1: The drawing shows the local cartesian coordinate system. The center of the system is the
impact point of the shower axis on the ground (shower core). The x-axis points into the geographic east,
the y-axis points into the geographic north, the z-axis points upwards (adapted from [19]). The zenith angle
θ is counted from the vertical direction. The azimuth angleφ starts in the geographic east and is counted
conter-clockwise. The elevation angleΩ = π/2 − θ is less common, but sometimes used in the context of
Fluorescence telescope measurements.

∆θ~ 0.01 rad

∼ 0.5°

60 km

282 m
A

B

Figure 2.2: The drawing illustrates the effect of Earth’s curvature over the size of the surface array of the
Pierre Auger Observatory. A shower withθA = 0◦ in the local rectangular coordinate systemA at the west
end of the array, has a zenith angleθB ≈ 0.5◦ in the local coordinate systemB at the east end. Also, the
center ofB appears by about280 m deeper inA. Distances and angles are not to scale (from [19]).
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CHAPTER 2. CONVENTIONS

Figure 2.3: A drawing of the lateral shower coordinate system, after [20]. Arcs without arrows indicate
right angles. The center of the system is the impact point of the shower axis on the ground. The x-y-
plane is perpendicular to the shower axis. The z-axis is anti-parallel to the shower direction vectoreS .
The orientation of this plane is choosen as such, that the y-axis is parallel to the projected vector of the
geomagnetic fieldB into the plane.

Figure 2.4: The drawing shows the coordinates, which are used to describe a point in the longitudinal
profile of the shower. The distancesR, d, andh are geometrical lengths, whileX is a slant depth, counted
from the top of the atmosphere. To describe a particular point on the shower axis, The distanced is the
distance of a particular point on the shower axis from the impact point on the ground, the heighth is the
altitude of this point above the ground level. Another way todescribe the point is via the accumulated slant
depthX along the shower axis. The total atmospheric depthXatm depends on the zenith angleθ of the
trajectory and the ground altitude,e.g.Xatm ≈ 750 gcm−2 for θ = 0◦ and the site of the southern Pierre
Auger Observatory.
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Longitudinal coordinate system

Fig. 2.4 shows the coordinates used to describe the longitudinal shower development. The most common
quantity to describe the longitudinal profile is theslant depthX, defined by the integral

X =

∫

ds ρ(s), (2.0.1)

whereρ(s) is the local air density, ands is a path length counted from the top of the atmosphere along the
shower axis. The slant depth is good to describe the shower interms of interaction and attenuation lengths,
which are independent of the material if expressed in this unit.

In this work, a point in the longitudinal development will also be characterised by its altitude above
the groundh, and its distanced to the shower impact point on the ground (= shower core), as indicated in
Fig. 2.4.

Other coordinate systems

Landmarks and geographic maps of the Earth are usually expressed in theUTM coordinate system. Points
are expressed in northing, easting, and altitude above sea level within a particular reference zone. The
system takes the curvature of the Earth into account and is therefore not cartesian: the northing and easting
coordinates measure distances on the surface of a referenceellipsoid.

The geomagnetic fieldhas a coordinate system based on the magnitude and directionof the field
vector. The direction is expressed with the inclination angle θ and the declination angleδ. The inclination
is the vertical angle. It is zero, if the field is parallel to the horizon, and−90◦ (90◦) if the field points
vertically downwards (upwards). The declination is the horizontal angle. It is zero, if the field points to the
geographic north, and is counted clock-wise from there.

Acronyms

ADC Analog Digital Converter
ADST Advanced Data Summary Tree (event data format)
AGN Active Galactic Nuclei
AIRES AIR-shower Extended Simulations (air shower simulator)
AMIGA Auger Muon-detectors and Infill for the Ground Array
APF Aerosol Phase Function (Monitor)
a.s.l. above sea level
QCD Quantum ChromoDynamics
CDAS Central Data Aquisition System
QED Quantum ElectroDynamics
CLF Central Laser Facility
CMB Cosmic Microwave Background
CORSIKA COsmic Ray SImulations for KAskade (air shower simulator)
DAQ Data AQuisition
EPOS Energy-conserving quantum mechanical multiple scattering approach, based on Par-

tons (parton ladders), Off-shell remnants, and Splitting of parton ladders
FADC Flash Analog Digital Converter
FD Fluorescence detector
FLUKA FLUktuierende KAskade (german for fluctuating cascade)
FoV Field of View
FRAM Fotometric Robotic Atmospheric Monitor
GHEISHA Gamma-Hadron-Electron-Interaction SH(A)ower code
GPS Global Positioning System
HAM Horizontal Attenuation Monitor
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CHAPTER 2. CONVENTIONS

HEAT High Elevation Auger Telescope
IGRF International Geomagnetic Reference Field
LED Light Emitting Diode
LIDAR Light detection and ranging
p.d.f. probability density function
PLD Programmable Logic Device
PMT Photomultiplier tube
QGSJet-II Quark-Gluon-String model with JETs
RUN Regularised UNfolding
SD Surface detector
SDP Shower Detector Plane
UTM Universal transverse mercator
UV Ultra Violet
VEM Vertical Equivalent Muon
XLF eXtreme Laser Facility

Mathematical notation

〈x〉 average ofx
σ[x] statistical uncertainty ofx
σsys[x] systematic uncertainty ofx
x vector (small letter)
M matrix (capital letter)
xT transpose ofx
erf(x) error function erf(x) = 2√

π

∫ x

0
dt e−t2
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Chapter 3
Ultra-high energy cosmic rays

This chapter provides a general overview over cosmic rays. The focus is laid on ultra-high energy cosmic
rays above1018 eV and the extensive particle showers which they initiate in the atmosphere of the Earth.
Understanding the properties of such air showers is fundamental for the Pierre Auger Observatory and
similar instruments which rely on the indirect observationof cosmic rays via this phenomenon.

The development of an air shower in the atmosphere is best described with full Monte-Carlo simulations
of the elementary particle processes, which are covered in Chapter 5. This chapter tries to provides simple
model calculations for many air shower properties which arevery approximate, but allow to understand
many basic air shower features.

3.1 Cosmic rays

The following general discussion of cosmic rays is based on ref. [21–24].
The termcosmic raysgenerally refers to stable and charged particles which travel through interstel-

lar or even intergalactic space. The total flux of cosmic raysat the top of the atmosphere is about
1000 m−2 sr−1 s−1 and dominated by protons of a few GeV. The differential fluxJ(E) ∝ dN/dE is
approximately a power lawJ(E) ∝ Eα with a spectral index−2.6 . α . −3.2. The range of cosmic ray
energies is huge. The cosmic rays with the highest energies detected so far slightly exceed1020 eV, but are
extremely rare: only about one such particle per km2 and century arrives at the Earth. The measured flux
J(E) above1 TeV is shown in Fig. 3.1.

Experimentally, two energy ranges need to be distinguished. Up to100TeV, the fluxJ is large enough
for balloon and outer space experiments, which measure the cosmic rays directly with appropriate particle
detectors close to or above the top of the atmosphere. Such experiments are able to measure the cosmic ray
energies and the mass composition directly, seee.g.ref. [25,26]. Therefore, the fluxJ(E) and the relative
abundance of different cosmic ray nuclei is well known in this energy range. The latter can be used to learn
something about the propagation of the rays.

At energies above100 TeV, the differential flux eventually becomes so low that only ground based
experiments can provide the necessary exposure to collect enough events in a reasonable time frame. These
experiments cannot observe the cosmic ray directly. Instead, they sample the extensive air shower generated
by interactions of the cosmic ray with atmospheric matter. An extensive air shower is equivalent to a particle
shower in a hadronic calorimeter. Therefore, one can say that ground based experiments use the atmosphere
as a calorimeter for the cosmic rays.

Soft hadronic interactions are most important for the development of an extensive air shower. These
interactions cannot be described in the pertubative approach to quantum chromo dynamics. Therefore,
systematic uncertainties arise in the reconstruction of the cosmic ray properties from the air shower data.
The reconstruction of the cosmic ray massA is particularly difficult. The relative abundances of different
cosmic ray nuclei are generally not known at these energies.In most cases only a measure of the average
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3.1. COSMIC RAYS
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Figure 3.1: Shown is a compilation of measurements of the cosmic ray flux as a function of the cosmic ray
energy, done by several air shower experiments. Note, the scaling of the cosmic ray flux withE2.5, which
emphasizes the features. The second horizontal axis shows the center of mass energy in the first interaction
of the cosmic ray, if it was a proton. This interaction energyis compared with some collider experiments
(see ref. [24] and references therein).

logarithm of the cosmic ray mass〈lnA〉 can be derived. The differential fluxJ(E) has comparably large
systematic uncertainties as well.

3.1.1 Cosmic rays up to 100 TeV

The relative abundance of nuclei with the charge numberZ > 1 in cosmic rays is similar to the interstellar
medium [27]. This is a strong indication that cosmic rays areinitially normal interstellar matter which is
accelerated in an astrophysical process.

It is generally accepted that the majority of cosmic rays from a few GeV up to100 TeV are accelerated
in supernova blast waves. Turbulent magnetic fields in the shock front of these waves are able to accelerate
charged particles from the interstellar medium. The general process is called first-order Fermi acceleration,
seee.g.ref. [21].

The relative abundance of two groups of elements (Li, Be, B) and (Sc, Ti, V, Cr, Mn) is many orders of
magnitude larger in cosmic rays than in the interstellar medium. These elements are essentially absent as
end products of stellar nucleosynthesis. The discrepancy can be explained by spallation processes during
the propagation of the cosmic rays. Spallation can occur when a cosmic ray collides with a proton from
the interstellar medium. The cosmic ray nucleus is transformed or fragmented in the process. As a conse-
quence, some of the more abundant elements are converted andfill up the rare elements. The Lithium-group
is mostly generated by spallation of carbon and oxygen, while the Scandium-group is mostly generated by
spallation of iron.

With knowledge about the spallation cross-sections at these energies, it is possible to derive the tra-
versed slant depthX of the cosmic rays from the abundances of the spallation products. The slant depth is
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CHAPTER 3. ULTRA-HIGH ENERGY COSMIC RAYS

of the order of10 g cm−2 for cosmic rays of a few TeV and has to be compared with the average density
of the interstellar medium of about proton per cm3. The corresponding path length of cosmic rays is then
of the order of1000 kpc, much larger than the extensions of our galaxy which is50 kpc at most.

This large path length can be understood by considering the gyro radiusrg of cosmic rays in this energy
range. A handy formula for the gyro radius is

rg =
p c

Z e

1

B
≈ (1.1 × 10−7 pc)

p/(GeV/c)
Z (B/nT)

, (3.1.1)

whereasp andZ are the momentum and charge number of the cosmic ray. The galactic magnetic field is
of the order of0.1 nT and therefore a100 TeV proton has a gyro radiusrg ≈ 0.1 pc. This is only a small
fraction of the thickness of the galactic disk of about300 pc.

Cosmic rays up to100 TeV are apparently confined in our galaxy by magnetic fields and travel for a
long time on complex trajectories until they eventually escape the galaxy. This interpretation is fortified
by a more direct measurements of their average time of residence which can be obtained from an analysis
of the relative abundance of long-living radioactive isotopes in the cosmic radiation (see ref. [22] and
references therein).

The confinement into the galaxy is less efficient at larger energies, which makes the observed energy
spectrum of cosmic rays steeper than the input spectrum at the source.

3.1.2 Cosmic rays above 100 TeV

Much less is certain about cosmic rays above100 TeV. To a large degree, this is a consequence of the
less precise or even controversial data delivered by experiments, which leave more room for interpretation.
The acceleration mechanism which works so well at lower energies also runs into problems. The shock
acceleration in supernova blast waves is not powerful enough to explain cosmic rays with energies much
larger than100 TeV and has to be replaced by something else.

A comparison of the gyro radiusrg of a cosmic ray with the thickness of the galactic shows, thatprotons
up to about1017 eV and iron nuclei up to about1018 eV can be confined in our galaxy by magnetic fields.
Cosmic rays up to these energies are generally believed to beof galactic origin. Above, they are considered
to be extragalactic.

A rapid change in the spectral indexα of the differential fluxJ(E) is observed around4 × 1015 eV.
The feature is called theknee. The spectral indexα changes from about−2.7 to about−3.2. Furthermore,
an increase of the average logarithm of the cosmic ray mass〈lnA〉 with the energyE is observed above
the knee which continues up to about1017 eV.

There are two concurrent classes of theories for the knee. The first assumes that galactic accelerators
reach their energy limit around the knee, so that cosmic ray components of different massA successively
vanish. In general, nuclei with a larger charge numberZ are better confined via magnetic fields in the
source and can be accelerated to higher energies.

The second class of theories assumes powerful accelerators, able to accelerate cosmic rays up to about
1018 eV or larger. In this scenario, the cosmic ray components of different massA successively vanish,
because the galactic magnetic fields are not able to confine them. The maximum energy of a cosmic ray in
the galaxy depends again on its charge numberZ.

Another feature is observed around4 × 1018 eV, the so calledankle. The spectral indexα of the
differential fluxJ(E) changes again from about−3.2 to about−2.6. There are two theories for the ankle.
The first assumes that the galactic component of the cosmic ray flux extends up to the ankle and is taken
over by a harder intergalactic component.

The second theory is the so-called dip model [28]. Here, the take-over of the extra-galactic component
happens earlier, somewhere between the knee and the ankle. The ankle is explained as a consequence of
the propagation of extragalactic cosmic ray protons in the cosmic microwave background (CMB). During
their propagation, the protons loose energy bye+e− production

p γ → p e+ e−, (3.1.2)

which starts around1018 eV and produces the ankle feature in the dip model.
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Figure 3.2: Shown is the depth of the electromagnetic showermaximumXmax extracted from data of the
Pierre Auger Observatory as a function of cosmic ray energy.The data are shown as black dots, the gray
dashed line is a fit. The straight lines above and below the data are predictions from several hadronic
interaction models (from [29]).

The dip model assumes that the cosmic rays between1017 eV and1019 eV are mostly protons while
the takeover model expects an iron dominated composition upto 1018 eV and then a fast transition to the
composition of extragalactic cosmic rays. Measurements ofthe cosmic ray composition help to decide
between these models, but do not clearly favor one or the other. The depth of the electromagnetic shower
maximumXmax is an example of a mass-sensitive air shower observable withthe property〈Xmax〉 ∝ 〈lnA〉.
A recent measurement from the Pierre Auger Observatory is shown in Fig. 3.2.

The last feature in the cosmic ray flux is the cut-off, experimentally established around7 × 1019 eV.
The spectral indexα changes from about−2.6 to about−4.3 [30]. The position of the cut-off matches a
40 years old prediction, the Greisen-Zatsepin-Kuzmin limit (GZK limit) [31, 32]. The GZK limit is also a
consequence of the high density of CMB photons. Cosmic ray protons above the limit loose energy through
pion production

p γ(CMB) → p π0 → p 2γ (3.1.3)

→ nπ+ (3.1.4)

while heavier cosmic rays nuclei are destroyed by photo-disintegration. Fig. 3.3a) shows the attenuation
lengths for several nuclei at ultra-high energies. Only nearby sources can possibly contribute to the ob-
served flux on the Earth above the GZK limit and therefore the flux should be suppressed.

The GZK limit is a reasonable explanation based on well-established physics, like Lorentz-invariance
and cross-sections measured in the laboratory. Nevertheless, there is also another possible explanation for
the cut-off. Fig. 3.3b) shows a compilation of possible intergalactic accelerators for cosmic rays. In first
approximation, the maximum energy provided by a source is proportional to its typical extensionL and
typical magnetic field strengthB, times the charge numberZ of the cosmic ray. If the acceleration process
is a scaled variant of the shock front acceleration in supernova blasts, it is also proportional to the speed of
the shockβs, measured in units of the speed of light. Put together, this gives a magnitude estimate [33]:

Emax ≃ (1018 eV)Z βs

(
L

kpc

) (
B

µG

)

, (3.1.5)

with 1 G(auss) = 10−5 T. The estimate shows that the known astrophysical objects are barely able to
reach an energy level of1020 eV. It is therefore also possible that the observed cut-off is caused by the
energy limit of the accelerators.
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CHAPTER 3. ULTRA-HIGH ENERGY COSMIC RAYS

Conventional acceleration scenarios for ultra-high energy cosmic rays are calledbottom-upapproaches
in contrast to the more exotictop-downapproaches. The latter explain the extragalactic flux by rare decays
of super heavy relics from the big bang. The relics may be new particles, topological defects, or primordial
black holes. A general feature of top-down models is an enhanced photon and neutrino flux at the Earth,
and a cosmic composition made entirely of (anti-)protons orneutrons.

The composition measurements performed by the Pierre AugerObservatory makes top-down scenarios
unlikely, since also heavy cosmic rays seem to be present in the cosmic ray flux. Recent limits on the
neutrino and photon fluxes obtained from data of the Pierre Auger Observatory add further constrains [34–
36]. In particular, the photon fraction above1019 eV is smaller than2% at95% confidence, which excludes
most top-down models.

Finally, the experimentally observed anisotropy of cosmicrays above5.7 × 1019 eV favors the expla-
nation of the flux suppression with the GZK limit. At large distances, the arrival directions of cosmic rays
are made isotropic by random intergalactic magnetic fields.Thus, an anisotropy can only be observed, if
only nearby sources contribute to the flux observed at the Earth.

Fig. 3.4 shows the anisotropic distribution of the 27 highest energy events from ref. [37]. The data
allows to rejected the hypothesis that the distribution is isotropic with a confidence of99 % [37, 38].
The result is obtained from a comparison of the arrival directions of the highest energy cosmic rays with
position of active galactic nuclei (AGNs) in the sky. Still,the observed correlation does not prove a general
connection of extragalactic cosmic rays with AGNs, which may simply be tracers of the true sources.
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(a) Energy loss length of ultra-high energy cosmic rays
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(b) Source candidates of ultra-high energy cosmic rays

Figure 3.3: a) The graphs show the attenuation lengths for several nuclei due to interactions with the
cosmic microwave background, calculated at a red-shiftz = 0 (from ref. [39]). b) The figure shows source
candidates of cosmic rays in relation to the typical magnetic field strength and the size of their acceleration
regions. The maximum energy increases from the bottom left to the top right. The Large Hadron Collider
is shown for comparison (from ref. [24], original: ref. [33]).

Figure 3.4: Shown is a Aitoff projection of the celestial sphere in galactic coordinates. Circles with a radius
of 3.1◦ represent the arrival directions of the 27 cosmic rays with the energies larger than5.6 × 1019 eV
detected by the Pierre Auger Observatory up to26th May 2006. Red asterisks indicate the positions of
472 of galaxies with active nuclei from the12th edition of the catalog of quasars and active nuclei [40]
within 75 Mpc distance. The solid line shows the border of the field of view of the Southern Pierre Auger
Observatory, if zenith angles up to60◦ are taken into account. The shades of blue indicate the relative
exposure of the observatory in these coordinates, each bandhas equal integrated exposure. The dashed line
is the supergalactic plane. Centaurus A, one of the closest active galactic nuclei, is marked in white (from
ref. [37]).
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CHAPTER 3. ULTRA-HIGH ENERGY COSMIC RAYS

3.2 Extensive air showers

A cosmic ray proton or nucleus with an energy larger than a fewGeV initiates anair shower in the at-
mosphere of the Earth. An air shower is a cascade of secondaryparticles generated by the successive
interactions of the primary cosmic ray with the electrons and nuclei in the atmosphere. As the cosmic ray
energy increases, the termextensive air showeris used, referring to an air shower with a lateral size of at
least several hundred meters. The particles in an extensiveair shower form a slightly curved front, which
moves with the speed of light. The phenomenon is well described in the literature, seee.g.ref. [21–23,44].

Fig. 3.5 illustrates the main components in an air shower andFig. 3.6 shows a simulation of two very
inclined showers. The secondary particles in an air shower can be grouped into four basic components: the
electromagnetic, muonic, hadronic, and the neutrino component.

In each hadronic interaction, the primary cosmic ray loosesabout half its kinetic energy, which serves
to produce hadrons. Light mesons are preferred, but also baryons are produced in rare cases. Pions are
most frequent (about90 %), followed by kaons (about10 %) [44]. The pion multiplicity per interaction
increases slowly with the beam energy, it is of the order of 10(at typical energies after a few cascading
steps) to a few 100 (in the first interaction) for cosmic rays between1018 eV and1020 eV [22].

The unstable mesons decay before making another interaction if their time-dilated decay lengthγβcτ
is shorter than their hadronic interaction lengthlint. An overview of the decay constantscτ and hadronic
interaction lengthslint of typical shower particles is given in Table 3.1 and Fig. 3.7b).

About 1/3 of the pions in the first interaction are neutral. Through their short life-time, they decay
almost immediately into two high energy photons. The probability for another hadronic interaction re-
mains slim even for neutral pions generated in the first interaction of a1019 eV cosmic ray, and it can
be safely neglected at lower energies. Theπ0-decay feeds the electromagnetic cascade, which dilutes the
initial photon energy further into numerous electromagnetic particles of low energy by pair production and
bremsstrahlung processes.

The charged pions and the kaons except forKS have much longer life-times and usually produce
more particles in successive hadronic interactions with air nuclei. This forms the hadronic component. In
successive cascading steps, the kinetic energy of each pionis used up to generate more particles.

Again, about1/3 of the energy after each step of the hadronic cascade goes into the electromagnetic
component and forms new electromagnetic sub-showers. There are feed-back processes like electromag-
netic interactions with air nuclei and direct pair production of muons, but their effect is negligible in
hadronic showers. In the end, most of the cosmic ray energy iscarried by electromagnetic particles.

The hadronic cascade comes to an end, when the time delated decay lengthγπ βπc τπ of the charged
pions becomes smaller than their hadronic interaction length lint. It is possible to define acritical energy
ξπ
c for charged pions from this decay condition

γπ βπ c τπ
!
= lint(h

π
max) ⇒ ξπ

c ≈ lint(h
π
max)

cτπ
mπc

2, (3.2.1)

whereaslint(h
π
max) is the typical distance between two interactions at the altitudehπ

max of the hadronic
shower maximum andmπ the mass of the pion. The critical energy marks the energy at which most
charged pions decay. The critical energyξπ

c ranges between10 GeV and several100 GeV, depending on
the zenith angleθ of the shower.

A charged pion decays almost always in a muon and a muon neutrino, feeding the last two shower
components. The muon inherits about80 % of the pion energy in this two-body decay. The typical muon
energy at the production point is therefore of the same orderas the critical energyξπ

c .
The electromagnetic cascades come to an end, when the electrons reach their critical energyξe

c ≈
87 MeV in air. Electrons at this energy start to loose more energy incollisions faster than in radiative
processes and get quickly absorbed in the atmosphere. A partof the energy dumped by electromagnetic
particles into the air is released through the isotropic emission of fluorescence light. Relativistic electrons
and muons also produce Cherenkov light in air, which is collimated in the forward direction.

The point where the number of electromagnetic particles reaches a maximum can be measured with
telescopes, that detect the emitted fluorescence light. Fig. 3.2 shows measurements of the depth of the
electromagnetic shower maximumXmax from the Pierre Auger Observatory. The atmosphere above the
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Figure 3.5: Left: Shown are the main processes in an extensive air shower, which form the hadronic,
electromagnetic, muonic, and neutrino component (see text). Right: Drawing of a lateral section through
the shower with its shower front of finite width (see text). The drawings are not to scale (adapted from [41]).

Table 3.1: The table shows an overview of the decay constantscτ of the most common unstable particles
in extensive air showers, taken from ref. [23]. Experimental uncertainties are not shown.

Particle π± π0 K± KS KL µ± n

c τ/m 7.8 2.5 × 10−9 3.7 2.7 × 10−2 5.1 659 2.6 × 1010

observatory is thick enough to contain the air shower development at least up to the maximum. The total
atmospheric slant depth at the site as a function of the shower inclinationθ is shown in Fig. 3.7a).

The electromagnetic cascade is continuously fed by the hadronic cascade. The electromagnetic shower
maximum is therefore coupled with the end of the hadronic cascade, and should be reached shorter after
the latter. In first approximation, both are coincident. Themajority of the muons are produced at end of the
hadronic cascade.

At the electromagnetic shower maximum, the number of electromagnetic particles is much larger than
the number of muons. At larger shower inclinations, the total atmospheric depth is large enough to fully
absorb the electromagnetic component. After this transition, the shower is dominated by muons. Ground
based detectors observe this transition at zenith angle between60◦ and70◦, depending on their altitude.

3.2.1 Heitler-model of the hadronic cascade

A quantitative treatment of extensive air showers is quite complex and either involves solving coupled
cascade equations or full Monte-Carlo simulations of the involved microscopic processes. Both approaches
are described in Chapter 5.

To gain a qualitative understanding of an air shower, it is instructive to analyse a simplified view of the
air shower cascade, which allows analytical calculations.Before the era of high-speed computing, Heitler
presented such a model for the development of a photon induced shower [46]. An adaption of Heitler’s
approach to the case of hadronic cascades is presented in ref. [22,45], which are the basis of the following
discussion.

Fig. 3.8 illustrates the model approach. The hadronic cascade is approximated by a discrete sequence
of simultaneous pion splittings. Each splitting occurs after a constant splitting lengthln 2λπ, which is the
slant depth interval after which the pion has a50 % chance for an inelastic interaction. At each splitting
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Figure 3.6: The graphs show two simulated proton showers from Chapter 5: a) number of particles vs. slant depth, b) particle number density on the ground
vs. radial distance from the shower axis, c) energy spectrumon the ground. The right side of figure b) shows the radial distribution in slice perpendicular to the
projected geomagnetic fieldBT , while the left side shows a slice parallel toBT (see Fig. 2.3). The particle depletion alongBT in b) for θ = 80◦ is caused by
geomagnetic deflections. The peak in the photon energy distribution in c) is caused bye+/e− annihilation. The energy thresholds in all plots are250 keV for
electromagnetic particles and0.1 GeV for muons.
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Figure 3.7: The figures show for an observer at an altitude of1400 m: a) the total slant depthXatm of
the atmosphere, which an air shower has to pass to reach the ground [42, 43], b) the interaction length
of some shower particles as a function of the altiudeh (approximately valid between 10 GeV and 1000
GeV) [21, 42, 43], c) the distancedmax between the electromagnetic shower maximum and the impact
point on the ground plane, and d) the altitude of said maximumabove the groundhmax [29, 42, 43]. The
calculations are covered in Appendix A.1.
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Figure 3.8: Schematic view of a hadronic shower, according to Heitler’s approach. Dashed lines indicate
neutral pions, which decay immediately and yield electromagnetic showers (not shown). The thick line
indicates the leading particle, which carries a significantfraction of the total energy in the interaction. The
residual energy is divided equally between the other pions.Not all pion lines are shown after then = 2
level (adapted from [45]).

level, a constant number ofNch charged pions and12Nch neutral pions are generated from each initial
particle. Neutral pions decay immediately and feed the electromagnetic cascade.

One particle after each interaction is the leading particle, which gets a constant fraction(1 − κ) of the
energy of the parent. In a real shower, the leading particle is usually a baryon. In the simplified model, it
is usually treated like a charged pion and in rare cases like aneutral pion. The remaining energy fractionκ
is divided equally on the other particles. Neutral pions decay immediately. A charged pion enters the next
cascading step, until its energy falls below the critical energy ξπ

c . If this happens, it decays into a muon
before making another interaction. Neutrinos are neglected in the picture.

Many approximations are done to get simple analytical formulas. The most important ones are de-
scribed in the following. The overall idea is to model the shower in terms of average interactions.

• Proton cosmic ray. The air shower in the simplified model is always initiated bya proton. The
model will be generalised to the case of heavy cosmic rays in alater step.

• Pion shower. The air shower is approximated as a pure pion shower. As90 % of the generated
particles after each interaction are pions, this seems likea reasonable first approximation.

• Constant values forλπ and Nch. The pion interaction lengthλπ and theπ± multiplicity Nch are
both are weak functions of the beam energyEπ. Both are set constant.

• Leading particle approximations. When two hadrons interact, a significant fraction of the total
energy is carried away by a single leading particle. Theinelasticityof the interaction can be described
by the parameterκ, which is the remaining fraction of the total energy available for immediate
particle production. The inelasticity parameterκ is a function of the primary energy, and not well
known at ultra-high energies. The predictions vary in the range0.4 to 0.9 [21]. A constant value of
0.6 is used here.

In a real shower, the leading particle is usually a baryon, sothat the energy of the leading particle
remains in the hadronic cascade. However, there is also a small probability ǫ for the leading particle
to be a neutral pion. The neutral pion would decay immediately, taking a lot of energy out of the
hadronic cascade. A constant probabilityǫ = 0.05 is used here.

In the following, some basic formulas are derived from the simplified shower model. For comparisons
with full simulations and data, also some numerical values are calculated. It shall be emphasized, that
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3.2. EXTENSIVE AIR SHOWERS

the numerical values have to be considered with care and are by no means quantitative predictions. They
mainly serve to show that the simplified shower model is indeed able to produce the right magnitudes. Any
quantitative prediction of the model needs to be confirmed byrealistic air shower simulations to be of any
value.

The following gives a summary of the parameter values used inthese calculations:

E = 1019 eV energy of the initial cosmic ray
Nch = 10 average charged pion multiplicity [45]
ξπ
c = 10 GeV critical energy for pions from the last section
λπ = 100 g cm−2 average pion interaction length [21]
κ = 0.6 total energy fraction available for pion production
ǫ = 0.05 probability that the leading particle is aπ0

Energy calibration function

According to Fig. 3.8, the energyE of the cosmic ray is divided in the first interaction into three groups:
the energy(1 − κ)E is carried by the leading pion,23κE is carried by the other charged pions, and1

3κE

by neutral pions. The neutral pions decay immediately. The energy fractionE(1)
π /E that remains in the

hadronic cascade depends on whether or not the leading particle is a neutral or charged pion. There are two
cases:

leading particleπ±: P = (1 − ǫ),
E

(1)
π

E
= (1 − κ) +

2

3
κ

leading particleπ0: P = ǫ,
E

(1)
π

E
=

2

3
κ.

On average, the energy fraction

E
(1)
π

E
= κ

(

ǫ− 1

3

)

+ 1 − ǫ ≈ 0.78 (3.2.2)

remains in the hadronic cascade.
This situation repeats in every step, so that in then-th step, the remaining energyE(n)

π in the hadronic
cascade is

E(n)
π =

[

κ

(

ǫ− 1

3

)

+ 1 − ǫ

]n

E. (3.2.3)

The total number of charged pions in then-th step isNch
n. The pion cascade stops, when the average

energy per pion reaches the critical energyξπ
c :

E
(nc)
π

Nch
nc

!
= ξπ

c ⇒ nc =
ln[E/ξπ

c ]

ln[Nch] − ln[κ(ǫ− 1
3 ) + 1 − ǫ]

≈ 8. (3.2.4)

The charged pions decay into muons atn = nc, which allows to derive the total number of muonsNµ

in the shower:

lnNµ = lnNπ = nc lnNch =
ln[Nch]

ln[Nch] − ln[κ(ǫ− 1
3 ) + 1 − ǫ]

︸ ︷︷ ︸

1/γ

ln

[
E

ξπ
c

]

. (3.2.5)

This can be rewritten in a form of a simple power law:

E = ξπ
c ×Nµ

γ . (3.2.6)

The power law is a very important result, because it allows toreconstruct the primary energy of the cosmic
ray by counting the total number of muonsNµ in the shower. Eq. (3.2.6) will be generalised later in this
section.
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The parametersρπ
c andγ are constants in the simplified shower model. In reality, they are very weak

functions of the cosmic ray energyE, but it will be confirmed with full air shower simulations in Chapter 5,
that the approximationγ ≈ const. andξπ

c ≈ const. is excellent for1018 eV < E < 1020 eV. The numerical
valueγ ≈ 1.11 obtained in the simple approach is close to the simulation results.

Invisible energy

Not all the energy of the cosmic ray is released into the atmosphere. In a real shower, most of the energy
not carried by electromagnetic particles is carried by muons and neutrinos. The neutrino energy is lost
entirely and muons loose only a small fraction of their energy in the atmosphere.

Fluorescence detectors observe the fluorescence and Cherenkov light, which is proportional to the
energy deposit of the air shower in the atmosphere. The energy Einv carried by the muons and neutrinos
is invisible for these detectors. The energy measurement ofthe fluorescence detectors is corrected for this
invisible energy, the correction is calculated with full air shower simulations.

The invisible energy fractionEinv/E can be calculated with Eq. (3.2.3) within the simplified model:

Einv/E =
Enc

π

E
=

(
E

ξπ
c

)1/γ−1

≈
(
E

ξπ
c

)−0.10

≈ 0.14. (3.2.7)

This result is of the same order as full simulations [47].
The equation shows, that the correction decreases slowly with the cosmic ray energyE, which is one of

the reasons why the fluorescence method works best at ultra-high energies. The model also shows, that the
correction has a sensitive dependency onξπ

c andγ, which depend on the details of the hadronic interactions
in the shower. It will be shown later, that it also has a sensitive dependency on the massA of the cosmic
ray.

Depth of hadronic shower maximum

With Eq. (3.2.4) and the splitting lengthln2λπ, it is possible to calculate the depth of the pion shower
maximumXπ

max:

Xπ
max = X0 + nc ln2λπ = X0 +

ln2λπ

ln[Nch] − ln[κ(ǫ− 1
3 ) + 1 − ǫ]

ln

[
E

ξπ
c

]

≈ 30 g cm−2 + 19 g cm−2 ln

[
E

ξπ
c

]

≈ 590 g cm−2, (3.2.8)

whereasX0 = ln2λp(1019 eV) ≈ 30 g cm−2 is the extrapolated proton-air interaction length at1019 eV
from ref. [21]. As discussed before, theXπ

max of the hadronic cascade should occur shortly before theXmax

of the electromagnetic cascade. The model result is of the same order as the maximum of the muon shower
in Fig. 3.6, which marks the end of the hadronic cascade.

A formula for the depthXmax of the electromagnetic shower maximum may be derived with a similar
approach [45]. One obtains the same functional form:

Xmax = X0 + C lnE (3.2.9)

whereasC is a constant. If the averageXmax is plotted against the logarithm of the cosmic ray energy, one
should obtain a straight line. Fig. 3.2 shows some simulations ofXmax, which are indeed straight lines in
this representation.

Shower-to-shower fluctuations

There are physical fluctuations in the air shower development, that even occur if identical cosmic rays are
injected into the atmosphere. These shower-to-shower fluctuations affect the distribution of energy between
muons and electromagnetic particles in an air shower and thedepth of the electromagnetic and hadronic
shower maximum.
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3.2. EXTENSIVE AIR SHOWERS

The shower-to-shower fluctuations can be traced back more ofless directly to statistical fluctuations in
the first few interactions of the cosmic ray with the atmosphere. Statistical fluctuations in the interactions
of the second particle generation already average out, because of the large number of particlesN (1)

ch > 100
produced in the first interaction.

Only because of the leading particle effect, the second and third interactions matter at all. If there was
no leading particle, the fluctuations caused by the second particle generation were already by an order of
magnitude(N (1)

ch )1/2 . 10 smaller.
The shower-to-shower fluctuations of the total number of muonsNµ on the ground turn out to be impor-

tant in the context of this work, and shall be estimated in thecontext of the simplified shower model. Only
the effect of the first interaction is considered. Two sources for fluctuations ofNµ can be identified: the
division of energy in the first hadronic interaction and fluctuations in the altitude of the muon production.

The energy division is discussed first. A considerable amount of the total energyE of the cosmic ray
goes directly into the electromagnetic component in the first interaction. The energyE(1)

π remains in the
hadronic cascade. Only this energy can serve to produce muons in the end. Thus, one can approximately
write:

σ[Nµ]

Nµ
≈ σ[E

(1)
π ]

E
(1)
π

. (3.2.10)

To estimate the fluctuations ofσ[E
(1)
π ]/E

(1)
π , it is instructive to turn back to the initial considerations,

which led to Eq. (3.2.2). If the leading particle always was acharged pion, fluctuations ofE(1)
π could only

come from the branching ratiop = 2/3 of charged to neutral pions, produced in the hadronic interaction.
The variance ofp can be approximated by binomial statistics:

σ[p]

p
=

1

p

√

p(1 − p)
3
2N

(1)
ch

. 6 %, (3.2.11)

whereas3
2N

(1)
ch corresponds to the sum charged and neutral pions. The valueN

(1)
ch & 100 is inserted to

obtain the numerical result. The energy fraction not carried by the leading particle isκ, so the fluctuation
caused by this effect is

σA[Nµ]

Nµ
≈ κ

σ[p]

p
. 3 %. (3.2.12)

Much larger is the fluctuation caused by the leading particleitself. There is only a small chanceǫ for the
leading particle to be neutral pion, but the energy fraction(1 − κ) immediately lost is large. The variance
of the two cases serves as an estimate of the fluctuations:

σB[Nµ]

Nµ
≈ σ[E

(1)
π ]

E
(1)
π

=

(
ǫ(1 − ǫ)

)1/2
(1 − κ)

κ(ǫ− 1
3 ) + 1 − ǫ

≈ 12 %. (3.2.13)

This type of fluctuation is interesting, because it has a strong asymmetry. In a realistic shower, this effect
should lead to a tail towards low numbers of muons. Such a tailis indeed observed in full air shower
simulations, as will be shown in Chapter 5.

The second source of fluctuations is the altitude of the muon production, which is also to a large degree
determined by the first interaction. The basis of this discussion is Eq. (3.2.5), which shows how the total
number of muonsNµ depends on parameters of the simplified model.

The calibration constantγ depends only weakly on the hadronic interaction parameters. It is assumed,
that the fluctuations ofγ are negligible. This leaves fluctuations of the critical energy ξπ

c to consider.
Eq. (3.2.1) shows, that the critical energyξπ

c is proportional to interaction lengthlint at the altitude of the
muon production, thus

σC [Nµ]

Nµ
≈ γ

σ[ξπ
c ]

ξπ
c

=
σ[lint]

lint
. (3.2.14)

The interaction lengthlint depends on the altitude of the muon productionhπ
max, which varies with the

depth of the pion shower maximumXπ
max. Most of the fluctuation ofXπ

max is generated in the first inter-
action. The depthX0 of the first interaction in Eq. (3.2.8) has an exponential distribution. The interaction
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CHAPTER 3. ULTRA-HIGH ENERGY COSMIC RAYS

length at1019 eV is λp(1019 eV) ≈ 40 g cm−2 which is then also the size of the fluctuation ofX0. The
valueσ[Xπ

max] ≈ 50 g cm−2 for the whole cascade seems like a good estimate.
This corresponds to a fluctuation of about1 km in the muon production altitudehπ

max. This has an
estimated effect of about10 % on lint, so that

σC [Nµ]

Nµ
≈ 10 %. (3.2.15)

The combination of all effects gives15 %, in good accord with the simulation results in Chapter 5. The
analysis shows, thatσ[Nµ]/Nµ is approximately independent of the cosmic ray energyE and direction, at
least in very inclined air showers with60◦ < θ < 90◦. This feature is also confirmed in Chapter 5.

Heavy cosmic rays

So far, only proton induced air showers were regarded in the simplified shower model. The formulas
derived so far can be generalised to heavy cosmic rays withA nucleons by using thesuperposition ap-
proximation[21, 22, 48]. In this approximation, a heavy cosmic ray is regarded as a superposition ofA
simultaneous and independent proton showers, each carrying an energyE/A.

This approximation describes a particular limit of the firstinteraction of a heavy nucleus, in which the
cosmic ray suffers a full fragmentation very high in the atmosphere. That the first interaction is high in the
atmosphere is quite realistic, because the hadronic interaction length of a heavy nuclei is approximately by
a factorA2/3 smaller than for a proton. In reality, however, it is more probable for the heavy cosmic ray
nucleus to successively fragment into smaller pieces. Still, for the simple calculations considered here, the
superposition approximation is good enough.

A particular important consequence of this picture also holds in a realistic scenario: if a variablex in
an air shower depends only weakly on the primary energy of thecosmic ray, then it will also depend only
weakly on the massA of the cosmic ray:

dx
dE

≈ 0 ⇒ dx
dA

≈ 0. (3.2.16)

In the simplified shower model, it is possible to derive generalised formulas for heavy cosmic rays
from the proton results by substitutingE → E/A and summing overA showers, wherever appropriate. It
is instructive to express the new generalised quantities interms of the corresponding quantities of a proton
shower with the same energyE:

[Nµ]A / [Nµ]p = A1−1/γ ≈ A0.10 ≈ 1.4 (3.2.17)
[
Eπ

E

]

A

/[Eπ

E

]

p

= A1−1/γ ≈ A0.10 ≈ 1.4 (3.2.18)

[
σ[Nµ]

Nµ

]

A

/[σ[Nµ]

Nµ

]

p

=
1√
A

≈ 0.13 (3.2.19)

[Xπ
max]A − [Xπ

max]p =
ln2λπ

ln[Nch/(1 − 1
3κ)]

lnA ≈ 19 g cm−2 lnA ≈ 76 g cm−2, (3.2.20)

whereA = 56 for an iron shower is used for the numerical value in each line.
Apparently, air showers initiated by heavy cosmic rays develop higher in the atmosphere, have more

muons, and smaller shower-to-shower fluctuations. The numerical results for iron are again in of the same
order as the full simulations in Chapter 5.

The generalised energy calibration function for heavy cosmic rays is

E = A1−γ ξπ
c ×Nµ

γ , (3.2.21)

which means that the general power law structure is preserved, if A is constant. In particular, the exponent
γ is unchanged, which is in good accord with full simulations.In reality,γ is a very weak function ofE,
and therefore also a very weak function ofA.
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3.3. VERY INCLINED AIR SHOWERS

The last important insight is, that the power law is even preserved, ifA is related to a power law of the
primary energyE itself. The following energy dependence for the cosmic ray mass shall be analysed

A(E) = A0 × Eβ , (3.2.22)

whereasA0 andβ are constants. In this case, the generalised energy calibration function turns to

E = A0
(1−γ)/(1+β(γ−1)) ξπ

c
1/(1+β(γ−1)) ×Nµ

γ/(1+β(γ−1)) (3.2.23)

and the power law indexγ is replaced byγA = γ
/(

1 + β(γ − 1)
)
. If the composition of cosmic rays

becomes heavier (lighter) as the energy increases, thenγA < γ (γA > γ), becauseγ > 1 andβ > 0
(β < 0).

This special case is not just academic. It turns out, that Eq.(3.2.22) is at least a good approximation to
real data between2 × 1018 eV and2 × 1019 eV. This can be shown with Fig. 3.2. The measurements of
the depthXmax of the electromagnetic shower maximum are well fitted by a (broken) line in this graphical
representation so that experimentally the following relation is observed

(Xmax− const.) ∝ lnE. (3.2.24)

It is not clear whether Fig. 3.2 shows a change in the cosmic ray composition, because its interpretation
depends on air shower simulations, which apparently have quite a large spread. However, it shall be
assumed, that there is a composition change. The simplified air shower model predicts that

(Xmax− const.) ∝ lnA, (3.2.25)

see Eq. (3.2.20), which was derived for the hadronic shower maximum, but an analog result is obtained for
the electromagnetic shower maximum. Eq. (3.2.24) and Eq. (3.2.25) can only be fulfilled simultaneously,
if A is either constant or changing like Eq. (3.2.22).

This is an important result, which will be picked up again in Chapter 7.

3.3 Very inclined air showers

It was discussed in the previous section, that a transition exists betweenθ = 60◦ and 70◦, where the
electromagnetic component becomes absorbed in the atmosphere, and the shower starts to be dominated
by the muon component. The so calledvery inclined air showerswith zenith angles between60◦ and90◦

are the main topic of this work, and will be focused on in the following.

3.3.1 Muon component

The average muon energy immediately after their productionis of the order of the critical energyξπ
c of the

pions. The pions still have large Lorentz factorsγ > 100 at the end of the hadronic cascade, which are
inherited by the muons. The muons therefore form a collimated beam in the forward direction. Positive
and negative charges are produced in equal numbers. After their production, the muons are only affected
by Coulomb scattering, energy losses, decay, and geomagnetic deflections.

Coulomb scattering

The charged particles in the shower are scattered predominantly in the electric Coulomb fields of air nuclei.
Multiple scattering is well covered by Molière’s theory [51, 52]. In a normal approximation [53] to this
theory, the average squared deflection angle after a given slant depthX is [49]

〈θs
2〉 =

X

λem

(
Es

mγ β2

)2

, (3.3.1)

whereλem ≈ 37.7g cm−2 is the radiation length in dry air,Es ≈ 0.021GeV is a scattering constant, andm,
γ, andβ = v/c are the mass, Lorentz factor and velocity of the scattering particle in the laboratory frame.
This effect is important for electrons at all zenith angles.It is sub-dominant for muons atθ . 80◦. At
larger zenith angles, Coulomb scattering and geomagnetic deflections are the main sources of the angular
divergence of the muons from the shower axis which is observed on the ground [84].
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Figure 3.9: The graphs show the total energy loss of muons in dry air as calculated in CORSIKA [49], and
the individual contributions due to ionisation loss, direct e+e− production in the electric field of a nucleus,
bremsstrahlung, and nuclear interaction (adapted from [50]).
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Figure 3.10: a) The graphs shows the magnitude of the perpendicular component of the geomagnetic field
with respect to the shower axis as a function of the shower direction. b) The plot shows the orientation of
the ground plane in the shower plane coordinate system, which depends on the orientation of the shower
axis and the geomagnetic field vector (see Chapter 2). The angle ψground points to the early arriving part
of the shower in this coordinate system. For both plots, a magnetic field of24.6 µT with an inclination of
−35.2◦ and a declination of4.2◦ is used.
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3.3. VERY INCLINED AIR SHOWERS

Energy losses

Fig. 3.9 shows the energy loss of muons as a function of the energy. The moderate ionisation energy loss
of about3 MeV/g cm−2 is the only energy dissipation process for most muons. The total energy loss can
be estimated from Fig. 3.2 and Fig. 3.7a), by assuming that all muons are produced at the depthXmax of the
electromagnetic shower maximum. The energy loss depends onthe zenith angleθ of the shower. It is only
about3 GeV atθ = 60◦, but increases up to70 GeV for as the zenith angleθ approaches90◦. Because the
muon energy∝ ξπ

c also increases withθ, the muon attenuation caused by energy loss remains small upto
about80◦.

Decay

The decay lengthβγcτ of a10 GeV muon is66 km, and thus much larger than the distancedmax between
the muon production point and the ground up to zenith anglesθ of about80◦, as shown in Fig. 3.7c). At
θ & 80◦, a transition happens and muon decays become significant. Inaddition, muon attenuation due to
energy loss processes becomes important.

The muon energy spectrum observed at the ground level is wide, as shown in Fig. 3.6. The decay and the
muon attenuation effects above80◦ make the spectrum harder by removing muons in the low energy tail.
As a consequence, the average muon energy increases. The average energy at the muon production point
increases, too, since the critical energyξπ

c for pions also increases with the zenith angleθ. Together, all
these effects lead to much higher average muon energies at the ground level as the zenith angle approaches
90◦.

Geomagnetic deflections

In the zenith angle range60◦ . θ . 70◦, where the electromagnetic component becomes extinct, also
lateral deflectionsδx of muons caused by the geomagnetic fieldB become relevant. The deflections can
be approximated as [10,54]

δx ≃ eBT d
2

2Eµ/c
for Eµ ≫ mµc

2 andd≫ δx, (3.3.2)

wherease is the elementary charge,d the distance between the muon production point and the ground along
the shower axis,Eµ is the muon energy, andBT is the perpendicular component of the geomagnetic field
B with respect to the shower direction.

Fig. 3.10a) showsBT as a function of the shower direction relative to the geomagnetic field. In the
extreme case, a muon propagates in a25µT geomagnetic field at the Auger South site. For a10GeV muon
at a zenith angle ofθ = 60◦ (80◦), this leads to about40 m (1600 m) lateral displacement after10 km
(66 km) travelled distance to the ground level. Geomagnetic deflections may therefore be neglected for
θ < 60◦, but are important in very inclined showers. They introducean asymmetry in the lateral profile of
the muon density, which is shown in Fig. 3.11.

The deflection also causes an increase of the total path length of the muons. Compared to the muon de-
cay length, this increase remains negligible, so that the total number of muons on the ground is independent
of the shower azimuth angleφ:

dNµ

dφ
≈ 0. (3.3.3)

3.3.2 Lateral shower profile at ground level

The lateral profile of an extensive air shower consists of photons, electrons, muons, and hadrons at all zenith
angles. The density of these particles decreases very fast with increasing radial distancer to the shower
axis, approximately liker−α for a certainr > rmin. The values ofα andrmin are in general different for
the four components.

The lateral divergence in the shower is generated through the Fermi-motion of the partons in hadronic
interactions, through the conservation of the transverse momentum in the two or more products of a decay,
and to some degree by the geomagnetic field.
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Figure 3.11: The profiles show the simulated muon densitynµ on the ground atE ≈ 1019 eV andφ ≈ 0◦

in the lateral coordinate system. The showers are the same asin Fig. 3.6. a) The radial symmetry around
the shower axis is still largely intact. b) The radial symmetry is broken by geomagnetic deflections.

(a) Simplified picture of the deflection of muons through the ge-
omagnetic field in the shower front plane. Forη > 1, depleted
regions from (after [10]).

shower axis

shower front plane

ground plane

“early” region“late” region

α
α

α α

θ

(b) Asymmetry in the density observed in the “early” and “late”
regions of the shower on the ground. Distances are not to scale
(adapted from [55]).

Figure 3.12: The geometrical drawings illustrate a) the geomagnetic and b) the early-late asymmetries in
the lateral muon densitynµ on the ground in very inclined air showers, which are explained in the text.
a) The drawing shows rings formed by muons of equal energyEµ around the shower axis in the shower
front plane. The line thickness indicates the magnitude ofEµ. The geomagnetic fieldBT separates the
muon charges, shifting the rings by an offset±δx. If the field is strong enough, two depleted regions with
an angular sizeη form around the magnetic field direction. b) The drawing in shows the shower from the
side. Muons generated with equal anglesα to the shower axis at different points on the shower axis appear
more dense in the early region of the shower on the ground thanin the late region. Muons in the late region
travel longer before reaching the ground level and get more attenuation than muons in the early region.
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The lateral density1 profile of the muonsnµ is the most important one for the signal profile measured
in an array of Water-Cherenkov detectors on the ground at zenith angles larger than60◦. Electrons and
photons are more numerous than muons at all zenith angles, but their energy is usually so low that they
make only short tracks in water, and thus they produce much less Cherenkov light than muons per particle.
The same arguments holds for the left-over hadrons. While theelectrons still contribute to the total signal,
the contribution of the hadrons can safely be neglected [56].

Fig. 3.11 showsnµ for two example showers and the loss of radial symmetry at large zenith angles.
There are two kinds of asymmetry observed in the lateral muonprofilenµ: geomagnetic asymmetries and
so calledearly-lateasymmetries. The asymmetries are discussed separately.

Geomagnetic asymmetries

An analytical model of the muon densitynµ in very inclined showers is derived in ref. [10, 54]. It is valid
in the range1018 eV < E < 1020 eV and60◦ < θ < 90◦.

The muon densitynµ is calculated in the shower front plane at the ground level. Coulomb multiple
scattering, muon decay, and energy losses are all neglected. This is a good first approximation and removes
all sources of early-late asymmetries. Furthermore, the decay angleθµ between the muon direction and the
direction of its mother particle, the pion, is neglected. Initially, also the geomagnetic field is set to zero.

In this case, a muon inherits its direction from its mother particle, the charged pion. The pions have
a certain transverse momentumpT with the respect to the shower axis, which they obtain in hadronic
interactions. This leads to the following ansatz

rµ =
pT

pµ
d(θ) + rπ ≃ c pT

Eµ
d(θ) + rπ ⇔ Eµ =

c pT d(θ)

rµ − rπ
, (3.3.4)

which relates the radial distancerµ of the muon from the shower axis to its energyEµ, the distanced from
the production point to the ground, and the radial distancerπ of the parental pion.

Simulations show [57,58], that thepT distribution of pions is approximately independent of the energy
E and massA and direction of the cosmic ray. The radial distancerπ of the pions is of the order of10 m
to 100 m [57]. The distanced ≈ dmax depends only on the zenith angleθ in good approximation for
θ > 60◦. Fig. 3.7c) shows, that the dependency ofd on the cosmic ray energyE can be neglected at large
inclinations. It follows from Eq. (3.2.16), that the dependency on the cosmic ray massA can be neglected,
too.

The anglẽθµ between the muon and the shower axis due to the transverse momentumpT of the pion is

θ̃µ ≃ pT

pµ
. (3.3.5)

An average transverse momentumpT ≈ 0.3 GeV yields an anglẽθµ ≈ 1.7◦.
Eq. (3.3.4) relates the muon densitynµ with the muon energy distribution dN/dEµ:

nµ =
dN

dxdy
=

1

2πrµ

dN
drµ

=
1

2πrµ

∣
∣
∣
dEµ

drµ

∣
∣
∣

dN
dEµ

=
c pT d(θ)

2πrµ(rµ − rπ)2
dN
dEµ

, (3.3.6)

where dN/dψ = const. is used (no geomagnetic field). If a power law dN/dEµ ∝ E−α
µ is assumed for the

muon energy spectrum (compare with Fig. 3.6, which shows muon energy spectra observed on the ground),
one obtains

nµ ∝ r−1 (r − rπ)−2+α ≃ r−3+α for r ≫ rπ, (3.3.7)

which is in good accord with full simulations.
The geomagnetic field is now included. Inserting Eq. (3.3.4)into Eq. (3.3.2) from the previous section

leads to an offsetδx in the shower front plane

δx =
eBT (θ, φ)d(θ)

2pT
(rµ − rπ) ≈ η(θ, φ) rµ for rµ ≫ rπ, (3.3.8)

1Strictly speaking, this “density” is actually the integrated muon flux through a particular ground area element over the arrival
time interval of the shower front.
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whereasrµ is the radial distance of the muon in absence of the geomagnetic field. The factorη(θ, φ)
depends only on the shower direction in this approximation.Eq. (3.3.8) has geometrical implications that
are illustrated in Fig. 3.12a). If the geomagnetic field is off, muons with equal energies form rings around
the shower axis. If the geomagnetic field is turned on, positive and negative charges are separated and each
rings separates into two, having an offset±δx from the shower axis.

If η > 1, which is the case forθ & 80◦, depleted regions form, which contain no particles in the
simplified model. This allows to understand the butterfly shape ofnµ at these angles, see Fig. 3.11, although
the effect is not so distinct in a real shower.

Eq. (3.3.6) allows another important conclusion. The shapeof the muon densitynµ essentially depends
only on the shape of the muon energy spectrum dN/dEµ. The latter is approximately independent of the
cosmic ray energyE and massA, and therefore the same is true for the shape of the muon density nµ.

The universality of the muon energy spectrum dN/dEµ can be understood with Fig. 3.7d). The altitude
of the muon production does not change significantly with thecosmic ray energyE, and thus the critical
energyξπ

c of the pions remains approximately constant. The insensitivity to the cosmic ray massA then
follows again from the insensitivity to the energyE, see Eq. (3.2.16).

These results imply, that the lateral muon density profilenµ on the ground approximately factorises
into the total number of produced muonsN0

µ, which depends on energyE and massA of the cosmic ray,
a zenith angleθ dependent muon attenuation factora, and a normalised lateral density profilepµ, which
depends only on the shower direction [11,13,54]:

nµ ≈ N0
µ(E,A) × a(θ) × pµ(r, ψ; θ, φ), (3.3.9)

The muon attenuation factora(θ) takes the so far neglected absorption effects into account,which
reduce the total number of muonsNµ on the ground with respect to the total number of produced muons
N0

µ

Nµ ≃ a(θ) ×N0
µ. (3.3.10)

The attenuation factora depends only on the shape of the muon energy spectrum dN/dEµ and the distance
d(θ) to the ground. Since the former is approximately constant, the muon attenuationa(θ) is only a function
of the zenith angleθ. The factorisation will be confirmed quantitatively in Chapter 5 and used in Chapter 6.

A final remark on the derivation ofnµ shall be made. To get a simple analytical model, the decay angle
θµ between the direction of the muon and its parental pion and the Coulomb scattering of muons were
neglected, like in the original derivation [10,54]. These approximations shall be challenged now.

The fixed angleθµ between the muon direction and the direction of its parent, the charged pion, is [49]

cos θµ =
γπ γµ − γ′µ

γπ βπ

√

γ2
µ − 1

(3.3.11)

whereγπ andγµ are the Lorentz factors of the charged pion and the muon,βπ = vπ/c is the pion velocity,
andγ′µ ≈ 1.039 is the fixed Lorentz factor of the muon in the center-of-mass frame of the pion.

If the Lorentz factors are largeγπ ≈ γµ ≫ 1, the muon angleθµ is approximately given by

θµ ≃
√

2

γπ
. (3.3.12)

For a Lorentz factor of100, one obtains a decay angleθµ ≈ 0.8◦. This is the same magnitude as the earlier
derived muon anglẽθµ ≈ 1.7◦ generated by the transverse momentum. One can further calculate with
Eq. (3.3.1) that the average angular divergence generated by Coulomb scattering becomes larger than the
angular divergence inherited by the pions atθ ≈ 80◦. Both effects therefore should be regarded in a full
analytical discussion.

However, it turns out that all these effects lead toEµ ∝ r−1
µ andnµ ∝ r−3+α in first approximation.

Thus the qualitative results derived so far remain valid.
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Figure 3.13: The plot shows the simulated ratioN+
µ /N

−
µ of positively and negatively charged muons,

which arrive at the ground as a function of the shower azimuthφ for different zenith angles. Positive
muons are bend downwards for showers coming from the east. Inthis case, the ratioN+

µ /N
−
µ is larger than

one, because negative muons have to travel longer paths and suffer more attenuation. Atθ & 85◦, some
muons are even bend so that they never reach the ground. The situation is reversed for showers coming
from the west. The ratio is derived from air shower simulations described in Chapter 5 and approximately
independent of the cosmic ray energyE and massA.

Early-late asymmetries

There are other effects that destroy the radial symmetry of the muon densitynµ on the ground in very
inclined showers beside the geomagnetic field. They are summarised under the term early-late asymme-
tries [16,55].

The early-late asymmetries arise, because the lateral particle profile is not measured in the shower front
plane perpendicular to the shower axis, but in the ground plane. This leads to differences in the muon
densitynµ in the early and late part of the shower, which are partly caused by a geometrical effect and
partly caused by muon attenuation.

Fig. 3.12b) illustrates this. Muons in the early arriving part of the shower appear less inclined and more
dense to an observer on the ground than muons in the late arriving part. This is the geometrical effect.

Furthermore, muons in the late part of the shower travel longer to the ground than muons in the early
part. Muons in the late part suffer more energy losses and have more time to decay before reaching the
ground level. The differences are relevant, which is shown by the simulated muon charge ratio in Fig. 3.13.
This ratio is a function of the azimuth angleφ, mostly because of the attenuation effects.

In general, the early-late asymmetries are not aligned withthe geomagnetic field asymmetry. The angle
between both in the shower plane coordinate system is shown in Fig. 3.10b).

3.3.3 Time structure of the shower front

The time structure of very inclined air showers is investigated in ref. [57, 58]. A general discussion of the
shower front at all zenith angles can be founde.g. in ref. [59]. Muons travel nearly in straight lines and
are the leading particles in the shower front at all zenith angles. In first approximation, the shower front is
well described by a sphere expanding with the speed of light.The center of the sphere is approximately the
point, where the hadronic cascade ends and the majority of the muons are produced.

The shower front has a finite width of a few meters, equivalentto a few tens of nanoseconds, see
Fig. 3.5. Atθ . 60◦, this width is dominated by the delay of the electromagneticpartices. Electromagnetic
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Figure 3.14: The drawing shows how a time delay is generated,even if all particles in the shower would
move with the speed of light. Muons are the first arriving particles at all angles. Electromagnetic particles
generated in the hadronic are delayed with respect to the muons because of Coulomb scattering. The
time delay of the muons is mostly due to small differences in the individual velocities, at distancesr >
1000 m, also differences in the geometric paths play a role [57, 58]. All effects in the drawing are greatly
exaggerated, the distances are not to scale.

particles get spread out in time by multiple scattering in contrast to muons, as illustrated in Fig. 3.14a).
At θ & 60◦, the electromagnetic component is extinct and the residualwidth is caused by the small dif-

ferences in the velocityβ of the relativistic muons and geometrical delays, which areshown in Fig. 3.14b).
The muon delays are smaller than the delays of the electromagnetic particles and the shower front is better
defined in very inclined air showers.

3.3.4 Muon generated electromagnetic particles

A small but non-negligible electromagnetic component is detectable on the ground at all angles, which is
produced by the muons themselves. A discussion of this component can be found in ref. [11, 13, 16]. The
muons produce photons and electrons mainly through decay.

A muon decays into an electron and two neutrinos. On average,the electron inherits about1/3 of the
muon energy, which is at least106MeV. This is many times the rest mass of an electron, but also quite close
to the critical energyξe

c . Thus, the electrons usually only generate short electromagnetic subshowers, before
ionisation energy losses become dominant and they are quickly absorbed. On the other hand, because of
the broad energy spectrum of the muons and their continuous energy losses, some muons always decay and
refill the remaining electromagnetic particle spectrum.

The muons are therefore accompanied by a halo of electromagnetic particles of moderate lateral exten-
sion, typically a few tens of meters. If the density of muons is larger than0.1 m−2, the halos overlap and
form a continuous electromagnetic particle front.

In general, the electromagnetic halo front arrives in coincidence with the muon front on the ground,
because the electromagnetic particles do not survive long enough to build up a noticeable time delay. The
particle density of the electromagnetic halo front followsthe muon density closely, so that the number ratio
nem/nµ of electrons and muons remains nearly constant.

At larger zenith angles ofθ & 85◦, a significant fraction of the muons can even reach energies up to a
few TeV, where bremsstrahlung, direct pair production, andmuon-nucleon interactions become important,
see Fig. 3.9. These muon interactions favor the production of secondary particles which carry a significant
part of the muon momentum, which are then able to initiate small electromagnetic sub-showers along the
muon path. Therefore,nem/nµ increases again after a plateau between65◦ and85◦ (see Chapter 5).
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Chapter 4
Pierre Auger Observatory

The Pierre Auger Observatory is the world’s largest instrument for measuring cosmic rays of ultra-high
energies. It consists of two parts, one on the northern and one on the southern hemisphere, calledAuger
NorthandAuger South.

Auger North is currently in its planning stage [60] and will be built in the south-eastern part of Colorado,
USA, near the city of Lamar. The northern site has a latitude of 38◦ north and an average altitude of1100m
above sea level. The current design envisions an instrumentation of a ground area of20 000 km2.

Auger South was completed in 2008 and instruments a ground area of3000 km2. The observatory is
located on a plateau north-east of the city of Malargüe, Argentina. The site has a latitude of35◦ south and
an average altitude of1400 m above sea level.

Auger South already allows a good survey of the galactic center and the southern sky. Together with
Auger North, the Pierre Auger Observatory will achieve almost uniform sky coverage, which is motivated
by detailed anisotropy studies. The huge exposure of the observatory allows detailed studies of cosmic rays
at the highest energies. Already now, Auger South collects about 200 events above1019 eV and about one
event above6 × 1019 eV each month. Auger North will triple these rates.

The design of the Pierre Auger Observatory incorporates twowell-established measurement techniques,
which are both based on the indirect observation of cosmic rays through air showers. The first method
employs telescopes, which detect the fluorescence light generated by collisions of electrons and positrons
in the shower with nitrogen molecules in the air. The second method samples the lateral density of the
shower front on the ground with an array of particle detectors.

Fig. 4.1 gives an overview over Auger South. The southern part of the observatory has four fluorescence
detector (FD) buildings, located at four corners of the surface detector (SD) array. Each FD building houses
six telescopes and overlooks180◦ in azimuth and about30◦ of elevation above the horizon. The four FD
buildings together completely cover the area instrumentedby the 1630 particle detector stations of the
surface detector1, which are placed in a triangular grid with a neighbor-to-neighbor distance of1.5 km.
The geography of the site is shown in Fig. 4.2. The SD array is very flat, the mean ground slope is smaller
than1 %.

The SD and the different FD buildings operate independently. The FD buildings operate in dark moon-
less nights and have an effective duty cycle of about13 %. They observe the longitudinal shower profile
directly, and perform an almost calorimetric measurement of the cosmic ray energy. The longitudinal
shower profile allows sensitive studies of the nature of the cosmic rays, whether they are predominantly
protons or iron nuclei, or something completely different.

The surface detector with a duty cycle of almost100%. It is the work horse to obtain the event statistic,
but it observes only the part of the fraction of the air shower, which arrives at the ground level. The direction
of the cosmic ray can be well reconstructed from this information. In principle, the reconstruction of the
energy and mass from the surface detector signals has large theoretical uncertainties, but these uncertainties
can be avoided by calibrating the SD with the FD.

1Current state at August, 19th, 2009.
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(a) Picture of Auger South (b) Schematical top view on Auger South

Figure 4.1: a) The picture shows one of the four FD buildings,a communication tower, and a SD station
in the foreground. b) The drawing depicts a top view on Auger South. Green circles represent active SD
stations, red and blue squares those which are just installed. Black dots represent the four FD buildings.
Solid gray lines are roads, thin dashed lines indicate the field of views of the fluorescence telescopes. The
yellow solid line indicates the design size of Auger South.
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Figure 4.2: Altitude maps generated from the positions of all deployed SD stations of Auger South are
shown in two different presentations. The positions are in UTM coordinates relative to the approximate
center of the SD array. The large parts of the array are very flat. An increase in the altitude of about250m is
observed in the north-western direction, which marks the beginning of the Andes. The geographic features
appear somewhat exaggerated due to the plot scales.
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This is just one example for a genuine advantage of the PierreAuger Observatory, which is its ability to
observe air showers in several FD buildings or in the FD and the SD simultaneously. These simultaneous
measurements can be used to cross-check the detectors and toquantify detection uncertainties.

The southern Pierre Auger Observatory was designed for cosmic rays with energies above1018 eV. An
extension of the southern observatory to efficiently detectcosmic rays in the energy range of1017 eV to
1018 eV is currently being built in the north-west corner of the array. This low energy extension will also
serves as a test site for new detector developments, which benefit from the existing infrastructure and the
possibility to compare new measurements with a well-understood reference. The low energy extensions
and the new developments are shortly discussed at the end of this chapter.

4.1 Surface detector

The surface detector (SD) of the southern observatory is documented in ref. [61]. The cell unit of the
array is the Water-Cherenkov-detector station [62] shown in Fig. 4.3. The Water-Cherenkov detectors of
the Pierre Auger Observatory are based on those of the Haverah Park experiment [63].

Each SD station works completely autonomous. It has two solar panels and a battery, that provide
a constant power of10 W. The station is connected with the central data acquisitionsystem (CDAS) in
Malarg̈ue via a radio link to the nearest communication tower. A common time reference over the array
is established with the Global Positioning System (GPS) [64]. Each station is equipped with a commer-
cial GPS receiver (Motorola OnCore UT), providing a pulse per second, which synchronises an internal
100 MHz clock. A micro-controller (80 MHz 403GCX PowerPC) runs the local station software being re-
sponsible for data acquisition, monitoring and communication. The latest data is always stored in memory
and available upon request to the CDAS.

The exterior shell of the station is a cylindric polyethylene tank with a radius of1.8 m and a height of
1.55 m. It encloses a TyvekTM liner filled with 12 m3 of purified water up to a level of1.2 m. The water
has a resistivity of5 − 15 MΩcm and a refraction index of 1.33.

Fast particles from an air shower produce Cherenkov light inthis medium, which is detected by three
semi-hemispheric9 inch photomultipliers (Photonis XP1805PA/1). The photomultipliers (PMTs) are op-
tically coupled to the water with a special compound, which guides about90 % of the incoming light to
the photocathode. The base of each PMT has two outputs, connected to the anode and to the last dynode,
respectively. The nominal end-to-end gain factor of the PMTs is2×105. The dynode signal is additionally
amplified by a factor of 32.

The anode and dynode signals are filtered and digitized at40 MHz using 10 bit Flash Analog Dig-
ital Converters (FADCs). Both signals together provide a high dynamic range from a few to about105

photoelectrons, encoded effective in 15 bits with 5 bits overlap.
The FADC traces have a bin size of25 ns, each bins contains0 − 1023 channels. A pedestal of 50

channels is added to the signal to observe possible fluctuations of the baseline. The digitized signals are
processed by a fast programmable logic device (PLD), which forms trigger decisions. In case of a trigger,
768 bins of all six FADC traces are read out and stored together with the time stamp of the trigger, whereas
100 bins are stored before and 668 bins after the trigger. Thefirst 100 bins are in general signal free and
used to analyse the signal baseline.

The station automatically collects monitoring data, whichis send to the CDAS every 10 minutes.
Among such data are the current PMT, battery and CPU board voltages and the water temperature in
the tank. Finally, each station is equipped with an on-boardLED flasher, which can be used to study the
PMT linearity.

4.1.1 Signal calibration

The signal calibration of the SD stations is documented in full detail in ref. [65], which is the basis of the
following summary.

Cherenkov pulses generated by charged particles within thewater volume show exponential decays
with a typical decay time of60 ns. The decay time depends on the liner reflectivity and the water quality.
An average pulse shape generated by a vertically and centrally through-going muon is shown in Fig. 4.4b).
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Figure 4.3: The drawing shows a station of the surface detector of the Pierre Auger Observatory, as de-
scribed in the text (adapted from ref. [41]).

The both the integral and the height of the pulse above the baseline are proportional to the Cherenkov
light generated by the particle. The pulse integralQ is equivalent to the charge collected at the PMT anode,
the pulse heightI is proportional to the peak current at the anode. The pulse integralQ is more precise and
therefore used as the signal reference in the final event analysis. On the contrary, the station level triggers
are implemented as thresholds for the pulse height and therefore based onI.

The average values ofQ andI generated by identical particles varies from station to station and from
PMT to PMT. The same is true for their ratio. Each PMT has slight differences in its amplification proper-
ties and its optical coupling to the water. Each station has slight variations in the quality of the water and
the liner reflectivity. The PMT amplification also has a temperature dependence, which gives rise to daily
and seasonal variations.

The trigger sensitivity of individual SD stations and the analysis of SD data should not dependent on
such individual and varying properties. Therefore, the SD stations continuously perform a self-calibration.
Nature provides an excellent calibration source: a uniformbackground flux of atmospheric muons is con-
stantly generated by cosmic rays of a few GeV, which producesa high rate of muon hits of roughly2.5kHz
in each station.

This flux can be used to express bothQ andI in terms of a physical reference: thevertical equivalent
muon= VEM. A VEM has a corresponding pulse heightIVEM and chargeQVEM , which are used as base
units forI andQ. Signals and trigger thresholds expressed in VEM are independent of individual station
or PMT characteristics.

A single station cannot measure the directions or impact points of individual background muons. It
therefore cannot measure the VEM-signal directly, but there are two indirect ways to derive the VEM
signal from the background flux.

The first method is more precise, but computationally too expensive for the limited capabilities of
a single station and therefore done offline (offline calibration). The second method is less precise, but
simpler and can performed online every minute by the stationitself (online calibration). Both kinds of
calibrations are performed individually for each PMT and are robust against failures of individual PMTs in
a station.

Offline calibration

The integralsQi and heightsIi of Cherenkov pulses generated by the background muons are collected over
some time to generate histograms. A clear peak turns up in these histograms, which is closely related to

36



CHAPTER 4. PIERRE AUGER OBSERVATORY

FADC channels

34 36 38 40 42 44 46 48 50 52 54

e
n

tr
ie

s

0

10000

20000

30000

40000

50000 PMT 1

PMT 2

PMT 3

(a) Baseline histogram

t / FADC bins (25 ns)

0 50 100 150 200 250 300 350 400 450

p
u

ls
e

 h
e

ig
h

t 
(a

rb
. u

n
it

s)

0

500

1000

1500

2000

2500

3000 PMT 1

PMT 2

PMT 3

(b) Pulse shape histogram

pulse height / FADC channels

50 100 150 200 250

e
n

tr
ie

s

0

2000

4000

6000

8000

10000

12000

14000
PMT 1

PMT 2

PMT 3

(c) Pulse height histogram

charge / FADC channels

900 1000 1100 1200 1300 1400 1500 1600 1700 1800

e
n

tr
ie

s

0

500

1000

1500

2000

2500

3000

3500

4000 PMT 1

PMT 2

PMT 3

(d) Charge histogram

charge sum / FADC channels

3000 3500 4000 4500 5000 5500

e
n

tr
ie

s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

(e) Charge sum histogram

Figure 4.4: The plots show a sample of the 13 histograms of calibration data, which each surface detector
station re-generates every minute. This data is send together with the signal trace upon a readout request
by the central data acquisition system (adapted from ref. [65]).
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the signal generated by a VEM. Examples are as shown in Fig. 4.4c)–e). The peak positions shall be called
Qpeak

VEM andIpeak
VEM .

The VEM peak stands out in these histograms, because the track length for a vertically through-going
muon is independent of the impact point on the surface of a cylinder. This makes the VEM signal more
frequent than other signals. A small additional correctionfactor has to be applied, because the peak position
Q̄peak

VEM in the histogram of the summed charge of all three PMTs actually corresponds to1.09± 0.02 VEM

and the peak positionQpeak
VEM in the charge histogram of individual PMTs to1.03 ± 0.02 VEM.

These correction factors were found in dedicated experiments with a reference station [66], in which
scintillators on top and underneath the station allowed to identify vertically and centrally through-going
muons via coincidences. The origins of these shifts are wellunderstood [67].

The histogram-based calibration of the signal has a precision of 2 %, which is much better than the
typical statistical resolution of the signal. The station re-generates the required histograms ofQ and I
every minute and sends them together with the signal trace tothe CDAS upon a station readout. The actual
signal calibration is then performed offline.

The signals used in the event reconstruction is based on the calibrated pulse chargeQ: S [VEM] =
Q/Qpeak

VEM .

Online calibration

Above a certain thresholdIthr, the PMT trigger rate is dominated by real muon hits from the background
flux over other forms of noise. Because this background flux isalmost constant, the rate of such a threshold
trigger corresponds to a physical threshold value in units of VEM.

For example, a thresholdIthr ≈ 3 VEM for a single PMT corresponds to a rate of about100 Hz. The
number of channelsIest

VEM above the baseline which corresponds to1 VEM could therefore be derived by
adjustingIest

VEM until the rate of triggers withI > 3 Iest
VEM is100Hz. The actual procedure is a more complex,

but uses the same principle.
The relation between the trigger rate and the correspondingthreshold value in VEM only has to be

established once for a reference station, which itself may be calibrated manually with the histogram-based
method.

The main purpose of this rate-based calibration is to retaina uniform trigger performance over the
whole SD array. This is achieved by re-calibratingIest

VEM with this procedure every minute. The thresholds
of the proper station trigger algorithms are expressed in terms of VEM, and thus independent of individual
PMT characteristics.

The rate-based calibration is also used to initially set up the end-to-end gain of each PMT by adjusting
the high voltage upon the startup of a station. The high voltage is generally not re-adjusted during normal
operation. The average gain per PMT set up in this way is3.4× 105, with an average of 94 photoelectrons
per VEM. The initial calibration of the gain ensures a balanced peak response for all PMTs in a station,
despite differences in the light collection efficiency and the optical coupling to the water. It also ensures a
proper dynamic range for the electronics.

The discussion shows, that the station level triggers and the final signals used in an event analysis are
based on different calibration methods. An absolute offsetbetweenIest

VEM andIpeak
VEM is observed at the level

of 5 %, with a seasonal variation of3 % [65]. The seasonal variation is generated by a physical variation of
the intensity of the background flux of muons, which in turn iscaused by the differences in the atmospheric
density profiles of summer and winter. The absolute offset isnot important for the event analysis, but the
seasonal variation of3 % leads to a corresponding variation of the lowest level eventtrigger rate.

Also part of the online calibration is the monitoring of the dynode to anode signal ratioR. The nominal
gain factor of the last dynode to the anode is 32, but the true value is continuously monitored and derived
from real signals. About 100 large pulses are collected overa time span of three minutes. The pulses are
selected as such that they stand out above the noise level in both the anode and the dynode traces, but do
not saturate the dynode.

Simply calculating the ratioR from the heights of these pulse is not accurate enough, because the
dynode and the anode signals have a phase delayǫ of about5 ns. This phase delay is introduced by the
additional amplification step of the dynode signal. The correct mathematical model of the relation is fitted

38



CHAPTER 4. PIERRE AUGER OBSERVATORY

to the collected data instead:

Ai =
1

R

(
(1 − ǫ)Di + ǫDi+1

)
, (4.1.1)

whereasAi is the anode signal in time bini in FADC channels above the baseline, andDi andDi+1 are
the corresponding dynode signals above the baseline in the same and the following bin.

4.1.2 Trigger system and data acquisition

The trigger system of the surface detector is documented in ref. [68]. The system has three levels. Trigger
events are called T1 to T3, according to the trigger level. T1and T2 events are generated locally in each
station. The station stores the corresponding signal traces in a short time buffer. T2 events are automatically
reported together with the station ID and the trigger time tothe CDAS.

The CDAS continuously monitors the stream of T2s and searches for compact patterns in time and
space, which are the signature of an air shower. If such a configuration is found, the CDAS emits a T3 and
the array is read out. The third level trigger is therefore also called event level trigger or simply central
trigger.

Local stations with a T1 or T2 are regarded ascandidatestations in the event. They may be part of an
air shower or just random coincidences, generated by the background flux of atmospheric muons. It is not
the purpose of the third level trigger to distinguish between real showers and noise. More complex methods
are better suited for this task and are applied offline as partof the reconstruction of an event candidate.

A significant number of candidate events are rejected by the offline selection, too. Therefore, the
whole event reconstruction chain has to be regarded in an analysis of the detection efficiency of the surface
detector.

The CDAS also counts the number of T2 events generated by eachstation every second. This data is
written into special files and used offline to determine the exposure of the surface detector to cosmic rays.
It allows to see whether a station was in data acquisition mode at a given second. The exposure calculation
is discussed in Chapter 6 and Chapter 8.

Station level triggers

The FADC traces of all PMTs in a station are continuously monitored in hardware by a programmable logic
device (PLD). Three kinds of triggers are implemented in this device. All work on the high-gain dynode
signal and are applied to the calibrated pulse heightI/Iest

VEM .

• Thr1 (T1) . This a simple threshold trigger and a first level trigger. Itrequires a coincident crossing
of a threshold of1.75 VEM in all three PMTs. In the rare case, that only two (one) PMTs are
operational, the threshold is2 VEM (2.8 VEM). The trigger produces a rate of about100 Hz.

• Thr2 (T2) . This trigger is a stricter version of the Thr1 and a second level trigger. It requires a
coincident crossing of a threshold of3.2 VEM in all three PMTs. In the rare case, that only two
(one) PMTs are operational, the threshold is3.8 VEM (4.5 VEM). The trigger produces a rate of
about20 Hz.

• ToT (T1, T2). This time-over-threshold trigger is a first level trigger,but automatically promoted to
the second level. It requires at least two PMTs to have at least 13 bins with more than0.2 VEM in
a sliding time window of 120 bins= 3 µs. If only one PMT is operational, it is already regarded as
sufficient, if only the remaining PMT satisfies the trigger condition. The trigger produces a rate of
about1 − 5 Hz.

The signal calibration ensures, that the dominating Thr1 and Thr2 rates remain constant. The Thr1 and
Thr2 typically selects short signals with a length of6 − 8 bins, equivalent to150 − 200 ns, which are
typically generated by muons. Example traces for each trigger condition are shown in Fig. 4.5.

The ToT rate varies slightly from station to station and is not as well balanced by the station calibration
as the simple threshold triggers. It is much more pure than the other triggers, but still dominated by
coincident hits of two muons in the sliding time window. It istypically generated in stations close to the
shower core, where the dominant contribution to the signal comes from electromagnetic particles in the
shower front, which are spread out in time.
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(a) Example of a Thr1 condition
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(b) Example of a Thr2 condition
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(c) Example of a ToT condition

Figure 4.5: The graphs show examples of signal traces, whichgenerated first or second level trigger events.
The triggers are based on the calibrated pulse heightSpeak∝ I in VEM of these traces. Also shown in each
plot is the corresponding signalS based on the chargeQ of the pulse. The dashed line marks the start time
of the traces.
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Event level triggers

The CDAS monitors the stream of incoming T2 events with a software on a central computer. The T2 events
are stored in a temporary buffer and sorted according to their trigger time. This buffer is then scanned with
a sliding window of50 µs in search of a compact spatial configuration of the T2-emitting stations in the
window.

The trigger algorithms applied in this search use the concept of crownsto measure the distance between
two stations. Each station in a regular triangular grid is surrounded by six closest neighbors, which form
the first crown. The second crown is the ring of the second-closest neighbors and so one. Fig. 4.6 visualises
the concept, the three valid trigger conditions are listed below.

• 3ToT. This trigger condition asks for a compact configuration of three ToT triggers. It requires an
arbitrary central station to have one partner in the first crown and a second partner in the first or
the second crown. Each station participates in this triggerpattern about three times a day. About
90 % of the trigger events are generated by real air showers, mostof them fall in the zenith range
0◦ < θ < 60◦.

• 4C1. This trigger condition asks for a compact configuration of four T2 triggers, regardless of the
type. It requires an arbitrary central station to have at least two partners within the first two crowns
and another one within the first four crowns. Each station participates in this trigger pattern about
two times a day. About10% of the trigger events are generated by real air showers, mostof the them
fall in the zenith range60◦ < θ < 90◦.

• BIG . This trigger condition is automatically fulfilled, if 30 T2stations or more are found in a single
time window of50 µs. This limits the computing time of the other patterns and is also a catch-all
condition for anything highly unusual. BIG triggers are extremely rare and occur only a few times
per year. All event candidates triggered with this condition so far were either created by lightning
strikes in the array or by very inclined conventional air showers with energies close to1020 eV. The
rejection of lightning events is discussed in Chapter 6.

If any of these conditions is fulfilled, the central computeremits a T3. Another way get a T3 is upon
external request by the fluorescence detector. Fig. 4.6 shows an example configuration for the 3ToT and
the 4C1 trigger.

Up to January 2007, the entire surface detector array was read out upon a T3 event. The SD array was
still growing at that time up to a point, where a read-out of the whole array produced an unacceptably high
load on the radio communication system. The CDAS was therefore changed and since then reads out only
the first six crowns around each T2 [69].

Stations with a T1 are only considered as candidates, if their trigger time is not further apart than
(6 + 5n) µs from that of the nearest T2-station, withn being the crown number. Otherwise, such stations
are regarded as having no signal.

Upon a read-out request, every candidate station sends its station ID, signal traces, trigger information,
position, calibration histograms, and an error code concerning the communication to the CDAS. The latter
is used as part of the monitoring of the communication systems.

The task of the CDAS ends after the event is written into a datastorage system and the third level
trigger is therefore the last real trigger of the SD. The event candidates are further processed offline and
have to pass two more selection levels. Because of a similarity to a trigger level concept, these levels are
often referred to as the “Physics trigger” T4 and the “Quality trigger” T5. They are not actual triggers,
since they operate on already recorded data. The T4 rejects signals generated by background muons. The
T5 rejects events close to the border of the array, which are likely to have a large systematic reconstruction
uncertainty. These selections are discussed in Chapter 6.
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(a) Example of a 3ToT condition (only ToTs contribute) (b) Example of a 4C1 condition (any T2 contributes)

Figure 4.6: The plots give a schematical example for the two main third level trigger conditions discussed
in the text. The SD array is shown from the top. The central station is surrounded by crowns, C1 to C4, of
neighboring stations. Encircled points represent stations with a second level trigger.

4.2 Fluorescence detector

The fluorescence detector (FD) of the southern observatory is documented in ref. [70]. It uses the same
detection method as the successful Fly’s Eye/HiRes experiment [8].

The atmosphere and the fluorescence detector together form acalorimeter. The calorimeter is suf-
ficiently large to absorb cosmic rays even at ultra-high energies: a shower has to overcome at least 8
hadronic interaction lengths and 20 radiation lengths until it reaches the ground level. Charged particles in
an air shower excite nitrogen molecules along their path, which partly de-excite by isotropically emitting
fluorescence light. The number of emitted photons is proportional to the energy loss of the charged particle
in the atmosphere. The conversion factor is calledfluorescence yield.

The wavelength-dependent fluorescence yield can be measured in the laboratory. Due to quenching
effects, the yield depends on the temperature, pressure, and humidity of the air [71, 72]. Since these
and other important atmospheric parameters are constantlychanging over time, the atmosphere has to be
monitored carefully over the site. Under standard conditions (20◦C, pressure of1013hPa), about 5 photons
per MeV are emitted between300 nm and400 nm in dry air [73].

With the fluorescence yield it is possible to reconstruct thetotal energy loss of the electromagnetic
shower component in the air by collecting the emitted fluorescence light along the shower path. The elec-
tromagnetic component carries about90 % of the total energy of the cosmic ray, as discussed in Chapter3,
and therefore allows an almost calorimetric energy measurement.

The fluorescence light is detected with 24 Schmidt telescopes, which are housed in four separate FD
buildings – Los Leones, Los Morados, Loma Amarilla, and Coihueco – located at the border of the SD
array. Each telescope has a field of view of30◦ × 28.1◦. Each FD building covers an azimuth angle of
180◦.

The telescope design is shown in Fig. 4.7. The optical systemconsists of a diaphragm with an aperture
of 3.8m2 and a spherical mirror, which has an area of12m2 and a radius of curvature of3.4m. To improve
the signal to noise ratio a UV transmitting filter (Schott MUG-6) is integrated into the aperture. A ring of
corrector lenses behind the filter reduces aberrations in the optical system and increases the collection area
by almost a factor of two. The optical system keeps the angular size of the image of a point source on the
camera smaller than0.5◦.

The camera is installed in the focal plane of the mirror and consists of 440 hexagonal PMTs (Photonis
XP3062) arranged in a matrix of 22 rows and 20 columns. Each PMT forms a pixel of the camera and has
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(a) Drawing of telescope with optical system and camera (b) Photo of mirror and camera

Figure 4.7: The drawing on the left shows the optical components and the camera of a telescope of the
fluorescence detector of the Pierre Auger Observatory. The shutter on the outside provides protection from
bad wheather and dust and from light of the sun and the moon. The photo on the right shows the camera
and the mirror, the camera of another telescope is visible inthe background. The photo also shows the
curtains in the front and the back of the telescope, which were lifted for the photo, but normally hang down
to catch stray light.

a field of view of1.5◦.
The light collection efficiency over the surface of a PMT decreases towards its border and small gaps

between adjacent PMTs are unavoidable due to the mechanicalstructure of the camera. These effects would
decrease the collection efficiency over the entire camera to70 %, but are avoided by placing small trian-
gular mirror segments around each PMT. These segments, called Mercedes stars, increase the collection
efficiency to94 %.

The filtered and amplified pixel signal is digitized every100ns with a10MHz Analog Digital Converter
(ADC) with a dynamic range of 12 bits. Each PMT actually has tocover a range of 3 to105 photoelectrons
which is equivalent to 15 bits. A compression scheme is used to cover this range with only 12 bits. The
scheme exploits, that only one pixels of the camera needs thefull dynamic range at a given point in time,
while the other pixels only need a fraction of their 12 bit range. Each pixel has its own circular buffer
which stores the last100 µs of the signal trace.

In order to be cost-efficient, not every PMT has its own high voltage unit. Instead, PMTs with similar
gain characteristics are grouped during the installation of the camera and are connected to one of several
high voltage channels per camera. The high voltages for the PMTs in the same channel are fine-tuned with
programmable potentiometers. The gain is balanced over theentire camera to a level of1 %.

Each FD building uses a commercial GPS receiver (Motorola OnCore UT) to synchronise itself to a
common reference time. The same type of receiver is used in each SD station.

4.2.1 Signal calibration

The fluorescence detector reconstructs the total number of photons generated by an air shower from a
detected fraction of the isotropically emitted light in a certain distance. In order to derive the number
of photons at the aperture of the telescope from the integrated pixel signals, the telescopes need to be
calibrated. Similarly, the absorption and scattering properties of the atmosphere have to be measured to
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derive the total number of photons emitted by the shower fromthe sampled number of photons at the
aperture.

The signal calibration of the telescopes is done in two steps. An absolute calibration is done three
to four times per year, which relates the integrated pixel signals to a defined number of photons at the
aperture. A relative calibration is done every night of operation before and after the data taking. The
relative calibration allows to keep track of changes between two absolute calibrations.

Absolute calibration

The absolute calibration is a full end-to-end calibration of each telescope. It accounts for the optical
system, the camera, and the electronic readout. In order to perform the calibration, a diffuse light source
with a diameter of2.5 m is mounted at the aperture of a telescope. The light source resembles a drum. It
is constructed to have an almost uniformly illuminated front, which covers the aperture of the telescope
completely.

The drum is illuminated by a calibrated UV LED diode and provides a known and uniform photon flux
at each PMT of the camera. The absolute calibration has an uncertainty of6 %. The relative wavelength
dependency of the FD signal response is also measured with the drum, but using a Xenon flasher with a
filter wheel to select individual frequency bands.

Relative calibration

The relative calibration is performed with three diffusivelight sources, mounted at different positions of
the optical system. They allow to monitor the short and long term changes in different groups of detector
components. This is done by illuminating the camera with these light sources and recording the measured
signals.

The first light source is mounted at the mirror and illuminates the camera directly. It is used to track
relative changes in the calibration of the PMTs and the camera electronics.

The second light source is mounted at the center of the cameraitself. Its light is reflected at the mirror
and falls back into the camera. The second light source is used to track relative changes in the camera and
the mirror reflectivity, for example due to the accumulationof dust on the mirror.

The third light source is mounted in front of the aperture of the telescope and illuminates the aperture.
Its light passes the whole optical system. This light sourceis used to monitor relative changes in the
aperture, the mirror reflectivity, and the camera.

The measurements of all three light sources can be disentangled offline and then also allow to keep
track of changes in individual detector components.

Atmospheric monitoring

The Pierre Auger Observatory uses an extensive monitoring program to keep track of atmospheric prop-
erties. A summary of these activities can be found in ref. [74, 75]. The main task of the atmospheric
monitoring is to derive all parameters for a proper calculation of the fluorescence yield along the shower
track and the Mie scattering of UV light on aerosols in the atmosphere.

The vertical profiles of the density, temperature, and relative humidity of the atmosphere at the site
were measured with a program of wheather balloon launches, which rise up to an altitude of25 km above
sea level [41]. Several of launches were conducted every month over the course of a year, to measure both
the daily and seasonal variations of the atmospheric conditions.

The measured profiles are used to calculate the fluorescence yield and the atmospheric slant depth of the
atmosphere above the observatory. The atmospheric densityprofile varies by about5 % around an average
value, with a corresponding variation in the atmospheric slant depth profile of about7 g cm−2. Variations
of the density profile have a potential small impact on the energy estimator of the surface detector, which
has to be derived from air shower and detector simulations. Variations in the slant depth profile affect the
reconstruction of the depthXmax of the electromagnetic shower maximum.

The aerosol content of the air is measured with elastic backscatter LIDAR (LIght Detection And Rang-
ing) units [76]. A LIDAR unit consists of are steerable UV laser and an optical system with a PMT to
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detect the backscattered light. Each FD building is equipped with one unit. The time resolved signal of
backscattered light after a UV shot allows to reconstruct the aerosol extinction coefficient at any given spot
along the path of the laser beam. The aerosol extinction coefficient is used to correct for the attenuation of
UV light on its way from the shower axis to the telescope due toMie scattering.

The LIDAR units also detect clouds in the field of view of the telescopes. Clouds can distort the
measured light curve obtained from a shower, either by adding reflected light to the curve or by absorption
of light, depending on whether the cloud was behind or in front of the shower. In addition to the LIDAR
units, there are infrared cameras installed at each FD building, which monitor the cloud coverage of the
sky.

A versatile instrument is the Central Laser Facility (CLF) in the approximate center of the SD array [77].
The solar powered facility houses a steerable355nm UV laser, which fires laser shots of up to7mJ into the
air. The laser beam can take almost any inclination from vertical shots into the air down to almost horizontal
shots. The scattered light from the beam is detected with theFD telescopes. At the maximum power level,
the amount of scattered light is roughly equivalent to the fluorescence light emitted by a1020eV air shower.

The CLF provides a test beam for the fluorescence detectors, which is used to analyse the energy and
angular resolution of the telescopes, the aerosol extinction coefficient of the atmosphere. It can also be
used to derive the angular and energy resolution of the FD telescopes. The CLF is also used to measures an
absolute timing offset between the SD and FD by feeding a small fraction of the laser light into a specially
prepared nearby SD station, which triggers the station. A second facility, called XLF, is currently being
built.

The measurements of the aerosol extinction coefficient by LIDARs and the CLF are extended by Hor-
izontal Attenuation Monitors (HAMs), Aerosol Phase Function Monitors (APFs), and Fotometric Robotic
Atmospheric Monitor (FRAM) on the site. The HAMs measure thewavelength dependency of the aerosol
extinction coefficient. The APFs measure the aerosol differential scattering cross-section [78]. The FRAM
measures the wavelength depend integrated aerosol extinction coefficient through the atmosphere by track-
ing several bright stars [79]. The last method is non-invasive in contrast to the others and used to cross-
check the other instruments.

Finally, every FD building and the CLF are equipped with standard sensors for barometric pressure, air
temperature, relative humidity, wind speed, and wind direction.

4.2.2 Trigger system and data acquisition

The trigger system of the fluorescence detector has three levels. The first level trigger operates on individual
pixels and keeps the overall noise rate constant for the higher levels. The second and third level triggers
operate on individual telescopes and select tracks in the camera with a certain spatial and time ordering,
which are the signature of real air showers.

(1) Pixel trigger. The first level trigger is implemented in the logic of a Field-Programmable Gate Array
(FPGAs). The signal trace from each pixel is integrated overa sliding window of the last 16 bins (=
1.6 µs). The integral is compared to a threshold value to form the trigger. The threshold value is not
fixed, but continuously adjusted to maintain a trigger rate of 100 Hz for each pixel.

(2) Spatial structure. The second level trigger is also implemented in the logic ofa FPGA. The trigger
searches for a combination of five adjacent pixel triggers, which form a rough line in the camera.
One out of the five pixels may be silent, which makes the trigger more tolerant to pixel failures and
weak showers. The trigger produces a rate of about0.1 − 100 Hz per telescope.

(3) Time structure. The third level trigger is implemented in software and rejects lightning events,
muon impacts in the camera, and plain random pixel triggers.The trigger produces a rate of about
0.01 Hz per telescope.

(a) Lightning rejection . Lightning can cause hundreds of pixels to trigger in burstsof 100 Hz.
It has to be rejected fast so that it does not congest the signal buffers and causes dead time.
Cuts on the time development of the pixel trigger multiplicity in steps of100 ns and the total
number of triggered pixel reject99 % of the lightning events while removing less than1 % of
real showers [80].
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(b) Muon and random trigger rejection . Random triggers and muon impacts are rejected by
looking at the time structure of the peaks in the ADC traces ofindividual pixels. The peak time
search is used for this part of the trigger is comparably slow, but manageable after the basic
lightning rejection.

The local software in each FD building combines coincident third level triggers and starts the readout
of the participating telescopes. The collected event data is send to the CDAS, together with a request to
trigger the SD array readout. In order to set a proper time window for the SD trigger, a rudimentary online
reconstruction of the shower development is performed.

The FD reconstruction algorithm uses the measured arrival time in at least one SD station to improve
the accuracy of the reconstructed shower geometry, as will be discussed in Chapter 6. If the cosmic ray
energy is around or below1018 eV, the shower may only trigger one or two stations, which is notenough
for an independent SD reconstruction, but enough to improvethe FD reconstruction.

The data acquisition of the fluorescence detector is remotely operated by human shifters from the central
campus of the observatory in Malargüe, who open and close telescopes according to the environmental
conditions and monitor the data acquisition. In addition, automatic safety protocols are implemented in the
local slow control PC of each FD building, which performs orderly shutdowns in case of power failures,
communication problems, or bad environmental conditions like rain or heavy storms.

Data is collected, if the moon fraction is smaller than60 %, which is the case in about 16 nights each
month. The data aquisition starts after and ends before the phase of astronomical twilight, yielding an
average time of 10 hours of operation. Individual telescopes remain closed, if they would get direct moon
light or if they get too much reflected moon light from clouds.

On average, the FD reaches at a duty cycle of13 %. Since the thresholds of the pixel triggers depend
on the amount of background light, its sensitivity is a function of time and reaches a maximum during the
darkest nights of each monthly data taking period.

4.3 Extensions and new developments

The southern Pierre Auger Observatory works efficiently in the cosmic ray energy range of1018 eV to
1020 eV. Two extensions are currently being built to increase this range down to about1017 eV. Air
showers develop higher in the atmosphere and have a smaller lateral extension as their energy decreases. In
order to detect these showers efficiently, fluorescence detector telescopes are needed, which look up higher
into the sky, and a surface detector array with a smaller gridsize.

The High Elevation Auger Telescope (HEAT) extension consists of three new telescopes, which are
located close to the FD building Coihueco [81]. They are almost identical to the standard telescopes, but
cover the required higher elevation angle from30◦ to 60◦.

The Auger Muon-detectors and Infill for the Ground Array (AMIGA) extension fills up the standard
SD array near the Coihueco FD building with additional stations to make a more dense grid [82]. The
extension is partly visible already in the top left corner ofFig. 4.1a). Through the infill, the grid size is
reduced to750 m in a fraction of the SD array and partly even to433 m.

In addition, scintillation detectors are buried underground next to some of the SD stations in the denser
grid. The scintillation detectors are a new development forthe Pierre Auger Observatory. They are shielded
from electromagnetic particles by the earth and therefore only detect the muon component of the shower.
Used in coincidence with the standard SD stations the burieddetectors will help to separate the electro-
magnetic and the muonic component of the lateral shower profile.

The area covered by the low-energy extensions HEAT and AMIGAis an ideal testbed for new air
shower detectors. Air showers generate radio waves, which are detectable in the frequency range of1MHz
to 100 MHz with suitable antennas [83]. A prototype array of about 100 autonomous radio detectors is
planned, which will be embedded in the AMIGA array, and record air shower data alongside the established
detectors.
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Chapter 5
Air shower and event simulation

This chapter deals with air shower simulations and the insights that are gained from the simulations in the
context of this study. A large library of very inclined air showers and corresponding surface detector events
was generated as a part of this work, which is described here.

The library is used to model the muon component of very inclined air showers (see also ref. [84]) and
the signal response of the surface detector to such air showers in the second part of this chapter. The
derived models are used in the reconstruction of surface detector events measured with the Pierre Auger
Observatory in Chapter 6.

5.1 Simulation of air showers

It was discussed in Chapter 3, that an extensive air shower initiated by a cosmic ray nucleon forms a
hadronic cascade, which feeds an electromagnetic component along the way. The hadronic cascade mostly
consists of instable mesons, which eventually decay into a penetrating muon component and into neutrinos.

Ground based experiments observe the cosmic ray only indirectly through its air shower. Therefore,
they usually rely strongly on quantitative predictions of air shower observables as a function of the proper-
ties of the primary cosmic ray.

To predict observables, two main approaches were developedin the past, and one unified approach is
currently emerging.

• Cascade equations. The development of an air shower can be treated with a coupled set of cascade
equations [85, 86]. These are coupled differential equations that describe the change in the flux of
a particle species analytically with loss and gain terms (see e.g.[21]). The continuous and average
treatment of the particle flux is a good approximation after afew interaction lengths, because of the
huge number of secondary particles. The treatment of shower-to-shower fluctuations can be included
into the approach [87].

The equations are solved numerically and the necessary computing time is very moderate. The so-
lutions are 1-dimensional profiles of the number density of various particle species in the shower as
a function of the slant depthX, which allow valuable predictions for fluorescence telescope mea-
surements. Not yet achieved is a full 3-dimensional calculation of the shower, so that the cascade
equation approach is currently unable to predict observables for surface detector arrays.

The program CONEX [87] implements the pure cascade equationmethod and has found several
applications in the Pierre Auger Collaboration.

• Monte-Carlo simulation. Another way to calculate an air shower is the full Monte-Carlo simulation,
which explicitly follows every single particle and treat all relevant microscopic processes according
to their cross-sections and probabilities. It is currentlythe only way to predict the lateral shower
profile, which is the essential information for surface detector arrays.
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A full Monte-Carlo simulation of an air shower with more than1011 particles above1018 eV needs
huge amounts of computing resources. Therefore, a statistical sampling algorithm is applied to cut
down the complexity to an acceptable level.

Two full Monte-Carlo simulation programs of widespread usein the Pierre Auger Collaboration are
AIRES [88] and CORSIKA [49,89].

• Hybrid simulation . A comparably new approach tries to combine the calculationspeed of the
cascade equation method with the full Monte-Carlo treatment of the lateral shower profile. This is
achieved by calculating the first and last steps of the showerwith the full Monte-Carlo simulation,
and the intermediate steps with cascade equations.

The first program which implemented this idea was SENECA [90], which is also used in the Pierre
Auger Collaboration. Recently, there is an effort to merge the CONEX and CORSIKA programs [91],
which will enable this feature in CORSIKA in the future.

A discussion of the air shower simulation programs and hadronic interaction models can only be a snapshot
of the current situation, as there is vivid motion in the field[92,93]. A summary of past and recent programs
that use the Monte-Carlo simulation approach is given in ref. [94].

The simulation programs typically use external well-established codes to implement hadronic and elec-
tromagnetic interactions. The electromagnetic interactions are well determined at all energies by the pertu-
bative theory of quantum electrodynamics (QED). The EGS4 code [95], originally developed for collider
experiments, implements most of the necessary electromagnetic interactions in air showers and is utilized
in all modern air shower simulation programs. It is usually extended by some processes, that specially
appear in the context of air shower simulations at ultra-high energies, like the LPM-effect [89, 96, 97],
direct muon pair production in the electric field of a nucleus, and electromagnetic interactions of photons,
electrons, and muons with nuclei.

The treatment of hadronic interactions is not as straight-forward, because most interactions in air show-
ers happen at low momentum transfer, where the strong coupling constantαs is too large for the standard
pertubative approach to quantum chromodynamics (QCD). Phenomenological models and effective theo-
ries are used instead to calculate the interaction cross-sections.

The treatment of hadronic interactions is generally split into a high energy and a low energy part, with
a threshold between the two at about80 GeV. The low energy part is usually treated by a model, which is
based directly on collider data. The high energy models are based on theoretically motivated extrapolations
of such low energy data.

The low energy models have a considerable impact on the shapeof the lateral profile of the particle
density in an air shower, but almost no impact on the longitudinal profile [98]. For the high energy interac-
tion model, it is the other way round [93]. This observation can be understood in context of the analytical
discussion of air showers in Chapter 3. It was shown there, that only low energy muons are able to diverge
far away from the shower axis, which in turn are generated by pions of low energies in the last steps of the
hadronic cascade. In contrast, the interactions relevant for development of the longitudinal profile occur at
high energies.

An overview of contemporary hadronic interaction models isgiven in the following. Another important
feature of modern air shower simulations is the statisticalweight-sampling. The sampling may introduce
biases to air shower observables and its impact therefore has to be analyzed. It discussed at the end of this
section.

5.1.1 Hadronic interaction models at low energies

The most commonly used hadronic interaction models at low energies are GHEISHA [99], URQMD [100,
101], and FLUKA [102,103].

FLUKA combines an array of models for hadronic interactionsfor different energy ranges in itself.
The proclaimed aim of FLUKA is to rely on parametrized collider data as little as possible. Instead, the
authors use QCD motivated models wherever possible. The code and and the theoretical framework are
continuously improved.
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URQMD is based on a QCD motivated approach called Quantum Molecule Dynamics. It allows to
compute general hadronic interactions, but the approach specially aims at collisions of two heavy ions.
This specialization may be disadvantageous in the treatment of the low energy hadronic cascade in air
showers, where most interactions are pion+nucleus and nucleon+nucleus.

GHEISHA is a well tested and mature model in the context of collider experiments. It was the standard
for almost two decades, but is no longer actively maintainedat present. It uses phenomenological fits to
tabulated experimental data in many cases.

Partial comparisons of predictions from these and other models with data can be found in ref. [98,104].
Data from fixed target experiments cover only a small fraction of the total interaction phase space of
interest in air showers. New experiments are desirable to extend this data. The analysis in ref. [104]
remains inconclusive, while ref. [98] favors FLUKA and URQMD over GHEISHA.

5.1.2 Hadronic interaction models at high energies

Many high energy hadronic interaction models are on the market. They extrapolate hadronic interactions
over several orders of magnitude beyond the data of current colliders and their predictions for cross-sections
at ultra-high energies vary significantly. Instead of a listing of many similar models, a general overview of
the theoretical approaches shall be given, based in parts onref. [21,22,94].

Contemporary models usually have three theoretical components [105]: (a) a component to calcu-
late the “soft” part of the interaction of individual hadrons where the exchanged transverse momentum
pT is low, (b) a component to calculate the “hard” part of said interaction wherepT is high, and (c) a
component to calculate hadron+nucleus and nucleus+nucleus cross-sections from the basic hadron+hadron
cross-sections.

The idea for the splitting of the soft and hard regime is obtained from the measured total inelasticpp(p̄)
cross-section. It features some resonances up to laboratory energies of about10 GeV, then a nearly flat
plateau over nearly two orders of magnitude in the energy, and finally a slow increase [23]. A similar
plateau is observed in theKp andπp cross-sections.

This gave rise to theminijet model [106, 107] for interactions above laboratory energies of about
10 GeV, which splits the inelastic cross-sectionσhh

tot of two hadrons into a “soft” and “hard” part

σhh
tot (

√
s) ≈ σhh
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√
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T ,

√
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where
√
s is the center-of-mass energy, andpmin

T is a lower threshold of transverse momentum exchange.
The soft partσhh

soft is thought to be dominated by complex peripheral QCD interactions between the
hadrons, in which the constituent quarks quarks participate collectively. It is assumed to vary slowly with
the center-of-mass energy

√
s.

The hard partσhh
hard then is responsible for the bulk increase of the total cross-section with

√
s, and

caused by interactions of individual partons, see Fig. 5.1b). These multiple interactions give rise to small
hadronic jets. The hard part of the total cross-section can be calculated in pertubative QCD with the help
of the QCD factorization theorems [108] and experimentallymeasured parton structure and fragmentation
functions.

Although the first ansatz of the minijet model was Eq. (5.1.1), this picture is actually too simple and
has since evolved. The basic separation remains a guiding idea. The SIBYLL model [105, 109] is a pure
minijet model, which treatsσhh

soft as a constant.
Most contemporary hadronic interaction models are based onthe Gribov-Regge theory [110–114], for

example the QGSJet model [115–120]. Gribov-Regge theory isan effective field theory that works only
in the limit of low momentum transfer and multiple-scattering of partons. The hadronic interactions are
described by the exchange of hypothetical particles, called pomerons, see Fig. 5.1a). A pomeron can be
seen as a QCD cascade of quarks and gluons built between the interacting partons. It is charge and color
neutral.

There are soft and hard pomerons, which correspond to the twoterms in Eq. (5.1.1). In Gribov-Regge
models, alsoσsoft varies with the center-of-mass energy

√
s. The model QGSJet became a common choice

in the cosmic ray community because it showed good agreementwith cosmic ray data around1015 eV,
for example in a comparative analysis of data from the KASCADE air shower experiment with several
hadronic interaction models [121,122].
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(a) Soft interaction in the picture of Gribov-Regge theory.The
colliding hadrons (light gray circles) participate collectively in
the interaction and exchange pomerons (thick dark gray bars).

(b) Hard interaction in the picture of pertubative QCD with
structure and fragmentation functions (initial and final blobs).
The exchanged particle is a gluon.

Figure 5.1: Two diagrams show one out of many configurations,that contribute to a “soft” and “hard”
cross-section of two colliding protons.

The hadronic interaction models predict not only the total inelastic cross-sections, but also the dif-
ferential cross-sections. In case of the hard scatterings,pertubative QCD together with the factorization
theorem yields the differential cross-sections. Soft interactions need a phenomenological treatment, based
on a microscopic Monte-Carlo simulation of the interaction.

A variant of the dual parton model (DPM) of QCD string production and fragmentation [123, 124] is
usually used. It is based on the idea, that strings of “color field lines” should span between interacting
partons. The string picture is an analogy to classical fieldsin electromagnetism, with the difference that
the field lines of the strong force attract each other, because the force mediating gluon carries color charges
itself. A string gains potential energy as the interacting partons move apart, and then fragments into color
neutral objects.

The final component of an interaction model is a theory to calculate hadron+nucleus and nucleus+nucleus
interactions. The Gribov-Regge theory can be extended to such cases and the interactions are treated in a
similar way as the interaction of individual hadrons. The minijet model SIBYLL on the other hand is built
on the multiple scattering theory of Glauber [125] and an advanced superposition approach [48], which
approximates a nucleus as a superposition of free nucleons.

QGSJet has been succeeded by QGSJet-II [126–128], which includes interference terms of soft and
semi-hard pomeron amplitudes. QGSJet-II started to combine the soft and hard treatment into a common
theoretical framework, which further improves the agreement of this model with collider data.

The latest generation of models are based on the so called Parton-based Gribov-Regge theory [129],
which removes the separation between soft and hard interactions and treats them consistently. In particular,
energy conservation is strictly assured for the first time inthe particle production.

The EPOS model [130, 131] is a representative of the latest model generation. The special feature of
EPOS is its enhanced cross-section for baryon production compared to other models, which the authors
derived from comparisons of EPOS predictions with data of heavy ion collisions. As a consequence, EPOS
currently generates more muons in air showers than any othermodel.

The author hopes to point out with this overview, that there is still a lot of theoretical uncertainty
in the description of hadronic interactions at ultra-high energies and that even now the field is rapidly
progressing. In general, the models co-evolve with the available data. Several experiments at the LHC at
CERN are dedicated to heavy ion collisions and sampling of the forward direction, which will greatly help
the model builders in the future.
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Figure 5.2: The graph shows the relative artificial fluctuation of the total muon numberNµ in CORSIKA
simulations as a function of the thinning levelǫ (adapted from ref. [89]).
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Figure 5.3: The graphs compare biases and fluctuations in thelateral density profile of proton showers
simulated with the thinning levelsǫ and weight limitswmax. The simulations are done with the air shower
program CORSIKA at an energyE = 1019 eV and a zenith angleθ = 0◦ (adapted from ref. [132]).
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5.1.3 Thinning

In principle, the full Monte-Carlo approach requires to follow every single particle in the air shower ex-
plicitly. This approach is not feasible even with modern computing resources at energies above1018 eV,
where the shower consists of more than1010 particles.

It was demonstrated recently in the Pierre Auger Collaboration, that the full simulation of a single air
shower at1019 eV [133] takes about 1.5 years on an AMD OpteronTM CPU. The required storage space
is enormous, too: a few100 GB for a single shower. On the other hand, data analyses which rely on
knowledge of the distribution of an observable need at least10 times more simulated than real events, and
thus, huge libraries of simulated air showers are desired.

To reduce the computational complexity to a reasonable level, a weight-sampling of the shower is
introduced, which is calledthinning. The thinning discards secondary particles of low energy during the
shower development, which have a negligible impact on the global development of the shower in the best
case [134,135]. This reduces the amount of particles to explicitly follow by orders of magnitude.

The actual implementation of a thinning algorithm has to handle some special cases, seee.g.[89], but
the basic idea is to follow all particles down to a certain energy fractionǫ of the cosmic ray and then start
to follow only one secondary particlei from each multiple particle production process at random, with a
probabilitypi equal to the fraction of the total energy carried by thei-th particle after the process:

pi =
Ei

∑n
i=0Ei

. (5.1.2)

The surviving particle gets a weightwi = 1/pi to conserve the energy in the shower. The survivor may
interact again, but only weight is accumulated in the subsequent shower development. The number of
actually followed particles remains constant. The energy fraction ǫ is also called thethinning levelof
the shower. The thinning is turned off for particles, which have accumulated a preset maximum weight
wmax [136]. All secondaries particles are followed again in sucha case.

The thinning algorithm solves the computational and storage issues, but also introduces artificial fluc-
tuations and biases in shower observables. These need to be kept at a minimum.

Firstly, the thinning may only start after the global shower-to-shower fluctuations are established. As
discussed in Chapter 3, the first interactions are the most important for the observed global shower-to-
shower fluctuations. Any thinning at this stage would increase the natural shower-to-shower fluctuations,
which has to be avoided. The thinning levelǫ therefore needs to be small.

Fig. 5.2 shows the effect of the thinning levelǫ on the global fluctuation of the total number of muons
Nµ in the shower. Forǫ = 10−6, the effect is negligible. With the simplified shower model from Chapter 3
and an assumed average multiplicity of 100 in the first few interactions, it is possible to estimate that the
thinning starts in the third to forth generation of secondary hadrons at this thinning level, which is on the
safe side.

Secondly, the weight limitwmax may not be too large. As discussed in Chapter 3, the lateral distanceri
of a particle from the shower axis is strongly correlated with the particle energyEi. The thinning tends to
remove low energy particles and therefore makes the lateraldensity profile artificially steep, as shown in
Fig. 5.3. The weight limitwmax helps to reduce this bias.

While an impact on global shower features can be mostly avoided by careful choicesǫ andwmax,
additional the artificial fluctuations in local shower features cannot and have to be dealt with. The effect
shall be illustrated for a simple counting observable: the number of particlesN which fall into an area on
the ground, which is small compared to the structure of the shower front.

If n is the number of weighted particles that arrive in this area,which carry individual weightswi, then
N is the sum of the weights

N =
n∑

i

wi. (5.1.3)

In the limitwi → 1, the fluctuations ofN follow a Poisson distribution, so thatσ[N ] ≈
√
N .

In local areas of the shower front, the individual weights tend to be of similar size, so that it is possible
to write approximately

N ≈ 〈w〉n, (5.1.4)
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whereas〈w〉 ≈ wi is the average weight. In this case,n follows a Poisson distribution, so that the fluctua-
tion ofN can be calculated as

σ[N ] ≈ 〈w〉σ[n] = 〈w〉
√
n =

√

〈w〉
√
N. (5.1.5)

The example shows, that the thinning increases the natural Poisson fluctuations in observables like the
lateral muon density profilenµ roughly by a factor equal to the square-root of the average local particle
weight at a particular point on the ground.

5.2 Simulation of surface detector events

The full Monte-Carlo simulation of an air shower produces a set of weighted particles on the ground level.
Each particles has a detailed space and time coordinates, a momentum and an energy. The particles can be
analyzed directly to learn something about the global features of an air shower or they can be used to further
simulate the detector response to such an air shower. Simulated events provide the connections between
air shower observables and detector signals. They are also used to calculate the detection efficiency of the
detector, which is often difficult to obtain experimentally.

The simulation of the surface detector (SD) of the Pierre Auger Observatory is done in the software
frameworkOff line of the Pierre Auger Observatory [137]. The default is a full Monte-Carlo simulation
of the SD, which shall be summarized here. The simulation only treats photons, electrons, and muons
from the air shower. All heavier particles barely produce Cherenkov light in an SD station [56] and are
neglected.

The site of the southern Pierre Auger Observatory is almost flat, as shown in Chapter 4, and thus the
impact point of the simulated air shower may be placed at an arbitrary position in the SD array. Once the
impact point is set, the simulation of surface detector events may be roughly divided into three steps.

(1) Shower un-thinning. A set of unweighted particles is recovered from the weight-sampled shower
around each station with a so calledun-thinning algorithm. Some particles out of this set hit the
station. They are picked at random with a probability given by the effective area of the station with
respect to the shower front. Particles which hit the stationare placed at random positions on its hull.

(2) Signal response of a SD station.The particles are individually tracked through the hull andthe
whole detector in a full Monte-Carlo simulation of all particle processes based on GEANT4 [138].
The optical photons of the generated Cherenkov-light are individually tracked with a custom code [139],
which treats all relevant attenuation and scattering processes. The optical photons are either absorbed
or generate a photoelectron in one of the PMTs. The output of the station simulation is a discrete
time sequence of photoelectron counts, which is converted into a standard VEM trace with noise in
the subsequent simulation of the station electronics.

(3) Simulation of Online-triggers. The calibrated signal trace is checked against the station level trig-
gers T1 and T2, as discussed in Chapter 4. Finally, the T3 trigger condition is checked against the
stations with a T2.

The complete event is written into the same data structures as real events, which makes them indistinguish-
able from real events in the point of view of subsequent analyses steps.

The simulation fully imitates the signal calibration of theSD stations a simulated flux of background
muons, as described in Chapter 4. This procedure makes the simulated signal very robust, because small
errors in the parameters of the tank simulation, like the PMTefficiencies or the liner reflectivity, are counter-
balanced. The simulation of the signal response of a SD station to muons is compared with experimental
data in Fig. 5.4. The agreement is very good.

5.2.1 Un-thinning

The other simulation steps are straight forward, but the un-thinning of the weight-sampled air shower needs
some discussion. The full procedure is described ref. [140].
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Figure 5.4: a) The signal distribution obtained from the fluxof atmospheric muons is compared with a
simulation of this flux and the signal response. The peak close to zero is generated by noise. The peak
around1VEM is generated by vertically and centrally through-going muons. The small shift of this peak is
well understood, see Chapter 4. b) Signals of selected muon tracks from the background flux are compared
with the simulation. The tracks are selected in the experiment via pairs of scintillators, placed around the
station and used as triggers for the desired geometrical configuration. Muons produce larger signals if they
face a PMT, because a significant fraction of the Cherenkov light falls directly into the PMT (plots adapted
from [67]).

The un-thinning is essential to get the correct time structure of the signal trace and the correct signal
and time fluctuations. On way to see this is to regard the example of a weighted electron in the SD station,
which shall represent 100 electrons. If such a weighted electron was directly processed, the signal in the
SD station would be the random signal of a single electron, but scaled by a factor of 100. In reality, the 100
electrons would arrive over some time, making a wide signal,while the weighted electron would generate
just a single peak. Furthermore, the start time and the signal size uncertainties would be too large by factor
of 10.

The un-thinning method tries to avoid this effect by recovering a set of unweighted particles from the
weight-sampled ones with a minimum bias. The method is basedon the observation that the shower front
is featureless and particles are uncorrelated over small scales in good approximation. This means that
particles in a small area of the shower front may arbitrarilyswitch positions without significantly affecting
the output of the event simulation, if the timing relative tothe shower front is preserved.

Thus, it is possible to define a sampling areaAsamplearound each SD station, which is larger than the
actual effective area of the stationAstationby a factorw̃

Asample= w̃ Astation. (5.2.1)

Instead of the weighted particles which would normally falldirectly into the effective areaAstation of the
station, now all weighted particles from the sampling areaAsampleare regarded for a possible insertion into
the station.

To conserve the energy, a particle with weightwi in the sampling area has to re-weighted with the
factor1/w̃. The re-weighted particles can be regarded as average representatives of identical clones. The
numberk of such clones which need to be generated from a particle withweightwi/w̃ is given by the
Poisson distribution

f(k) =
w̃

wi
e−kw̃/wi (5.2.2)

The unweighted clones are then placed randomly on the surface of the station. The arrival time of each
clone is corrected after the spatial shift, so that the time delay τ with respect to the shower front is con-
served. Then, the time delay is artificially randomized to roughly imitate the original time structure of the
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shower front. The randomized time delayτ ′ is modeled with a log-normal distribution, which is a good
approximation of the true arrival time distribution. The formula used in praxis is

τ ′ = τ exp(G) (5.2.3)

whereasG is random number form a normal distribution with mean 0 and variance0.1. Ideally,Asample

is large enough, so thatwi/w̃ ≪ 1 and the production of identical clones is very unlikely. Thethinning
effects are then essentially avoided.

On the other hand,Asample still has to remain small compared to the large scale structure of the air
shower. The default size ofAsamplein the SD simulation of the Pierre Auger Observatory is defined relative
to the distancer from the shower axis:

∆r = 0.1 r ∆ψ = 0.15 (5.2.4)

whereas∆r andψ are the radial and angular size of the sampling areaAsample

Asample= ∆ψ
(
(r + ∆r/2)2 − (r − ∆r/2)2

)
(5.2.5)

in the lateral coordinate system. The achievable weight-reduction factorw̃ depends on the radial distance
r to the shower axis and the zenith angleθ of the shower. The magnitude of̃w at the typical distance
r = 1000 m is:

w̃(1000 m) ≈







3 × 103, θ = 0◦

6 × 103, θ = 60◦

7 × 103, θ = 80◦.

(5.2.6)

The calculation of the effective areaAstationof a SD station is carried out in Appendix A.3

5.3 Mass production of very inclined air showers

A library of 6480 simulated air showers was produced in the course of this work [141] and an equal number
of SD events. The library contains cosmic rays with energiesbetween1018eV to 1020eV to cover the range
of interest of the Pierre Auger Observatory. The zenith angle range60◦ < θ < 88◦ includes only very
inclined air showers. Many simulation options are chosen assuch, that the library may be used as an
extension of the existing production LD1GPF00q2fl [142] in the zenith angle range0◦ < θ < 60◦.

About a quarter of the air showers were computed at the Ohio Supercomputer Center [143], the re-
maining air showers were computed at the Lyon supercomputing center CC-IN2P3 [144]. The production
consumed approximately 5500 days on an AMD OpteronTM CPU with2 GHz or equivalent processor. Air
showers need631 GByte of storage. The simulation of the SD events needs only a smallfraction of these
resources and was performed at the local institute. The SD events need64 GByte of storage. The air
showers and the SD events are freely available for the PierreAuger Collaboration. Download instructions
can be found online [142].

The mass production of air showers on the computing clusterswas managed with a set of self-made
software tools. The management software [141] is based on aclient-serverconcept. A MySQL database
as a central server stores a table with the defining properties of each air shower in the library. A set of
identical clients, which may run independently on many machines, communicate with the server. Each
client independently follows a simple algorithm:

(1) Find a shower in the table that is not already processed. Mark the shower as being processed.

(2) Run the air shower simulation and wait for its termination.

(3) Check the simulation output for a simulation abort. If the output is fine, mark the shower as finished
in the table of the central database. Otherwise, mark the shower as broken.

The system is designed for minimal manual intervention of the user. The only maintenance task are periodic
checks for broken simulations and finding the cause of such errors.

The setup and the features of the library are discussed in thefollowing. The production was divided
in two distinct simulation runs, the technical and physicalaspects of these runs will be pointed out. A
technical summary of all features can be found in Appendix B.

55



5.3. MASS PRODUCTION OF VERY INCLINED AIR SHOWERS

5.3.1 Simulation setup

The work on the library started in the year 2005 and it was decided then to use the full Monte-Carlo simula-
tion program CORSIKA for the production. The air shower simulation needed to predict the lateral shower
profile, so that a cascade equation approach like CONEX couldnot be used. Other possibilities included
the hybrid air shower program SENECA and the full Monte-Carlo program AIRES. Since SENECA was
just emerging at that time, it was not considered. CORSIKA and AIRES were both already well established
simulation codes, so the choice was between the two.

CORSIKA and AIRES share many similarities, but an importantdifference is the treatment of low
energy interactions. AIRES employs a simplified treatment of the hadronic cascade at low energies, which
is an enhanced form of Hillas’ splitting algorithm [86, 134]. CORSIKA uses a range of detailed models,
which are well established in other parts of high energy physics. The enhanced splitting algorithm in
AIRES is very fast, but it is a rough approximation to true hadronic interactions.

It was shown in the first section of this chapter, the low energy hadronic interaction model has a strong
impact on the lateral density profile of muons. This study is largely based on this profile and thus CORSIKA
was favored.

Based on private communications that were later published in ref. [98], FLUKA was chosen as the low
energy hadronic interaction model in CORSIKA. Because of the considerable theoretical uncertainties in
the hadronic interaction models at high energies, half of the air showers were simulated with high energy
hadronic interaction model QGSJet-II and the other half with EPOS. Differences between both sets are
used to estimate the current systematic uncertainties of the simulation. The transition energy between the
low energy and high energy interaction models it the defaultchoice of80 GeV.

The correct simulation of very inclined showers has to be activated in CORSIKA by a choice of certain
code options. The options basically turn off some optimizations intended for vertical showers. By default,
CORSIKA neglects upward going particles, as the probability that such particles generate downward-going
particles in following interactions is very small in most cases. This is no longer true in near horizontal air
showers, and CORSIKA can be forced to follow upward going particles with the UPWARD option.

Also, the curvature of Earth’s atmosphere cannot be neglected in very inclined showers, as it is possible
for θ < 60◦. The CURVED option enables a curved atmospheric model in CORSIKA.

Finally, the calculation of the longitudinal shower profileneeds special care. By default, CORSIKA
calculates the longitudinal shower profile dN/dXvert as a function of the vertical slant depthXvert instead
of the slant depth along the shower axisX. This is sufficient, as long as the curvature of the Earth can be
neglected, because thenXvert ≈ X cos θ. With the SLANT option, CORSIKA can be convinced to bin the
longitudinal profiles correctly inX.

Unfortunately, it was not possible to use the last option together with the other two when the production
of the library started: this feature was added to CORSIKA later. Thus, the first production run is barely
usable for FD simulations and other analyses that rely on thelongitudinal shower profile. However, all
simulated showers are suitable for SD simulations and studies of the lateral profile on the ground.

Parameter distribution

A central features of a library of air showers is the distribution of the continuous cosmic ray parameters
(E, θ, φ) within the range of the library. There are two possible choices:

(A) The parameter space(E, θ, φ) is divided into a regular grid and air showers are simulated at discrete
points(Ei, θi, φi) in this grid.

(B) Some distribution function is chosen for the parameter space(E, θ, φ) and air shower parameters are
picked at random from the distribution function.

The discrete case (A) is optimal, if the library is primarilyused to parameterize air shower observables.
The continuous case (B) is optimal, if the library is primarily used to compare the distribution of air shower
observables with the according distribution in real data.

For example, it is simpler to parameterize the depthXmax of the electromagnetic shower maximum
as a function of the cosmic ray energyE with discrete library, because thenXmax can be averaged at
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Figure 5.5: The plots illustrate the distribution of the simulated air showers. The scatter plot on the left
shows the distribution of the zenith angleθ and cosmic ray energyE, the custom plot on the right the
distribution of the azimuth angleφ. The radius of each point in the right plot is chosen at randomand
the polar angle according to the azimuthφ. The first 1800 showers followed a different azimuth angle
convention and are shifted with respect of the others shows by an azimuth angle of4.2◦.

discrete points inE. To compare the distribution of the measuredXmax with the expected distribution from
simulations, it is necessary to use a continuous library. The continuous library can be re-weighted to reflect
the distribution of(E, θ, φ) in real events, which is not possible as such with a discrete library.

When the library was planned, it was tried to comply with both requirements to get a general purpose
library. The showers are randomly distributed in small finite bins in the(E, θ, φ) space and therefore some
areas are covered with a dense continuous distribution, while others are left empty. This compromise allows
a future extension of the library into a fully continuous form. Still, studies of shower properties in local
regions in the(E, θ, φ) space are possible with reasonable statistic. The parameter distribution is illustrated
in Fig. 5.5, the technical details can be found in Appendix B.

Thinning and energy thresholds

For the air shower thinning in the simulation, it was decidedto use a thinning levelǫ = 10−6 and the
weight limits

wmax(hadrons, µ) =
E

1015 eV
(5.3.1)

wmax(e, γ) =
E

1013 eV
, (5.3.2)

which are a compromise between the computational requirements and the statistical quality of the lateral
profile, withE being the cosmic ray energy. The latter limit is for electromagnetic particles, which are
more numerous and therefore allowed to accumulate larger weights.

The maximum weightwmax is made proportional to the cosmic ray energy to keep the number of actu-
ally followed particles in the air shower simulation roughly constant as the cosmic ray energyE increases.
The computing time is proportional to the number of secondary particles in the shower, which in turn is
roughly proportional to the cosmic ray energyE. If the maximum weightwmax is also proportional to the
cosmic ray energyE, the increase is effectively suppressed and showers of all energies take similar times
to compute.

In addition to the basic thinning, CORSIKA also has a radial thinning algorithm. The radial thin-
ning is applied when the simulated particles are written to the disk and therefore does not influence the
shower development. It allows to reduce the size of the output file by removing particles near the shower
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axis and re-weighting the remaining ones. Particles are removed with a probability following a(rthin/r)
4

distribution, whereasrthin is a maximum radius to be defined by the user.
The radial thinning is supposed to reduce the statistical quality where detectors saturate anyway because

of the huge number of particles. However, it turned out in thecourse of this analysis that there is not much
to gain from the radial thinning in very inclined showers, because the number of particles close to the axis
is already reduced through the atmospheric attenuation. The radial thinning was turned off in the second
production run to avoid the unnecessarily large artificial fluctuations near the shower axis.

CORSIKA follows particles down to certain minimum momentum. The momentum thresholds also
significantly affect the computing time. For photons, a momentum threshold is strictly necessary, because
the differential cross-section for ionization energy losshas an infrared divergence. Other particles below
a certain momentum may not be of interest, because they fall below a detection threshold. The following
thresholds are chosen:

pthr(hadrons, µ) = 0.1 GeV (5.3.3)

pthr(e, γ) = 250 keV. (5.3.4)

The thresholdpthr(hadrons, µ) is used for the electromagnetic particles and approximately equal to the
threshold of Cherenkov light production in water for electrons. Similarly, the thresholdpthr(hadrons, µ)
is the effective energy threshold for muons in water [16]. Electromagnetic particles which fall below the
threshold are added to the profile of the longitudinal energyloss of the shower. Hadrons and muons are
dropped from the simulation.

Ground altitude, geomagnetic field, atmosphere

The development of an air shower depends on the local conditions of the observation site: the altitude of
the ground, the profile of the atmospheric density, and the local geomagnetic field.

The geography of the southern observatory was shown in Chapter 4. The site is very flat. The altitude
varies only by less than300 m over a distance of about50 km. The corresponding maximum difference
in slant depth is negligible, less than1 g cm−2 at θ = 60◦, for example. The ground plane altitude in
CORSIKA is set to1425 m.

Values for the geomagnetic fieldB can be obtained from the IGRF-10 model [145]. The geomagnetic
field varies slowly with time and the position of the observer, which is shown in Fig. 5.6. CORSIKA uses
a fixed geomagnetic field. The geomagnetic declinationδB has no influence on the air shower simulation,
as the internal coordinate system of CORSIKA is always oriented so, that the geomagnetic field is parallel
to thex − z-plane. The following values are used for the remaining parameters, the field strengthB and
the inclinationθB :

B = 24.6 µT θB = −35.2◦.

The geomagnetic declinationδB comes into to play, when CORSIKA’s coordinate system is trans-
formed back into the site coordinate system. This transformation is done as part of the SD simulation by
the AugerOff line framework. A constant value of

δB = 4.2◦

is used here. This value is apparently not in best agreement with the IGRF-10 prediction and should be
made time dependent in a future update of the analysis software.

So far, the time dependency of the geomagnetic field can be neglected. Fig. 5.6 shows, that the variation
of the magnitude between 2005 and 2010 is at the level of1 %, the variation of the inclination less than
0.5◦, and the variation of the declination less than0.8◦. The long-term evolution of Earth’s magnetic field
cannot be predicted. Over the life-time of the experiment of20 years, the changes may become relevant.

CORSIKA uses a homogeneous geomagnetic field, although the true field shows a spatial variation.
The muons in near horizontal showers travel up to400 km through the atmosphere until they reach the
ground, which is a significant distance compared to the variation scale of the geomagnetic field. Fig. 5.6
shows, how the geomagnetic field changes in the vicinity of the surface detector array. The effects turn out
to be of the same order as the time evolution effects for showers with zenith anglesθ . 85◦.
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Figure 5.6: The graphs show the evolution of the geomagneticfield from 2000 to 2010 at the center of the
surface detector at the Southern Pierre Auger Observatory,as predicted by the IGRF model [145]. Depicted
from left to right is the total magnitude of the geomagnetic field, the inclination, and declination. The solid
line shows the geomagnetic field at the center of the SouthernSD, at a ground altitude of1400 m. The
dashed line shows the field in an altitude of10 km above sea level. The other lines show how the field
varies, if the longitude and latitude of the latter point is changed by±1◦, which is equivalent to moving the
observation point by about100 km to the north, south, east, and west. The large black dot represents the
fixed geomagnetic field in the simulation.

The atmospheric density profiles over Malargüe [41–43] differ slightly from the global reference model,
the US standard atmosphere [146], as shown in Fig. 5.7. Furthermore, the density profiles show variations
on the scale of months and days.

The total atmospheric depthXatm shows negligible variation, but a considerable differenceto the stan-
dard model of10 % with a variation of about5 % is observed in the air densityρair at an altitude of17 km.
These differences should have an effect on the produced number of muonsNµ, if the altitudehπ

max of the
maximum of the hadronic shower cascade is close to this altitude. The simplified air shower model derived
in Chapter 5 predictsNµ ∝ ρair(h

π
max).

For zenith angles smaller than70◦, the hadronic shower maximum is below the critical altituderange
and the differences to the U.S. standard atmosphere can be neglected. At larger zenith angles, simulations
with the correct atmosphere could show up to10% more muons on average and a seasonal variation of up to
5 %. The systematic shift is small compared to other theoretical uncertainties in the total number of muons
Nµ and therefore not critical for this study. The seasonal variation of up to5 % leads to a corresponding
variation in the SD energy scale, since the total number of muonsNµ on the ground is to derive the cosmic
ray energy. This energy variation could distort the measured cosmic ray flux in Chapter 8, but the impact
evaluated with real data turns out to be negligible.

The first production run used the U.S. standard atmosphere. The second production run used the spring
atmosphere shown in Fig. 5.7, which is close to an average atmospheric profile over Malarg̈ue.

Event simulation

The simulation of surface detector events was done with theOff line-framework [137], using a developer
version of 2.5-Godot with the internal revision number 7732.

The SD array in the simulation emulates the completely constructed detector, without holes or gaps.
Every air shower was used to produce one simulated surface detector event. The core position is randomly
set in a square of2 km × 2 km in the approximate center of the array.
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(a) Deviation of the air density from the US standard atmosphere

(b) Deviation of the vertical slant depth from the US standard atmosphere

Figure 5.7: The graphs show the difference between monthly models of the Malarg̈ue atmosphere and the
US standard atmosphere [146] (from [43]).
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5.3.2 Comparison with older productions

Large libraries of air showers exist which were generated with former versions of CORSIKA and other
hadronic interaction models. It is worthwhile to compare this library with the former productions in order
to estimate the impact of the changes.

Fig. 5.8 shows a comparison of the combinations

• CORSIKA-6.0 + QGSJet01c + GHEISHA2002d (configuration A), and

• CORSIKA-6.5 + QGSJet-II-3 + FLUKA2006 (configuration B, this work),

for an example shower close to a zenith angle of60◦. Configuration A was a common choice before
QGSJet-II succeeded QGSJet and FLUKA succeeded GHEISHA.

The electron density profiles in both configurations seem to agree, but the large fluctuations do not allow
any quantitative conclusions. The muon density profilesnµ on the other hand show significant deviations.
The total number of muonsNµ in configuration B is about10 % lower than in configuration A and the
muon density profilenµ is significantly steeper at radial distancesr > 2000 m.

The differences of the muon component are analyzed further through individual variations of the COR-
SIKA version and the hadronic interaction models. The change of the CORSIKA version has no apparent
effect. The global offset of about10% turns out to be caused by the change of the high energy hadronic in-
teraction model, while the steeper decline of the lateral muon densitynµ is due to the change from the low
energy hadronic interaction model. The latter effect is confirmed by another analysis [98]. The sensitivity
of nµ at large radii to the low energy hadronic model is apparent.

It may surprise that the decrease in the number of muons is notaccompanied by an according increase
in the number of electrons due to energy conservation. Thereis corresponding increase, but it is smaller by
an order of magnitude because the muons carry only a tenth of the total cosmic ray energy, as explained in
Chapter 3.

The comparison allows to conclude that the choice of both thehigh and the low energy hadronic inter-
action model significantly affects the muon profilenµ on the ground. Comparisons of low energy hadronic
interaction models favor FLUKA over GHEISHA [98], so that the newer simulations made with FLUKA
should be preferred in analyses of very inclined air showers.
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Figure 5.8: The plots show the average lateral density of muons and electrons of an example shower at
θ ≈ 60◦ andE ≈ 2 × 1019 eV for the two combinations CORSIKA-6.0 + QGSJet01c + GHEISHA2002d
(configuration A) and CORSIKA-6.5 + QGSJet-II-3 + FLUKA2006(configuration B, this work). The
averages are built from 10 showers each, the altitude of the first interaction is fixed in all showers to33km.
The colored bands indicate the variation of the densities inthe individual showers. All other settings are
the same as for the showers with the run IDs 4681-6480 in TableB.2.

5.4 Modeling very inclined air showers

It was argued in Chapter 3, that the lateral density profile ofthe muonsnµ in very inclined air showers
should factorize into three parts: the total number of produced muonsN0

µ, the attenuation factora, and the
normalized density profilepµ:

nµ(r, ψ;E,A, θ, φ) ≃ Nµ(E,A, θ) pµ(r, ψ; θ, φ), (5.4.1)

whereasNµ depends on the energyE, atomic massA, and zenith angleθ of the cosmic ray andpµ on the
coordinates(r, ψ) in the lateral coordinate system and the orientation(θ, φ) of the shower axis relative to
the geomagnetic field vector (compare with Eq. (3.3.9)).

It was further argued that the total number of muonsNµ on the ground is related to the cosmic ray
energy via a power law:

Nµ(E,A) ≃ a(θ)C(A)E1/γ , (5.4.2)

whereasa(θ) describes the muon attenuation in the atmosphere andC(A) is a factor that depends on the
atomic massA andγ is a constant (compare Eq. (3.2.21)).

Eq. (5.4.1) and Eq. (5.4.2) are approximations, which need to be confirmed over the energy range ob-
served at the Pierre Auger Observatory of1018 eV to 1020 eV with full air shower simulations. This will
be done in the following with the help of the air shower library from the previous section. Similar analy-
ses have been done before [11, 13, 54], based on simulations with the air shower program AIRES and the
hadronic interaction model SIBYLL. They are confirmed in this study on the basis of another simulation
program and other hadronic interaction models.

In a second step, a full parameterization of the muon densitynµ on the ground will derived from the air
shower library on the basis of Eq. (5.4.1) and Eq. (5.4.2). The parameterization ofnµ will be an important
input for the event reconstruction in Chapter 6.
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5.4.1 Number of muons on the ground

The total number of muonsNµ on the ground is regarded first. Integrating Eq. (5.4.1) overthe ground
surface and inserting Eq. (5.4.2) yields

Nµ(E,A, θ) ≃ a(θ)N0
µ(E,A) ≃ a(θ)C(A)E1/γ . (5.4.3)

The factorization in Eq. (5.4.1) and the validity of Eq. (5.4.2) are confirmed by fitting Eq. (5.4.3) to simu-
lated showers. An analysis of the bias of the fit shows the quality of the approximations. The fits are done
separately for the hadronic interaction models QGSJet-II and EPOS.

In order to perform the fit, functional forms forC(A) anda(θ) need to be found. As the air shower
library only contains two types of cosmic rays, protons and iron nuclei, the functional form ofC(A) cannot
be derived. The fit is done separately for proton and iron showers, which reducesC(A) to a constant in
each fit. The factorization ofC(A) is confirmed by showing that the independent parameterizations divided
byC(A) approximately agree for both nuclei.

The parameterization of the attenuation functiona(θ) turns out to be surprisingly simple. It is fitted
very well by a power law of the distancedmax between the electromagnetic shower maximum and the
shower impact point on the ground along the shower axis, as shown in Chapter 3:

a(θ) ∝ dmax(θ)
β , (5.4.4)

whereasβ is a constant.
There are two points about this equation, which need some discussion. The first is, that the muon

attenuation should in general depend on the distance of the hadronic shower maximum to the impact point
on the ground, not ondmax, which is the distance of theelectromagneticshower maximum to the impact
point on the ground.

At θ > 60◦, however, the difference between the two distances is smallcompared todmax, as explained
in Chapter 3. The use ofdmax then is just more convenient, as it can be calculated numerically without any
simulation input. The derivation is described in Appendix A.1. The fit uses thedmax(θ) curve for a cosmic
ray energy of1019 eV.

The second point is the functional form of a power law. Intuitively, one might expect an exponential
form

a(θ) ∝ e−dmax(θ)/(γcτ), (5.4.5)

whereγ is an average Lorentz factor of the muons in the shower andcτ is their decay constant. On the
other hand, the energy distribution of muons is wide and energy loss processes also play a role. Together,
these effects apparently turn into an effective power law inthe considered zenith angle range.

The number of muonsNµ on the ground is now a function of independent power laws terms. To fit the
model to the simulated data, it is convenient to rewrite Eq. (5.4.3) as

Nµ = 10α [dmax(θ)/km]β [E/EeV]1/γ

⇔ lgNµ = α+ β lg[dmax(θ)/km] +
1

γ
lg[E/EeV],

(5.4.6)

whereasα, β, andγ are the free parameters in the fit.
The fit of Eq. (5.4.6) turns out to be non-trivial. The usual least-squares fit expects Gaussian fluctuations

around the mean, seee.g.ref. [147]. The data shows asymmetric fluctuations and therefore the least-squares
fit yields biased results. The bias refers to the mean of the distribution of the residuals(Nµ −〈Nµ〉)/〈Nµ〉,
whereas〈Nµ〉 is calculated by the fit andNµ the random data.

The general procedure in case of non-Gaussian fluctuations is to model the probability density function
of the fluctuations and use the likelihood method to obtain the best parameter estimates. It turns out, that
the fluctuations are not described well by standard distributions. A special distribution, which shall be
namedexp-normaldistribution, yields a good description, but is mathematically too complex to be of any
use. The exp-normal distribution is derived and discussed in Appendix A.2.
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Therefore, another approach is used, based on a modificationof the standard least-squared method.
The unmodified least-squares method is based on the numerical minimization of the sum of the squared
residuals around a fit

χ2 =
∑

i

(

N i
µ − 〈Nµ〉
σi

)2

, (5.4.7)

whereas〈Nµ〉 is calculated with the model andσi is the expected uncertainty of data pointN i
µ. The

uncertaintiesσi are not knowna priori, but it turns out that the relative fluctuations are approximately
constant, so that it is possible to use a constantσrel = σ[Nµ]/Nµ ≈ σi/N

i
µ in the fit. The sum of the

residuals can be rewritten as

χ2 =
∑

i

(

N i
µ/〈Nµ〉 − 1

σrel

)2

(5.4.8)

To enforce unbiasedness, a penalty term is added to the sum:

χ̃2 = χ2 + λ

(
∑

i

N i
µ/〈Nµ〉 − 1

σrel

)2

. (5.4.9)

The new term is the squared average of the residual distribution. The penalty factorλ can be used to tune
the importance of the penalty term for the minimization. Thesimple choiceλ = 1 is used here. The
numerical minimization of̃χ2 is done with the MINUIT package [148].

The best estimate ofσrel is obtaineda posteriori from the width of the distribution of the residuals
(Nµ−〈Nµ〉)/〈Nµ〉. The size ofσrel does not affect the position of the minimum ofχ2 and may therefore be
set to 1 in a first iteration of the fit. The first iteration is then used to deriveσrel from the residual distribution.
The second iteration of the fit then uses the best estimate ofσrel to obtain meaningful uncertainty estimates
for the parametersα, β, andγ.

The parameter uncertainties derived from the modified fit arenevertheless only approximate. MINUIT
calculates the parameter uncertainties based on the assumption that the squares of the residuals(Nµ −
〈Nµ〉)/〈Nµ〉 follows a χ2 distribution. The fluctuations of the residuals(Nµ − 〈Nµ〉)/〈Nµ〉 are only
approximately Gaussian and thus the sum in Eq. (5.4.8) follows only approximately theχ2 distribution.
Adding a penalty term like in Eq. (5.4.9) also biases the uncertainty estimates. The impact of the penalty
term on the uncertainties can be analyzed by varying the penalty factorλ. It turns out that the impact of the
penalty term is negligible in this case.

The fits and the analyses of the distribution of the residuals(Nµ−〈Nµ〉)/〈Nµ〉 for the different hadronic
interaction models and cosmic ray masses are shown in Fig. 5.9. The residual distribution has mean at zero
as guaranteed by the fit. The distribution is compared with a Gaussian and the exp-normal distribution.
Both models work well in case of iron showers, but proton showers have a tail towards low number of
muons and are better described by the exp-normal distribution. A possible explanation for this tail was
given in Chapter 3.

Fig. 5.10 and Fig. 5.11 show detailed analyses of the model bias and ofσrel as a function the cosmic
ray energy and direction. The model bias turns out to be smaller than2 %, which is an excellent result.
The relative sizeσrel of shower-to-shower fluctuations is a constant in very good approximation. The
uncertainty ofσrel is calculated according to ref. [149]:

σ2[σ̂2] =
1

N

(

µ4 −
N − 3

N − 1
σ4

)

, (5.4.10)

whereasN is the number andµ4 the forth central moment of the measurements.
The fits already confirmed the basic structure of Eq. (5.4.1) and Eq. (5.4.2). It is still necessary to show

that the cosmic ray massA only scalesNµ, but leaves the other dependencies ofNµ unaffected. This is the
case, if the fit parametersβ andγ are approximately independent ofA. Fig. 5.12 shows the comparison.
The parameterβ varies at the level of2 %, γ at the level of1 %. Propagated toNµ this corresponds to a
bias of up to10 % in the range1018 eV < E < 1020 eV and60◦ < θ < 88◦.

Table 5.1 summarizes the final results. The following conclusions are derived for cosmic rays in the
range1018 eV < E < 1020 eV and60◦ < θ < 88◦.
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Figure 5.9: Left: The points show the simulated muon numberNµ on the ground as function ofdmax(θ)
for proton and iron showers, simulated with QGSJet-II and EPOS. The five different energy intervals
from Fig. 5.5 are indicated by different markers and colors.The solid lines are energy slices of the two-
dimensional modelNµ(E, θ). Right: The histograms show the distribution of the residual around the fit
shown on the left side. The normal and the exp-normal distributions are shown in comparison. The reduced
χ2 values quantify the agreement of these fluctuation models with the observed distribution.
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Figure 5.10: The plots show the bias〈(Nµ − 〈Nµ〉)/〈Nµ〉〉 of theNµ model as a function of the cosmic
ray energyE, the zenith angleθ, and the azimuth angleφ for all combinations of cosmic ray masses and
hadronic interaction models. The reducedχ2 values quantify the agreement with the zero expectation.
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Figure 5.11: The plots show the widthσrel of the residual distribution around theNµ model as a function
of the cosmic ray energyE, the zenith angleθ, and the azimuth angleφ for all combinations of cosmic ray
masses and hadronic interaction models. The reducedχ2 values quantify the agreement with a constant.
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Figure 5.12: The plots show the variation of the parametersβ (left) andγ (right) from Eq. (5.4.6) with the
cosmic ray mass and the hadronic interaction model. The horizontal lines show the average values ofβ
andγ for each hadronic interaction model, the gray bands estimate the systematic uncertainties.

Table 5.1: The table shows the fitted parametersα, β, andγ of Eq. (5.4.6). The ratioNµ/n
ref
µ shows the total

number of muons on the ground relative to proton showers simulated with QGSJet-II. The ratio depends
weakly on the zenith angleθ and the cosmic ray energyE. The given value is derived atE = 1019 eV
andθ = 70◦, the systematic uncertainty due to this dependency in the range1018 eV < E < 1020 eV and
60◦ < θ < 88◦ is shown in braces. The last column shows the relative shower-to-shower fluctuationσrel

of the total number of muonsNµ on the ground. The systematic uncertainty shown in braces isestimated
from Fig. 5.11.

Hadronic model QGSJet-II EPOS
Cosmic ray proton iron proton iron

α 7.300 ± 0.003 7.403 ± 0.002 7.468 ± 0.006 7.546 ± 0.003
β −0.820 ± 0.002 −0.795 ± 0.001 −0.854 ± 0.003 −0.823 ± 0.002
γ 1.070 ± 0.001 1.093 ± 0.001 1.084 ± 0.002 1.077 ± 0.001
Nµ/N

ref
µ 1.000 ± 0.010 1.314 ± 0.007 1.281 ± 0.018 1.718 ± 0.008

( − 0.082 + 0.120) ( − 0.103 + 0.069) ( − 0.034 + 0.030)
σ[Nµ]/Nµ 0.135 ± 0.002 0.034 ± 0.001 0.214 ± 0.003 0.038 ± 0.001

( ± 0.020) ( ± 0.005) ( ± 0.020) ( ± 0.005)
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• Eq. (5.4.1) and Eq. (5.4.2) are valid at the level of10 %. This is sufficiently small to model the
total number of muonsNµ on the ground with these approximations in the event reconstruction
of Chapter 6. Theθ-dependency ofNµ has the largest systematic uncertainty and may impose a
systematic bias in the reconstruction of the energyE of air showers from SD data. It will be shown
in Chapter 6 with an analysis of real events that there is no significant bias introduced by theθ-
dependency ofNµ.

• The relative sizeσrel of the shower-to-shower fluctuations ofNµ is constant for cosmic rays with a
given massA in very good approximation. The relative fluctuationσrel is sensitive to the cosmic ray
massA and sensitive to hadronic interaction models ifA is small.

The predicted shower-to-shower fluctuations ofNµ for proton showers range between14% and21%.
The fluctuations depend mostly on the first hadronic interactions of the cosmic ray in the atmosphere,
as discussed in Chapter 3. The hadronic interaction models are extrapolated to their extreme in these
interactions, which may explain the large systematic variation in σrel.

The shower-to-shower fluctuations of iron showers do not show this sensitivity. The details of the
first hadronic interactions average out to some degree in theinteractions of many nucleons.

• The absolute scale ofNµ is sensitive to the cosmic ray massA and the hadronic interaction models.
The disagreement between the models of about35 % is of the same magnitude as the difference
between proton and iron showers. Other comparisons find differences up to50 % [11,13,131].

5.4.2 Universality of the normalized muon density profile

The first part of Eq. (5.4.1) is already confirmed. The next step is to show, thatpµ is approximately inde-
pendent of the cosmic ray energyE and massA. This feature is often calleduniversalityin the context of
extensive air showers.

In order to show the universality, simulated showers in a small (E, θ, φ) region are averaged, which
yields an average profilepµ and a variance. The profiles of showers arriving from the eastand west can be
merged, since they show a basic mirror symmetry. This yieldsa statistic of ten showers per zenith angle
and energy interval.

Fig. 5.13 shows the variation ofpµ with the cosmic ray energyE for proton showers. Within a radius of
4 km, variations up to10 % are found between1018 eV and1020 eV. The observed variation ofpµ within
a single energy interval seems to be dominated by shower-to-shower fluctuations.

Fig. 5.14 shows the variation ofpµ with the atomic massA. It was argued in Chapter 3, that an insen-
sitivity of a shower observable to the cosmic ray energyE is connected with an insensitivity to the cosmic
ray massA. The principle is confirmed here. The variation of the normalized profilepµ with the atomic
massA is again at the level of10 %.

The universality ofpµ can be confirmed at a level of10 %. This is the same level of systematic
uncertainty as in the first part of Eq. (5.4.1). The impact of the approximations in Eq. (5.4.1) on the event
reconstruction will be derived in Chapter 6 and turn out to besmaller than10 %.

It is possible to conclude from the universality ofpµ that the lateral profile of the muon energyEµ is
also universal to a similar degree. This is because there is astrong correlation between the radial distance
rµ of a muon from the shower axis and the energyEµ of the muon, as discussed in Chapter 3. This will be
used in the next step.

The results confirm an earlier analysis, performed with another air shower simulation program and
other hadronic interaction models [13].

5.4.3 Parameterisation of the muon density profile

The total number of muonsNµ was already parameterized at the beginning of this section.The normalized
lateral profile of the muon densitypµ is parameterized in the following to obtain a full model of the muon
densitynµ on the ground with Eq. (5.4.1).

The parameterization [14, 84] used in this study is entirelyphenomenological. The approach differs
from the one presented in ref. [11, 54]. In the other approach, a model ofpµ is derived by applying an
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Figure 5.13: The plots show the variation of the normalized lateral density profile of muonspµ on the
ground as a function of the cosmic ray energyE in proton showers. The plots in the top row show simu-
lations done with QGSJet-II, the bottom row those with EPOS.The left and right sides show the result at
different zenith angles. The profiles are obtained from showers arriving from the eastern and western direc-
tion, so that the geomagnetic field effect is at its maximum. The colored bands show the shower-to-shower
fluctuation. The graph atr < 0 (r > 0) shows the variation parallel (perpendicular) to the geomagnetic
field componentBT , which is oriented perpendicular to the shower axis. All profiles are normalized to
one atr = 1000 m.
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Figure 5.14: A similar analysis is shown as in Fig. 5.13, but this time the cosmic ray energyE is kept at
1019 eV and the cosmic ray massA is varied.
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Figure 5.15: The plots show the normalized muon density (left) and the average muon energy (right) as
a function of the square root of the radial distancer to the shower axis for two example proton showers
simulated with QGSJet-II from Table B.1.

analytical model of the geomagnetic deflection to averaged simulated lateral profiles without geomagnetic
deflections. The result is tabulated and interpolated to obtain a continuous model.

The approach presented here is not based on an analytical model of pµ. Instead, it is general parame-
terization of the simulation output that relies only on verygeneral properties of the lateral profile, mainly
thatpµ is a smooth function with a negligible small scale structure. The parameters are derived from a fit
which makes no special restrictions to the distribution of the shower parameters(E, θ, φ) as long as they
sufficiently cover the range of interest. Thus, the parameterization may be applied to any kind of general
purpose air shower library.

The parameterization ofpµ is done in two steps. In the first step, a parameterization based on a poly-
nomial expansion in

√
r and a Fourier expansion inψ is fitted tolg pµ-profile of each individual shower,

whereas(r, ψ) are the polar coordinates in the lateral coordinate system.It turns out, that
√
r is an ideal

variable for the expansion, since the approximationlg pµ ≃ α
√
r + const. is already very good, as shown

in Fig. 5.15. The first step leads to a set ofk parameters{ck} for every shower.
These parameters{ck} obtained from each shower turn out to be smooth functions of the direction of

the showerck = ck(θ, φ). Thus, in the second step, a parameterization based on a polynomial expansion
in dmax(θ) and a Fourier expansion inφ is fitted to every parameterck, which leads tol coefficients. It will
turn out, that the distancedmax between the shower maximum and the impact point of the showeron the
ground is an ideal variable for this kind of expansion.

The final result is ak × l matrix of coefficients, which gives an average continuous description of
pµ(r, ψ; θ, φ). The full procedure will be discussed in the following.

With only slight modifications, this procedure can also be used to obtain a parameterization of the
average muon energyEµ(r, ψ; θ, φ). The lateral profile of the muon energyEµ is interesting, because
the signalSµ generated by a muon in a Water Cherenkov-detector has a weak energy dependency. This
dependency is neglected in this study, but may be included ina future update. The discussion of the
parameterization will focus on a obtaining a high-quality model of pµ. The parameterization ofEµ is
discussed alongside to illustrate how the procedure can be generalized.

First step: Local parameterization

The first step describes the parameterization on the level ofa single simulated air shower. The simulation
provides weighted particles in the ground plane. Each weighted muon carries a position and momentum
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vector among other things. The algorithm is applied to each shower in the set.
The ground position of the muons are projected into the shower front plane. This plane is divided in

30 cells inψ, and 30 cells in
√
r, ranging from0 to

√
4000 m. The normalized density in each cell(i, j) is

calculated by adding the muon weight and dividing the sum by the corresponding ground area

Acell,ij =
1

2 cos θ
(ψi+1 − ψi) (

√
rj+1

4 −√
rj

4), (5.4.11)

and the total number of muons on the groundNµ.
The logarithm of the raw data can now be parameterized with the following expansion in

√
r andψ:

lg pµ =

3∑

k=0

r̂k ×
( 3∑

j=0

cgkj cos(jψ) +

3∑

j=1

cukj sin(jψ)
)

(5.4.12)

with r̂ = 2
√

r/4000 m − 1.

The use of the reduced variabler̂ optimizes the accuracy of the numerical computation of the fit, which is
done with the linear least-squares method1, seee.g.[147]. The fit leads to 28 parameters per shower.

The use of the linear least-squares method is a key ingredient of the approach, since so many parameters
need to be estimated from the data unambiguously and automatically for each shower. It shall be noted,
that fitting the logarithm of a random variable instead of thevariable itself introduces a bias to the fitted
parameters, in analogy to the discussion in Section 5.4.1. The bias will be analyzed after the fit and
eventually corrected.

The early-late asymmetry described in Chapter 3 is contained within the dipole (j = 1) terms of
the Fourier expansion, the geomagnetic deflections in the quadrupole terms (j = 2). Both asymmetries
contribute to the octopole terms (j = 3).

The choice of the upper limitskmax = 3 andjmax = 3 of the expansions are based on the accuracy of
the raw simulated data. Lower orders of the expansions do notreproduce the structure of the lateral profile
with sufficient accuracy, but higher orders which correspond to short scale structures start to be dominated
by statistical and artificial fluctuations of the raw data.

To obtain a parameterization of the profile of the muon energy, the same procedure is followed, but
starting from a grid of average muon energies in the shower front plane. The muon energy in each cell of
the grid is calculated from its content under regard of the particle weights. The logarithms of the energies
are then fitted with the same parameterization.

Second step: Global parameterization

Each parametercg,u
kj of the first step is now regarded as a function of(θ, φ). Again, it is assumed that this

dependency is slowly varying. The parameterization inφ is done again with the first terms of a Fourier
expansion. The parameterization inθ is a polynomial expansion indmax(θ), the distance between the
shower maximum and the shower impact point on the ground along the shower axis.

The distancedmax is roughly the scale on which the geomagnetic deformations,the divergence and
attenuation in the shower grow, as discussed in Chapter 3. Itis therefore the ideal variable for an expansion
of pµ.

cgkj =
5∑

m=0

d̂(θ)m

( 5∑

ℓ=0

c̃gg
kjmℓ cos(ℓφ) +

6∑

ℓ=1

c̃gu
kjmℓ sin(ℓφ)

)

cukj =

5∑

m=0

d̂(θ)m

( 5∑

ℓ=0

c̃ug
kjmℓ cos(ℓφ) +

6∑

ℓ=1

c̃uu
kjmℓ sin(ℓφ)

)
(5.4.13)

with d̂ = 2[dmax(θ) − dmax(60◦)]/[dmax(90◦) − dmax(60◦)] − 1,

1Numerically more efficient and more accurate methods exist to fit parameterizations, which consist entirely of orthogonal func-
tions. However, it turns out that the chosen form is fitted very well with standard methods, and further optimization is not needed.
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Figure 5.16: The plots show example profiles of the normalized muon density, obtained from simulated
proton showers around1019 eV. The left side shows the raw profile from the simulation, while the right
side shows the final parameterization. The geomagnetic fieldeffect is at its maximum in both examples.
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Figure 5.17: The plots show example profiles of the average muon energy, obtained from simulated proton
showers around1019eV. The left side shows the raw profile from the simulation, while the right side shows
the final parameterization. The geomagnetic field effect is at its maximum in both examples.
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whereasd̂ is the reduced variable. The fit is again done with a linear least-squares method, for the same
reasons as in the first step.

The second parameterization of the lateral profile of the muon energy is done in the same way, but the
reduced variablêd is exchanged with

θ̂ = 2(θ − 60◦)/(90◦ − 60◦) − 1. (5.4.14)

It turns out empirically that the parameterization of the energy profile works better in this variable.
The two sets of28 × 66 = 1848 coefficients

c̃gg
kjmℓ, c̃

gu
kjmℓ, c̃

ug
kjmℓ, c̃

uu
kjmℓ

are the final result of the parameterizations. They provide afull description of the normalized lateral profile
of the muon densitypµ, and the muon energyEµ.

Some example profiles are shown in Fig. 5.16 and Fig. 5.17. Thepµ profile examples show the dipole
from the early-late asymmetries with a maximum at aboutψ ≈ −20◦ well in the example atθ ≈ 60◦,
while the quadrupole from the geomagnetic deflections has a clear signature in the example atθ ≈ 82◦.

The dipole from the early-late asymmetries is much weaker intheEµ profile, but it can be also spotted
there: TheEµ profile has a minimum where thepµ profile shows a maximum, as some low energy muons
decay before reaching the ground in the late part of the shower, which in turn slightly increases the average
muon energy in the late part.

The parameterization ofpµ is more precise than the parameterization ofEµ. Both are affected to some
degree by large artificial fluctuations in the simulated profiles at small radial distancesr < 250 m. These
fluctuations are a consequence of the radial thinning near the shower axis, which was turned on in the first
production run. While the fit of thepµ-parameterization is quite robust against these fluctuations, but they
distort theEµ-parameterization, as can be seen in Fig. 5.17 for the showernear60◦. The radial thinning
should be avoided in very inclined air showers.

Bias and distortion

The parameterization procedure is applied to proton showers simulated with QGSJet-II in the range60◦ <
θ88◦. The result needs to be quantitatively checked against the input for possible biases, since the fit itself
is not unbiased. This is done by analyzing the distribution of the residuals(pµ − 〈pµ〉)/〈pµ〉 of the data
pµ around the parameterization〈pµ〉. The average of this distribution estimates the bias, the width of the
distribution the precision of the parameterization.

Getting a meaningful residual distribution is not trivial.The simulated profiles have shower-to-shower,
statistical, and artificial fluctuations, which should to beseparated from the distortion introduced through
the parameterization. Shower-to-shower fluctuations are correlated variations over the full shower, statisti-
cal and artificial fluctuations are uncorrelated fluctuations from the counting of particles in a certain region.
The artificial fluctuations are a consequence of the shower thinning during the simulation.

Multiple showers with a varying cosmic ray energyE, zenith angleθ and azimuth angleφ shall not av-
eraged for the residual analysis. In this case, it is only thepossible to reduce the statistical and artificial fluc-
tuations in every individual lateral profiles. The width of the distribution of the residuals(pµ −〈pµ〉)/〈pµ〉
will include the shower-to-shower fluctuations and the effect of the parameterization. If the combined re-
sult is not much larger than the observed shower-to-shower fluctuations of the normalized profilepµ in
Fig. 5.13, the parameterization is acceptable.

The following algorithm is used to reduce the statistical and artificial fluctuations in the simulated
pµ-profiles.

(1) Parts of the first step of the parameterization are repeated. The particles in the shower front plane
are sorted into 30 cells inψ and 30 cells in

√
r, ranging from0 to

√
4000 m, and thepµ-profile is

calculated. Instead of a fit, a second grid of the same form is filled with the prediction from the
parameterization (it is evaluated at the bin centers).

(2) Pairs of adjacent cells inψ are averaged once, reducing the number of cells inψ to 15. Then, for
each direction inψ, adjacent cells in

√
r are merged and the contents averaged, until the merged cell
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Figure 5.18: The left plot shows the residual distribution of the normalized lateral profile of the muon
densitypµ from proton showers simulated with QGSJet-II around the parameterization. The right plot
shows the same for the lateral profile of the muon energyEµ, respectively. The parameterization of the
latter was multiplied with the factor1.08 to compensate its bias. Residuals from cells closer than150 m to
the shower axis are dominated by large artificial fluctuations and are thus excluded from the analysis.

contains more than400 weighted particles. This is done starting fromr = 0 and working outwards.
After this procedure, most remaining cells contain around400 weighted particles, except for a few
left-over cells at larger, which could not grow enough. The latter are not used for the comparison
between the simulated showers and the parameterization.

(3) The second grid that holds the parameterization is merged in the exact same way as the first one, so
that the grids have pairs of cells of equal extensions. Finally, the residual is calculated for each pair
of corresponding cells, and saved together the radiusr at the center of the cell.

The algorithm assures that the statistical and artificial fluctuations are reduced to a level of about5 %. The
application to the profile of the muon energyEµ is analogue.

Fig. 5.18 shows the results of this analysis, after its application to the full input set of proton showers
simulated with QGSJet-II. The residuals obtained from cells closer and farther than150m from the shower
axis are separated. Only the latter are meaningful, since the former are dominated by the large artificial
fluctuations through the radial thinning in most showers of the input set.

The analysis shows, that the parameterization ofpµ shows a negligible bias smaller than1%, which is an
excellent result. The parameterization ofEµ on the hand is biased: the average of the residual distribution
is off by about8 %, if the parameterization is not modified. Fig. 5.18 shows theresidual distribution with
respect to the scaled parameterization ofEµ, where the energies are multiplied by a factor of1.08 to
compensate the overall bias.

The residual distributions are not a Gaussian. Most residuals show a small variance, but there are also
rare large deviations. The width of the distribution is estimated by he square root of the variance. In case
of thepµ-parameterization, one obtains a width of8 %, which is at the level of universality ofpµ. This is
an optimal result and shows that the parameterization approach introduces only negligible distortions.

In case of theEµ-profile, the square root of the variance is14%. This is not optimal, but still satisfactory
for a side product.

5.4.4 Comparison with another model

The model of the lateral profile of the muon densitynµ developed in this work is based on a phenomeno-
logical parameterization of fully simulated profiles. Thismodel, called modelB, shall be compared with a
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semi-analytical approach [10,13,54] from the literature,called modelA.
Model A is based partially on air shower simulations and partially on an analytical model of the lateral

muon profile. The analytical approach allows to understand the structure of the geomagnetic deformations
of the profile and a part of the derivation of model A is repeated in Chapter 3. Model A reproduces most
of the structure found in full air shower simulations remarkably well.

On the other hand, model A does not include some effects in itsanalytic approach that are present in
the full simulation:

• The early-late asymmetries in the profile of the muon densityare neglected.

• The muons are formed in two body decays of mesons. The distance of the mesons to the shower axis
of some100 m is neglected, instead the muons are assumed to originate from a point on the shower
axis.

• The decay angle between the direction of the parent meson andthe generated muon is neglected.

These effects were already discussed in Chapter 3. Model B automatically includes these effects and
reproduces the full simulation to a level of10 %. Model A does not achieves this level of agreement with
the simulation input everywhere [10], because of these neglected effects.

Model A also uses another simulation setup than model B. Model A is based on the AIRES air shower
program. QGSJet01 is used for hadronic interactions at highenergy and the enhanced splitting algorithm
of AIRES for low energies, which is tuned to GHEISHA. The simulation setups of model A and B are not
too far from the two configurations A and B in the comparison inSection 5.3.2 and similar differences in
the profiles of the muon densitynµ can be expected.

Fig. 5.19 to Fig. 5.22 compare the two models. The global offset in the produced number of muons
between QGSJet01 and QGSJet-II is of no interest for comparison and compensated by scaling model A
down by a factor of 0.9. The profiles in a) and b) show the expected number of muons in a station of the
surface detector as predicted by the models in the lateral coordinate system. The solid, dashed, and dotted
contour lines represent density contours representing 100, 10, and 1 muon per surface station. Model A
has a left-right symmetry in contrast to model B, because theearly-late asymmetries are not included.

Shown in c) is the relative difference of the model predictions, in d) this difference is compared with
the Poisson uncertainty expected for the average model. Thedifference in units of the expected Poisson
uncertainty allows to estimate the severity of the difference in a fit of the profile to experimental data. For
example, a relative difference of a factor of two is very significant if the average number of muons per
station is 100, but not if the average number of muons is 0.1. Relative differences close to the shower axis
are more emphasized in d) than in c), because of the small statistical uncertainties in this region.

Overall, differences up to+50% and down to more than−100% are observed. In terms of the Poisson
statistic, the differences are larger than±1σ in some places. Model A shows a steeper decline at a function
of the radial distance from the shower axis than model B, which is caused by the different low energy
hadronic interaction models used for the simulation inputsof both models. Model B has a dipole which
is missing in model A and caused by the early-late asymmetries. Slight differences in the quadrupole
structure of model A and B are visible at84◦ and probably due to neglected effects in the modeling of the
geomagnetic deflections in model A.

In conclusion, the differences of up to100 % between model A and B are significant and will affect the
event reconstruction of very inclined air showers in Chapter 6. The differences between model A and B are
much larger than the differences between model B and the its simulation input. The differences caused by
the different approaches used to derive model A and B seem comparable to those caused by the differences
in the simulation input.

A direct comparison of the models gives a first impression of the magnitude of the differences, but most
meaningful is a comparison of the performance of both modelsin the reconstruction of simulated and real
events. This comparison is done in Chapter 6.
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Figure 5.19: The profiles show the muon density predicted a) by model A [10, 13, 54] and b) by model B
(this work) at1019 eV, θ = 60◦, andφ = 0◦. The profiles in c) and d) show the relative difference (see
text). Model B is scaled down by a factor of 0.9.

x / km
−4 −3 −2 −1 0 1 2 3 4

y 
/ 

km

−4

−3

−2

−1

0

1

2

3

4

/t
a

n
k

A µ
N

−210

−110

1

10

210
a)

x / km
−4 −3 −2 −1 0 1 2 3 4

y 
/ 

km

−4

−3

−2

−1

0

1

2

3

4

/t
a

n
k

B µ
N

−210

−110

1

10

210
b)

x / km
−4 −3 −2 −1 0 1 2 3 4

y 
/ 

km

−4

−3

−2

−1

0

1

2

3

4 >
µ

)/
<

N
A µ

−
N

B µ
(N

−1

−0.5

0

0.5

1
c)

x / km
−4 −3 −2 −1 0 1 2 3 4

y 
/ 

km

−4

−3

−2

−1

0

1

2

3

4

1
/2

>
µ

)/
<

N
A µ

−
N

B µ
(N

−1

−0.5

0

0.5

1
d)

Figure 5.20: The profiles show the muon density predicted a) by model A [10, 13, 54] and b) by model B
(this work) at1019 eV, θ = 60◦, andφ = 90◦. The profiles in c) and d) show the relative difference (see
text). Model B is scaled down by a factor of 0.9.
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Figure 5.21: The profiles show the muon density predicted a) by model A [10, 13, 54] and b) by model B
(this work) at1019 eV, θ = 84◦, andφ = 0◦. The profiles in c) and d) show the relative difference (see
text). Model B is scaled down by a factor of 0.9.
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Figure 5.22: The profiles show the muon density predicted a) by model A [10, 13, 54] and b) by model B
(this work) at1019 eV, θ = 84◦, andφ = 90◦. The profiles in c) and d) show the relative difference (see
text). Model B is scaled down by a factor of 0.9.
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5.5 Surface detector response to very inclined air showers

The surface detector samples the front of an air shower at several points on the ground. The SD signals
in very inclined air shower are dominated by the contribution of muons. Therefore, the SD basically
measures the lateral profile of the muon densityNµ on several spots on the ground. With the model of the
muon densitynµ on the ground from the previous section, it is possible to reconstruct the total number of
muonsNµ on the ground from these measurements. The total number of muonsNµ is used as an estimator
of the cosmic ray energyE in Chapter 6.

In order to reconstruct the total number of muonsNµ on the ground with this approach, it is necessary
to understand and model the SD signal response to the particle mix in the front of a very inclined air shower.
The model has to relate the measured signalS in a station with the number of muon hitsk and regard the
residual contributions of electrons and photons to the signal. The basic advantage in the reconstruction of
very inclined air showers is the fact that the contributionsfrom electromagnetic particles are small and can
be treated approximately, while the main contribution to the measured signals stems from the muons. The
signal response of the Auger Water-Cherenkov detectors to muons can be modeled very well.

In the following, a signal response model is derived from thelibrary of simulated SD events which was
presented earlier in this chapter. The derivation of the model follows the work of ref. [11,13,15–17] closely.
A slight modification of the standard ansatz will improve theaccuracy of the model in its application to the
reconstruction of events in Chapter 6.

5.5.1 Properties of the Auger Water-Cherenkov detector

The signal response of a Water-Cherenkov detector to a fast charged particle is a function of the track length
l that the particle travels in the water volume with a velocitylarger than the speed of light in water. The
track lengthsl and therefore the generated signal varies from particle to particle, partly due to the geometry
of the detection volume and partly due to the de-acceleration of particles in water.

The signals generated by two or more simultaneous particlesin the detector add up. Cherenkov photons
from different particles have a random phase relation and show no interference. The SD stations of the
Pierre Auger Observatory have a linear response to Cherenkov light over a large dynamic range.

The signals generated in the surface detector by very inclined air showers are dominated by the contri-
butions of muons, but also the response to electrons and photons needs to be regarded. The contribution of
hadrons can be neglected [56].

• Muons. The muons arrive in parallel over the extension of a station.The average muon signal is
proportional to the geometrical track lengthlµ of the muon in the detector in very good approxima-
tion. Muons in the energy range1.5 GeV . Eµ . 500 GeV [16] fully penetrate the SD station and
maintain100 % production efficiency for Cherenkov light, but do not generate secondary particles
via bremsstrahlung or directe+e− pair production in the water. The average muon energy on the
ground in very inclined air showers ranges between1 GeV and100 GeV, depending on the zenith
angleθ of the shower.

• Electrons. The average energy of electrons on the ground is at least by two orders of magnitude
smaller than the muon energy. The production threshold for Cherenkov light is0.8 MeV. The
ionization energy loss in the water of about2 MeVcm−1 stops electrons up to an energy of about
0.1 GeV. Cherenkov light is generated with100 % efficiency over the full track in good approx-
imation. Therefore, electrons up to about0.1 GeV generate a signal proportional to their energy
in good approximation. Electrons with energies larger thanthe critical energy in water of about
0.08 GeV [23] produce small sub-showers in the water and the relationbetween electron energy and
signal becomes more complex, but in first approximation it isstill a proportionality.

• Photons.A photons needs to be converted into an electron/positron pair to generate any Cherenkov
light. The radiation length in water is0.36 m [23] and a conversion therefore likely. The Cherenkov
production threshold for photons is about1.3MeV [16], which is equal to the sum of the rest masses
of two electrons and the kinetic energy for at least one electron to be above the Cherenkov threshold.
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Figure 5.23: The left plot shows the frequency of masked PMTsin real events. A masked PMT is a faulty
PMT. Its signal is not used for the station level triggers or in the event reconstruction.

The signal response of the Auger Water-Cherenkov is independent of the azimuth angleφ of the incident
particle in good approximation. The station design assures, that most Cherenkov photons suffer several
reflections before hitting a PMT, so that the information about the initial direction of the photons is lost.
This randomization is very efficient if the particles have a moderate inclination.

In very inclined air showers, a particle generated Cherenkov cone can touch a PMT directly, which
amplifies the measured signal and introduces a dependency onthe azimuthφ of the particle on the level of
a single PMT in the station. Aφ-variationα ≈ 15 % in the average signal response to muons is observed
in simulations [15]. The total signal response of a station is the average of the its three individual PMTs.
Theφ-variation on the PMT level is well described by a cosine law,which cancels in the calculation of the
average

Sµ ≡ 1

3

(
Sµ,PMT-1 + Sµ,PMT-2 + Sµ,PMT-3

)

=
1

3

(
(1 + α cos(φµ))Sµ + (1 + α cos(φµ + 120◦))Sµ + (1 + α cos(φµ + 240◦))Sµ

)
= Sµ

If one of three PMTs is not operational, theφ-variation of the signal response is still smaller than5 %.
Fig. 5.23 shows that most stations have all three PMTs in operation.

5.5.2 Modeling the signal response

The signal generated by the front of a very inclined air shower in an SD station now is modeled quanti-
tatively, based on the previous discussion of the properties of the Auger Water-Cherenkov detector. The
event reconstruction in Chapter 6 needs the full probability density function (p.d.f.) of the signal response
to k muons.

In general, the signalS in an SD station is the sum of a muon contributionSµ and two kinds of
contributions from electromagnetic particles

S = Sµ + Sem + Sem-π0 , (5.5.1)

whereasSem is the contribution from electromagnetic particles generated in earlier muon decays andSem-π0

the contribution from electromagnetic particles which originate from the hadronic cascade.
The muon-generated electromagnetic particles make the first contribution. They are called halo parti-

cles and were already discussed in Chapter 3. The energy spectrum of the halo particles and their density
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relative to the muons are almost constant. Therefore, thereis an almost fixed relation between the average
muon signal〈Sµ〉 and the average halo signal〈Sem〉

〈Sem〉
〈Sµ〉

≈ 0.2 (5.5.2)

On average, the halo particles form a constant signal background for the muons.
While the initial energy of a halo particle is of the order of the energy of its parent, its energy is

lost quickly in a small electromagnetic sub-shower. Therefore, the average energy of the halo particles is
orders of magnitude lower than the average muon energy. The number of halo electrons is comparable to
the number of muons. The number of photons above one MeV is even an order of magnitude larger. The
signal ratio〈Sem〉/〈Sµ〉 is still small, because the muons with their larger energy generate Cherenkov light
over their full geometrical track length in the detector volume, while the less energetic halo particles have
shorter tracks.

The remaining electromagnetic particles from the hadroniccascade are not closely related to the muon
density. Ideally, their contributionSem-π0 to the total signalS is zero, which is the case at zenith angles
θ & 65◦. At 60◦ < θ < 65◦, the contribution is already small. The signal response model is based on the
requirement, thatSem-π0 makes only a small contribution to the signal so that it is notnecessary to treat this
contribution in detail.

The signal components are random variables. Each has a corresponding p.d.f., which can be parame-
terized in general as

fµ(Sµ|θµ, φµ, Eµ, k) (5.5.3)

fem(Sem|Eµ, θµ, nµ) (5.5.4)

fem-π0(Sem-π0 |r, ψ, θ, φ,E,A), (5.5.5)

whereasθµ, φµ, Eµ are the average direction and energy of thek muons hitting the station;(r, ψ) is the
position of the station relative to the shower axis in the lateral coordinate system;(θ, φ), E, A are the
direction, energy and mass of the cosmic ray.

Only Sµ depends directly on the number of muon hitsk. The electromagnetic signalSem is tightly
correlated tok, but actually a function ofnµ. BothSµ andSem are completely determined by the properties
of the muon front close to the ground, but the dependency ofSem-π0 needs to be traced back to the primary
properties of the cosmic ray.

The general p.d.f. of the total signal response tok muons is the convolution of these p.d.f.s:

f(S) = f(S|θµ, φµ, Eµ, k; r, ψ, θ, φ,E,A)

=

∫ ∞

0

dS̃em

∫ ∞

0

dSem-π0 fµ(S − S̃em) fem(S̃em− Sem-π0) fem-π0(Sem-π0) (5.5.6)

Modeling the complete p.d.f. is a complex task and has so far not been done. Instead, several approxima-
tions are used to reduce the general model to practical proportions.

The p.d.f. fµ of the muon signal is reduced to a function ofθµ and the number of muons hitsk.
The dependency onφµ cancels in very good approximation and the dependency onEµ is very weak, as
discussed earlier. A study of simulated SD events finds aEµ-dependency of the muon signalSµ at the level
of about5 % [150] in zenith angle range60◦ < θ < 80◦, which is neglected in this study.

The remaining p.d.f.fµ(Sµ|θµ, k) of k muon hits follows from the p.d.f.g(Sµ|θµ) ≡ f(Sµ|θµ, 1) of a
single muon hit via auto-convolution:

Sk
µ = S1

µ,1 + S1
µ,2 + · · · + S1

µ,k−1 + S1
µ,k

⇒ fµ(Sµ|θµ, k) =

∫

dsk−1

∫

dsk−2 · · ·
∫

ds2

∫

ds1×

g(Sµ − sk−1|θµ) g(sk−1 − sk−2|θµ) · · · g(s2 − s1|θµ) g(s1|θµ). (5.5.7)

Thus, it is sufficient to modelg(Sµ|θµ).
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The approximations towardsfem andfπ0-em are radical in the standard approach. They are replaced by
delta-functions

f(S) ≃
∫ ∞

0

dS̃em

∫ ∞

0

dSem-π0 fµ(S − S̃em) δ(S̃em− Sem-π0 , 〈Sem〉) δ(Sem-π0 , 〈Sem-π0〉)

= fµ

(
S − 〈Sem + Sem-π0〉

)
≃ 1

1 + 〈ǫ〉fµ

(
S

1 + 〈ǫ〉

)

, (5.5.8)

whereas〈ǫ〉 ≡ 〈Sem + Sem-π0〉/〈Sµ〉 is the average contribution from electromagnetic particles. The
following approximation is used:

Sµ ≈ S − 〈Sem + Sem-π0〉 ≈ S/(1 + 〈ǫ〉). (5.5.9)

The factor1/(1 + 〈ǫ〉) needs to be introduced to preserves the normalization off(S) after the approxima-
tion.

The correct average value off(S) is obtained with this approach

〈S〉 =

∫ ∞

0

dS S f(S) =
1

1 + 〈ǫ〉

∫ ∞

0

dS S fµ

(
S

1 + 〈ǫ〉

)

= (1 + 〈ǫ〉)
∫ ∞

0

dS′ S′fµ(S′)

= (1 + 〈ǫ〉)〈Sµ〉 = 〈S〉, (5.5.10)

but fluctuations off(S) will be too small. The discussion will return to this issue later.
The ansatz of using〈ǫ〉 implies a scaling of both〈Sem〉 and〈Sem-π0〉 with the number of muon hitsk:

〈ǫ〉 =
〈Sk

em + Sk
em-π0〉

〈Sk
µ〉

=
〈Sk

em〉
〈Sk

µ〉
+

〈Sk
em-π0〉
〈Sk

µ〉
=
k 〈S1

em〉
k 〈S1

µ〉
+

〈Sk
em-π0〉
k 〈S1

µ〉
!
=

〈S1
em〉

〈S1
µ〉

+
〈S1

em-π0〉
〈S1

µ〉
⇒ 〈Sk

em-π0〉 !
= k 〈S1

em-π0〉 (5.5.11)

This feature was already justified for〈Sem〉, but it is not apparent for〈Sem-π0〉. Very roughly, one may
argue that the number of muon hitsk in a station is almost proportional the cosmic ray energyE, while the
same is true for〈Sem〉:

k ∝ nµ ∝ E, 〈Sem-π0〉 ∝ E ⇒ 〈Sem-π0〉 ∝ k.

This approximation is very rough for several reasons. Neither the muon component nor the electromagnetic
component of an air shower scale exactly withE. Furthermore, the depthXmax of the electromagnetic
shower maximum increases withlnE as shown in Chapter 3, so that the electromagnetic componentis
slight less attenuated at higher energies.

The signal ratio〈ǫ〉 is only a function of the cosmic ray energyE and massA because of the contri-
bution of 〈Sem-π0〉. Neglecting these dependencies is part of the ansatz and only a good approximation
because〈Sem-π0〉 has a small impact in the reconstruction of very inclined airshowers. The impact of these
approximations will be evaluated later.

The remaining dependencies of the signal ratio〈ǫ〉 can be reduced to the position(r, ψ) of the SD
station in the lateral coordinate system and the direction(θ, φ) of the shower

〈ǫ〉 ≃ 〈ǫ〉(r, ψ; θ, φ). (5.5.12)

The dependencies of〈ǫ〉 onEµ andθµ are implicitly regarded. BothEµ andθµ are approximately universal
and therefore only functions of the remaining parameters(r, ψ; θ, φ).

This is the approach developed successively in ref. [11, 13,15–17]. The approximations may seem
rough, but the reconstruction of simulated events in Chapter 6 will show, that they work out surprisingly
well in practice.
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Figure 5.24: a) The histograms compare the simulated distribution of the signal responseS1/(1 + 〈ǫ〉)
to single muons with the distribution of the muon signalS1

µ alone. Cuts on the zenith angle assure, that
the contribution ofSem-π0 is negligible. b) The histograms compare the simulated distribution of the signal
responseS/(1+〈ǫ〉) to any number of muons with the muon signalSµ alone. Cuts on the parameter region
assure, that the total signalS is dominated bySµ andSem-π0 .

Fluctuations of the electromagnetic signal components

The discussion shall now return to the neglected fluctuations in Eq. (5.5.8). Approximatingfem andfπ0-em

by delta-functions neglects fluctuations of the total signal S caused by the electromagnetic signalsSem and
Sem-π0 . These are good approximations only ifσ[Sµ] ≫ σ[Sem] andσ[Sµ] ≫ σ[Sem-π0 ].

The surface detector simulation in the AugerOff line-framework keeps separate records for FADC
counts generated by different particle species. The total signal S, as well as the components made by
electrons, muons, and photons may be analyzed separately. This is used in Fig. 5.24 to compare the dis-
tribution of the muon signalSµ alone with the distribution of the total signalS corrected by the average
electromagnetic component(1 + 〈ǫ〉) in simulated events. Both distributions have the same mean,but the
distribution ofS/(1 + 〈ǫ〉) also includes the fluctuations caused by the signal contributions from electro-
magnetic particles. Some cuts on the simulated data allow tocompare two regimes. In Fig. 5.24a),Sem-π0

is negligible and the additional fluctuations are caused only by Sem. In Fig. 5.24b), the contribution from
Sem-π0 is relevant or even dominant, as will be shown later.

The analysis shows that the fluctuation of the total signal isindeed dominated by the fluctuation of the
muon signal, but it is also apparent that the other contributions are not negligible. The fluctuations ofSem

andSem-π0 are neglected in the standard approach. It is proposed now toat approximately include these
fluctuations by re-interpreting Eq. (5.5.8) as the definition of how to constructfµ(Sµ). By definingthe
muon signal as

Sµ ≡ S

1 + 〈ǫ〉 , (5.5.13)

and buildingfµ from the distribution of this random variable, the fluctuations of the total signal due to
the electromagnetic background are included into the p.d.f. fµ. This ansatz also has the advantage, that
a possible bias in the〈ǫ〉-model is partly absorbed intofµ(Sµ|θµ, k), so that it effectively cancels in the
application offµ in the reconstruction. It will be shown in Chapter 6, that this step indeed improves the
precision event reconstruction.

The technical derivation and implementation offµ is discussed in Appendix C.
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5.5.3 Analysis of the electromagnetic signal component

A detailed analysis of the signal ratio〈ǫ〉 ≡ 〈Sem + Sem-π0〉/〈Sµ〉 based on simulations is performed in
ref. [16], which also yields a model of〈ǫ〉. This model is also used in this study. The predictions of
the model are compared with data obtained from the simulatedSD events produced for this study in the
following.

The analysis exploits again that the simulation separates the contributions of muons, electrons, and
photons to the total signal. Lateral profiles of the average muon signal〈Sµ〉 and the average electromagnetic
signal 〈Sem + Sem-π0〉 are generated first. Stations with a total signalS smaller than the lowest trigger
thresholdST1 = 1.75 VEM are not used in order to emulate realistic data taking conditions.

Then, the ratio〈ǫ〉 is calculated from these lateral profiles. The uncertainty of 〈ǫ〉 is approximately

σ[ǫ] ≃ 〈Sem〉
〈Sµ〉

(
σ2[Sem]

〈Sem〉2
+
σ2[Sµ]

〈Sµ〉2
)1/2

, (5.5.14)

under the restrictionsσ[Sem] ≪ 〈Sem〉 andσ[Sµ] ≪ 〈Sµ〉. Fig. 5.25 and Fig. 5.26 show the results together
with the expectation from the〈ǫ〉-model. In order to get a reasonable uncertainty estimate from Eq. (5.5.14)
the ratio〈ǫ〉 is only shown in these figures whereσ[Sem] < 0.5 〈Sem〉 andσ[Sµ] < 0.5 〈Sµ〉.

The signal ratio〈ǫ〉 shows the previously discussed features. At zenith anglesθ > 62◦ and radial
distancesr & 1 km from the shower axis, the signal ratio〈ǫ〉 is small and almost constant. In this range,
the signal contributionSem-π0 of electromagnetic particles from the hadronic cascade is negligible and〈ǫ〉
is independent of the cosmic ray energyE and massA.

In the zenith angle range60◦ < θ < 66◦, a signal contributionSem-π0 is present, but it mostly affects
stations atr < 1 km. This contribution depends on the cosmic ray energyE and massA and is not
universal, as discussed previously. Proton showers yield aratio which is up to0.1 〈Sµ〉 larger than iron
showers. An effect of the same order is observed as a functionof the cosmic ray energyE.

Both effects are well known [151]. The present〈ǫ〉-model neglects them and is derived from proton
showers atE = 1019 eV. The reconstructed energyESD of showers close toθ ≈ 60◦ will be slightly
biased because of this in Chapter 6. The size of this bias is best estimated directly by applying the event
reconstruction to simulated SD events. The analysis is performed in Chapter 6 and the bias will turn out to
be acceptably small.

Another increase in〈ǫ〉 is observed close to the shower axis very large zenith anglesθ & 80◦, which is
not related to a contribution ofSem-π0 . At such large zenith angles the average muon energy on the ground
close to the shower axis becomes so high that additional electromagnetic particles are generated by muons
through bremsstrahlung and directe+e−-production in the field of nuclei, as discussed in Chapter 3.This
Sem-contribution is still universal in good approximation.

There are unexpected features as well. The analysis shows anoverall discrepancy of up to0.2 〈Sµ〉
between the model from ref. [16] and this analysis. Generally, the model is in better agreement at a small
radial distancesr . 2 km, where the discrepancy is at the level of0.05 〈Sµ〉 to 0.1 〈Sµ〉. Far from the
shower axis, the simulated data shows a different behavior than the model. The model tends towards
〈ǫ〉 ≈ 0.2, while the analysis indicates a drift towards zero. The drift starts closer to the shower axis at
lower energies.

Most of the discrepancy between the〈ǫ〉-model and this analysis is understood and is related to the
rejection of stations with signals below the T1 thresholdST1 = 1.75 VEM in this analysis.

Fig. 5.27 shows the effect of a signal threshold on the signalcomposition in a station. Without a signal
threshold, the muon component is very often zero. A lot of small signals are generated by photons, which
are numerous. This fraction is strongly suppressed, if a signal threshold is introduced.

This allows to understand the effect on the signal ratio〈ǫ〉. The trigger effectively suppresses signals
with no muon contribution if the muon density is very low. Theelectromagnetic particles make smaller
signals on average than muons and are often not able to trigger the station without a simultaneous muon hit.
The opposite is not true. Even a single isolated muon is able to trigger the station under optimal conditions
at such large inclination angles.

The suppression effect vanishes, if the local muon density is large and the station is triggered in any
case. Therefore, the average signal contribution〈Sem〉 from halo particles has a slight non-linear depen-
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Figure 5.25: The points show the simulated signal ratio〈ǫ〉 as a function of the radial distancer to the
shower axis, the zenith angleθ, and the cosmic ray energyE and mass, as well as the hadronic interaction
model. The curve is the model prediction from ref. [16].
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Figure 5.26: The plots are a continuation of Fig. 5.26.
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Figure 5.27: The plot shows the simulated ratioSµ/S of the muon generated signal to the total signal
in a station. Only stations withS < 10 VEM are included in the analysis to avoid signal contributions
fromπ0-generated electromagnetic particles. The peak atSµ/S = 0 represents signals generated solely by
electromagnetic particles. It is actually an isolated peakand only has a finite width due to the resolution of
the histogram. The peak is suppressed, if stations with total signals below a certain threshold are rejected.

dency onk, the number of muon hits in the station. The average signal ratio 〈ǫ〉 effectively depends on the
muon densitynµ at the position of the station in turn and thus on the energyE of the cosmic ray.

If stations with signals below the trigger threshold are included into the analysis, a very good agreement
with the functional form of the〈ǫ〉-model is found. However, a small and almost constant offsetremains.
The model prediction of〈ǫ〉 stays about0.05 〈Sµ〉 above the results of this study.

The available data is not detailed enough to derive a new〈ǫ〉-model despite these findings. Building a
model of the signal ratio〈ǫ〉 requires dedicated simulations. The already discussed approach to derive the
signal response modelfµ absorbs most of the bias found here. A small energy dependentbias present at
all zenith angles nevertheless remains, which will be corrected empirically in Chapter 6.

5.5.4 Comparison with another model

The model derived in this study is compared with the model derived in ref. [15]. To ease the discussion,
the following naming convention is used:

• The model from ref. [15] is called model A.

• The model derived in this study is called model B.

It is sufficient to compare the signal response to single muonhits Fig. 5.28 shows the result. The
shapes of the p.d.f.s are similar. There is an almost constant shift in the average muon response〈Sµ〉. The
predictions of model B are lower by10 % to 20 % than those of model A.

This shift is the one generated by the bias of the〈ǫ〉-model from ref. [16], which causes an opposite bias
in model B. The combination of model B and the〈ǫ〉-model will nevertheless be unbiased by construction.

The signal varianceσ[Sµ] in model A and B is comparable. This is a coincidence. Expected is the same
bias which is already observed in〈Sµ〉. Model B should therefore have a smaller variance than modelA.
It is still comparable, because model B includes fluctuations from the electromagnetic halo particles that
make the variance larger.

The model comparison only shows differences which are expected from the earlier analysis of the〈ǫ〉-
model or put in by construction. To properly compare the models, their performance in the reconstruction
of simulated and real events needs to assessed. This comparison is done in Chapter 6.
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Figure 5.28: The plots compares two models of the signal response of to a single muon hit. Model A is
taken from ref. [15], model B from this study.
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Chapter 6
Reconstruction of cosmic ray properties

The Pierre Auger Observatory reconstructs the properties of cosmic rays by detecting the initiated exten-
sive air showers as shown in Fig. 6.1. In the view of the particle physicist, the atmosphere forms a hadronic
and electromagnetic calorimeter, which is instrumented and read out by the observatory.

The surface detector(SD) instruments a single slice of this calorimeter with particle detector stations, and
samples the particle flux and arrival time structure of the air shower in the slice. It is therefore not able
to measure the energy of the cosmic ray in a calorimetric way,because that would require to sample the
deposited energy in the whole volume of the “calorimeter”.

Still, the surface detector is able to get the direction of the cosmic ray from the sampled arrival times,
and an energy estimator from the sampled profile of the particle flux. This energy estimator is proportional
to the particle flux through the slice, and almost proportional to the cosmic ray energyE.

The energy estimator depends also strongly on the atomic massA and arrival direction(θ, φ) of the
cosmic ray. It depends also weakly on the current condition of the atmosphere itself, which shows slight
seasonal and daily variations. The arrival direction(θ, φ) can be measured unambiguously and the condi-
tion of the atmosphere can be monitored, but the dependency of the energy estimator ofE andA remains
entangled.

Thus, if the cosmic ray massA is not known, the systematic uncertainty of the cosmic ray energyE
derived from the energy estimator is large. Because the theoretical knowledge about soft hadronic interac-
tions in general and at ultra-high energies in particular islimited, these systematic uncertainties are further
increased. More details about this topic can be found in Chapter 5.

The fluorescence detector(FD) of the Pierre Auger Observatory does not suffer from these limitations. In
some sense, this detector “instruments” the whole volume ofthe atmospheric calorimeter, and therefore is
able to measure the energy of the cosmic ray by integrating over the energy loss along the shower path.

The fluorescence detector does so by collecting fluorescencelight generated by collisions of electrons
in the shower with nitrogen molecules. The collected light flux is sampled with a pixel camera with a high
time resolution. With the orientation of the pixel trace in the camera, the arrival times of the light in the
triggered pixels, and the arrival time of the shower front ata single surface tank, it is possible to get an
accurate reconstruction of the shower geometry.

The knowledge of the position and orientation of the shower axis relative to the fluorescence detector
together with the current state of the atmosphere allows to calculate the total amount of light emitted along
the shower axis from the detected light. The total amount of light along the shower axis is a calorimetric
measure of the total energy deposited by the electrons in theair shower. The conversion factor is called the
fluorescence yieldand can be measured in laboratory experiments.

The fluorescence detector can only detect the fraction of thecosmic ray energy, which is converted
into electromagnetic particles and consequently deposited in the atmosphere. Fortunately, this is about
90 % at ultra-high energies, as discussed in Chapter 3. The exactfraction depends weakly on the cosmic
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6.1. VERTICAL AND VERY INCLINED SHOWERS

Figure 6.1: The drawing summarises the basic ideas behind the cosmic ray measurement at the Pierre Auger
Observatory, and distinguishes between the so calledvertical showers(0◦ < θ < 60◦) andvery inclined
air showers(60◦ < θ < 90◦). Vertical showers reach the surface detector with photons, electrons (yellow
dotted cloud), and muons (green solid lines). In very inclined air showers, the electromagnetic component is
(almost) extinct at ground level, and the surface detector observes mainly a muon shower. The fluorescence
detector measures the fluorescence light (violet dashed lines) generated by the electromagnetic component
of the shower in both cases.

ray energyE, the massA, and on the theoretical modeling of the shower. The systematic uncertainty of
the reconstructed energy due to this effect is about4 % [47], which is even smaller than the precision of
the absolute calibration of the FD. It is therefore well justified to call the FD measurement a calorimetric
energy measurement. A downside of the fluorescence detectoris that it can only operate in clear moonless
nights, which limits its duty cycle to about13 %.

The combined use of the fluorescence and surface detectorcancels their respective weaknesses. Air
showers measured in both detectors can be used to calibrate the energy estimator of the surface detector. If
the calibration is done with an unbiased sample of the mass composition of cosmic rays, the FD-calibrated
surface detector measures the cosmic ray energy with comparably small systematic uncertainties and a duty
cycle of almost100 %. This approach is followed here.

6.1 Vertical and very inclined showers

Important features of the lateral profile of an air shower measured at the Auger South ground altitude
depend on the zenith angle, which change the signal patternsrecorded in the SD. Two regimes form, which
need to be treated by different SD reconstruction methods: the so-calledvertical showers in the zenith
angle range0◦ < θ < 60◦, andvery inclined air showersat 60◦ < θ < 90◦, see Fig. 6.1 and Chapter 3.
These differences are only important for the reconstruction of SD events. The reconstruction of FD events
is unaffected.

The SD reconstruction methods for both zenith angle regimesare based on different approximations to
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CHAPTER 6. RECONSTRUCTION OF COSMIC RAY PROPERTIES

the lateral shower profile, and in consequence yield different energy estimators. In vertical showers, the
primary electromagnetic component of the shower is active at the ground level, and the signal measured in
the Water-Cherenkov-Detector stations is dominated by thelarge number of electromagnetic particles. The
typical path lengths are small enough, so that the influence of the geomagnetic field on the lateral profile
of the shower can be neglected.

The energy estimatorS1000 of vertical showers is obtained by fitting a modified Nishimura-Kamata-
Greisen function [152–154] to the recorded spatial patternof signals in the SD

S(r) = S1000(E,A, θ)

(
r

r1

)β(θ) (
r + r2
r2 + r1

)β(θ)+γ

, (6.1.1)

with r1 = 1000 m andr2 = 700 m. The radial symmetric Nishimura-Kamata-Greisen functionwas orig-
inally derived for pure electromagnetic cascades. Theθ-dependency ofβ andS1000 can be parameterised
from data [155–157]. The constantγ is zero in small showers and a free parameter in events with a high
station multiplicity.

In very inclined air showers, the primary electromagnetic component is (almost) extinct, and the signal
measured in the Water-Cherenkov-Detector stations is dominated by muons. The flux of low energy elec-
tromagnetic particles into the detectors is still larger than the flux of muons, but this is overcompensated
by the better signal conversion properties of muons, as shown in Chapter 5.

The energy estimator1 Rµ of very inclined showers is obtained by fitting a reference profile of the muon
densitynref

µ to the recorded spatial pattern of SD signals [10–17]

S(r, ψ) = 〈S1
µ〉(θµ) (1 + 〈ǫ〉(r, ψ; θ, φ))

︸ ︷︷ ︸

muon signal + em-background per muon

×Astation(θµ) Rµ(E,A) nref
µ (r, ψ; θ, φ)

︸ ︷︷ ︸

no. of muons per SD station

. (6.1.2)

This approximate signal model is build from several components which were previously discussed along
with their systematic uncertainties in Chapter 5:

• 〈S1
µ〉(θµ) is the average signal generated by a single, isolated muon ofwith the inclinationθµ.

• 〈ǫ〉 = 〈Sem+Sem-π0〉/〈Sµ〉 is the average contribution of electromagnetic particles to the total signal,
which arrive together with the muon. It is a function of the direction of the air shower(θ, φ) and the
position of the station(r, ψ) in the lateral coordinate system of the shower.

• Astation is the area of a surface detector station projected onto the ground as seen by a muon with the
inclinationθµ. The calculation is discussed in Appendix A.3.

• Rµ(E,A)nref
µ (r, ψ; θ, φ) is the number density of muons on the ground. The first termRµ(E,A) =

Nµ(E,A, θ)/N ref
µ (E,A, θ) is the ratio between the total number of muons on the ground inthe event

and a reference shower. The second term is the lateral profileof the reference, which is obtained from
air shower simulations. The reference model represents an average air shower at a given fixed mass
and fixed energy. The standard choice is a1019 eV proton shower.

The zenith angle dependencies inNµ(E,A, θ) andN ref
µ (E,A, θ) cancel in good approximation, so that the

energy estimatorRµ of very inclined air showers isθ-independent.
An in-depth discussion of the reconstruction of vertical showers is given in ref. [158]. The study focuses

on the reconstruction of very inclined showers.

6.2 SD event reconstruction of very inclined showers

The current reconstruction procedure for very inclined airshowers is based on a long line of achieve-
ments [10–17,84,159–166]. In the past, some developments were done in parallel, which formerly lead to
two separate reconstruction programs:SdHorRec [14] andefit [17,161–165].

1The energy estimator is also called N19 in other references:Rµ ≡ N19.

93



6.2. SD EVENT RECONSTRUCTION OF VERY INCLINED SHOWERS

Figure 6.2: The figure illustrates, how the fluctuation of thereconstructed energy estimatorRSD
µ (right

graph) is composed of natural shower-to-shower fluctuations to the shower development (left graph) and
the fluctuations due to the sampling of the detector (centered graph). In this definition,Rµ is the ideal
average of the physically realised energy estimatorRsh-sh

µ . The latter may be measured with a perfect
detector, while the former only exists on a statistical basis. OnlyRµ is directly related to the cosmic ray
energyE.

Both are very sophisticated stand alone programs, but so farthey are not implemented in the official
analysis frameworkOff line of the Pierre Auger Collaboration. Their approaches and concepts were re-
cently merged into a new reconstruction module calledSdHorizontalReconstruction [166], which is now
part of in theOff line analysis framework. Large parts of this module were contributed in the course of this
work. The source code of the module can be obtained online [167].

The new module implements two coupled fits, one to reconstruct the energy estimatorRµ and another
one to reconstructed the shower arrival direction(θ, φ). The energy estimator reconstruction is strongly
based on the structure and the established concepts of theefit program, but was rewritten from scratch
to make use of the software facilities of theOff line framework. The directional reconstruction on the
other hand was copied from the standard reconstruction module for vertical showers [158,168,169] and is
therefore identical in vertical and inclined showers.

TheOff line framework aims to be a comprehensive modular framework which is easy to understand,
extend and modify. It is distributed with a set of standard analysis modules which can be freely combined
to execute a certain analysis task. The module concept is build on the idea, that analysis tasks like the
reconstruction of very inclined SD events can be divided into a sequence of independent steps. Each step
is realised with its own software module.

The standard modules also serve as templates, which others can improve with their own ideas and return
these improvements into the standard module.SdHorizontalReconstruction was written in this spirit in
a collaborative effort [166].

The reconstruction is discussed in detail in the following.As an introduction, a simplified recon-
struction procedure for an air shower measured with an idealised SD measurement is regarded first. The
simplified reconstruction is then expanded into a full reconstruction for real data.

Each reconstruction yields an energy estimator, among other observables. For the following discussion
in this and the next chapter, it will be sometimes necessary to explicitly distinguish between different kinds
of energy estimators:

• The ideal energy estimatorRµ ∝ E1/γ is proportional to the average number of muons generated
by a cosmic ray with the energyE. The real number of muons fluctuates from shower-to-shower,as
discussed in Chapter 3 and Chapter 5.

• The true energy estimatorRsh-sh
µ is proportional to the real number of muons in a shower. The true

energy estimatorRsh-sh
µ fluctuates from shower-to-shower with respect toRµ. For identical cosmic
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rays that hit the atmosphere:Rµ = 〈Rsh-sh
µ 〉. In contrast toRµ, Rsh-sh

µ could actually be measured
with a perfect detector, that counts every muon that arrivesthe ground. The true energy estimator
Rsh-sh

µ is available in simulated air showers.

• Thereconstructedenergy estimatorRSD
µ is the result of the measurement ofRsh-sh

µ with a non-perfect
detector. Sampling fluctuations additionally randomiseRSD

µ with respect toRsh-sh
µ , because not every

muon is counted.

The variables are further illustrated in Fig. 6.2. The explicit variablesRsh-sh
µ andRSD

µ will be used, where
the distinction is important. Where the distinction is not important, the energy estimator is simply called
Rµ, as before.

6.2.1 Idealised reconstruction

The surface detector consists of an array of identical Water-Cherenkov detector stations, which are excellent
muon counters. In first approximation, the SD shall be regarded as a perfect muon counter and an SD event
as a spatial configuration of muon counts. The shower direction (θ, φ) and the local muon arrival direction
(θµ,i, φµ,i) at the position of each station shall also be perfectly known.

In this case, the average number of muon counts〈Nµ,i〉 in a stationi can be calculated by multiplying
the effective area of the stationAstation(θµ,i) with the muon densitynµ. The effective area depends on the
muon inclinationθµ,i at the position of the station and is discussed in Appendix A.3. With the factorisation
approach from Eq. (5.4.1), this can be formulated as the second part of Eq. (6.1.2):

〈Nµ,i〉(r̃i;Rµ, rc, θ, φ) = Astation(θµ,i) Rµ n
ref
µ

(
r̃i − rc; θ, φ

)
, (6.2.1)

whereas̃ri is the position of stationi in ground plane coordinates andrc is the point where the shower axis
intersects with the ground. The latter position is also called theshower core.

Since the shower direction and theθµ,i are fixed, the equation has only three free parameters: the
energy estimatorRµ and the two coordinates of the shower corerc on the ground surface. By expanding
Eq. (6.2.1) into a statistical model of the sampled muon countsNµ,i, the equation can be used to determine
the free parameters from the sampled muon counts.

The reference profilenref
µ is only defined in a tangential ground plane, while the SD stations have

vertical offsets with respect to this ideal plane due to Earth’s curvature and local altitude changes, as shown
in Chapter 4. The true station positionri therefore needs to be projected into the ground plane of the
model, which has the shower core pointrc as its origin:

ri
proj.−−→ r̃i with (r̃i − rc)ez

!
= 0, (6.2.2)

whereasez is the local vertical direction at the position of the showercore.
The solution with negligible bias at all zenith angles is theprojection along the average muon arrival

direction (θµ,i, φµ,i) at the position of the station. The muon arrival direction isa priori known in the
idealised case and can be modeled well in the realistic case.Different projection approaches are compared
in Appendix A.4.

A good statistical model for the muon counts is the Poisson distribution. The model holds if the muon
positions on the ground are uncorrelated over small scales.This is a good approximation, because muons
are generated far from the ground with individual random directions. When they reach the ground, their
positions are sufficiently randomised. This leads to the following likelihood function

L({Nµ,i}|Rµ, rc) =
∏

i

1

Nµ,i!
〈Nµ,i〉Nµ,i e−〈Nµ,i〉, (6.2.3)

with 〈Nµ,i〉 calculated by Eq. (6.2.1). Stations not hit by a muon are called silent stations. They have
Nµ,i = 0, but provide valid information to the likelihood function,too. The probability to get a silent
station can be calculated from the Poisson distribution andthus silent stations help to constrain the model
parameters, in particular the shower core position.
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Optimal estimates for the free parameters are obtained froma numerical minimisation of− lnL with
the MINUIT package [148]. Minimising− lnL is equivalent to maximisingL, but can be better handled
numerically. The numerical minimisation needs start values, which are as close to the final solution as
possible. The barycenterrb of the muon counts yields a good initial estimate for the shower core:

rc ≈ rb =

∑

i riNµ,i/σ[Nµ,i]
∑

i 1/σ[Nµ,i]
=

∑

i ri

√
Nµ,i

∑

i 1/
√
Nµ,i

. (6.2.4)

An initial estimate ofRµ is obtained by fixing the shower core to the barycenter and solving

∂ lnL({Nµ,i}|Rµ, rb)

∂Rµ

!
= 0 (6.2.5)

analytically, which leads to

Rµ =

∑k
i=1Nµ,iAstation(θµ,i)n

ref
µ (r̃i − rc; θ, φ)

∑k
i=1Astation(θµ,i)nref

µ (r̃i − rc; θ, φ)
(6.2.6)

with k as the total number of regarded stations, including silent stations.

Analysis of resolution and bias

In the simplified reconstruction, the resolution and bias ofthe reconstructed energy estimatorRSD
µ is only a

function of the data statistic and thenµ-model from Chapter 5. It is worthwhile to evaluate the performance
of the model by applying the simplified reconstruction to the6480 simulated SD events from Chapter 5.

The full information of particle hits in each station is available in the simulated SD events, so that
the ideal muon countNµ,i and the mean muon arrival direction(θµ,i, φµ,i) can be calculated for each
station. The reconstruction uses thenµ model derived from proton showers simulated with QGSJet-II. The
reconstruction efficiency over the whole library is99.9 %.

The resolution and bias of the fit are derived by comparing reconstructed parameters with the input
values of the simulation. The reconstructed energy estimatorRSD

µ has to be compared with the true energy
estimatorRsh-sh

µ in this case, not the ideal estimatorRµ ∝ E1/γ , because only the resolution of the detector
and the reconstruction is of interest.

The true energy estimatorRsh-sh
µ can be calculated in simulated showers by counting the totalnumber

of muons on the groundNµ and dividing the number by the value obtained from the reference modelN ref
µ

Rsh-sh
µ = Nµ/N

ref
µ . (6.2.7)

For the reconstructed shower core positionrSD
c , two kinds of residuals are regarded. The shower core

resolution is obtained from the deviation distance of the reconstructed and true shower core positions

rc = |rSD
c − rc|. (6.2.8)

The core resolutionσ[rc] is taken as the68 % quantile of the distribution ofrc.
The variablerc cannot be used to detect a systematic bias in the core offset.A variable better suited for

a bias analysis is the component of the core offset along a certain direction. Out of all possible directions,
the projected arrival direction of the shower is a particularly interesting, the corresponding shift

r̃c = (rSD
c − rc) (ex cosφ+ ey sinφ), (6.2.9)

is called the early-late component of the shower core offset. It is positive (negative), if the shower core is
shifted towards the early (late) arriving part of the shower. A bias in this direction has the largest impact on
the reconstructed zenith angleθSD of the shower, as will become apparent in the full reconstruction later.

Fig. 6.3 to Fig. 6.5 show the results of the analysis. The distribution ofRSD
µ around the true value is a

Gaussian. This is in exact agreement with the expectation.
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Figure 6.3: The plots show example distributions of theRSD
µ -residual and the shower core offsetrc; as

obtained from the reconstruction of simulated ideal SD events. Only events in the energy range of1019 eV
to 1019.1 eV are regarded. Events from proton and iron cosmic rays, simulated with QGSJet-II and EPOS,
are combined. The red curve in the left plot is a fit of a Gaussian. The red arrows in the right plot show the
68 % and95 % quantiles.

The bias analysis ofRSD
µ shows a systematic uncertainty smaller than5 %, which is an excellent result.

The systematic uncertainty is small compared to the estimated systematic uncertainty of10 % of the refer-
ence model derived in Chapter 5. Some systematics in the model apparently cancel in its application to the
reconstruction of SD events.

The resolutionσ[RSD
µ ]/RSD

µ of the energy estimator depends strongly on the cosmic ray energy and to
a lesser degree on the zenith angle. The average resolution at 1019 eV is about10 %.

The core resolutionσ[rSD
c ] shows a dramatic decreases atθ > 84◦ with a corresponding increase in

the core biasrc. The increase is expected to some degree, since the lateral profile of the muon density
becomes flatter with rising zenith angle, so that the center is less pronounced. The magnitude, however,
is surprising. Events at these large zenith angles are excluded in some resolution and bias analyses where
they would otherwise totally dominate the result, see for example the left plot in Fig. 6.5b).

Overall, the core shows a small shift of about50 m towards the early arriving shower part. This shift is
a function of the azimuth. It is larger if the deflections through the geomagnetic field are small. The shift
is small enough to be acceptable, but further improvement seems to be possible here in the future.

The average estimated resolutions ofRSD
µ andrSD

c from the reconstruction are in good agreement with
the respective true resolutions, especially in the case ofRSD

µ . This indicates that the statistical model of
the measurement covers the dominating effects and that the reconstruction bias is small compared to the
reconstruction resolution.

Proton induced showers are measured with a slightly lower resolution than iron showers. The resolution
in proton showers simulated with QGSJet-II is particularlylow. The effect is explained by the varying
number of muonsNµ produced in the showers at the same cosmic ray energyE, as shown in Table 5.1 in
Chapter 5. Proton showers simulated with QGSJet-II have thelowest number of muons.

The idealised reconstruction avoids some additional uncertainties, which are present in the reconstruc-
tion of realistic SD events. In this sense, the resolutions obtained here are an upper limit for the attainable
resolution in a realistic reconstruction. The steps of a realistic reconstruction are discussed in the following.
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Figure 6.4: The points show biases of the energy estimatorRSD
µ and the shower corerc as a function of

the cosmic ray energyE and direction(θ, φ). The biases are derived from the simplified reconstruction of
simulated ideal SD events. The core biasr̃c at87◦ is outside of the scale, it is around0.7 km. The cosmic
ray nuclei and hadronic interaction models used in the simulation are distinguished with different markers
and colors.

98



CHAPTER 6. RECONSTRUCTION OF COSMIC RAY PROPERTIES

lg(E/eV)
18 18.5 19 19.5 20

0

0.1

0.2

0.3

0.4

0.5

°/θ
60 70 80 90

°/φ
0 90 180 270 360

S
D

µ
] /

 R
S

D
µ

[Rσ

(a) Resolution of the energy estimatorRSD
µ

lg(E/eV)
18 18.5 19 19.5 20

0

0.5

1

° 84≤ θ ≤ °60

°/θ
60 70 80 90

°/φ
0 90 180 270 360

° 84≤ θ ≤ °60

] /
 k

m
S

D
c

[rσ

(b) Resolution of the shower corerc

p QGSJet−II Fe QGSJet−II p EPOS Fe EPOS reconstruction estimate

Figure 6.5: The points show the resolution of the reconstructed energy estimatorRSD
µ and shower core

rc as a function of the cosmic ray energyE and direction(θ, φ). The resolution is obtained from the
simplified reconstruction of simulated ideal SD events. Thetrue core resolutionσ[rSD

c ] at 87◦ is poor and
outside of the scale, it is around2.4 km. The cosmic ray nuclei and hadronic interaction models usedin
the simulation are distinguished with different markers and colors. The reconstruction estimates of the
respective resolutions are shown with a solid gray line.
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6.2.2 Realistic SD reconstruction

The treatment of real SD events adds more complexity to the reconstruction. The full SD reconstruction
has to deal with signal backgrounds, an estimation of the shower direction from data, and the ambiguous
relation between signals measured in SD stations and their corresponding muon counts.

The full reconstruction procedure follows a sequence of several steps:

(1) Background rejection. Real SD events contain various background signals, which need to be sub-
tracted.

(2) Preliminary reconstruction of the shower direction. A preliminary estimate of the shower direc-
tion can be obtained by fitting a flat shower front model to the signal start times of at least three SD
stations.

(3) Reconstruction of the energy estimator and shower core.With an established shower direction,
the reconstruction of the shower corerc and the energy estimatorRµ may be started.

(4) Improved reconstruction of the shower direction. The reconstruction of the shower direction is
improved by a fit of a more realistic curved shower front modelto the signal start times of at least
four stations, which depends weakly on the reconstructed shower core position. Step (3) and (4) are
iterated at least once. The iteration is stopped if the result has converged, which usually takes only
one cycle.

(5) Acceptance selection.A selection is applied to the reconstructed event to ensure minimal systematic
uncertainties in the reconstructed parameters. Essentially, the selection assures that the shower is well
contained in the SD array. The selection also assures a well defined exposure of the surface detector.

The individual steps are discussed in the next sections.
Technical details about the reconstruction in the AugerOff line-framework can be found in Appendix D.

Background rejection

The event trigger of the surface detector of the Pierre AugerObservatory is permissive. Only about10% of
all triggered very inclined air showers are real air showers[68]. The main background is generated by the
background flux of atmospheric muons, which is constantly generated by low energy cosmic rays. Another
source of background are lightning strikes in the SD array.

The latter are a rare but spectacular background. Lightninggenerates an electromagnetic pulse, which
causes oscillating signals in the SD stations. The pulse probably enters the station DAQ via the grounding
of the electronics. Signals generated in this way can fulfillthe SD trigger condition and produce events with
strange shapes. An example as shown in Fig. 6.6. The oscillations in the signal trace are used to rejected
lightning events. If a single station in an event shows theseoscillations, the whole event is rejected. Since
this is a rare phenomenon, the influence on the SD acceptance is negligible.

Atmospheric muons are the main background, which hit each SDstation with a rateṄacc ≈ 2.5 kHz.
The rateṄT1 = 100 Hz of first level triggers in each SD station is dominated by these accidentalmuons.
Accidental muons can both generate fake events and contaminate real air showers.

The average number of accidentally triggered stations per event can be estimated by multiplying the T3
time window∆tT3 = 60 µs with the T1 rateṄT1 and the number of read out stationsNtot ≈ 300

∆tT3 ṄT1 Ntot ≈ 2. (6.2.10)

The actual number of stations that are read out as part of an event varies, as described in Chapter 4. Only a
rough estimate is used here.

The probability for a station to be contaminated with an accidental muon is obtained by multiplying the
time windowttrace= 768 × 25 ns = 19.2 µs of a signal trace with the rate of accidental muonsṄacc

ttraceṄacc≈ 5 %. (6.2.11)
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Figure 6.6: This top view on the SD array shows a spectacular lightning event (event 1332966). Colored
circles represent triggered stations. The color indicatesthe arrival time of the signal, blue are early signals,
red late signals. Full and open circles represent stations with recorded signals. The radii of the circles
are proportional to the logarithm of the recorded signal. Dark small gray circles represent represent active
un-triggered stations, light small gray circles representstations that are inactive at the time of the event or
not yet deployed in the field. The event formed like a doughnutof triggered stations impossible to get from
a real air shower. Other signatures of lightning events are described in the text (plot adapted from [170]).

A contamination is therefore likely. Nevertheless, the impact of these additional signals on the recon-
structed energy estimatorRµ is usually negligible. The contamination probability is reduced to about1 %
by finding the start of the trace and regarding only signals intime window of5 µs from there.

The situation is more severe for the SD reconstruction of theshower direction, which is based on the
start time of the signal trace. If the accidental muon hit occurs shortly before the actual real signal, the
shower direction may be wrongly reconstructed. A time window of tpre = 2.5µs is read out before the time
of the station trigger. The probability for an accidental muon hit is

tpreṄacc≈ 0.6 %. (6.2.12)

Two strategies are applied to reject the accidental muons. The trace cleaningalgorithm is applied to
every station signal. It is designed to remove accidental signals before the actual start of the real signal and
reduce the signal contamination.

The T4 algorithm2 works on the level of a whole event. It rejects the accidentally triggered stations
from the event based on a number of heuristics. It the event isnot reconstructable afterwards, it is rejected
altogether.

Trace cleaning

The trace cleaning algorithm is applied to the calibrated VEM trace of each station independently. It does
not take the global event structure into account. The currently used algorithm is based on ref. [171]. The
algorithm separates the signal trace into a set of separatedtime segments which contain a part of the total
signal. A main segment is reconstructed, which was most likely generated by the passing shower front.
Small separated peaks before the main segment are rejected.

Fig. 6.7 shows an example result of the algorithm. The technical implementation of the algorithm can
be found in Appendix E.

2The name T4 implies an online event trigger, like the T1 - T3 triggers from Chapter 4. Instead, it is an algorithm forofflineevent
selection, applied after the data taking. Nethertheless, it is often called “physics trigger” and regarded as as a continuation of the
online trigger hierarchy, because it distinguishes between background and signal events.
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Figure 6.7: An example of a station with a good start time. Theplots show the peak-calibrated signal in
three PMTs of a single station, the start time found by the trace cleaning algorithm is the dashed line. The
small peak before the main signal is correctly included as being a part of the shower front in this case.

T4 selection

The T4 selection algorithm finds and marks accidentally triggered stations in the event. These stations are
not used in subsequent reconstruction steps. The remainingtriggered stations are required to fulfill the T3
condition of the SD event trigger. Otherwise, the whole event is rejected.

Several heuristics are applied to separate accidentally triggered stations from real stations. The main
criteria are that a station triggered by an air shower shouldhave a compact spatial configuration and their
signal start times should be compatible with a shower front moving with the speed of light. Thus, stations
without close neighbors are rejected and those with large time offsets from a preliminary reconstructed
shower front.

Currently, separate T4 selections are for vertical and for very inclined air showers. The T4 selection
for vertical showers [172] uses a bottom-up approach, whichstarts with a minimal seed of good stations
which define a preliminary shower front. The other stations are then accepted or rejected based on the
compatibility with this seed.

The T4 selection for very inclined showers [173] is based on atop-down approach. The top-down
approach first regards all stations as part of the event. It uses these stations to perform a preliminary
reconstruction of the shower front. If this fit does not pass certain quality criteria, it is repeated after
subsequently rejecting stations, until an acceptable configuration is found. The algorithm first tries all
possible combinations where one station is rejected, then all combinations where two stations are rejected,
and so on.

It was shown in ref. [174] that the top-down approach has an overall higher efficiency at zenith angles
larger than60◦. Fig. 6.8 shows an example result of the T4 selection. The technical implementation of the
algorithm can be found in Appendix E.

Preliminary reconstruction of the shower direction

An early reconstruction of the shower front is already done in the T4 algorithm, but the reconstructed axis
is only used internally. A better but still preliminary reconstruction of the shower direction is done in the
current reconstruction step.

The preliminary shower direction is obtained by a fitting a flat shower front to the signal start times
in the triggered stations of the event. The full procedure isdocumented in ref. [168]. The model of a flat
shower front is already a good approximation, if the event has only a few stations.
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Figure 6.8: The top view on the SD array shows the result of theT4 selection on event 1904422. The
coding is the same as in Fig. 6.6. Stations rejected by the T4 algorithm are additionally marked with a
cross. The rejected station directly above the shower foot print has an incompatible timing, the others lack
close neighbors.

(a) Flat shower front (b) Spherical shower front

Figure 6.9: The drawings shows an arriving shower front corresponding to a normalised incoming direction
vectora, in the picture of the flat and the spherical shower front approximation. The vectorri points to the
stationi, rc points to the shower core, whiler′

i is the relative vector. The distancedmax is the radius of the
spherical shower front at the position of the shower core. The right drawing also illustrates the local muon
inclinationθµ,j at the position of stationj, with the local vertical directionez,j . The drawings are not to
scale.
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The algorithm starts by calculating the barycenterrb of the event as a reference point

rb =

∑n−k
i=1 riSi

1/2

∑n−k
i=1 Si

1/2
, (6.2.13)

with ri andSi as defined before. The powerSi
1/2 is motivated by assuming Poisson statistics forSi and

considering a weightwi = Si/σ[Si] ≈ Si/
√
Si, analogue to Eq. (6.2.4). The reference point in the flat

shower front approximation is arbitrary, but the barycenter is a convenient choice.
The model of a flat shower front moving with the speed of light predicts the average signal start time in

a station as:

c(〈ti〉 − t0) = −1

c
a(ri − rb) ⇔ 〈ti〉 = t0 −

1

c
(ux′i + vy′i +

√

1 − u2 − v2z′i), (6.2.14)

with r′
i = ri − rb = (x′i, y

′
i, z

′
i)

T , andt0, u, andv as free parameters. The full model is not linear inu and
v, so that the general least-squares method is applied to obtain the best parameter estimates.

The MINUIT package [148] is used to minimise theχ2-function

χ2({ti}|t0, u, v) =
∑

i

(ti − 〈ti〉)2
σ2[ti]

, (6.2.15)

whereasσ2[ti] is a model of the time uncertainty of the measured signal start time.
The standard model [175] of the time varianceσ2[ti] is

σ2[t](S, θµ, t50) = 212 ns2 + 0.36

(
2t50

n(S, θµ)

)2
n(S, θµ) − 1

n(S, θµ) + 1
, (6.2.16)

whereast50 is the time interval between the start of the VEM trace and thepoint, where50 % of the total
signal is accumulated andn(S, θµ) is an equivalent number of muon hits with an inclinationθµ, which
would generate the same signalS in the station.

The first term in this equation is given by the jitter of the GPSclock and the FADC bin resolution of
25 ns. The second term models the variance due to the statistical sampling of the true start time of the
shower front. The term depends on the thickness of the showerfront which is proportional tot50 and the
number of trialsn.

The number of trialsn is very roughly approximated by the average equivalent number of muon hits
that would generate the measured signalS

n(S, θµ) ≃ S/〈S1
µ〉(θµ), (6.2.17)

whereash andr are height and radius of the water volume of the SD station. The formula for〈S1
µ〉 is

derived in Appendix A.3.
The numerical parameters of this time variance model are obtained from a fit to real data. An overview

and comparison with other time variance models is given in ref. [169].
The muon inclination in Eq. (6.2.16) is approximated by the shower inclinationθµ ≈ θ. Through

n(S, θµ), the time variance modelσ2[t] becomes a function of the shower inclinationθ itself, which intro-
duces another kind of non-linear dependency on the parametersu andv in Eq. (6.2.15).

The numerical minimisation of Eq. (6.2.15) needs good initial values foru, v, andt0. With the ap-
proximationsz′i ≃ 0 andσ2[ti] ≃ const., Eq. (6.2.16) becomes a linear function of the parameters and its
minimisation can be done analytically.

Reconstruction of the energy estimator and shower core

With a preliminary shower axis, it is possible to run the mainreconstruction of the energy estimatorRµ

and the shower corerc. The general concept at this point is the same as in the ideal reconstruction, but this
time the signal response of the SD station to a muon hit has to be taken into account. The electromagnetic
particles which arrive together with the muons also need to be regarded.
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In analogy to the discussion of the reconstruction of ideal SD events, a model of the average values is
regarded first. It is then expanded into a full statistical model, that also describes the signal fluctuations.

The following model is used to describe the average signal ina SD station

〈S〉(r̃i;Rµ, rc, θ, φ) = 〈S1
µ〉(θµ,i)

(
1 + 〈ǫ〉(r̃i − rc; θ, φ)

)

×Astation(θµ,i) Rµ n
ref
µ (r̃i − rc; θ, φ

)
, (6.2.18)

whereas〈S1
µ〉 is the signal generated by an isolated single muon,〈ǫ〉 = 〈Sem〉/〈Sµ〉 is the average ratio of

signals generated by electromagnetic particles and muons,andθµ,i is the average direction of the incident
muons. This model of the signal includes several approximations, which are described and quantised in
Chapter 5.

The second part of the equation is the same as in Eq. (6.2.1), it describes the expected number of muons
in the station. The positioñri is theprojectedstation position into the ground plane defined at the shower
core positionrc, with the same projection applied as described in Section 6.2.1.

The model has three free parameters:Rµ and the two coordinates ofrc. The shower direction(θ, φ)
can be obtained independently from the measured arrival times of the shower front and is considered fixed.

The muon inclinationθµ,i at the stationi can be derived from the spherical shower front model, which
assumes a common origin for all muons in a distancedmax to the shower core along the shower axis, as
indicated in Fig. 6.9b). The model predicts the muon inclination as

cos θµ,i = (dmaxa − r′
i)ez,i =

(
dmaxa − (ri − rc)

)
ez,i. (6.2.19)

Over the collection area of a SD station, the muons arrive in parallel in excellent approximation, so thatθµ

essential has no spread.

The sphere radiusdmax depends only on the zenith angleθ in good approximation forθ > 60◦, as shown
in Chapter 3. An initial value is derived from an approximateanalytical calculation in Appendix A.1, a final
value is obtained from the fit of the spherical shower front tothe signal start times in the next reconstruction
step.

In order to estimate the free parameters from the signal model with a maximum likelihood method,
also the fluctuations of the signal need to be considered. There are three fluctuating quantities: the signal
responseS1

µ to an isolated muon, the electromagnetic signal backgroundǫ, and the number of muon hits
per SD stationAstationRµ n

ref
µ . The Poisson distribution is a reasonable probability density function (p.d.f.)

for the latter, as already discussed in Section 6.2.1.

The p.d.f. fµ of the signal responseS1
µ of the SD station to a single muon can be obtained from

simulations, as shown in Chapter 5. A p.d.f. of the electromagnetic backgroundǫ could be derived from
simulations as well, but is not considered in the standard approach. In this study, the fluctuations ofǫ are
approximately included into the p.d.f.fµ, as described in Chapter 5.

The probability to observe a signalSi is the convolution of the p.d.f. to observeSi with a given number
of muon hitsk and the p.d.f. of gettingk muon hits in case of a given local muon densitynµ at the position
of stationi. Saturatedstations only measure a lower limit for the true signal, while silent stations only
provide an upper limit due to the T2 thresholdSth = 3.2 VEM for the true signal. The probability to get
a saturated or silent station can be calculated in this approach by integrating over all possibilities for the
signal, if these limits are given.
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The likelihood functionL is the product of all these probabilities:

L({Si}|Rµ, rc; dmax, θ, φ) = Lsaturated× Ltriggered× Lsilent (6.2.20)

Lsaturated=
∏

i

∞∑

k=0

∫ ∞

Si/(1+〈ǫ〉)
ds fµ(s|θµ,i, k)

1

〈Nµ,i〉
e−k/〈Nµ,i〉 (6.2.21)

Ltriggered=
∏

j

∞∑

k=0

fµ

( Sj

1 + 〈ǫ〉
∣
∣
∣θµ,j , k

) 1

〈Nµ,j〉
e−k/〈Nµ,j〉 (6.2.22)

Lsilent =
∏

ℓ

∞∑

k=0

∫ Sth/(1+〈ǫ〉)

0

ds fµ(s|θµ,ℓ, k)
1

〈Nµ,ℓ〉
e−k/〈Nµ,ℓ〉, (6.2.23)

with

〈ǫ〉 = 〈ǫ〉(r̃i − rc; θ, φ)

〈Nµ,i〉 = Astation(θµ,i)Rµ n
ref
µ (r̃i − rc, ; θ, φ)

θµ,i = arccos
((
dmaxa − (r̃i − rc)

)
ez,i

)

.

A maximisation ofL yields best estimates for the free parametersRµ andrc. A minimisation of− lnL is
equivalent and done numerically with the MINUIT package [148]. To speed up the calculation ofL, only
silent stations within a fixed radius of5 km around the shower axis are included.

The sum over the number of muon hitsk has to be carried out numerically. Up to 100 terms are
calculated, starting at the integerk0 closest to〈Nµ,i〉 and stepping upward and downward by one subse-
quently. The summation is stopped earlier if the so far accumulated result is not zero and the next term
only contributes a fraction smaller than10−3.

The numerical minimisation of− lnL needs initial values for the free parameters, which are already
close to the final result. The barycenterrb from Eq. (6.2.13) serves again as a starting point for the shower
corerc.

An initial value forRµ is obtained by fixing the shower core in Eq. (6.2.20) torb and solving

∂χ2({Sj}|Rµ)

∂Rµ

!
= 0 (6.2.24)

analytically, with

χ2({Sj}|Rµ) =
∑

j

(
Sj − 〈S1

µ,j〉 (1 + 〈ǫj〉) 〈Nµ,j〉
)2

σ2[Sj ]
(6.2.25)

〈ǫj〉 = 〈ǫ〉(r̃j − rc; θ, φ)

〈Nµ,j〉 = Astation(θµ,j)Rµ n
ref
µ (r̃j − rc; θ, φ)

〈S1
µ,j〉 =

∫

ds s f(s|θµ,j , 1)

σ2[Sj ] = 〈Nµ,j〉σ2[S1
µ,j ] = 〈Nµ,j〉

(
∫

ds s2f(s|θµ,j , 1) −
(∫

ds s f(s|θµ,j , 1)
)2
)

.

This leads to

Rµ =

( ∑

i Si
2/
(
N ref

µ,j σ
2[S1

µ,i]
)

∑

j

(
〈S1

µ,j〉2N ref
µ,j

)
/σ2[S1

µ,j ]

)1/2

(6.2.26)

with N ref
µ,i = Astation(θµ,i)n

ref
µ (r̃i − rc; θ, φ). Only normal stations can be included into this calculation,

saturated and silent stations cannot be treated.
The reconstruction of an example event is shown in Fig. 6.10.
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Reconstruction of the shower direction

With an estimated shower core positionrc from the previous step, it is possible to get a final estimate of the
shower axis. The shower front is now treated as the surface ofa sphere, expanding with the speed of light,
as indicated in Fig. 6.9b). The approach used here is identical to the standard one used in vertical showers,
as described in ref. [168]. An alternative Monte-Carlo based reconstruction of the shower direction is
developed in ref. [57].

In principle, the predefined shower core positionrc is not needed for this reconstruction step. The
arrival time of the shower front at stationi with the positionri in this model is already fully determined by
the originr0 of the shower front sphere and the common start timet0 of all particles at the origin:

c(t0 − 〈ti〉) = |ri − r0|. (6.2.27)

The four free parameterst0 andr0 of this model can be fitted in a completely independent way from the
previous reconstruction step. The reconstruction of the shower front sphere is decoupled.

However, the reconstructed shower originr0 alone does not define the shower axis. The shower core
positionrc is needed as a second reference point. In order to directly obtain the shower axis from the fit,
the model is expressed in a different but equivalent way, seeFig. 6.9b):

c(t0 − 〈ti〉) = |r′
i − dmaxa| ⇔ 〈ti〉 = t0 +

1

c
|ri − (rc + dmaxa)|, (6.2.28)

whereasdmax = |r0 − rc| is the length of the normalised arrival vectora = (u, v,
√

1 − u2 − v2)T .
This introduces a weak coupling between the last two steps ofthe reconstruction, since the recon-

struction of the shower corerc relies on the shower axisa and vice versa. Both reconstruction steps are
therefore iterated until the results converge. One iteration is usually sufficient.

The iteration neglects correlations between the energy estimatorRµ and the shower corerc on the one
side and the parameterst0, dmax, θ, andφ on the other side. The correlations are expected to be small,since
the uncertainty of the shower core position is small compared to the length of the shower axis

σ[rc] ≪ dmax,

and therefore shifts in the core position affect the reconstruction of the shower direction only weakly.
The dependency of the spherical shower front model on its free parameters is non-linear. They are

obtained with the least-squares method, by minimising

χ2({ti}|t0, dmax, u, v) =
(ti − 〈ti〉)2
σ2[ti]

, (6.2.29)

numerically with the MINUIT package [148]. The time varianceσ2[ti] is again given by Eq. (6.2.16). The
time variance model produces a minor dependency on the totalsignals{Si} in the event, but otherwise the
input data for the fit of the energy estimatorRµ and this fit are independent. Initial values for the numerical
minimisation are adopted from the preliminary reconstruction of the shower axis.

The reconstruction of an example event up to this point is shown in Fig. 6.10.

Acceptance and quality selection

Very inclined air showers can have very elongated patterns in the SD array. Events like in those in Fig. 6.11
are recorded and reconstructed, which have core position that is not well constrained by actual measure-
ments around it. The shower core uncertainty and the uncertainty of the energy estimatorRµ are correlated.
The uncertainty ofRµ may become large in such cases.

The reconstruction may also be biased in such a scenario. If,for example, the profile of the muon
densitynµ was steeper in the model than in reality, then this systematic would be counter-balanced to
some degree by measurements close and far to the shower axis under normal circumstances. But if only
measurements far from the shower axis are available, the assumed model bias has a direct impact on the
energy estimatorRµ.
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Figure 6.10: The plots show the surface detector event 2344346, which is reconstructed withE ≈ 7 ×
1019 eV, θ ≈ 76◦, andφ ≈ 224◦. This spectacular event triggered 48 stations. Top: Shown is a top view
on the surface detector, the symbols have the same meaning asin Fig. 6.6. Bottom left: The points show the
residuals of the signalsS with respect to the model over the radial distancer to the shower axis. Bottom
right: The points shows the time residual with respect to a plane shower front moving with the speed of
light (blue dashed line) over the radial distance. The prediction of the spherical shower front model is
represented with a green dashed line.
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Figure 6.11: The top views on the SD array show example eventswhose core positions are not well con-
strained by measurements. The symbols have the same meaningas in Fig. 6.6. A big black dot marks the
station with the largest signal in the event.

Because of these reasons, the acceptance of the SD array for air showers is artificially reduced by
rejecting events whose shower core is well confined in the array. This artificial reduction can be perform
in such a way that the remaining acceptance of the SD array canbe calculated very precisely.

The event rejection is based on a class of conditions [17, 68,168, 176–178], theT5 criteria3. They
require that the station closest to the shower core is surrounded by other active stations. Active means that
the station is ready to measure signals, but not necessarilyhas a triggered signal.

• T5-Prior . The station with the largest signal in the event has to be surrounded by six active stations.

• T5-Posterior. The T5-Posterior is a relaxed T5-Prior. The station with the largest signal in the event
has to be surrounded by at least five active stations. In addition, the reconstructed shower core has to
be located in a triangle of active stations.

• Strict T5-Posterior. The strict T5-Posterior is a strict version of the T5-Posterior. The station
with the largest signal in the event has to be surrounded by six active stations. In addition, the
reconstructed shower core has to be located in a triangle of active stations. It can also be regarded as
a stricter version of the T5-Prior, in the sense, that every event accepted by the strict T5-Posterior is
also accepted by the T5-Prior but not vice versa.

• T5-Core. The station closest to the reconstructed shower core is surrounded by six active stations.

The names “prior” and “posterior” refer to whether the criterion can be applied before or after the recon-
struction. The working of the T4-Prior, the T5-Core, and thestrict T5-Posterior are illustrated in Fig. 6.12.

The T5 criteria are devised as such that it is possible determine every second, whether a particular
station in the array would be able to fulfill the criterion, ifthe shower would fall next to it. Only if this is
the case, the elementary cell area attributed to the stationcontribute to the acceptance of the SD array. For a
vertical shower, the elementary cell is a hexagon4 as indicated in Fig. 6.12a). The details of this calculation
are covered in Chapter 8.

3Like the T4, the T5 in an offline event selection criterion, not an online trigger. Nethertheless, it is often called “acceptance
trigger” or “quality trigger”, in continuation of the online trigger hierarchy T1 - T3.

4In general, the elementary cell of the SD array is the first Brillouin zone of the array projected into the lateral coordinate system,
which has a varying shape with the direction of the shower [179]. Using the instructive picture of the hexagon cell nethertheless is
sufficient. Only the shape of the cell changes, but not its area.
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Figure 6.12: The drawings illustrate different SD event configurations, which pass different T5 variants.
All configurations are meant to be embedded in an otherwise regular SD array. The valid exposure cells
are only drawn around the station that is relevant for the respective T5 variant. Invalid exposure cells are
only drawn around the stations in the plane.
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The T5-Prior and T5-Posterior were developed for vertical showers. They exploit that the lateral density
profile of an air shower has a monotonic and steep decline as a function of the radial distancer to the shower
axis. The station with the largest signal is most certainly the station closest to the true impact point of the
shower. The T5-Prior has the advantage that its outcome is completely independent of the reconstruction
and hence unaffected by possible biases in the reconstruction of the shower core position.

The T5-Prior cannot be used in very inclined air showers. As the zenith angleθ increases, the lateral
shower profile comes flatter, distorted by geomagnetic deflections, and weaker. The core position is not as
well pronounced and the station with the largest signal in anevent is not necessarily the one closest to the
true shower core. The examples in Fig. 6.11 illustrate this.The station with the largest signal fulfills the
T5-Prior condition, but the shower core is still not well constrained.

The reconstructed core position needs to be included into the criterion, even though this requires to
make the criterion more susceptible to possible reconstruction biases. The T5-Core completely relies on
the reconstructed core for the decision. The strict T5-Posterior tries to extend the T5-Prior to rejected the
cases in Fig. 6.11. It should be less dependent on possible reconstruction biases of the shower core. This
study is based on the strict T5-Posterior.

In fact, Fig. 6.13 shows that both T5-Core and the strict T5-Posterior yield the same acceptance, which
is encouraging. The impact of the strict T5-Posterior compared to the T5-Prior is significant at cosmic ray
energies larger than1018.5 eV, where the strict T5-Posterior selects up to5% less events than the T5-Prior.

6.2.3 Reconstruction resolution and bias

Possible biases of the reconstruction and its resolution are assessed in the following with an analysis of
simulated SD events. The analysis is performed on the library of 6480 SD events from Chapter 5. The
reconstruction uses the parameters summarised in Table 6.1. Each event of the library is a full end-to-end
simulation of an air shower. The only differences between simulated and real events are:

• the simulation uses a perfectly regular and fully developedSD array without holes or gaps,

• events always fall approximately in the center of the SD array, and

• accidental muons are not simulated.

Fig. 6.14 shows an example event of the library. The reconstruction efficiency of simulated events that pass
the T4 selection is99.8 %.

The signal model of the SD station is built from the same data,the reconstruction of the simulation input
therefore is as an end-to-end cross-check of the involved models. The comparisons of the reconstructed
energy estimatorRSD

µ and the shower core positionrc are done in the same way as in Section 6.2.1. New
is the analysis of the space angleα between the true and the reconstructed shower direction. Itis defined
as

cosα = asim a, (6.2.30)

Table 6.1: Settings for theSdHorizontalReconstruction module, which was used to produce the events
in this note.

Parameter Value

Model of the muon density at ground this study
Model of the tank response this study
Model of the electromagnetic signal component ref. [16]
Signal threshold of silent stations 3.2 VEM
Maximum distance of silent stations included in the fit 5 km
Minimum number of triggered stations per event 4
T4 selection ref. [173]
T5 criterion strict T5-Posterior
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Figure 6.13: The points show the relative efficiency of the T5variants described in the text, if they are
applied to real SD events. The red lines are fits. The analysisuses all events from 01/2004 to 12/2008,
which pass the T4 selection, have at least a reconstructed energy and fall in the zenith angle range60◦ <
θ < 90◦. The shower energy scale corresponding to thelgRµ-scale is an anticipation of the energy
calibration in Chapter 7. The last data point in the top left plot is a statistical fluctuation.
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Figure 6.14: The plots show an example of a simulated surfacedetector event. The event is generated by
a proton withE ≈ 1.25 × 1020 eV, θ ≈ 87◦, andφ ≈ 70◦. The high energy interaction model in the
air shower simulation is EPOS. This particular cosmic ray triggered more than 120 stations. The upper
plot shows the a top view of the surface detector, the symbolshave the same meaning as in Fig. 6.6. The
bottom left plot shows the residual of station signal and reconstruction model over the radial distance to the
shower axis. The bottom right plot shows the time residual toa plane shower front moving with the speed
of light (blue dashed line) over the radial distance. The prediction of the spherical shower front model is
represented with a green dashed line.
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whereasasim is the true arrival direction of the shower in the simulation.
Fig. 6.15 shows examples of the residual distribution of theenergy estimatorRSD

µ , and the distributions
of rc andα. The distribution of the energy estimatorRSD

µ around its true value around1019eV is a Gaussian
in very good approximation. The resolution of the core deviation rc and the space angleα are taken as the
68 % quantiles of their respective distributions.

Fig. 6.16 and Fig. 6.17 show the reconstruction biases and resolution as a function of the input param-
eters of the shower. In some cases, the analyses shown in these figures are restricted to a certain energy or
zenith angle range, because they would otherwise be completely dominated by large biases or low resolu-
tions at energies below1018.5 eV or zenith angles larger than84◦. Why this happens is discussed in more
detail below. Possible restrictions are shown in the legendof each figure.

Analysis of bias

Fig. 6.16a) shows the bias of the reconstructed energy estimatorRSD
µ . The most apparent features is a large

overestimation around1018 eV and a beginning underestimation aboveθ > 80◦.
The bias at the lowest energies is mainly caused by a threshold effect of the SD. If an air shower

is barely able to trigger the minimum of four SD stations, it is more likely for events to be above the
reconstruction threshold, if the sampling of the muon density in one or more SD stations shows random
upward fluctuations.

Close to the threshold, whereRSD
µ is reconstructed from very few sampled muons, these upward fluc-

tuations are propagated to a large degree into the reconstructed energy estimatorRSD
µ . This is a selection

bias but has nothing to do with the precision of the reconstruction.
The other bias ofRSD

µ at large zenith angles is a real reconstruction bias. Below80◦, the bias is smaller
than5 %. This is only slightly worse than the bias observed in the simplified reconstruction of ideal SD
events from Section 6.2.1. This is a very good result, concerning that much more approximate model input
is necessary to reconstruct real events.

Another encouraging result is that the reconstruction shows no significant bias ofRSD
µ aroundθ ≈ 60◦

as a function of the cosmic ray massA or the hadronic interaction model used in the simulation. Some bias
is expected at these zenith angles due to the contribution ofelectromagnetic particles from the hadronic
cascade to the signal, as pointed out in Chapter 5. Apparently, the reconstruction is dominated by stations
farther away from the shower axis, where the contribution ofthese electromagnetic particles is negligible.

Fig. 6.16b) shows the core shift along the arrival directionof the shower. A positive bias is a shift
towards the early arriving shower part, a negative bias a shift to the late arriving shower part. The shift is
negligible in the range60◦ < θ < 70◦ and smaller than200 m up toθ = 80◦. A dramatic increase in the
shift towards the late arriving shower part is observed at even larger zenith angles.

A core shiftr̃c has an influence on the reconstructed zenith angleθ. The impact onθ can be approxi-
mated as

∆θcore≈ − r̃c
dmax

cos θ, (6.2.31)

for small core shifts. With the approximate calculation ofdmax from Chapter 3 and the observed core shift,
it is possible to estimate a bias∆θcore < 0.04◦ in the zenith angle range60◦ < θ < 80◦. Below80◦, the
effect on the zenith angleθ is negligible.

Still, an energy-dependent bias in the zenith angleθ of about±0.1◦ is observed in Fig. 6.16c). The
bias is too large to be explained with the core biasr̃c and therefore appears to be generated by the fit of the
spherical shower front itself.

While anisotropy studies need to be aware of a bias of this order, the effect has only a mild effect on
the reconstructed energy estimatorRSD

µ . The effect of the zenith angle bias onRSD
µ can be estimated with

the model reference of the total number of muons on the groundN ref
µ ∝ RSD

µ

∆RSD
µ

RSD
µ

≈ 1

N ref
µ (θ)

∂N ref
µ (θ)

∂θ
∆θ. (6.2.32)

The calculation shows, that the zenith angle bias of0.1◦ changesRSD
µ by about0.5% (1%, 2%) at60◦ (80◦,

88◦). The zenith angle bias is not able to explain the observed bias in the reconstructed energy estimator
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Figure 6.15: The plots show example distributions of the reconstructed energy estimatorRSD
µ , shower

core deviationrc, and the angular deviationα of the shower axis; as obtained from the reconstruction of
simulated SD events. Only events in the energy range of1019 eV to 1019.1 eV are included in the analysis.
Events from proton and iron cosmic rays, simulated with QGSJet-II and EPOS, are combined. The red
curve in the upper plot is the fit of a Gaussian. The red arrows in the lower plots indicate68 % and95 %
quantiles.
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Figure 6.16: The plots show biases of some reconstructed parameters over the cosmic ray energy, zenith,
and azimuth angle; as obtained from the reconstruction of simulated SD events. The core-bias at87◦ is
outside of the scale, it is around3.5 km. The cosmic ray nuclei and hadronic interaction models usedin
the simulation are distinguished with different markers and colors.
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RSD
µ , which is apparently produced by yet another effect.

Analysis of resolution

Fig. 6.17 shows the obtained parameter resolution. There isa general trend towards better resolutions at
high energies, as the sampling of the SD becomes more precise. Another general observation is, that the
reconstruction overestimates the true resolution.

The resolution of the energy estimatorRSD
µ is shown in Fig. 6.17a). It increases almost with the loga-

rithm of the primary energy, while is stays rather constant in the range60◦ < θ < 80◦. A typical value at
1019 eV is 16 %. This is nearly a factor of two worse than the typical resolution obtained in the reconstruc-
tion of vertical showers [158]. The lower resolution in the reconstruction of very inclined showers is mostly
an effect of the worse sampling of very inclined showers, since the primary electromagnetic component is
missing as an additional signal source. As already noted in Section 6.2.1, theRSD

µ -resolution is lower for
proton than for iron showers, because proton showers produce less muons.

TheRSD
µ -resolution estimate from the maximum likelihood method isnot far from the true resolution.

This is a good indicator, as the true resolution includes statistical uncertainties and systematic biases. If the
resolution estimate nearly agrees with the true resolution, then the systematic biases are small compared to
the statistical resolution of the measurement.

The resolution of the shower core positionrc is shown in Fig. 6.17b). It is again weakly affected by the
cosmic ray energy, but strongly so by the zenith angle. A typical resolution at1019 eV is 250 m, which is
also by about a factor of two worse than the resolution obtained in analyses of vertical showers [158].

The estimatedrc-resolution does not agree well with the true resolution of the shower core above
1019 eV. This is an indicator for remaining systematic effects, which reduce the core resolution.

At zenith angles larger than80◦, the core resolution becomes very bad. A proper calculationof the
exposure of the SD array for showers with very large core uncertainties cannot be guaranteed by the usual
T5 criteria anymore, and therefore they need to be excluded in analyses that are sensitive to the exposure.

The angular resolution is shown in Fig. 6.17c). It increasesboth with the energy and the zenith angle.
The increase with the cosmic ray energy is particularly fastbetween1018 eV and1019 eV: the resolution
improves from about1.2◦ to 0.4◦. The typical resolution at1019 eV of 0.4◦ is by about a factor of two
better than the typical resolution found in vertical showers [158]. The angular resolution benefits from the
compact time structure of of the muon dominated shower frontand the larger station multiplicity in very
inclined showers.

The resolution of the energy estimatorRSD
µ is affected by the angular resolution. The correlations

between the reconstructed shower direction and the energy estimator are currently neglected, as explained
in Section 6.2.2. The impact of the observed angular resolution is approximated by assuming a zenith
angle resolution equal to angular resolution and using Eq. (6.2.32). The propagation yields a neglected
contribution to theRSD

µ -uncertainty estimate of4 % (2 %, 1 %) at 1018.5 eV (1019 eV, 1020 eV). The
contribution may therefore be neglected.

In a similar way, the angular resolution is affected by the core resolution. The correlations are neglected
here as well. The impact on the observed angular resolution is approximated by assuming a early-late shift
equal to the core resolution and using Eq. (6.2.31). The propagation yields a neglected contribution to the
α-uncertainty estimate of0.4◦ (0.07◦, 0.03◦) at 60◦ (80◦, 88◦). This shows, that the core resolution is an
important factor for the angular resolution, it is even the dominant effect at60◦. A future revision of the
reconstruction should therefore respect all correlationsbetween the fits of the lateral signal profile and the
shower axis.

The resolutions obtained from this analysis may be higher that those obtained from real events, where
the array is not perfectly regular and fake signals generated by accidental muon hits are present.

6.2.4 Comparison with references

The software moduleSdHorizontalReconstruction, which implements the reconstruction of very inclined
air showers in theOff line framework, was designed to allow an easy exchange of the models of

• the lateral profile of the muon densitynref
µ ,

117



6.2. SD EVENT RECONSTRUCTION OF VERY INCLINED SHOWERS

lg(E/eV)
18 18.5 19 19.5 20

0

0.1

0.2

0.3

0.4

0.5 ° 84≤ θ ≤ °60

°/θ
60 70 80 90

0

0.1

0.2

0.3

0.4

0.5
 eV18.5 10≥E 

°/φ
0 90 180 270 360

0

0.1

0.2

0.3

0.4

0.5
 eV18.5 10≥E 

° 84≤ θ ≤ °60

S
D

µ
] /

 R
S

D
µ

[Rσ

(a) Resolution of energy estimatorRSD
µ

lg(E/eV)
18 18.5 19 19.5 20

0

0.5

1

° 84≤ θ ≤ °60

°/θ
60 70 80 90

0

0.5

1
 eV18.5 10≥E 

°/φ
0 90 180 270 360

0

0.5

1
 eV18.5 10≥E 

° 84≤ θ ≤ °60] /
 k

m
S

D
c

[rσ

(b) Resolution of shower corerc

lg(E/eV)
18 18.5 19 19.5 20

0

0.5

1

1.5 ° 84≤ θ ≤ °60

°/θ
60 70 80 90

0

0.5

1

1.5
 eV18.5 10≥E 

°/φ
0 90 180 270 360

0

0.5

1

1.5
 eV18.5 10≥E 

° 84≤ θ ≤ °60

°
] /

 
α[σ

(c) Resolution of shower directiona

p QGSJet−II Fe QGSJet−II p EPOS Fe EPOS reconstruction estimate

Figure 6.17: The plots show the resolution of the main reconstructed parameters over the cosmic ray energy,
zenith, and azimuth angle; as obtained from the reconstruction of simulated ideal SD events. The core-
resolution at87◦ is outside of the scale, it is around6 km. The cosmic ray nuclei and hadronic interaction
models used in the simulation are distinguished with different markers and colors. The reconstruction
estimate of the resolution of theses parameters is represented with a solid gray line.
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• the signal responsef(Sµ) of a station to muon hits, and

• the electromagnetic signal background〈ǫ〉

in the reconstruction analysis. Models can be exchanged at run time with simple change in the setup of the
module. This allows an easy comparison of models in a consistent analysis framework.

This feature is used to compare the models ofnref
µ and f(Sµ) derived in this study with the stan-

dard models [10, 11, 15, 17] in the reconstruction softwareefit that were included into theSdHorizontal-
Reconstruction module. The model of the electromagnetic background〈ǫ〉 is the same in both reconstruc-
tion programs.

To ease the discussion, the following naming convention forthe comparison is used:

• The standard model is called A.

• The corresponding model from this study is called B.

• There are four possible combinations of the lateral profile of the muon densitynref
µ and the signal

responsef(Sµ) with two models for each type. All combinations are tested, they are distinguished
with this key:

– AA = both models are taken from the references,

– AB = nref
µ is taken from the references,f(Sµ) from this study,

– BA = nref
µ is taken from this study,f(Sµ) from the references,

– BB = both models are taken from this study.

There are two remarks concerning the comparisons. The signal response modelf(Sµ) used inefit is
a function of the muon energyEµ at the position of each station. This dependency is not implemented
in SdHorizontalReconstruction and thus neglected inf(Sµ)-A andf(Sµ)-B. An extrapolation approach
for the model of the muon densitynref

µ towards arbitrary large radial distancesr from the shower axis is
discussed in Chapter 5. This extrapolation is used for modelnref

µ -A andnref
µ -B.

The models are compared according to the bias and resolutionthat they show in the reconstruction of
simulated SD events. Another comparison is performed on real SD events, which uses a statistical test to
rank the models according their agreement with the data.

Simulated events

The model combinations are compared with the set of 6480 simulated SD events from Chapter 5. The
standard models are not able to reproduce the true energy estimatorRsh-sh

µ in these events very well. An
overestimation of up to20 % is observed, depending on the model combination. This bias is expected and
its sources were already discussed in Chapter 5.

An overall bias is not of interest for the comparison. Such a bias would be absorbed in the energy
calibration with FD events, which is described in the next chapter. Correction factors are introduced to
make the models comparable. They are summarised in Table 6.2. The factors are chosen so that the
average bias in the zenith angle range60◦ < θ < 70◦ vanishes for cosmic ray energies above1018.5 eV.

The results of the comparison are shown in Fig. 6.18 and Fig. 6.19. The overall performance of all
model combinations is similar. Thef(Sµ)-models have little effect on the reconstruction. Most of the
differences are caused by thenref

µ -models.
It is interesting to view these results in the light of the direct comparison of thenref

µ -models in Chapter 5.
The standard modelnref

µ -A neglects early-late asymmetries, which are present innref
µ -B. It appears that this

explains a core shift towards the early arriving part of the shower caused bynref
µ -A in the range60◦ < θ .

75◦.
This core bias seems to counter-balance an intrinsic bias inthe reconstruction of the zenith angleθ by

coincidence. In consequence,nref
µ -A shows a slightly smaller zenith angle bias thannref

µ -B.
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The bias of the energy estimatorRSD
µ is the same fornref

µ -A andnref
µ -B in the zenith angle range60◦ <

θ < 80◦. Differences in the resolution ofRSD
µ are caused by thenref

µ -models atθ > 70◦, whereasnref
µ -B

yields a better resolution.
Considering the large differences of up to100 % found in the direct comparison ofnref

µ -A andnref
µ -B in

Chapter 5, this result is quite surprising and shows that thereconstruction is rather insensitive to the shape
of nref

µ . The situation might be different, if only a part of the lateral profile is sampled, for example, when
the shower falls close to the border of the SD array.

Differences between thenref
µ -models also show up in the reconstruction of the shower coreposition. In

the zenith angle range60◦ < θ < 80◦, nref
µ -B yields a smaller bias and a better shower core resolution

thannref
µ -A. However, at larger zenith angles,nref

µ -A shows a smaller core bias thannref
µ -B. This should be

investigated further in the future.
In conclusion, the models of the lateral profile of the muon densitynref

µ and the signal responsef(Sµ)
roughly show the same performance. The models derived in this study show some improvements with
respect to the standard ones. Improvements in thenref

µ -model are responsible for the gains.

Real events

Simulated SD events have the advantage that the true values of the energy estimatorRSD
µ , the shower core

positionrc and the shower axisa are known. With this information, the models used in the reconstruction
can be directly compared with respect to the bias and the resolution that they achieve.

The same analysis is not possible with real SD events, because the true values are not known. It is
nevertheless important to compare models with real events,since simulated SD events may not describe all
aspects of real events adequately.

There are other possibilities to compare reconstruction models on the basis of real events. One way is
to compare the goodness-of-fit (GOF) of the model to the data or use the framework of hypothesis testing
to decide between models, seee.g.ref. [147].

A GOF test well known to physicists is based on theχ2-statistic

χ2 =
∑

i

(
xi − 〈xi〉
σ[xi]

)2

,

defined as the sum of the quadratic residuals(xi −〈xi〉)/σ[xi] over many events. Asymptotically, the ratio
χ2/ndof approaches one for a model that describes the data correctly, whereasndof is the sum of the degrees
of freedom per event.

Unfortunately, theχ2 statistic cannot include the information obtained from silent or saturated stations
as both yield only a limit forxi. The likelihoodL is another statistic which does not have this limitation.
The likelihood ratio test(LR test) allows to decide between different models (hypotheses) based onL. It
is not necessarily the most powerful test, but it is very simple to calculate.

The LR test shall be summarised in the following. LetX be a vector of data, and let

f(X|ξ), g(X|ζ)

be the probability density functions (p.d.f.s) of two models of the data. The vectorsξ andζ shall be the free

Table 6.2: The table summarises the correction factors, which correct the overall bias in the reconstructed
energy estimatorRSD

µ in the compared model combinations.

model combination AA AB BA BB

RSD
µ -factor 1.21 1.00 1.17 0.97
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Figure 6.18: The plots compare the biases obtained from different reconstruction models over the cosmic
ray energy, zenith, and azimuth angle; as obtained from the reconstruction of simulated SD events. The
reconstruction models are distinguished by different markers and colors. The abbreviations “model AA”,
“model AB”, and so on are explained in the text.
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Figure 6.19: The plots compare the resolution obtained fromdifferent reconstructed models over the cosmic
ray energy, zenith, and azimuth angle; as obtained from the reconstruction of simulated ideal SD events.
The reconstruction models are distinguished by different markers and colors. The abbreviations “model
AA”, “model AB”, and so on are explained in the text.
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parameters of the models. The parameters may be fitted independently to the data{Xi}, by maximising

Lf (ξ) =
∏

i

f(Xi|ξ), and

Lg(ζ) =
∏

i

g(Xi|ζ)

respectively. The solutions of this maximisation are called ξ′ andζ′.
Now, it is always possible to define a composite p.d.f.h as

h(X|η, ξ, ζ) = (1 − η)f(X|ξ) + ηg(X|ζ), (6.2.33)

with 0 ≤ η ≤ 1. The question of choosingg overf , given the dataX, can be reformulated as testing the
hypothesis

H0 : η = 0, ξ, ζ unspecified

against the hypothesis
H1 : η 6= 0, ξ, ζ unspecified.

If H0 can be rejected with a high confidence, thenf is disfavored compared tog.
The parameters of modelh shall be fitted with a maximum likelihood method as well:

Lh(η, ξ, ζ) =
∏

i

h(Xi|η, ξ, ζ),

yielding the solutionsη′′, ξ′′, andζ′′. The statistic of the LR test is

−2 lnλ = −2 ln

(
Lf (ξ′)

Lh(η′′, ξ′′, ζ′′)

)

= −2 lnLf (ξ′) + 2 lnLh(η′′, ξ′′, ζ′′). (6.2.34)

It is possible to show, that the test statistic−2 lnλ under the hypothesisH0 is asymptotically distributed
like theχ2-distribution with one degree of freedom. This allows to calculate the probabilityP for observing
−2 lnλ under the hypothesisH0. The value(1 − P ) is then the confidence of disfavoringf overg, given
the data.

This is the full LR test. With a loss of some precision it is possible to avoid the implementation ofh
and its numerical parameter optimisation, which makes the test very simple to apply. The simplification is
based on the inequality

Lh(η′′, ξ′′, ζ′′) ≥ Lg(ζ
′), (6.2.35)

which says thath can only fit equally well or better to the data thang alone. This is apparently so, because
h includesg, but has more degrees of freedom to adapt to the data.

Finally, if the likelihood ratioℓ of the independently optimised modelsg andf is considered

ℓ =
Lf (ξ′)

Lg(ζ
′)
, (6.2.36)

and combined with Eq. (6.2.35), the following inequality isobtained

−2 ln ℓ = 2 lnLg(ζ
′) − 2 lnLf (ξ′)

≤ 2 lnLh(η′′, ξ′′, ζ′′) − 2 lnLf (ξ′) = −2 lnλ. (6.2.37)

A sufficiently large value of−2 ln ℓ guarantees thatH0 is rejected, because−2 ln ℓ ≤ −2 lnλ. If for
example−2 ln ℓ ≥ 9, the modelf is disfavored compared tog with a confidence greater than99.8 %.
These numbers are obtained from theχ2-distribution with one degree of freedom, as discussed before. The
simplified version of the LR test is very handy, because it only relies on information, which is calculated
during the reconstruction anyway: the logarithms of the maximum likelihood values.

The simple LR test is performed over the subset of all real SD events from 01/2004 to 01/2009 that
pass the following requirements with each model combination:
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6.2. SD EVENT RECONSTRUCTION OF VERY INCLINED SHOWERS

• the event is accepted by the T4 selection,

• the reconstruction of the energy estimator was successful,

• the event is accepted by the strict T5-Posterior, and

• the zenith angle is in the range60◦ < θ < 82◦.

Fig. 6.20a) shows the−2 ln ℓ value of the test. All other model combinations are comparedto the
combinationnref

µ -B andfµ-B. The model of the signal responsef(Sµ)-B derived in this study fits better
to the data than the standard modelf(Sµ)-A. On first sight, the muon density model of this studynref

µ -B
only yields better results if the events have more than sevenstations, but appears to be worse thannref

µ -A
otherwise.

This lack of performance is traced back to a class of 29 out of 45000 events. Fig. 6.21 shows an
example out of this class. The events have a saturated station, whose signal is greatly underestimated by
nref

µ -B, while the same station fits well with modelnref
µ -A in most cases. This produces a huge drop in the

overall likelihood of modelnref
µ -B.

The modelnref
µ -A fits better in this case, because it predicts a much higher muon density close to the

shower core thannref
µ -B, as shown in Chapter 5. Both models yield about the reconstructed values despite

the bad fits in this class of events. The difference in the reconstructed energy estimatorsRSD
µ is larger than

1 σ in only three events. Modelnref
µ -B outperformsnref

µ -A if these 29 events are excluded, as shown in
Fig. 6.20b).

In conclusion, the signal response modelfµ-B derived in this study agrees better with the data than
the standard modelfµ-A. The gain is achieved by including some signal fluctuations in fµ-B which are
neglected infµ-A. The model of the muon densitynref

µ -B derived in this study agrees better with the data
in most cases, but very badly in a rare class of 29 out of 45000 events. These events are fitted well with
nref

µ -A, which points to an underestimation of the muon densitynµ very close to the shower core in model
nref

µ -B. The bad fit has no significant impact on the reconstructionand thus modelnref
µ -B is still slightly in

favor due to its better overall performance.

6.2.5 Constant intensity analysis

The reconstruction of simulated SD events shows, that the energy estimatorRµ does not depend on the
zenith angleθ within certain limits. This result can be cross-checked with real SD events under certain
conditions, based on the principle that the arrival directions of cosmic rays are isotropic in very good
approximation. An analysis of this kind is often called method of theconstant intensity cut, seee.g.
ref. [155,156,158].

The basic idea is that the expectedθ-distribution in a flat detector that measures an isotropic flux is a
well known distribution. It is obtained by projecting the zenith angle distribution of an isotropic source
onto a plane:

f(θ) ∝ sin θ cos θ ⇔ f̃
(
sin2 θ

)
∝ 1. (6.2.38)

The measuredsin2 θ-distribution therefore should be flat, if the SD reconstruction probability5 for
cosmic rays is about100 % over the regarded zenith angle range. This is not true at low energies, but it can
be assured by regarding only events above an energy estimator thresholdRµ > Rµ,thr.

The cut introduces a dependency of the distribution onRµ, which is the key point of the analysis. By
design,Rµ should be independent ofθ. If this not the case, then thesin2 θ-distribution will not be flat for
any thresholdRµ,thr. The implicit assumption in this argument is, that the reconstructed zenith angleθ is
not significantly biased, too. A bias of about0.1◦ is expected, its influence can be checked by varyingθ at
the level of the bias.

The analysis is very sensitive to a possible bias inRµ, which is a consequence of the steeply falling
energy spectrum of cosmic rays. If a power law spectrumAE−α is assumed, then the number of events

5Including the trigger probability.
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Figure 6.20: The plots shows the criterion−2 ln ℓ of the likelihood ratio test described in the text. The test
statistic−2 ln ℓ is calculated against the model combination BB. The total value of the test statistic−2 ln ℓ
is shown as well as the contributions from events with certain station multiplicities. If−2 ln ℓ > 9, the test
favors the model combination BB. If−2 ln ℓ < −9, the test favors compared model combination.

above a threshold energyEthr is

N(E > Ethr) =

∫ ∞

Ethr

dE AE−α =
A

α− 1
Ethr

−α+1 (6.2.39)

An energy-bias∆E is equivalent to a change−∆Ethr in the threshold, which can be propagated into the
event numberN :

∆N

N
≃ (1 − α)

∆Ethr

Ethr
= (α− 1)

∆E

E
(6.2.40)

⇒
∆RSD

µ

RSD
µ

≈ ∆E

E
≈ 1

2
N−1/2,

whereas a power law indexα ≈ 3 and Poisson statistics forN are assumed in the last step. Thus, 100
events persin2 θ-bin are already sufficient to detect a5 %-bias inRSD

µ .
The analysis is performed with the settings in Table 6.1 on SDevents from 01/2004 to 01/2009.

Fig. 6.22 shows the resulting distributions above several energy estimator thresholds.
A flat sin2 θ-distribution is indeed observed above a threshold of aboutRµ,thr ≈ 1. The value fits well

to the point of100 % reconstruction efficiency obtained in the trigger threshold analysis in Chapter 7. A
flat plateau is observed in the zenith angle range60◦ < θ < 82◦. The deviation above82◦ is expected
partly because of the reconstruction bias at these inclinations and partly because of the trigger saturation
threshold which increases rapidly at these large inclinations. Below60◦, the event number drops down due
to a zenith angle cut which is implemented in the T4 selectionof very inclined air showers.

There may be a small lack of events between60◦ and62◦. Statistically, the lack is not significant, but it
is apparent by eye. It turns out that the flatness can be artificially restored by adding2% to the reconstructed
energy estimator in this zenith angle region. A possible bias of at level is acceptable and smaller than the
expected systematic uncertainty ofRµ of the order of5 %. As a final cross-check, the analysis is repeated
with all zenith angles shifted by−0.1◦ according to the expected bias in the reconstructed zenith angle.
The result remains unchanged.

In conclusion, the analysis indicates a safe range of zenithangles60◦ < θ < 82◦, in which the energy
estimatorRµ is independent ofθ to a level of2 %. The trigger saturation of the SD is reached at about
Rµ ≈ 1. By rejecting the largest zenith angles82◦ < θ < 90◦, 8 % of the theoretical acceptance above
60◦ is lost. In practice it is much less due to the increased SD trigger threshold at the largest zenith angles.
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(a) Reconstruction of event 3693496 with modelnref
µ -A
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(b) Reconstruction of event 3693496 with modelnref
µ -B (this study)

Figure 6.21: The plots show one of 29 events with saturated stations, which are significantly better fitted
with modelnref

µ -A than withnref
µ -B. The event has the reconstructed parametersE ≈ 9×1018 eV, θ ≈ 75◦,

andφ ≈ 54◦. The left side shows a top view on the SD array, the symbols have the same meaning as in
Fig. 6.6. The right side shows the residuals of the station signals with respect to the fitted reconstruction
model. The station closest to the shower core is a saturated station.
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Figure 6.22: The plot shows thesin2 θ-distribution of real SD events above several energy estimator thresh-
olds. The hatched areas represent excluded zenith angle regions. The horizontal lines are fits to the dis-
tributions. The hypothesis that the distributions are flat is tested with theχ2-method. The probabilityP ,
that the observed fluctuations are by chance, is given in the legend. The lighter colored symbols show the
distributions after applying the correction explained in the text. The probability in braces is the result of
theχ2-test after the correction.

The constant intensity analysis does not exclude the use of events withRµ . 1, but the limited detector
efficiency at these energies needs to be properly modeled. This will done in Chapter 7.

6.2.6 Bias correction of the energy estimator

The previous analysis showed no indication of a significant bias of the reconstructed energy estimator
RSD

µ as a function of the zenith angleθ in the regarded range, but the energy-dependent bias observed in
simulated events remains. Fig. 6.23a) shows the bias as a function of the true energy estimatorRsh-sh

µ .
As discussed before, the bias atlgRµ < 0 can be attributed to a selection effect generated by the

SD trigger, the shower-to-shower fluctuations and the SD sampling fluctuations. This apparent bias is a
selection effect and cannot be corrected through the energyestimator. It will be corrected by properly
regarding the limited detection efficiency in the followingchapters.

The smaller bias atlgRµ > 0 is a reconstruction bias and therefore correctable. If thisbias is not
corrected, it will be absorbed into the energy calibration function in Chapter 7

E = Ecal ×Rµ
γ . (6.2.41)

The calibrated SD-energyESD would be almost bias free in any case. However, the fitted calibration con-
stants would be biased in turn and not directly comparable with predictions from simulations. Therefore,
the bias is corrected directly in the reconstructed energy estimatorRSD

µ .

The bias grows almost linearly withlgRsh-sh
µ . It is fitted in the range−0.2 < lgRsh-sh

µ < 1.2 with a
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Figure 6.23: The plots show the energy-dependent bias of thereconstructed energy estimatorRSD
µ in sim-

ulated events. The bias is shown as a function of the true energy estimatorRsh-sh
µ in a) for different cosmic

ray particles and hadronic interaction models. The hatchedbands indicate the statistical uncertainty in the
simulation. All simulated data is combined in b), which alsoshows the fitted correction function, and the
event-by-event corrected data for comparison.

polynomial of first order

RSD
µ −Rsh-sh

µ

Rsh-sh
µ

= a+ b lgRsh-sh
µ (6.2.42)

with a = 0.0038 ± 0.0035, b = 0.0372 ± 0.0041.

The fitted correction can be applied event-by-event by approximately replacingRsh-sh
µ with RSD

µ . This is
possible, because the correction is at the level of10−2 and depends only on the logarithm of the energy
estimator.

Fig. 6.23b) shows the uncorrected data, the fit, and the event-by-event corrected data, which is now
unbiased aboveRµ ≈ 1. This bias correction will be applied consistently in all analyses in the following
chapters to real SD events and simulated SD events.

The constant intensity analysis showed that the reconstructed energy estimatorRSD
µ is not biased as a

function of the zenith angleθ in the range60◦ < θ < 82◦. The bias ofRSD
µ as a function of the cosmic ray

energyE is corrected here. The remaining systematic uncertainty ofRSD
µ is estimated to be smaller than

3 %, which is negligible. The reconstructed energy estimatorRSD
µ will therefore be regarded as un-biased

in the following chapters in the zenith angle range60◦ < θ < 82◦.

6.2.7 Summary

The section discussed the complete reconstruction of the energy estimatorRµ and the shower direction
(θ, φ) of very inclined air showers from events recorded with the surface detector. The energy estimatorRµ

is almost proportional to the shower energyE and will be calibrated toE in Chapter 7. The performance of
the reconstruction was evaluated with simulated SD events.The reconstruction efficiency for events which
pass the T4 selection is99.8 %.

The resolution of the energy estimatorRµ and the shower direction(θ, φ) depend on the cosmic ray
energyE, its massA, and the zenith angleθ. For a1019 eV shower with an inclinationθ = 70◦, the
resolution of the energy estimator is16 % and the angular resolution0.4◦.
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Based on bias-analyses of reconstructed cosmic ray parameters, the reconstruction is restricted to the
zenith angle range60◦ < θ < 82◦. The restriction is mainly based on a rapidly increase in thebias of the
shower core positionrc at θ > 80◦. The shower core resolution also degrades fast above80◦. Resolution
and bias eventually become larger than the station-to-station distance of1.5 km.

The adopted T5 selection depends on the reconstructed shower core position. The T5 selection rejects
poorly reconstructed air showers and defines the effectively exposed area of the SD. An error in calculation
of the exposed area directly propagates into reconstructedcosmic ray flux, as will be shown in Chapter 8.
In order to avoid this the shower core bias should be small compared to the grid size of the SD array.

In the restricted zenith angle range, the reconstruction shows small or negligible systematic biases. The
shower core position is biased by less than200 m and the zenith angle by less than0.1◦. The energy
estimatorRµ shows a relative bias as a function of the cosmic ray energy ofup to3 % between1019 eV
and1020 eV. This bias was corrected event-by-event with an empirical parameterisation. Any relative bias
onRµ as a function of the zenith angleθ is smaller than2 %. The analyses of simulated events indicates
that the energy estimatorRµ reconstructs the true number of muonsNµ on the ground with a systematic
uncertainty of3 %.

The reconstruction of the energy estimatorRµ is based on a model of the muon densitynµ on the
ground and a model of the signal responsefµ(Sµ) of a SD station to muon hits. The models developed
and used in this study are compared with other models [10, 11,15, 17]. The compared models show an
overall bias of20 % in the reconstructed energy estimatorRµ. The overall bias is generated by the model
of electromagnetic signal component from ref. [16], as discussed in Chapter 5. The signal response model
fµ(Sµ) derived in this study absorbs this bias by construction is thus not affected.

If the overall bias is corrected, the performance of the compared models similar to those derived in this
study in the restricted zenith range60◦ < θ < 82◦. Still, the models of this study achieve slightly better
resolutions and fit better to real events in most cases.

Finally, an apparent bias in the reconstructed energy estimatorRµ is observed below1018.5 eV which
is not caused by the event reconstruction. The apparent biasis the consequence of random fluctuations of
Rµ and a selection effect of the detector which causes only the upward fluctuations to trigger. The effect
will be analysed further and modeled in Chapter 7.

6.3 FD event reconstruction

The reconstruction of FD events is documented in ref. [180, 181] and the references therein. An overview
is presented in the following. Technical details about the FD reconstruction can be found in Appendix D.

The reconstruction follows three steps. The signal pulses are extracted from the raw signal traces in
every pixel and noise pixels are rejected. Then, the shower axis is reconstructed, which uses the signal
arrival times in the pixels and a single SD station. Finally,the total shower energy is reconstructed from the
detected light at the aperture based on the shower axis geometry and the current Mie scattering properties.

6.3.1 Pulse finding and rejection of random pixels

The reconstruction starts with a set of triggered camera pixels. Each pixeli covers a small solid angle of the
sky with a pointing directionpi. The pixel has an ADC-trace of counts above a baseline with inintervals
of 100 ns, as discussed in Chapter 4.

The first task is to locate the signal pulse generated by the air shower in each trace, which is done with
a window search. The pulse is located by optimising the signal to noise ratioS/N within an adjustable
time window∆t

S/N =
S(∆t)√
∆t× σb

, (6.3.1)

whereasS(∆t) is the integrated signal in the time interval∆t above the baseline andσb is the fluctuation
of baseline. Only pulses with a signal to noise ratioS/N > 5 after the optimisation are accepted. After the
pulse finding, each accepted pixel has a defined signal sizewi = Si(∆t) and a signal arrival timeti, which
is the barycenter of the pulse in the time domain.

129



6.3. FD EVENT RECONSTRUCTION

Figure 6.24: The drawing illustrates the shower axis reconstruction. The shower axis and the telescope
position define the shower detector plane. The position and orientation of the axis inside the plane is
defined by the shortest distanceRp to the telescope and its angleχ0 to the ground plane. Light emitted at a
certain elevationχi above the horizon at the shower axis arrives in the telescopeat the timeti. The arrival
time t0 corresponds to the point with the shortest distance to the telescope. The shower front arrives at the
time tGrd at positionRGrd.

The so far accepted pixels still contain a lot of accidental pixels, which are not part of the air shower.
These are rejected in subsequent steps. Isolated pixels arerejected first. A pixel is isolated, if the angle
between its own direction and that of every other signal pixel is larger than5◦.

To reject more accidentals, the shower detector plane (SDP)of the event is estimated. The SDP contains
the shower axis and the fluorescence telescope, as shown in Fig. 6.24. It is fully defined by the position of
the fluorescence telescope and the normal vectorn of the plane.

A preliminary SDP is obtained by calculating all possible normal vectorsñij from all pairs of pixel
directions(pi,pj)

ñij = pi × pj . (6.3.2)

The normal vectors̃nij together with the telescope position define candidate SDPs.The best estimate is
the candidate SDP, which has the largest number of compatible pixels. A pixel is compatible, if its direction
pk diverges less than2◦ from the candidate SDP. Finally, all pixels farther away than 2◦ from the estimated
SDP are rejected.

This is the basic noise rejection. More heuristics are applied during the rest of the reconstruction to
either further reject or re-include pixels, which are not covered here. The rejection up to this point is
quite strict and optimal for showers which are distant so that they appear as a one-dimensional line in the
telescope camera. If the shower is very close, the pixel track has a lateral extension and pixels may be
rejected which are actually part of the event. Once the basicgeometry of the shower axis is established, the
reconstruction tries to recover such pixels based on the compatibility with the time structure of a developing
shower.

6.3.2 Reconstruction of the shower axis

A precise reconstruction of the shower detector plane is performed with the cleaned set of pixels from the
previous step. The SDP has only two degrees of freedom, the two componentsu andv of its normal vector
n = (u, v,

√
1 − u2 − v2)T . Best estimates ofu andv are obtained by minimising the sumQ2 of the

quadratic deviations from the SDP weighted with the signal sizewi

Q2 =
1

∑

i wi

∑

i

wi

(
arccos(pi · n) − π/2

σp

)2

, (6.3.3)
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whereasσp = 0.35◦ is a pointing uncertainty derived from an analysis of laser shots [182].
The position and orientation of the shower axis inside the shower detector plane is reconstructed next

by fitting a model of the time-development of the light spot inthe camera to the observed signal arrival
times. The shower is modeled as a light source moving with thespeed of light along the shower axis. A
geometrical analysis yields

〈ti〉 = t0 +
Rp

c
tan

(
1

2

(
χ0 − χi

)
)

, (6.3.4)

see Fig. 6.24, which also explains the meaning of the variablest0, Rp, χ0, andχi. In principle, the arrival
timesti measured in the pixels are enough to constrain the free parameters of the modelt0,Rp, andχ0, but
the precision is limited. In the worst case, the track is short and the measured elevations are close toχ0, so
that the model degenerates to a line fit:

χi − χ0 ≈ 0 ⇒ 〈ti〉 ≈ t0 +
Rp

c

1

2

(
χ0 − χi

)
. (6.3.5)

The parameterst0,Rp andχ0 become strongly correlated and the shower axis is not well defined anymore.
In order to avoid this situation, the signal arrival time at asingle SD station is included into the recon-

struction. If the shower front curvature is neglected, the arrival time tGrd in the SD station can be modeled
as

〈tGrd〉 = t0 +
1

c
RGrd · Ŝ, (6.3.6)

the variables are again explained in Fig. 6.24.
The least-squares method is used to derive the free parameters of the model. The following sum is

minimised:

χ2 =
∑

i

(
ti − 〈ti〉
σ[ti]

)2

+

(
tGrd − 〈tGrd〉
σ[tGrd]

)2

, (6.3.7)

whereasσ[ti] andσ[tGrd] are the respective uncertainties of the arrival time measurements in the pixels and
the SD station.

The SD station used in the fit is selected out of those, which have a maximum distance from the shower
detector plane of2 km. The station with the largest signal is tried first. If this station does not lead to an
acceptable fit, the station with the next to largest signal isused and so on.

This is the basic reconstruction concept. Some additional heuristics are applied to get a good SD station
for the fit, which are not covered here. The effect of the shower front curvature on the arrival timetGrd is
also treated in an approximate way, which is not described here.

The typical angular resolution of the axis reconstruction is about0.5◦ [183].

6.3.3 Reconstruction of the shower energy

The energy reconstruction of the Pierre Auger Observatory uses fluorescence and Cherenkov light emitted
by an air shower to reconstruct the energy of the cosmic ray. The scattering and attenuation of the light
in the atmosphere needs to be modeled. Both Rayleigh and Mie scattering processes are considered. The
former describes scattering at air molecules, the latter scattering at aerosols and water vapor.

The reconstruction neglects the lateral extension of air showers. They are treated as one-dimensional
objects. Fig. 6.25 illustrates the contributions of fluorescence light as well as direct and scattered Cherenkov
light to the observed number of photons at the aperture of thetelescope.

Electrons are the second most abundant particle species in an air shower after photons. They loose
energy in the atmosphere rapidly, partly by colliding with nitrogen molecules. The molecules are excited in
the process and partly de-excite by emitting fluorescence photons. The number of fluorescence photonsNf

γ

emitted in a slant depth interval∆Xi is proportional to the average energy loss in that interval(dE/dX)i

and the fluorescence yieldY f
i at that point in the atmosphere

Nf
γ (Xi) = Y f

i (dE/dX)i ∆Xi, (6.3.8)
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Figure 6.25: Illustrated are the contributions of direct and scattered light to the amount of photons detected
at the aperture. The thick solid lines represent fluorescence light, which is emitted isotropically. The
dashed lines represent direct Cherenkov light. The dotted line represents scattered Cherenkov light. In
a), fluorescence light and Cherenkov light are emitted atXi. The fluorescence yieldY f

i at the emission
point has to be regarded for the former, the emission angleβi to the shower axis for the latter. The mixed
light travels the distanceri to the telescope and is attenuated by the factorTi on its way. In b), the shower
development has progressed further. A concentrated beam ofCherenkov light has formed along the shower
axis. Direct fluorescence light from pointXi mixes with scattered Cherenkov light, which was initially
emitted atXj and attenuated betweenXj andXi by the factorTji.

The fluorescence yieldY f
i is not constant during the shower development. It depends onthe air density,

temperature, and humidity, as discussed in Chapter 4.
Fluorescence light is emitted isotropically. The number offluorescence photonsyf

i registered in a
telescope with apertureA and light detection efficiencyǫ is

yf
i =

AǫTi

4πr2i
Y f

i (dE/dX)i ∆Xi, (6.3.9)

whereasTi is the Rayleigh and Mie attenuation factor along the light path with the lengthri.
Most electrons in the shower are highly relativistic and therefore emit Cherenkov light in air. The

Cherenkov light forms a concentrated beam along the shower axis. The number of Cherenkov photons
in the frequency range of the FD telescopes is comparable to the number of fluorescence photons. Still
in most cases the shower is observed from the side and only a small amount of scattered Cherenkov light
reaches the telescope. If the shower faces the telescope, the detected signal may be completely dominated
by Cherenkov light.

The number of Cherenkov photonsNC
γ in emitted in the frequency interval of the telescopes is propor-

tional to the number of electronsNe(Xi) above the Cherenkov production threshold at a given slant depth
Xi. The conversion factor can be modeled and is called Cherenkov yield Y C

i in analogy to the previous
case

NC
γ = Y C

i Ne(Xi). (6.3.10)

The contributions of other fast charged particles, most notably the muons, can be neglected.
The number of direct Cherenkov photonsyCd

i registered in the telescope is

yCd
i =

AǫTi

4πr2i
fC(βi)Y

C
i Ne(Xi), (6.3.11)

whereasfC(βi) is the fraction of Cherenkov photons emitted at an angleβi from the shower axis. The
Cherenkov light cone of each individual electron is narrow.The total divergence of the beam is consider-
ably larger due to multiple scattering of the electrons.
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Finally, there is an indirect contribution from scattered Cherenkov light. The direct Cherenkov light
emitted at earlier points of the shower development forms a Cherenkov beam along the shower axis, as
indicated in Fig. 6.25b). The number of beam photonsN beam

γ (Xi) at a certain slant depthXi of the
shower development is the sum of all these earlier contributions

N beam
γ (Xi) =

i∑

j=0

Tji Y
C
j Ne(Xj), (6.3.12)

whereasTji is the attenuation factor for light traveling fromXj toXi.
The number of scattered Cherenkov photonsyCs

i registered in the telescope is

yCd
i =

AǫTi

4πr2i
fs(βi)

i∑

j=0

Tji Y
C
j Ne(Xj), (6.3.13)

whereasfs(βi) is the fraction of Cherenkov photons emitted at an angleβi from the shower axis.
The total light received at the detector in a given pixeli, which has the interval∆Xi of the air shower

development in its field of view, is the sum of the three light contributions

yi = yf
i + yCd

i + yCs
i . (6.3.14)

The fluorescence light contribution is directly related to the energy loss profile(dE/dX)i of the shower.
The Cherenkov light contributions depend on the electron number profileNe(Xi), but can be related to the
energy loss, too:

(dE/dX)i = αiNe(Xi), (6.3.15)

whereasαi is a universal conversion factor that depends only on the shower agesi = 3/(1+2Xmax/Xi) in
good approximation, whereasXmax is the depth of the electromagnetic shower maximum. Thus, the energy
loss profile(dE/dX)i can be reconstructed from the detected lightyi. The contributionyCs

i from scattered
Cherenkov light couples different shower intervals∆Xi with a single point(dE/dX)j in the energy loss
profile. The relation betweenyi and(dE/dX)i therefore is a matrix equation.

In general, the telescope is not able to observe the full profile because of its limited field of view. The
extrapolation to depths outside the field of view is done withthe Gaisser-Hillas function [184]

fGH(X) = (dE/dX)max

(
X −X0

Xmax−X0

)(Xmax−X0)/λ

exp
(
(Xmax−X)/λ

)
, (6.3.16)

whereas(dE/dX)max, Xmax, λ, andX0 are free parameters. The full profile is also necessary to calculate
the correct amount of scattered Cherenkov light in the observed fraction of the profile.

The Gaisser-Hillas function completes the data model. It isfitted to the available data with the least-
squares method. The energy depositEem of the cosmic ray in the atmosphere is the integral of the fitted
Gaisser-Hillas functionfGH(X)

Eem =

∫ ∞

0

dX fGH(X). (6.3.17)

It was already discussed in Chapter 3, thatEem is smaller than the total energyE of the cosmic ray.
About10 % to 15 % is dumped into the ground by muons or carried away by neutrinos [47]. It is possible
to model the average amount of this invisible energy and define a correction factorfinv, which accounts for
it. The final correction

E = finv Eem (6.3.18)

completes the energy reconstruction.
The statistical uncertaintyσ[E] of the reconstructed energy is derived from a full propagation of all

event-by-event uncertainties. The uncertainty in the light flux at the apertureσflux[Eem] can be calculated
from the uncertainty of the fitted Gaisser-Hillas function.Another contributionσgeom[Eem] is generated by
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the uncertainty in the reconstructed shower axis which affects the reconstructed energy. The last contribu-
tion is the event-by-event uncertaintyσ[finv] of the correction factorfinv, which shows shower-to-shower
fluctuations. The total statistical uncertainty of the reconstructed energy is

σ2
stat[E] = E2 σ2(finv) +

(
dfinv

dEem
Eem + finv

)2
(
σ2

geom[Eem] + σ2
flux[Eem]

)
. (6.3.19)

The energy resolution is better than10% [181]. A detailed analysis of the FD energy resolution of very
inclined air showers is shown in Chapter 7. Fig. 6.26 shows anexample of a reconstructed fluorescence
detector event.

6.3.4 Systematic uncertainty of the energy

In Chapter 7, the energy estimator of the surface detector iscalibrated to the energy measurement of the
fluorescence detector. The SD energyESD obtained in this way inherits the systematic uncertainty ofthe
FD energyEFD. The contributions to this systematic uncertainty were carefully estimated in ref. [185]. A
listing of the uncertainties is shown in Table 6.3. The contributions can be divided into four large groups
that concern the fluorescence yield, the signal calibrationof the telescopes, the atmospheric model, and the
reconstruction procedure.

The fluorescence yield is measured in the laboratory. The Pierre Auger Observatory uses the abso-
lute value from Nagano et al. [73]. Relative measurements ofthe dependency on pressure, humidity, and
temperature of the air are taken from the AIRFLY experiment [71, 72]. The absolute measurement of the
fluorescence yield is technically difficult. Relative measurements are much more precise. The aim of the
ongoing AIRFLY experiment is to reduce the absolute uncertainty of 14 % by at least a factor of two.

The absolute calibration of the FD telescopes at the Pierre Auger Observatory is performed with a light
drum, as discussed in Chapter 4. The output of the light drum is measured in the laboratory. The light drum
is then carried into the field to calibrate the telescopes. The absolute calibration of the light drum is one
source of uncertainty. Another one is the drift of the calibration over time, which followed to some degree
by the relative calibration procedure.

The atmospheric models have only very small systematic uncertainties as long as the parameters of the
Mie scattering are well measured during the nights of data acquisition.

The uncertainty of the reconstruction method is assessed bycomparing the standard method discussed
here with the alternative from ref. [186]. The alternative reconstruction also regards the lateral extension of
the shower, but does not model the scattered Cherenkov light. It is currently not possible to decide, which
reconstruction is less biased. The fluorescence detector simulation also neglects the lateral extension of the
shower and cannot be used to distinguish between the reconstructions. Reconstructed laser shots from the
central laser facility cannot be used, because they are alsoone-dimensional.

The correction for invisible energy is derived from air shower simulations. The correction depends on
the mass of the cosmic ray and the hadronic interaction modelused in the simulation [47]. A variation of
the models and the cosmic ray mass yields the uncertainty estimate given in the table.

The contributions to the systematic uncertaintyσsys[E] of the reconstructed energy amount to22 %.
The systematic uncertainty will become smaller by successive improvements in the future. A reduction to
15 % could already be achieved by improving the accuracy of the fluorescence yield by factor of two and
by eliminating the systematic uncertainty of the reconstruction method.
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Figure 6.26: Shown in an example of a reconstructed FD event.Event 2151605 has a zenith angleθ ≈ 61◦,
an azimuth angleφ ≈ 280◦ and an energy of about3×1019eV. a) The event view in shows the development
of the shower, the signal arrival time is color coded. The shower also triggered several SD stations. b) The
camera view shows the triggered pixels. The shower detectorplane is indicated by a red line. c) The points
show the signal arrival times and the solid line the fitted model. The black square represents the arrival
time in the SD station with the largest signal. d) The points refer to the detected light at the aperture. The
stacked profiles are the reconstructed contributions from fluorescence light as well as direct and scattered
Cherenkov light. The contribution from Mie scattering is irregular, because the aerosol density is irregular.
e) The points show the reconstructed energy loss profile, thesolid line the fitted Gaisser-Hillas function.
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Table 6.3: Listed are the sources, which contribute to the systematic uncertainty of the reconstructed FD
energy [185]. The total uncertainty is obtained by adding the contributions in quadrature.

Source ∆E/E [%]

Fluorescence yield absolute 14
pressure dependence 1
humidity dependence 1
temperature dependence 5

Telescope calibration absolute 11
wavelength dependence 3

Atmosphere Rayleigh scattering 1
wavelength dependence of aerosol scattering 1
aerosol phase function 1

Reconstruction method 10
invisible energy 4

Total 22
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Chapter 7
Energy calibration of the Surface Detector

This chapter discusses the energy calibration of the reconstructed energy estimatorRSD
µ of the surface

detector (SD) from Chapter 6. It is based on a correlation between the energyEFD measured by the
fluorescence detector (FD) and the energy estimatorRSD

µ , which can be observed in events that triggered
the fluorescence detector and the surface detector simultaneously.

The basic relation between the SD energy estimatorRSD
µ based on the total number of muons which

arrive the ground and the cosmic ray energyE was already suggested in Chapter 3 and confirmed through
simulations in Chapter 5. It is a power law in good approximation, if the composition of the cosmic rays
does not change too rapidly and the regarded energy range is not too large:

E = Ecal ×Rµ
γ , (7.0.1)

whereasRµ is the ideal energy estimator. The distinction between the ideal energy estimatorRµ, the true
energy estimatorRsh-sh

µ , and the reconstructed energy estimatorRSD
µ was explained in Chapter 6 and is

again important in this chapter.
A theoretical prediction of the calibration constantsEcal andγ is a major challenge, as shown in Chap-

ter 5. This is partly so, because the average cosmic ray mass〈A〉 at a given cosmic ray energyE is not
well known and partly because of theoretical uncertaintiesconcerning the hadronic interactions. It is more
precise to derive the constantsEcal andγ from measurements. The FD provides an almost calorimetric
measurement of the total energyE in an air shower, as discussed in Chapter 6, which can be used to
calibrateRµ.

The standard approach [17,161–163,165,187] expresses theaverage measured energy estimator〈RSD
µ 〉

as a function of the measured FD energyEFD

〈RSD
µ 〉 =

(
EFD

Ecal

)1/γ

. (7.0.2)

This equation is fitted to the data with a least squares methodthat takes the estimated uncertainties from
the reconstructions into account. An analogue approach is used to calibrate the energy estimator of vertical
air showers, seee.g.ref. [156,157,188].

The method is simple and straight-forward, but has some issues, partly discussed alreadye.g.in ref. [17,
156,157]:

• The standard least-squares fit offers no natural way to take the uncertainty on the FD energyEFD into
account, although it is only possible to approximately include it. The least-squares fit cannot handle
fluctuations around the model that are not Gaussian.

• The event sample below the threshold energy of the SD triggersaturation is biased due to a selection
effect. The least-squares method cannot model this bias andtherefore events in affected energy range
need to be excluded. Most showers are observed at low energies and thus a major amount of data
cannot be used to constrainEcal andγ.
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• The low energy cut itself introduces another bias on the fit which is complicated to avoid.

This study proposes an improved approach for the energy calibration. The idea is to develop a complete
statistical model of the FD and SD measurement processes, formulated as a probability density function
(p.d.f.) in the(EFD, R

SD
µ ) parameter space. Deriving thep.d.f. is a complex task, but once it is formulated,

the calibration constants and a lot more information can be derived from the data by fitting this model with
a standard likelihood method to the observed event distribution.

The new method has many advantages, the two most important ones are:

• Events below the point of SD trigger saturation can be included naturally. This allows to use about
three times as much data for the fit as the standard approach.

• The method allows to fit the unknown shower-to-shower fluctuations of the energy estimatorRSD
µ

from the data. These fluctuations cannot be derived from the data otherwise and are sensitive to the
cosmic ray massA. Thus, a comparison of the fitted shower-to-shower fluctuations with predictions
from simulations allows to draw conclusions about the composition of cosmic rays.

The new method introduces a lot more modeling of the data, which could bias the result if it is not done
correctly. The method and its model components are therefore checked thoroughly in this chapter.

First part of this chapter deals with an important prerequisite of the energy calibration: a well under-
stood data set. The T5 criterion assures a good reconstruction with controlled systematics for SD events.
An event selection with the same purpose needs to be applied to FD events, but in the FD case it is much
more complex. The FD selection is based on cuts on many event parameters, which may introduce possible
biases themselves. A self-consistent algorithm [158] is used to derive unbiased cuts.

The new energy calibration method is derived and applied to the available data in the second part of this
chapter. Several cross-checks are applied, which show the general consistency of the approach and allow
to estimate the systematic uncertainty of the result.

7.1 Event selection

A prerequisite to a fit of the energy calibration function from the data is a well understood and unbiased
data set. It is particularly important, that the selected event sample does reflect the true composition of
cosmic rays at every energy interval. Heavy nuclei with the same energyE produce more muons and
therefore a larger energy estimatorRµ. If the cosmic ray composition was biased in the event sample, then
also the energy calibration would be biased.

It was shown in Chapter 6, that the SD energy estimatorRSD
µ is unbiased if the SD is fully efficient. If

it is not fully efficient, the average energy estimator〈RSD
µ 〉 is biased at a given cosmic ray energyE. In

particular, the limited efficiency would bias a mixed composition of cosmic rays. Iron nuclei with the same
energy as protons have a higher change to trigger the SD, because they generate more muons.

A similar situation can arise for the fluorescence detector.Fig. 7.1 shows an example. One of the basic
requirements for a reliable FD reconstruction is the observation of the shower maximum in the field of
view of the telescope. Proton showers develop deeper in the atmosphere than iron showers and thus have a
larger probability to be accepted by this requirement if they develop close to the telescope. Because the FD
exposure increases with the cosmic ray energyE, showers close to the telescope usually have low energies.
At larger energies, the corresponding average distance to the telescope is also larger and no bias occurs.

There are two ways to deal with this kind of situation. If the bias in the events is well understood, it
can be included into the data model, thus canceling its effect. This approach will be used for the SD energy
estimatorRSD

µ in the region where the SD is not fully efficient. If the bias isnot well understood, cuts have
to be applied which avoid the bias. This approach will be usedfor the FD energyEFD.

The SD events are well understood and need no further event selection. This section will focus on the
selection of FD events. The FD data set contains a fair amountof showers of poor quality since its event
trigger is very permissive. A lot of these showers are systematically biased. There is not a single criterion
like the T5, which allows to reject these showers. Only a complex combination of several cuts allows to
avoid the biased events.
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Figure 7.1: The drawing shows the field of view of a fluorescence telescope, and in a symbolic way, the
energy loss profile of a proton and an iron shower along its shower axis. In case a), both showers arrive
very close to the telescope, in case b), they are farther away.

The method to derive the FD cuts is adopted from ref. [157], where it was applied to select FD events
for the energy calibration of vertical showers. The approach is based on a self-consistency argument. It
exploits that the SD energy estimatorRSD

µ is unbiased above a certain threshold and therefore may be used
as a reference to obtain unbiased cuts for the FD. The method has the advantage that relies only on the data
itself and not on air shower simulations.

7.1.1 SD event selection

Compared to the complex selection of FD events, the SD event selection is simple and robust. The applied
cuts and selections are discussed in detail in Chapter 6. Theonly new cut regards certain time periods,
where the central data acquisition was unstable or buggy. More information about these so called bad
periods is given in Chapter 8.

To simplify the discussion, the following convention is used to name the cuts.

• SdBadPeriod: The event is outside a time period of normal data acquisition.

• SdT4Level: The event passes the T4 selection.

• SdT5Level: The event passes the T5 criterion.

• SdEnergyReconstructionLevel: The event passes the reconstruction of the energy estimator. The
reconstruction of the shower front curvature is optional and not required.

• SdThetaMin: The event is has a zenith angleθ larger than60◦.

• SdThetaMax: The event is has a zenith angleθ smaller than82◦.

Table 7.1 summarises the individual cut efficiencies in the data from 2004/01 to 2009/01, Fig. 7.2 shows
the cut correlations. Appendix F shows event examples, which are rejected by these cuts.

The strongest correlations are found on the on hand between the cutsSdT4Level andSdReconstruc-
tionLevel, and on the other betweenSdT4Level andSdThetaMax. The former is expected, since the T4
selection is designed to rejects events which are not reconstructable. The latter correlation may indicate
that the T4 selection is too strict for almost horizontal showers.
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Table 7.1: The table summarises the cuts to select high quality SD events in the time span from 2004/01 to
2009/01. The number of dropped events and the efficiency of each cut are calculated under exclusion of all
other cuts. The cuts are correlated, which is why the efficiencies do not multiply up to the total efficiency.

All SD events 144053
Accepted SD events 45063 31.3 %

Cut Events dropped (excl.) Efficiency (excl.) / %

SdBadPeriod 5929 96
SdT4Level 53643 63
SdT5Level 40961 72
SdEnergyReconstructionLevel hasRµ 869 99
SdThetaMin/◦ ≥ 60 27607 81
SdThetaMax/◦ ≤ 82 4057 97
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Figure 7.2: The matrix shows the efficiency and correlation of the cuts in Table 7.1. The diagonal entries
represent the efficiencies of each cut under exclusion of allother cuts. The entries in the lower triangle
show the correlation of the cuts in percent. Correlations below 1 % are not shown.
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7.1.2 FD event selection

The FD selection combines many cuts on reconstructed observables and their estimated uncertainties to
obtain a high quality data set. The choice of cuts and the self-consistency analysis to obtain the cut thresh-
olds is based on ref. [157]. The cut variables can be motivated a priori, but not the cut thresholds. The
self-consistency analysis allows to place the thresholds as such that the selection efficiency is maximised.

The analysis is based on FD events collected between 2004/01/01 and 2009/01/01. However, there are
early FD measurements in the data set, which cannot be used inthis analysis. The events in question were
recorded at a time when no absolute FD calibration was available. The date of the first reliable measurement
for each FD building is given in Table 7.2.

The FD cuts are listed and motivated in the following. The general idea is to rather place cuts on many
variables. The amount of trust which can be placed on the unbiasedness of the result increases with the
number of cuts. A naming convention is introduced again to ease the discussion. The final cut values will
also be given in advance, the optimisation procedure is described separately in the next section.

• FdDistanceXmaxFoV: This cut is placed on the distance of the shower maximumXmax from the
borders of the field of view of the telescope in units of slant depth. The cut ensures that the shower
maximum is observed well within in the field of view of the telescope.

• FdRelativeEnergyUncertainty: This cut is placed on the relative uncertainty of the energymea-
surement. Since the FD reconstruction propagates geometrical uncertainties in the reconstruction
of the shower axis and uncertainties due to the atmospheric conditions into the uncertainty of the
shower energy, showers of poor quality can be rejected with this variable.

• FdXmaxUncertainty: This is a cut on the reconstructed uncertainty of the depthXmax of the shower
maximum. A cut may be placed on this variable for the same reasons as for the previous cut. In
addition, a poor resolution of the shower maximum may be an indicator for a weak shower, which is
observed barely above the noise of the PMTs.

• FdPixelNumber: A cut on the number of the pixels with signal in the telescopecamera. The number
of pixels is relevant for the reconstruction of the shower axis. A low number of pixels may also
indicate a weak shower, barely observed above the noise of the PMTs.

• FdCherenkovFraction: This cut is placed on the fraction of Cherenkov light in the reconstructed
shower light profile. Cherenkov light is treated as part of the signal, as described in Chapter 6.
Very inclined events often have a fair amount of Cherenkov light in the reconstructed photon flux
at the telescope. Ideally, there should be no bias dependingon the fraction of Cherenkov light, if
it is correctly modeled in the reconstruction. Its influencehas to be checked in the self-consistency
analysis.

• FdReducedChi2GaisserHillas: This is a cut on the reducedχ2-value of the Gaisser-Hillas fit to
the longitudinal profile of the energy loss of the shower. This is a very powerful cut to reject general
anomalies in the recorded energy loss profile, which are mostly due to clouds in the field of the view.
The absorption or reflection of fluorescence or Cherenkov light on clouds can severely distort the
measurement.

• FdReducedChi2Line: This cut sets a lower limit on the reducedχ2-value of a simple line fit to the
energy loss profile. If the data is compatible with a straightline, neither the shower maximum nor
the shower energy are well defined. This is another cut to remove weak or partly recorded showers.

Table 7.2: The table gives the earliest date for each fluorescence building, when an absolute calibration of
all its telescopes is available [189].

Fluorescence building Los Leones Los Morados Loma Amarilla Coihueco

First trusted date 2004/12/01 2005/06/02 - 2004/12/01

141



7.1. EVENT SELECTION

• FdDistanceTankCore: This cut is placed on the distance between the estimated shower core posi-
tion of the FD reconstruction and the SD station which is usedin the reconstruction of the shower
axis. The station with the largest signal is a good first guessfor the position of the shower core. If
the core of the FD reconstruction is far away from this station, this may be an indicator for a bad
axis reconstruction. Also, as the FD reconstruction only uses a flat shower front model, the use of
the timing information from a far away station can introducea bias.

• FdTrackLength: This is a cut on the observed length of the shower profile in units of slant depth. It
is another cut to reject faint showers and those only partly recorded.

The last three cuts are not part of the optimisation.

• FdMieMeasurement: The last cut is a selection criterion. It rejects events, which do not have a
corresponding measurement of the Mie-scattering and -attenuation length and the vertical optical
atmospheric depth available for the night of the data taking. Events without such measurements are
reconstructed with average values, which can be arbitrarily wrong and have a strong impact on the
reconstructed energy. Events of this kind are generally rejected in this analysis.

• FdThetaMin: This is another cut on the reconstructed zenith angle. It selects only the very inclined
showers withθ ≥ 60◦ from the data. A corresponding upper limit is not necessary,because geomet-
rical constains make it almost impossible to observe a near horizontal air shower in the FD and the
SD simultaneously.

• FdActiveCrown: This cut criterion requires six active SD stations in a hexagon around the SD
station with the largest signal in the FD event. The purpose of this criterion is explained below.

Two sets of FD events are selected with these cuts. The first set only contains events which triggered
the FD and the SD simultaneously. They are calledgolden hybridsby convention. These events are later
used in the fit of the energy calibration constantsEcal andγ.

The second set is a superset of the first. It contains more FD events, because an independent SD trigger
is not required anymore. These events are calledpotentialgolden hybrids in this chapter. The additional
FdActiveCrown cut selects only showers that fell into an active part of the SD array. Therefore, this event
set only contains showers which could have triggered the SD,if the shower front would have been intense
enough. The potential golden hybrids will be used to constrain some aspects of the data model, which is
used to describe the distribution of golden hybrids. It willalso be used to derive the SD efficiency as a
function of the cosmic ray energyE at the end of this chapter.

The efficiencies of the optimised cuts for the golden hybridsare shown in Table 7.3, the cut correlations
in Fig. 7.3. The same is done for the potential golden hybridsin Table 7.4 and Fig. 7.4. Examples of rejected
events are shown in Appendix F.

Most of the cuts are highly correlated, since they are sensitive to similar event traits. The strongest
correlation is found between the cutsFdTrackLength andFdDistanceXmaxFoV, which reject almost the
same events. Most of these events are nearby showers with a shower maximum outside the field of the view
of the telescope. Another strong correlation is found between the cutsFdRelativeEnergyUncertainty
andFdXmaxUncertainty which can be expected since both are obtained from the fit of the Gaisser-Hillas
function, as shown in Chapter 6.

Only 411 golden hybrid events pass the event selection. Since the data statistic is so small, there was
a strong motivation to develop a method for the energy calibration which uses all these events without
imposing any more cuts.
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Table 7.3: The table shows the cuts which are used to select golden hybrids, as described in the text. Only
events are regarded here, which triggered both the SD and theFD and passed the SD cuts from Table 7.1
already. The number of dropped events and the efficiency of each cut are given exclusive of all other cuts.
The cuts are correlated, which is why the efficiencies do not multiply up to the total efficiency.

Golden hybrid events that pass the SD cuts 2453
Accepted golden hybrid events 411 16.8 %

Cut Events dropped (excl.) Efficiency (excl.) / %

FdDistanceXmaxFoV/g cm−2 ≥ 200 901 63
FdRelativeEnergyUncertainty ≤ 0.2 746 70
FdXmaxUncertainty/g cm−2 ≤ 150 508 79
FdPixelNumber/pixels ≥ 6 148 94
FdCherenkovFraction ≤ 0.5 676 72
FdReducedChi2GaisserHillas ≤ 2 550 78
FdReducedChi2Line ≥ 0.5 53 98
FdDistanceTankCore/km ≤ 1 151 94
FdTrackLength/g cm−2 ≥ 600 489 80
FdMieMeasurement 321 87
FdThetaMin/◦ ≥ 60 810 67

Table 7.4: The table shows the cuts which are used to select potential golden hybrids, as described in the
text. More FD events are regarded as input here, because the independent SD trigger is optional now.
However, the events are still required to pass theSdBadPeriod cut. The number of dropped events and
the efficiency of each cut are given exclusive of all other cuts. The cuts are correlated, which is why the
efficiencies do not multiply up to the total efficiency.

FD events with optional SD trigger 342271
Accepted FD events 1299 0.4 %

Cut Events dropped (excl.) Efficiency (excl.) / %

FdDistanceXmaxFoV/g cm−2 ≥ 200 260486 24
FdRelativeEnergyUncertainty ≤ 0.2 154809 55
FdXmaxUncertainty/g cm−2 ≤ 150 73989 78
FdPixelNumber/pixels ≥ 6 17694 95
FdCherenkovFraction ≤ 0.5 55694 84
FdReducedChi2GaisserHillas ≤ 2 43852 87
FdReducedChi2Line ≥ 0.5 23603 93
FdDistanceTankCore/km ≤ 1 12295 96
FdTrackLength/g cm−2 ≥ 600 246736 28
FdMieMeasurement 51555 85
FdThetaMin/◦ ≥ 60 313445 8
FdActiveCrown 132174 61

143



7.1. EVENT SELECTION

FdDistanceXmaxFoV

FdRelativeEnergyUncertainty

FdXmaxUncertainty

FdPixelNumber

FdCherenkovFraction

FdReducedChi2GaisserHillas

FdReducedChi2Line

FdDistanceTankCore

FdTrackLength

FdMieMeasurement

FdThetaMin

FdDistanceXmaxFoV

FdRelativeEnergyUncertainty

FdXmaxUncertainty

FdPixelNumber

FdCherenkovFraction

FdReducedChi2GaisserHillas

FdReducedChi2Line

FdDistanceTankCore

FdTrackLength

FdMieMeasurement

FdThetaMin

FdThetaMin

FdMieMeasurement

FdTrackLength

FdDistanceTankCore

FdReducedChi2Line

FdReducedChi2GaisserHillas

FdCherenkovFraction

FdPixelNumber

FdXmaxUncertainty

FdRelativeEnergyUncertainty

FdDistanceXmaxFoV

FdThetaMin

FdMieMeasurement

FdTrackLength

FdDistanceTankCore

FdReducedChi2Line

FdReducedChi2GaisserHillas

FdCherenkovFraction

FdPixelNumber

FdXmaxUncertainty

FdRelativeEnergyUncertainty

FdDistanceXmaxFoV

45

37

95

48

51

20

9

30

49

63

63

29

32

63

58

26

38

24

66

83

70

23

21

33

45

15

34

35

59

79

25

11

14

24

25

22

27

94

16

26

5

19

4

55

72

26

23

11

23

78

38

4

30

13

98

19

11

25

94

47

22

80

34

87

67

Efficiency / %
and           

Correlation / %

Figure 7.3: The plot shows the efficiency and correlation matrix corresponding to Table 7.3. The diagonal
entries show the efficiencies of each cut alone, without applying the other cuts. The lower triangle entries
show the correlations of the cuts. Large values mean that thecuts are very correlated and mostly reject the
same events. Correlations below1 % are not shown.
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Figure 7.4: The plot shows the efficiency and correlation matrix corresponding to Table 7.4. The diagonal
entries show the efficiencies of each cut alone, without applying the other cuts. The lower triangle entries
show the correlations of the cuts. Large values mean that thecuts are very correlated and mostly reject the
same events. Correlations below1 % are not shown.
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7.1.3 Cut optimisation

In order to optimise the FD cuts shown in Table 7.3, an iterative self-consistency analysis is used. The
analysis is based on two points: the SD works independently of the FD and the reconstructed SD energy
ESD is unbiased if the SD is fully efficient. Thus, the SD energyESD can be used as a reference to detect
biases in the reconstructed FD energyEFD. The optimal cut threshold is obtained by plotting the bias of the
variable(EFD−ESD)/〈E〉 as a function of the threshold, whereas〈E〉 is the average ofEFD andESD. The
optimal cut threshold avoids the bias but is as permissive aspossible. In order to avoid biased SD events in
this analysis, only events with an energy above1018.5 eV are used. At this energy, the SD is almost fully
efficient.

This kind of analysis either needs a preliminary energy calibration to convert the SD energy estimator
RSD

µ into the SD energyESD or an initial guess of the cut thresholds so that a preliminary calibration
analysis may be performed. Optimal cut thresholds are obtained by iterating the cut optimisation and the
energy calibration several times. The method converges quickly. A wrong energy calibration usually causes
only an overall bias in this analysis, which can be distinguished by eye from the bias that should be avoided
with the cut.

Fig. 7.5 to Fig. 7.13 show the control plots of the cut optimisations with the final energy calibration.
Black circles show the bias〈(EFD − ESD)/〈E〉〉 as a function of the cut threshold which has to be zero.
Gray circles show the individual values of(EFD − ESD)/〈E〉. The unselected data is shown on the left
of each figure, the selected data as a cross-check on the right. The hatched region in the left plot of each
figure is rejected by the cut. The red solid line shows the cut efficiency as a function of the cut value. The
analysis shows that the FD energyEFD is indeed unbiased after the cuts.
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Figure 7.5: Optimisation of the cut on the distance between the reconstructedXmax and the borders of the
field of view of the fluorescence telescope (see text).
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Figure 7.6: Optimisation of the cut on the relative uncertainty of the reconstructed energy (see text).
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Figure 7.7: Optimisation of the cut on the uncertainty of thereconstructedXmax.
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Figure 7.8: Optimisation of the cut on the number of triggered pixels in the telescope camera (see text).
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Figure 7.9: Optimisation of the cut on the fraction of Cherenkov light in the event (see text).
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Figure 7.10: Optimisation of the cut on the valueχ2/ndof, which measures the agreement of the observed
energy loss profile with the theoretical Gaisser-Hillas function (see text).
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Figure 7.11: Optimisation of the cut on the valueχ2/ndof, which measures the agreement of the observed
energy loss profile with a line fit (see text).
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Figure 7.12: Optimisation of the cut on the distance betweenthe reconstructed shower core and the SD
station with the largest signal, which was used in the reconstruction of the shower axis (see text).
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Figure 7.13: Optimisation of the cut on the observed track length in the telescope (see text).
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7.2 Calibration method

The event selection assures that the input for the followingstatistical analysis is unbiased and well under-
stood. Fig. 7.14 shows the event distribution of the data setwhich will be analysed in the following. A
clear correlation between the energy estimatorRSD

µ and the FD energyEFD is visible. It is the purpose of
the calibration method to extract the calibration constantsEcal andγ from this distribution.

Eq. (7.0.1) models the basic relation between the average FDenergy〈EFD〉 and the average SD energy
estimator〈RSD

µ 〉. So far, no clear deviation from this simple power law was found, see e.g. [157,188]. It is
therefore assumed in the following that Eq. (7.0.1) is validbetween1018 eV and a few1020 eV.

In some sense, all data points originate from the curve defined by Eq. (7.0.1), but they are scattered
around it by various effects. The effects are illustrated inFig. 7.15.

• Shower-to-shower fluctuations. The energy estimatorRSD
µ of the SD is by design proportional to

the total number of muonsNµ on the ground. This muon number fluctuates from shower to shower,
even if the cosmic ray energyE is fixed. More about this effect can be found in Chapter 3 and
Chapter 5.

The observable energyEFD in the fluorescence detector is weakly anti-correlated withthese fluctua-
tions because of energy conservation. However, since the muon component carries only about10 %
of the total energy in the shower, the correlated effect onEFD is one magnitude smaller than the
effect onRSD

µ , and can therefore be neglected.

• Trigger effects. The SD reaches the point of trigger saturation at about5× 1018 eV in very inclined
air showers. The trigger basically depends on the number of muons on the ground, which is modified
by shower-to-shower fluctuations. Below the trigger saturation point, an air shower with less muons
than average has a lower probability to trigger than a showerwith more muons than average. This
introduces a principal bias in that energy region, because more events will be found on the right side
of the calibration line in Fig. 7.15 than on the left side.

• Measurement uncertainties. The measurements of both the fluorescence and the surface detector
show fluctuations, which are caused by the statistical sampling in the measurement. The sampling
fluctuations are independent of each other. The fluctuationscan be assumed to be Gaussian in first
approximation.

The observed event distribution is further shaped by the fact that most golden hybrids are observed at lower
energies due to the steep energy spectrum. The energy spectrum in the golden hybrid sample is less steep
than the true energy spectrum, because the effective exposure of the FD grows with the cosmic ray energy.

All these effects can be included into a detailed statistical model of the data in form of a p.d.f. of the
event distribution. The maximum likelihood method then allows to extract the parameters of interest from
this model. The basic idea of this approach was presented in ref. [190,191], which inspired this study.

The maximum likelihood method maximises the total probability of all data points{(RSD
µ , EFD)i} in

the event distribution by modifying free parametersp of the data modelftot:

L(p) =
∏

i

ftot
(
(RSD

µ )i, (EFD)i|p
)
. (7.2.1)

In practice,− lnL is minimised, which is equivalent. The minimisation is donewith the MINUIT pack-
age [148].

If the data modelftot is accurate, it is possible to show that the likelihood function is anoptimal
parameter estimator [147], which means that no statisticalinformation in the data is lost and the parameter
estimates have the smallest possible variance.

The un-normalised data modelf ′tot can be written as a weighted convolution of several component
p.d.f.s which describe the individual statistical effects:

f ′tot(R
SD
µ , EFD|p) =

∫

dθ
∫

dE gFD-rec(EFD|E, θ,p) hFD-hyb(E, θ|p) ×
∫

dRsh-sh
µ PSD(RSD

µ , θ,p) gSD-rec(R
SD
µ |Rsh-sh

µ , θ,p) hSD-sh-sh(R
sh-sh
µ |Rµ(E),p) (7.2.2)
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Figure 7.14: The points represent the golden hybrid sample selected by the cuts in Table 7.1 and Table 7.3.
The color of a point indicates the zenith angleθ of the event. Most events are found below70◦.

Figure 7.15: The drawing illustrates the effects which leadto the observed data points. Point A is the
ideal average on top of the calibration function. The physical points B and C are upward and downward
fluctuations of this ideal average, further randomised by measurement uncertainties into B’ and C’. Because
Point C fluctuated below the saturation threshold of the SD, it has a chance to be lost. In the analysis of
the resulting data, the experimenter cannot distinguish anymore whether point C’ originated from point A
or D, or any other ideal point of the calibration function. All possibilities have to regarded, weighted with
the underlying energy spectrum of the FD.
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whereasgFD-rec andgSD-rec model the measurement uncertainty of the FD and the SD respectively, hFD-hyb

is the distribution of the true energies observed in the FD,PSD is the SD reconstruction probability (which
is not a p.d.f.), andhSD-sh-sh is the model of the shower-to-shower fluctuations. The energy E and the
zenith angleθ are the true values of the cosmic ray,Rµ is the ideal energy estimator corresponding toE,
andRsh-sh

µ is the true energy estimator realised in the particular event. The calibration function Eq. (7.0.1)
predicts the relation betweenRµ andE, which removes the remaining degree of freedom in the integral.

To obtain a valid p.d.f.,f ′tot has to be normalised by integrating over the input range ofEFD andRSD
µ ,

respectively:

ftot(R
SD
µ , EFD) =

f ′tot(R
SD
µ , EFD)

∫ RSD
µ

max

RSD
µ

min dRSD
µ

∫ EFD
max

EFD
min dEFD f ′tot(R

SD
µ , EFD)

. (7.2.3)

The functionf ′tot is not automatically normalised because of the SD reconstruction probabilityPSD. The
limits of these integrals may be chosen freely, but only datapoints within these limits may be used in the
calculation of the likelihood functionL(p).

The numerical calculation offtot is described in Appendix A.5. Computational speed is an issue,
becauseftot is recalculated several hundred times in a single maximum likelihood fit. Some approximations
are made to speed up the calculation. The approximations introduce a bias to the fitted parameters of the
data modelftot. The size of the bias is evaluated at the end of this section.

7.2.1 Model components

Fig. 7.16 gives an overview over the model components of the data modelftot(R
SD
µ , EFD). The heart of the

p.d.f. is the calibration function, which has two free parameters. The other components introduce many
additional parameters, too many in fact to fit them all from the sample of golden hybrids. Fortunately,
several components can be fitted to larger data sets or derived from event simulations.

The model components are presented and discussed in the following. As this is a pioneering work,
most components are modeled in the simplest possible way andsome approximations are made. The
overall framework however is general enough so that these simple models may be replaced by much more
complex and sophisticated ones in the future. The systematic uncertainty which is introduced through the
simplifications is carefully estimated in several cross-checks at the end of this chapter.

A summary of the numerical values of the model parameters is given by Table 7.5. All simulated events
in the following analyses are taken from the library developed in Chapter 5.

SD-Reconstruction probabilityPSD

A model of the SD reconstruction probabilityPSD, which is in good approximation given by the SD trigger
probability, can be developed from an analysis of simulatedevents.

The reconstruction probabilityPSD depends on the intensity and lateral distribution of the shower, and
its particle content. These properties depend on the cosmicray energyE and the zenith angleθ of the
shower. The reconstruction probabilityPSD depends to a much lesser degree also on the azimuthφ, partly
because of the grid structure and partly because of geomagnetic field effects. The azimuthal dependency is
neglected.

Very inclined showers are muon dominated and treating them as pure muon showers is a good first
approximation. In that case, the SD trigger probability canonly depend on the total number of muons on
the groundNµ ∝ Rsh-sh

µ at a fixed zenith angleθ, because the normalised lateral muon density profilepµ

is approximately universal with respect to the cosmic ray energy and mass, as shown in Chapter 5. At
θ ≈ 60◦, a small but significant electromagnetic component is stillactive, and some additional influence of
the energy and mass of the cosmic ray is expected.

Fig. 7.17 shows the reconstruction probability as obtainedfrom the simulation as a function of the total
number of muonsNµ on the ground, which is readily available in simulated showers. An error function
fits the data well:

PSD(lgNµ) =
1

2

(

1 − erf

(

− lgNµ − q0√
2 q1

))

, (7.2.4)
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7.2. CALIBRATION METHOD

Figure 7.16: The graphic gives an overview over the model components that are needed to calculate the data
modelftot, as described in the text. The colors indicate possible datasources to constrain the parameters of
the model components.

Table 7.5: A table of the parameters introduced in each modelcomponent of the total probability density
functionftot of the golden hybrid event distribution. The parameter uncertainties are of statistical nature, if
not specified otherwise.

Model Data source Parameters

PSD Surface detector simulation q0 6.82+0.12
−0.12 (sys.)

q1 0.15+0.07
−0.10 (sys.)

gSD-recandgFD-rec Surface detector simulation p0 0.0390± 0.0024
Potential golden hybrids p1 0.1128± 0.0043

p2 0.091± 0.021
p3 0.03044± 0.00033

hFD-hyb Potential golden hybrids s0 17.89± 0.44
s1 0.23± 0.14
s2 -1.06± 0.77
s3 -6.45± 4.93
s4 -44.88± 24.47
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Figure 7.17: The plots show the efficiency of the SD reconstruction including the SD trigger as a function
of the total number of muonsNµ(θ) on the ground at a given zenith angleθ. The simulation is organised
in small zenith angle bins of2◦ width, the plots show a selection of these bins. The four plots separate the
simulations by the cosmic ray mass (proton, iron) and the hadronic interaction model (QGSJet-II, EPOS).
The continuous lines are fits to the simulated data.
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Figure 7.18: The plots show the parameters of the fits from Fig. 7.17 as a function of the zenith angleθ.
The continuous lines are fits of a model. The dashed lines estimate the systematic uncertainty of the model.

with q0 andq1 as free parameters. At a given zenith angleθ, the number of muons is proportional to the true
energy estimatorRsh-sh

µ , and one can be calculated from the other with the reference model of the lateral
muon profilenref

µ .
The available amount of data for these fits is not optimal. In particular, the fits generated from iron

showers are not well constrained. Fig. 7.18 shows the fitted parameters ofq0 andq1 as a function of the
zenith angleθ. The widthq1 of the threshold function is not defined in many cases due to a lack of data
points in the threshold region, and has to be constrained to alower value ofq1 = 0.1.

This lack of data is caused by the fact, that the simulation does not cover a continuous spectrum of
cosmic ray energies. The showers are distributed in comparably distant and narrow energy bins. This
produces corresponding gaps in the distribution of the total number of muonsNµ ∝ E1/γ . Shower-to-
shower fluctuations ofNµ fill the gaps somewhat, but only for proton showers, where these fluctuations are
large enough. More simulations at intermediate energies are necessary for this kind of analysis, and should
be performed in the future.

Fig. 7.18 shows, that the dependency of the threshold function on the zenith angleθ is moderate. It
is much stronger, if the threshold would be parameterised inRsh-sh

µ instead ofNµ, which confirmsNµ is
the right variable for the parameterisation. Within the limited resolution of the analysis, no significant
dependency on the cosmic ray massA or the hadronic interaction model is observed.

The parameterq1 is assumed to be independent of the zenith angle. Theθ-dependency ofq0 is modeled
very roughly by eye as

q0(θ) = q0 ×
{

1 60◦ ≤ θ < 65◦

1 − 0.04 (θ − 65◦)/17◦ 65◦ ≤ θ < 82◦.
(7.2.5)

A parameterisation up to82◦ is sufficient, as it covers the complete zenith angle range used in this study.
The final average values ofq0 andq1 are obtained in a fit to the available data in Fig. 7.18 and shown in
Table 7.5. To account for the crudeness of the model, rather large systematic uncertainties are assigned
to q0 andq1, which approximate the observed spread in Fig. 7.18. Fig. 7.19 shows the individual fitted
threshold functions and the average model in comparison. The individual curves are within the average
model for zenith angles up to82◦.

This model with its large uncertainties is not of much use by itself. The parametersq0 andq1 will there-
fore be left free inftot and fitted from the golden hybrid sample. The fitted result will be only be compared
with the simulation result. Furthermore, it will be cross-checked with an analysis of the reconstruction
probability based on the potential golden hybrids at the endof this chapter.
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Figure 7.19: The plots compare the fitted threshold functions from Fig. 7.17 with the average model and
its upper and lower systematic limit. The limits are obtained by varying the model parameters within their
systematic uncertainties and taking the maximum and minimum of the variation. The second axis shows
the true energy estimatorRsh-sh

µ corresponding to the total number of muons on the groundNµ.
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Finally, there is an important point to make. It seems reasonable at first to parameterise the reconstruc-
tion probabilityPSD as a function of the true energy estimatorRsh-sh

µ ∝ Nµ. The trigger decision should
depend on the true number of muons that arrive at the ground. In this particular analysis it is also unavoid-
able, because the reconstructed energy estimatorRSD

µ is simply not defined in events that did not trigger
the SD.

However, it turns out over course of all analyses and cross-checks in this chapter that a consistent
description of the trigger threshold behaviour can only be achieved by makingPSD a function of the re-
constructed energy estimatorRSD

µ and not the true energy estimatorRsh-sh
µ in the data modelftot. The

fluctuations ofRSD
µ with respect toRsh-sh

µ are not random. They are generated by sampling fluctuations in
the detector. If the SD samples by chance more of the available muons,RSD

µ has an upward fluctuation
and vice versa. This affect the trigger decision, so thatPSD is actually a function ofRSD

µ and notRsh-sh
µ .

Evidence for this hypothesis will be shown below.

Measurement uncertaintiesgSD-rec and gFD-rec

The FD and SD measurements are independent and their resolution functions can be modeled by normal
distributions:

gSD-rec(R
SD
µ , Rsh-sh

µ , σrec[R
SD
µ ]) =

1√
2πσrec[RSD

µ ]
exp

(

−
(RSD

µ −Rsh-sh
µ )2

2σ2
rec[R

SD
µ ]

)

(7.2.6)

gFD-rec(EFD, E, σrec[EFD]) =
1√

2πσrec[EFD]
exp

(

− (EFD − E)2

2σ2
rec[EFD]

)

, (7.2.7)

whereasσrec[R
SD
µ ] andσrec[EFD] are the respective experimental uncertainties, which in general are not

constant. Simple models can be found, which describeσrec[R
SD
µ ] andσrec[EFD] well.

The SD-resolution of the energy estimator was already analysed in detail in Chapter 6. Based on
simulations, it was found that the resolution of the reconstructed energy estimatorRSD

µ is normal in good
approximation. In the zenith angle range60◦ ≤ θ ≤ 82◦, the resolution depends approximately only on
the cosmic ray energy, or more precisely, the true energy estimatorRsh-sh

µ .
Fig. 7.20 compares the true resolution of the energy estimatorRSD

µ in simulations with the reconstruc-
tion estimate of the resolution in real events. Some unexpected features are visible in the unbinned resolu-
tion estimates, like the accumulation of points atσrec[R

SD
µ ]/RSD

µ ≈ 0.1. The affected events did not show
any special common feature in an eye scan. This point need further study in the future.

The reconstruction estimate ofσrec[R
SD
µ ] differs from the simulated resolution, because the statistical

models used in the reconstruction are not yet perfect. The simulated resolution is biased atlgRµ . −0.4.
It underestimates the true resolution due to the influence ofthe SD trigger in this region. The variance
of RSD

µ /Rsh-sh
µ − 1 in the simulation gets smaller, because more and more eventsin the lower tail of the

Gaussian are rejected by the SD event trigger.
The simulation provides the more reliable estimate ofσrec[R

SD
µ ] and is used for the parameterisation. It

will be shown in a moment that it is possible to properly modelthe detector fluctuations atlgRµ < −0.4
by convolutinggSD-rec with PSD(RSD

µ ). However, right now it is necessary to parameterise the resolution
σrec[R

SD
µ ] without this effect and therefore only data in the range−0.4 ≤ lgRµ ≤ 1.2 is used. The relative

resolutionσrec[R
SD
µ ]/RSD

µ is well described by an empirical expansion inRSD
µ

− 1
2 up to first order:

σrec[R
SD
µ ]/RSD

µ = p0 + p1R
SD
µ

− 1
2 , (7.2.8)

with p0 andp1 as free parameters. The values are given in Table 7.5. Since the simulation result is not
confirmed with a real measurement, a systematic uncertaintywill be assigned to the resolution obtained
from this parameterisation later.

Fig. 7.21 shows that the detector fluctuations atlgRµ < −0.4 are not Gaussian but well described by
weightinggSD-rec(R

SD
µ , Rsh-sh

µ , σrec[R
SD
µ ]) with PSD(RSD

µ , θ). This combination models the trigger effect on
the distribution of the detector fluctuations. The model predictions agree well with the distribution found
in simulated events.
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Figure 7.20: The resolution of the reconstructed energy estimatorRSD
µ is shown as a function of the en-

ergy estimator. Light gray points represent the estimated uncertainty of the energy estimator as obtained
event-by-event from the reconstruction of real events, theblack points are binned averages. The blue
points represent the true resolution observed in simulatedevents, which is the variance of the variable
RSD

µ /Rsh-sh
µ −1. Horizontal error bars indicate bin widths. The solid line is a fit to the simulated resolution,

the dashed line its extrapolation beyond the data range which was used in the fit.
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Figure 7.22: The resolution of the FD energyEFD is shown as a function the energy and the zenith angle.
Light gray points represent the estimated uncertainty of the energy as obtained event-by-event from the
reconstruction of real events, the black points are binned averages. The blue point in the left plot shows the
resolution obtained from the analysis of the stereo events for comparison. Horizontal error bars indicate
bin widths. The solid lines are fits of a parameterisation.
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Figure 7.23: The plots shows an analysis of 21 stereo hybrid events. These are events, which are observed
in two FD buildings simultaneously. The left plot shows the correlation of the individual measurements,
the right plot shows the distribution of the resolution variable (see text) and a fitted Gaussian.
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The Gaussian shape ofgFD-rec is demonstratede.g.in ref. [192] with reconstructed laser shots from the
central laser facility of the Pierre Auger Observatory. TheFD resolution can be estimated with laser shots,
but using real showers is more reliable. Fig. 7.22 shows the reconstruction estimate of the FD resolution as
a function of the reconstructed energyEFD and the reconstructed zenith angleθFD. The resolution depends
only weakly on both observables. Theθ-dependency is neglected in the following, while the formeris
parameterised empirically as

σrec[EFD]/EFD =

{

p3 + p4 [lg(EFD/eV) − 18.4]2 if EFD ≤ 1018.4 eV,

p3 if EFD > 1018.4 eV,
(7.2.9)

with p3 andp4 as free parameters. The values are given in Table 7.5. There are possible other dependencies
of the resolution on the details of the shower axis orientation and distance to the telescope, but they average
out if the resolution is only regarded as a function of the cosmic ray energy.

The weak dependency of the relative FD resolutionσrec[EFD]/EFD on the cosmic ray energyE is
generated by an exposure effect. On the one hand, the measurement of the FD energy is more precise
if more light falls into the telescopes. The collected lightfor a shower at a fixed distance to a telescope
is proportional to the cosmic ray energy. On the other hand, the effective exposure of the FD increases
with the energy, so that also more distant and faint showers are observed at higher energy. The exposure
growth cancels the first effect so that the average FD resolution remains roughly constant with the cosmic
ray energy.

The Pierre Auger Observatory is equipped with four FD telescope buildings, which allows to check the
reconstruction estimate of the energy resolution with a real measurement. In this study, this is done with
stereo events: showers which are observed by two telescopesindependently and simultaneously.

There are 21 stereo events in the data set of potential hybrids. The experimental energy resolution from
k redundant measurements is given by the variance of the variable

(
EFDi − 〈EFD〉

〈EFD〉

)

×
√

k

k − 1
, (7.2.10)

whereasi < k is counting thek independent measurements of the same true energyE, and〈EFD〉 is the
average energy of the individual measurements. This formula is taken from ref. [193], where it is first used
in an analogue analysis in a different context.

The stereo measurements are shown in Fig. 7.23. The obtainedresolution is slightly lower than the
reconstruction estimate, as shown in Fig. 7.22, but still within one standard deviation of the uncertainty of
the parameterisation.

Energy and zenith angle distribution of FD eventshFD-hyb

The distributionhFD-hyb of cosmic ray energies and zenith angles in the golden hybriddata set can be ex-
tracted from the event sample of potential golden hybrids. Fig. 7.24 shows the distributions of the measured
energies and zenith angles in this event set. Empirical parameterisations are fitted to these distributions,
under the assumption that the dependencies approximately factorise:

hFD-hyb(E, θ) ≈ h̃FD-hyb(E) × h̃FD-hyb(θ). (7.2.11)

The p.d.f.h̃FD-hyb(E) of the energyE is proportional to the cosmic ray flux multiplied with the effective
aperture of the FD. The distribution is parameterised with apiece-wise power law inE. In practice,
h̃FD-hyb(E) is formulated in the variablex = lgE/eV so that the power law becomes and an exponential
function

Eα = 10α lg E = 10α x, (7.2.12)

which has better numerical properties. The aperture effectbelow1018 eV is modeled with an error function
in the variablex. The full parameterisation is

h̃FD-hyb(x) = C−1

[

1 − erf

(

−x− s0√
2 s1

)]

×







10(s2−0.3)x if 17.0 < x ≤ 18.3

10s2x−5.49 if 18.3 < x ≤ 19.6

10(s2−1.2)x+18.03 if x > 19.6,

(7.2.13)
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Figure 7.24: The figure shows the distribution of energyE (left) and zenith angleθ (right) of potential
golden hybrid events. The points represent histograms of the event distributions, the lines are empirical fits
to these histograms. The continuous lines show fits to the unprocessed distributions, which are distorted to
some degree by the effect of limited detector resolution. The dashed line in the left plot shows a normalised
fit, where this effect was unfolded (see text).
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Figure 7.25: The plot shows the distribution of the observedenergiesEFD and zenith anglesθFD in the
potential hybrid events. The corresponding modelhFD-hyb is overlaid, the solid lines represent contours of
constant probability.
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whereasC is a normalisation constant ands0, s1, s2 are free parameters. The break points and the relative
changes in spectral indices are taken from the analysis in ref. [188] to reduce the number of degrees of
freedom in this fit, but the overall spectral indexs2 is left free. The spectral indexs2 is larger than the
spectral index of the true energy distribution, because theFD exposure growths with the cosmic ray energy
E.

It is necessary to regard in the fit of Eq. (7.2.13), that the observed distribution in Fig. 7.24 is modified
by the limited detector resolution of the fluorescence detector. The p.d.f. h̃FD-hyb(E) is supposed to pa-
rameterise the energy distribution without this effect. Toobtain the correct result, the modelh̃FD-hyb is not
fitted directly to the data distribution, but first convoluted with the detector resolutiongFD-rec:

h̃folded
FD-hyb(EFD) =

∫

dE gFD-rec(EFD, E) h̃FD-hyb(E). (7.2.14)

The convoluted resulthfolded
FD-hyb(EFD) is then fitted to the data. Fig. 7.24 shows the folded and unfolded

distribution together with the data. Above1018 eV, both distributions are almost equal. In the threshold
region below a difference of up to50 % is observed.

The p.d.f.h̃FD-hyb(θ) of the zenith angle distribution is parameterised as a function of y = (θ−60◦)/rad
with the following empirical formula:

h̃FD-hyb(y) = C−1 exp(s3 y + s4 y
2), (7.2.15)

whereasC is a normalisation constants ands3, s4 are the remaining free parameters. This model is not used
in detail in the correct approach and therefore the effect ofthe limited detector resolution is not considered,
although the same argument applies as in the case ofh̃FD-hyb(E). The final parameter values are shown in
Table 7.5.

The factorised model is compared with the two-dimensional distribution of the events in Fig. 7.25. The
plot shows a moderate positive correlation betweenE andθ: the largest zenith angles only occur at the
highest energies. This correlation is neglected in the current approach.

Shower-to-shower fluctuationshSD-sh-sh

The shower-to-shower fluctuations of the true energy estimator are derived from the fluctuations of the total
number of muonsRsh-sh

µ ∝ Nµ, which were analysed in detail in Chapter 5 with air shower simulations.
The simulations show that the relative size of the fluctuationsσsh-sh[R

sh-sh
µ ]/Rsh-sh

µ is only a function of the
cosmic ray massA. No significant dependency on the energyE and direction(θ, φ) of the cosmic ray
was found. Systematically, the fluctuations further dependon the hadronic interaction model used in the
simulation. The relative size of the fluctuations ranges from about3 % for iron showers to13 % – 20 %
for protons. The p.d.f. of the fluctuations is approximatelynormal, with a slight asymmetry in the tails.
Downward fluctuations are slightly larger than upward fluctuations.

Fig. 7.26 shows the fluctuations of protons and iron nuclei, simulated with the hadronic interaction
models QGSJet-II and EPOS. The true energy estimatorRsh-sh

µ is by about30 % – 40 % larger for iron
showers than for proton showers at the same energyE. The offset is constant in good approximation.
Therefore, a mixed cosmic ray flux consisting of proton and iron nuclei can have larger shower-to-shower
fluctuations than proton or iron showers alone. Fig. 7.27 show the size of the fluctuations in such a mixed
scenario. Fluctuations up to27 % are possible. An iron fraction of40 % yields the largest fluctuations.

Since the cosmic ray composition is not well known and the systematic uncertainties in the hadronic
interaction models are considerable, the shower-to-shower fluctuations need to be fitted from the golden
hybrid events. There are indications for a change in the composition between1018 eV and1020 eV [194]
and thus the fluctuation model should allow a variation with the cosmic ray energy.

This analysis uses the simplest possible model for the fluctuations under these circumstances to keep
the additional number of free parameters reasonably small.The fluctuations are modeled with a Gaussian
distribution. A linear transition as a function of the logarithm of the energy between1018.3eV and1019.5eV
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Figure 7.26: Both plots shows the energy estimatorRsh-sh
µ as a function of the cosmic ray energy for

proton and iron showers and the two hadronic interaction models QGSJet-II and EPOS. The hatched bands
represent the shower-to-shower fluctuations. The right plot is a zoom of the left plot.
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Figure 7.27: The curves shows the shower-to-shower fluctuations which would be observed in case of a
mixed flux of cosmic rays of proton and iron nuclei at1019 eV as a function of the iron fractionpiron. The
bands represent the statistical uncertainty of the simulation. The number of muons generated by proton and
iron showers of the same energy differs by30 % to 40 %, thus a mixed flux can produce larger shower-to-
shower fluctuations than a single component. The mixed fluctuations are in not Gaussian.
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Figure 7.28: The plots show the probability density function ftot(lgR
SD
µ , lgEFD) as modeled in this study.

The calibration function in these examples uses the constantsEcal = 5 × 1018 eV andγ = 1.07. Constant
shower-to-shower fluctuations are assumed in a) and b), corresponding to pure proton or iron scenarios. In
c), the shower-to-shower fluctuations evolve from a mixed composition to a pure iron scenario.
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is allowed for the relative size of the fluctuations:

σsh-sh[R
sh-sh
µ ]/Rsh-sh

µ =







u0 E < 1018.3 eV

u0 (1 − z) + u1 z 1018.3 eV ≤ E < 1019.5 eV

u1 E > 1019.5 eV

(7.2.16)

with z =
lg(E/eV) − 18.3

19.5 − 18.3
,

whereasu0 is the size ofσsh-sh[R
sh-sh
µ ]/Rsh-sh

µ at1018.3eV andu1 the size ofσsh-sh[R
sh-sh
µ ]/Rsh-sh

µ at1019.5eV.
The choice of the energy range for the transition is based on the apparent change of the elongation rate

of the shower maximum in ref. [194] (see also Fig. 3.2 in Chapter 3), but still somewhat arbitrary. The
quantitative result of the fit will depend on the choice and onthe type of transition and therefore has to be
interpreted carefully. However, the qualitative result alone is already interesting, whether the data imply a
transition or not.

It is also important to point out, that approximating the fluctuations by a Gaussian is only appropriate
in the case of pure proton or iron showers or as a first approximation. A mixed composition may have a
completely different shape, depending on the relative fractions of different cosmic ray nuclei. With enough
data however, an extended approach would even allow to fit these relative fractions as a function of the
energy, similar to ref. [195].

Fig. 7.28 shows the predictions of the data modelftot for different composition scenarios. The shape of
ftot is apparently quite sensitive to the size of the shower-to-shower fluctuations.

7.2.2 Statistical and numerical bias

The previously developed data modelftot allows to obtain several parameters from a fit to the sample of
golden hybrid events:

• the calibration constantsEcal andγ,

• the positionq0 and shapeq1 of the SD trigger threshold, and

• the size of the shower-to-shower fluctuationsσ[Rsh-sh
µ ]/Rsh-sh

µ .

These parameters may be biased with respect to the true values for several reasons:

(1) the corresponding model or a correlated model is wrong,

(2) the approximations inftot are too strong, or

(3) the amount of data is too small.

Cross-checks can be used in case of the first point, which allow to estimate the systematic uncertainty
introduced by some models. This will be done in the next section. The third point is often negligible, but it
is possible to show theoretically, that both the maximum likelihood and the least-squares method introduce
a bias to the fit result under general conditions in the case ofa low number of events, seee.g.ref. [147].

The present analysis regards the second and third point. Thedata distribution of golden hybrids is
completely modeled by the components offtot, which allows to build up a simple Monte-Carlo simulation
of golden hybrid events. It is not necessary to solve the integrals in Eq. (7.2.2) to perform the simulation,
instead each model component p.d.f. can be sampled individually. The Monte-Carlo simulation of a golden
hybrid event is done with the following steps:

(1) Pick a random energyE and zenith angleθ from hFD-hyb. Calculate the corresponding ideal energy
estimatorRµ = (E/Ecal)

1/γ .

(2) FluctuateRµ according tohSD-sh-shto obtain the true energy estimatorRsh-sh
µ .

(3) FluctuateRsh-sh
µ according togSD-rec to obtain the reconstructed energy estimatorRSD

µ .
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(4) Calculate the reconstruction probabilityPSD as a function ofRSD
µ and the zenith angleθ. Make a

random decision whether the event is accepted or rejected based onPSD. If the event is rejected,
jump back to (1).

(5) Fluctuate the true energyE according togFD-rec to obtain the reconstructed FD energyEFD.

Such a fast simulation of golden hybrid events is not a replacement for a full air shower and detector
simulation, but it is valuable for this study. This fast simulation is based on a different mathematical
concept, which allows to cross-check the use of the approximative lattice calculation offtot. If the bias in
the fitted parameters is negligible, the quality of the approximative lattice calculation offtot is sufficient.

To access the bias of the result of fitting the lattice calculatedftot, 50 Monte-Carlo experiments with
400 events each are fast-simulated and reconstructed for a particular set of input parameters. Nine sets of
input parameters are tried, based on the possible combinations of

• Ecal/EeV∈ {4.5, 5.0, 5.5},

• γ ∈ {1.00, 1.05, 1.10}, and

• σ[Rsh-sh
µ ]/Rsh-sh

µ (1018.3 eV) = σ[Rsh-sh
µ ]/Rsh-sh

µ (1019.5 eV) = 0.15.

All other models use the parameters from Table 7.5.
The fit is run with the same setting as in the final application to real events, which means that the

following six parameters are left free in these analyses:

Ecal, γ,
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1018.3 eV),
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1019.5 eV), q0, q1.

The last two parameters describe the threshold of the SD reconstruction probabilityPSD, as shown before.
Fig. 7.29 shows the result of the statistical analysis. Somebias is observed, but it is small compared to

the statistical resolution in most cases. The reconstruction tends to be slightly biased with respect to the true
parameters. The estimated systematic uncertainty derivedfrom this bias is summarised in Table 7.6. The
parameters of the shower-to-shower fluctuation model show the largest bias and tend to be underestimated.
The bias appears to caused by the calculation offtot on a lattice. The bias gets smaller if the lattice is made
more dense, but then the computation times increase dramatically.

The parameter uncertainties reported by the fit seem consistent with the expectation, if the bias is not
too large, as in the case of the shower-to-shower fluctuations. The uncertainty ellipses of the calibration
constants contain the input values in37 ± 2 % of the cases, which agrees very well with the statistical
expectation.

In conclusion, the statistical analysis of the output of theenergy calibration method shows that the nu-
merical approximations involved in the grid-computation of ftot introduce some bias to the result. However,
the magnitude of the observed bias is acceptable compared tothe statistical resolution of the result. The
statistical uncertainties reported by the fit agree with theexpectation.
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Figure 7.29: The plots show the fitted parameters of the statistical analysis described in the text. The
ellipses around each point represent a38 % contour, which corresponds to one standard deviation in two
dimensions. The nine sets of input parameters described in the text are distinguished by different colors.
The large circles represent the input parameters (white) and the average of the output of the fit (light
colored). The relative shift estimates the bias of the fit. Only a subset of all fits are shown for the sake of
clarity.

Table 7.6: The table summarises the estimated systematic uncertainty on fitted parameters in the calibration
method, based on Fig. 7.29.

Calibration function SD shower-to-shower fluctuations SD reconstruction probability

Ecal γ q0 q1
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1018.3 eV)
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1019.5 eV)

0.03 −0.005 0.03 0.015 0.03 0.05
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7.3 Application to data

The calibration analysis is now applied to the 411 real golden hybrid events selected earlier. In order to
estimate the systematic uncertainty of the fit and as a consistency test, the fit is applied several times with
the following variations.

• Model of the SD shower-to-shower fluctuations: The linear transition of the SD shower-to-shower
fluctuations inlgE is tested against a constant model.

• Model of the SD reconstruction probability: The model impact is partly or completely removed by
rejecting events from the fit, which are in a region where the SD reconstruction probability is not
100 %.

• Models of the SD and FD resolution: The resolution of the SD isvaried by3 %, the resolution of the
FD by2 %. These values represent the estimated uncertainty of the respective parameterisations.

The fit variations are listed in Table 7.7. The results of the fits of type A to D are shown in Fig. 7.30.
Fig. 7.31 shows the good agreement of the data modelftot with the data distribution. The variations of the
fit conditions yield consistent results. Slight changes in the fitted parameters are observed but nothing un-
expected. The variations of the fitted parameters are used asanother estimate of the systematic uncertainty
of the fit.

The data model describes the event distribution even in the region where the SD reconstruction proba-
bility PSD is not100 % and affects the fluctuations of the SD energy estimatorRSD

µ around the true value
Rsh-sh

µ . As mentioned before, the standard analysis cannot regard this effect and thus has to exclude events
in this energy range. The fit of type D approximates this situation. The comparison of type A and type D
shows that the new method triples the amount of usable data compared to the standard analysis and roughly
halves the statistical uncertainty of the fitted calibration constantsEcal andγ.

The fits of type E to H show that variations of the SD and FD resolutions lead to opposite changes in the
fitted SD shower-to-shower fluctuations, while the other fit parameters essentially remain unaffected. For
example, if the SD resolution is increased by2%, the reconstructed shower-to-shower fluctuations become
smaller by2 %. In order to understand this, the FD resolutionσrec[EFD]/EFD is effectively regarded as a
contribution to the total resolutionσ[RSD

µ ]/RSD
µ of the SD energy estimator:

(

σ[RSD
µ ]

RSD
µ

)2

≃
(

σsh-sh[R
sh-sh
µ ]

Rsh-sh
µ

)2

+

(

σrec[R
SD
µ ]

RSD
µ

)2

+

(

σFD[RSD
µ ]

RSD
µ

)2

, (7.3.1)

whereasσsh-sh[R
sh-sh
µ ] is contribution of the shower-to-shower fluctuations,σrec[R

SD
µ ] is the contribution

of the detector sampling fluctuations, andσFD[RSD
µ ] is the propagated effect of the fluctuations of the FD

energyEFD:

〈RSD
µ 〉 =

( 〈EFD〉
Ecal

)1/γ

⇒
σFD[RSD

µ ]

RSD
µ

≈ σrec[EFD]

EFD
with γ ≈ 1. (7.3.2)

The total fluctuationsσ[RSD
µ ]/RSD

µ are fixed by the data. It is possible to show with differentialcalculus
that a small increase inσrec[R

SD
µ ]/RSD

µ or σFD[RSD
µ ]/RSD

µ leads to an equal decrease inσsh-sh[R
sh-sh
µ ]/Rsh-sh

µ

and vice versa. Essentially, the knowledge about the SD shower-to-shower fluctuations can only be as good
as the knowledge of the SD and FD resolutions.

The final result with all correlations and systematic uncertainties is shown in Table 7.8. In case of
the calibration constantsEcal andγ and the shower-to-shower fluctuation parametersσ[Rsh-sh

µ ]/Rsh-sh
µ , the

systematic uncertainties are comparable or larger than thestatistical uncertainties. The situation is better
for the positionq0 and widthq1 of the threshold in the SD reconstruction probability function PSD. Here,
the statistical uncertainty is at least by a factor of two larger than the corresponding systematic uncertainty.

The analysis is more limited by systematic uncertainties than statistical uncertainties, despite the small
amount of data. Future improvements of the data modelftot are possible, which will reduce these systematic
uncertainties. In order to draw quantitative conclusions about the cosmic ray composition, it is important
to make the measurements of the SD and FD resolutions more precise.
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Table 7.7: The table summarises the fit variations, which areapplied to the data set of real golden hybrid
events.

Type Free parameters Data cut Events Comment

A Ecal, γ, q0, q1,
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1018.3eV),

σ[Rsh-sh
µ ]

Rsh-sh
µ

(1019.5 eV)

– 411 reference result, linear tran-
sition in lgE for shower-to-
shower fluctuations

B Ecal, γ, q0, q1,
σ[Rsh-sh

µ ]

Rsh-sh
µ

– 411 constant shower-to-shower
fluctuations

C Ecal, γ,
σ[Rsh-sh

µ ]

Rsh-sh
µ

lgRSD
µ > −0.4 282 constant shower-to-shower

fluctuations, reduced impact
of threshold events

D Ecal, γ,
σ[Rsh-sh

µ ]

Rsh-sh
µ

lgRSD
µ > −0.1 124 constant shower-to-shower

fluctuations, negligible im-
pact of threshold events

E - H Ecal, γ, q0, q1,
σ[Rsh-sh

µ ]

Rsh-sh
µ

(1018.3eV),

σ[Rsh-sh
µ ]

Rsh-sh
µ

(1019.5 eV)

– 411 fit of type A but with
σrec[EFD]/EFD ± 0.02
and σrec[R

SD
µ ]/RSD

µ ± 0.03
(not shown in Fig. 7.30,
Fig. 7.31)

Table 7.8: The table shows the final result of the energy calibration analysis. The systematic uncertainty
of each variable is calculated from the systematic uncertainty obtained from the intrinsic bias offtot shown
in Table 7.6 and the estimated uncertainty from the fit variations summarised in Table 7.7. Systematic
uncertainties with corresponding signs are added (x+σ1u

−σ1d
, x+σ2u

−σ2d
→ x+σ1u+σ2u

−σ1d−σ2d
).

Parameter Value Correlation coefficients

Ecal/EeV 4.717± 0.071 +0.080
−0.050 (sys.)

γ 1.053± 0.016 +0.012
−0.015 (sys.) 0.037

σ[Rsh-sh
µ ]

Rsh-sh
µ

(1018.3 eV) 0.191± 0.028 +0.070
−0.040 (sys.) 0.330 −0.478

σ[Rsh-sh
µ ]

Rsh-sh
µ

(1019.5 eV) 0.079± 0.039 +0.030
−0.050 (sys.) −0.096 0.338 −0.497

q0 6.724± 0.024 +0.008
−0.005 (sys.) 0.013 0.205 −0.166 0.122

q1 0.148± 0.019 +0.002
−0.010 (sys.) −0.026 0.181 −0.133 0.098 0.748
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Figure 7.30: The plots show the result of the calibration fit applied to the data set of 411 selected golden
hybrid events. The fit is done several times under varying conditions which are listed in Table 7.7. Not all
model parameters are free in every type of fit. Parameters which are fixed are not shown. All uncertainty
contours are68 % estimates. a) The calibration constants show no systematictrend as theRSD

µ -threshold
increases from type B to D. b) The+-sign and the dashed gray box shows the result and the systematic un-
certainty of thePSD-model obtained from air shower simulations. c) Only type A allows a linear transition
for the shower-to-shower fluctuations and has two fluctuation parameters, which are shown together with
their correlation. d) The fits of type B to D enforce constant shower-to-shower fluctuations. Their results
are represented by points, the horizontal bars indicate theenergy range used to constrain the fit. The fit
of type A is shown with a solid black line, the dashed band indicates the uncertainty of the fit. Solid gray
lines in the background represent the expected size of the shower-to-shower fluctuations of proton or iron
showers and in case of a mixed composition with40 % iron and60 % proton. The predictions depend on
the hadronic interaction model used in the simulation of theair showers (QGSJet-II or EPOS), but not on
the cosmic ray energyE.
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Figure 7.31: The fitted data modelftot is compared with the point distribution for the fit variations in
Fig. 7.30.
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Figure 7.32: The plot shows the SD reconstruction probability PSD as a function of the FD energyEFD.
The legend distinguishes between the probability to pass the T4 selection (black circles), the probability
PSD to reconstruct the energy estimator (red squares), and the probability to reconstruct the shower front
curvature (blue triangles). The latter is optional in this study, but shown nevertheless for comparison. The
solid black line shows the prediction of thePSD-model with the fitted parameters from Table 7.8. The gray
hatched area represents the statistical uncertainty of themodel.

As a last cross-check, the potential golden hybrids are usedto derive the SD reconstruction probability
PSD in order to compare it with the fittedPSD-model. Since the SD and FD operate independently, it is
possible to derive the SD reconstruction probabilityPSD from the conditional probabilityP (SD|FD) to
detect an event with the SD if it is detected with the FD

P(SD|FD) =
P(SD ∩ FD)

P(FD)
=

P(SD)P(FD)

P(FD)
= PSD. (7.3.3)

Fig. 7.32 shows the result of the cross-check. Relevant for this study is the probabilityPSD to reconstruct
the SD energy estimatorRSD

µ . The result obtained from the potential golden hybrids is ingood agreement
with the PSD-model fitted to golden hybrid events. Since the golden hybrid events are a subset of the
potential golden hybrids, this analysis is not an independent. But it is based on different concept and thus
a good cross-check.

The results found here have several implications, which arediscussed below. They also finally allows to
convert the SD energy estimatorRSD

µ event-by-event into a measurementESD of the cosmic ray energyE.
TheESD-distribution measured with the SD is used in the next chapter to reconstruct the energy-dependent
cosmic ray fluxJ(E).

Shower-to-shower fluctuations

The shower-to-shower fluctuationsσsh-sh[R
sh-sh
µ ]/Rsh-sh

µ of the SD energy estimator are allowed to make a
transition in the data modelftot, one obtains fluctuations of about20 % around1018 eV and about8 %
above1019.5 eV, as shown in Fig. 7.30d).

This indicates a transition from a light or mixed composition to a heavier one between1018 eV and
1020 eV, since small shower-to-shower fluctuations are a sign of iron nuclei, as illustrated in Fig. 7.27 and
discussed in Chapter 5. The observation of such a transitionis in qualitative agreement with other analyses,
e.g.ref. [29].

The interpretation still has to be tentative, because the statistical and systematic uncertainties are rather
large. The statistical significance of the deviation from a constant composition is only slightly larger
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than one standard deviation. It reduces to less than one standard deviation, if systematic uncertainties are
considered.

The hypothesis of constant shower-to-shower fluctuations can be compared with the hypothesis of
a transition with the simplified likelihood ratio test described in Chapter 6. The difference of the log-
likelihood values yields

−2 ln ℓ = 2 lnLtransition− 2 lnLconstant≈ 3.45 (7.3.4)

which is not significant for either model.
In order to derive significant results from this kind of analysis in the future, it will be necessary to at

least double the amount of events, to improve the models of the FD and SD resolutions, and to clear up the
intrinsic systematic bias of the fit. With enough data, it should be possible to fit the contributions of the
most dominant cosmic ray nuclei as a function of the cosmic ray energyE with this approach, similar to
the analysis shown in ref. [195].

If the cosmic rays at the highest energies are iron nuclei, a composition analysis based on the SD
shower-to-shower fluctuations can be very powerful. Iron showers have the smallest possible shower-to-
shower fluctuations, which are consistently predicted by all hadronic interaction models. Therefore, iron
showers have a very clean experimental signature.

Increase of the muon number on the ground with the cosmic ray energy

The calibration constantγ measures the rate of increase of the number of muonsNµ on the ground with
cosmic ray energyE

Nµ ∝ E1/γ . (7.3.5)

Fig. 7.33 compares the fitted calibration constantγ with the values found in air shower simulations of
Chapter 5. Because the reconstructed energy estimatorRSD

µ was made bias-free with respect to the cosmic
ray energyE in Chapter 6, the fitted value ofγ is directly comparable with the simulations. The data value
is slightly lower than the range of the simulation predictions, but still agrees within one standard deviation
with the lowest simulated value.

This observation can be interpreted. It was shown with a simplified shower model in Chapter 3, that
γ is a universal constant in good approximation. It was also shown, that this no longer true if the average
cosmic ray massA changes with the cosmic ray energyE. Cosmic rays with a larger massA produce more
muons. If the massA changes withE, the rate of increase1/γ of number of muonsNµ on the ground with
E changes, too.

The following relation was derived between the observed constantγA in case of a changing composition
and the universal constantγ in case of a constant composition in Chapter 3:

γA =
γ

1 + β(γ − 1)
,

whereasβ is the rate of change of the average cosmic ray massA, described by the formula

A(E) = A0 × Eβ .

If the composition gets heavier (β > 0), the observed constantγA is smaller than the universal constant
γ. This agrees qualitatively with the observation. The simple model forγA is not reliable enough to make
quantitative predictions, but it serves to illustrate thatγA carries information about the change of the cosmic
ray composition, which may be used in future analyses.

Ratio of the muon number in real events and simulations

Because the reconstructed energy estimatorRSD
µ was made bias-free with respect to the cosmic ray energy

E in Chapter 6, the average valueRµ(E) = 〈RSD
µ 〉(E) at a particular energy is an estimator of the true total

number of muons on the ground:Nµ ∝ Rµ. By design, the energy estimatorRµ equals one, if the number
of muonsNµ is equal to the average number of muons in a proton shower simulated with the hadronic
interaction model QGSJet-II at1019 eV.
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Figure 7.33: The plot shows the exponentγ in the power law relation of the number of muonsNµ on the
ground and the cosmic ray energyE: Nµ ∝ E1/γ . The simulation results from Chapter 5 are compared
with the fitted values from this chapter. The data entries correspond to the fit setups in Table 7.7. The gray
boxes represent the systematic uncertainties.
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Figure 7.34: The plot shows the number of muonsNµ on the ground at a zenith angleθ = 60◦ and a
cosmic ray energyE = 1019 eV, normalised to an average proton shower simulated with QGSJet-II. The
simulation results from Chapter 5 are compared with the fitted values from this chapter. The data entries
correspond to the fit setups in Table 7.7. The gray boxes represent the systematic uncertainties.
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The fitted energy calibration function allows to calculate the ratio of the number of muons at1019 eV
in the data and in the simulation:

Nµ[data](1019 eV)

Nµ[p,QGSJet-II](1019 eV)
= Rµ(1019 eV) =

(
1019 eV

Ecal

)1/γ

= 2.042 ± 0.037 +0.030
−0.040 (sys.) (7.3.6)

Fig. 7.34 compares this result with simulation predictionsfrom Chapter 5. Real events appear even
more muon rich than iron showers simulated with the EPOS model. The exact ratio depends slightly on the
cosmic ray energyE. The predictions of air shower simulations are apparently inconsistent with the data
in this case. This is a well-known discrepancy, seee.g.ref. [196–198], and still under study. It does not
affect the other results presented here.

7.4 Summary

A new method was applied to derive the calibration constantsEcal andγ from a special class of 411 events
which are detected simultaneously in the FD and SD. The method is based on a complete statistical model
ftot of the distribution of such events. Thorough tests were applied to the new method which all produced
consistent results.

The new method is able to use events with energies between1018 eV and1018.7 eV for the energy
calibration where the SD is not fully efficient. This was not possible before. The effect of the limited SD
efficiency on the distribution of the observed SD energy estimatorRSD

µ is well understood.
The statistical modelftot has a component which describes the SD reconstruction probability PSD and

another component which describes the shower-to-shower fluctuationsσsh-sh[R
SD
µ ] of the SD energy esti-

mator. Both have free parameters which are fitted to the data.The fittedPSD-model will be used to derive
the cosmic ray fluxJ(E) from the detected number of events in the SD in Chapter 8.

The fitted shower-to-shower fluctuationsσsh-sh[R
SD
µ ] qualitatively indicate a transition from a light to

a heavy composition of cosmic rays between1018 eV and1020 eV, although not with a strong statistical
significance. The fitted calibration constantγ is compatible with a changing composition that is getting
heavier as the cosmic ray energyE increases.

A large excess of muons are found in the data compared to predictions from air shower simulations.
Even in the most optimistic case, the number of muons in the data is about20 % larger than in simulated
air showers with the same energy.
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Chapter 8
Flux of ultra-high energy cosmic rays

This chapter covers the determination of the cosmic ray flux at ultra-high energies, which arrives at the
Earth. A flux measurement is basically a counting experiment: an integral flux is obtained by counting
events above a threshold, adifferentialflux by counting events in intervals of a cosmic ray observable x.
The flux is then calculated by dividing the counts through theexposureof the counter.

The focus of this study is the differential fluxJ as a function of the cosmic ray energy with the surface
detector (SD). In this particular case, the flux is calculated as

J =
∆N

∆E

1

PSD(E, θ)

1

Λ
, (8.0.1)

whereas∆N are the counts in an energy interval∆E, PSD is the detection efficiency1, and the exposure
Λ is the product of the solid angleΩ of the monitored sky, the collection areaASD of the SD, and the run
time t of the observatory:

Λ(θ1, θ2, t) = Ω(θ1, θ2)ASD(t) t. (8.0.2)

The collection areaASD is a function of the run timet, because the measurement started already when
the SD of the Pierre Auger Observatory was not complete. At low energies, where the detection efficiency
is not100 %, the true number of counts is derived by dividing the the collected counts through the average
detection efficiencyPSD, which is a function of the distribution of the cosmic ray energiesE and zenith
anglesθ in each bin.

The principle of the flux measurement is simple, but three complications arise in practice.

• Collection area.Determining the collection areaASD of the flat surface detector is straight forward,
but not trivial. Most events were collected during a time when the array had many holes. Air showers
that fall into a hole or close to the border of the array still have a finite probability to trigger the SD,
especially at large energies, where the showers are intense. A proper criterion has to be found to
reject such events, so that the remaining ones correspond toa well defined collection area.

• Detection efficiency.Currently, there is no straight forward way to derive the detection probability
PSD from the data. Several methods exist, three are already applied in Chapter 7. Nethertheless,
every method has some disadvantage. With the infill array, a straight forward way will be available
in the future.

• Bin migration. The Pierre Auger Observatory cannot determine thetrue energyE of a cosmic
ray, it can only measure areconstructed energyErec, which fluctuates around the true value. The
differential fluxJ is calculated from event counts in small intervals∆E, therefore there is a finite
probability for some events to be counted in the wrong bin, asillustrated in Fig. 8.1.

1This is often called trigger efficiency, but not every triggered event is actually reconstructable, see Chapter 7.
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Figure 8.1: The drawing illustrates the effect of bin migration in the measurement of a steeply falling flux
spectrum. A true energyEi corresponds to each energy bin, equal to the average energy in the bin. If
the bin width is close to the experimental resolution ofE, some events fluctuate into adjacent bins. In a
steeply falling flux spectrum, the number of events that fluctuate into to the lower energy bin make almost
no contribution to that energy bin, but events that fluctuateupwards may contribute significantly to the
upper energy bin.

The following sections will deal with the first and the third point, while the SD reconstruction prob-
ability and its uncertainty are derived in Chapter 7. The binmigration effects are treated by a statistical
method, that unfolds the energy resolution effects from themeasured flux spectrum. The unfolded flux
may then be compared directly with theoretical predictions.

The final result with its statistical and systematic uncertainties will then be compared with the result of
the standard analysis, which uses vertical air showers, anda cut-off of the cosmic ray flux above4×1019eV
will be established.

8.1 Exposure of the surface detector

The Pierre Auger Observatory uses a powerful yet simple method to assure a well defined exposure of the
surface detector [68,176–178,199,200]. On the one hand, the T5 selection is applied to the recorded events
which was described in Chapter 6. The T5 selection assures that the shower impact point in the SD array.
It does so by rejecting events if the station next to the shower core is surrounded by less than six active
stations. This reduces the amount of usable data, but is necessary in any case in order to avoid systematic
biases in the SD reconstruction.

From the point of view of each station, the T5 is a geometricalcondition which can be tested at any
given time. The SD array is a regular grid. Each station is surrounded by an elementary cell of this grid.
The area of the elementary cell only contributes to the instantaneous acceptance of the SD, if the station
is be able to fulfill the T5 criterion at a given point in time. The operational status of every station in the
array is monitored by the CDAS every second. The instantaneous configuration of the SD array is therefore
available with the time resolution of a second to calculate the SD exposure offline.

This approach has many advantages. The collection area defined in this way

• does not depend on air shower and detector simulations,

• automatically adapts to the growth of the SD array during theconstruction phase,

• and is able to cope with sudden temporary holes and gaps in theotherwise regular array due to
blackouts of individual stations.
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The exposureΛ is the product of the solid angleΩ(θ1, θ2) of the sky as seen by the SD, the areaAcell of
the elementary cell and the sum of all instantaneous configurationsi, which lasted for a timeti with NT5,i

stations able to fulfill the T5 criterion

Λ = Ω(θ1, θ2)Acell

∑

i

tiNT5,i. (8.1.1)

The cell area in a hexagonal grid with the grid lengthD = 1.5 km is

Acell = D2

√
3

2
≈ 1.949 km2, (8.1.2)

and the solid angle of the sky seen by the flat surface detectoris

Ω(θ1, θ2) =
∣
∣
∣

∫ 2π

0

dφ
∫ cos θ2

cos θ1

dcos θ cos θ
∣
∣
∣ = π|cos2 θ2 − cos2 θ1|. (8.1.3)

The solid angle is derived by regarding the flux of an isotropic source through a flat area element. The SD
is a flat detector and therefore its acceptance vanishes at horizontal incidenceθ = 90◦.

Fig. 8.2 shows the collected total exposure for the full sky (Ω = π) and the accepted exposure. Certain
time periods need to be excluded from the exposure calculation which reduce the total exposure to the
accepted exposure. These periods are excluded because the central data acquisition was either off, for
example due to maintenance, or not fully operational.

For example, three time periods are excluded due to bugs introduced in software updates of the T3
trigger and communication systems of the CDAS and local trigger logic of the SD stations. The most
notable one spans from September 2004 to the beginning of December 2004 and is also the longest excluded
period in the regarded time frame.

The majority of the excluded periods lasts less than a day, asshown in Fig. 8.3a). The short periods
are rejected because of temporary instabilities in the dataacquisition, for example due to communication
problems of the CDAS with the SD array during a thunder storm.The signature of such instabilities are
drops in the rate of recorded T5 events.

The temporary instabilities are founda posteriori. The normal rate of T5 events is about1.2event/hexagon/day
and quite constant. The arrival of cosmic rays in the surfacedetector is a Poisson process and thus the time
interval between two consecutive T5 events per hexagon follow an exponential distribution. The propability
P to observe an interval∆t larger than the time spanT is

P (∆t > T ) = e−λT , (8.1.4)

whereasλ is the expected event rate.
Periods of instable data acquisition are detected by searching for time intervals∆t with a probability

smaller than a thresholdα. Due to the statistical nature of this test, the method will raise some false alarms.
But by choosing a very small value ofα, the false alarms appear with a negligible frequency. The currently
used value isα = 0.5 × 10−6.

The rejected time periods effectively reduce the duty cycleof the surface detector which is shown in
Fig. 8.3b). The duty cycle in the first two years of data takingwas reduced mostly by technical issues
like the software bugs mentioned earlier. These issues wereresolved in successive updates of the CDAS
soft- and hardware. Since the end of 2005, the data acquisition runs with an average duty cycle of about
98 %. The first two years make up only10 % of the SD exposure up to the beginning of 2009 and their
contribution will become negligible soon.

The final exposure of the surface detector for showers in the zenith angle range60◦ < θ < 82◦ from
2004/01/01 to 2009/01/01 is

Λ = 3897 ± 117 km2 yr sr. (8.1.5)

The systematic uncertainty of the result is estimated to be at the level of3 % [68]. It is a conservative
combination of uncertainties from the exclusion of time periods, irregularities in the hexagon cells, dead
times due to communication problems, and others.
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8.2 Unfolding of the cosmic ray flux

With the exposureΛ, the energy calibrationESD = EcalR
SD
µ

γ
and the model of the reconstruction efficiency

PSD from Chapter 7, it is possible to derive a first flux estimate with Eq. (8.0.1). However, this flux cannot
be compared with other different experiments or with theoretical models, because it is a specific function
of the energy resolution of the surface detector in very inclined air showers. Theobservedflux g(ESD) is a
function of thetrueflux f(E)

g(ESD) =

∫

dEK(ESD, E) f(E) + ε(ESD), (8.2.1)

whereasK(ESD, E) is the response kernel of the experiment, which describes the finite detector resolution
and the limited detection efficiencyPSD. The functionε(ESD) represents the statistical fluctuations in the
observed distributiong(ESD) [201]. It is defined in such a way, that

〈g(ESD)〉 = g(ESD) − ε(ESD) (8.2.2)

is the average expected distribution. Naturally,ε(ESD) is unknown.
Eq. (8.2.1) has to be solved forf(E) in order to report a comparable result. Ideally, the detector is

built in such a way, that the response kernel is close to a delta functionK(ESD, E) ≈ δ(ESD, E), so that
f(E) ≈ g(ESD). In reality however, this is not always possible. For example, the intrinsic shower-to-
shower fluctuation of the energy estimatorRSD

µ in the very inclined showers is unavoidable. In this case,
the kernelK(ESD, E) has to be simulated or modeled.

Solving Eq. (8.2.1) is still not trivial. It has an exact solution, but this solution is entirely dominated by
the fluctuation termε(ESD). The art of unfolding is to find an approximate solution, which is as close as
possible to the true solution but not dominated by the statistical fluctuations.

In the following, the general problem of the unfolding will be illustrated and a short overview of unfold-
ing approaches is given. This introduction is based on ref. [201–207]. Then, the unfolding approach used
in this study is discussed, theRUN-method [201]. The systematic uncertainty introduced by the unfolding
is derived from a series of Monte-Carlo experiments. Finally, theRUN-method is applied to the SD data.

8.2.1 Unfolding problem and solutions

Eq. (8.2.1) is a so called ill-posed problem, because the solution f(E) depends very sensitively on small
fluctuations in the inputg(ESD). In order to demonstrate this [201,202], a basic example kernel is consid-
ered

K(ESD, E) =
1√
2πσ

exp

(

− (ESD − E)2

2σ2

)

, (8.2.3)

which represents the Gaussian fluctuations of the observed energy around the true energy.
A way to solve Eq. (8.2.1) is to expandg(ESD) and f(E) into a complete system of orthonormal

functions. The Fourier expansion is one possibility:

f(E) =
a0

2
+

∞∑

k=1

ak cos

(

k
2π

∆ESD
E

)

+ bk sin

(

k
2π

∆ESD
E

)

g(ESD) =
ã0

2
+

∞∑

k=1

ãk cos

(

k
2π

∆ESD
ESD

)

+ b̃k sin

(

k
2π

∆ESD
ESD

)

,

whereas∆ESD is the total range of all observed energiesESD. Such an expansion is always possible in real
applications, where∆ESD is finite. The coefficients(ã0, ãk, b̃k) of g(ESD) can be easily and independently
obtained directly from the set of data points{ESDi}, seee.g.ref. [147]. Note, that the fluctuationsε(ESD)
are included into the coefficients̃a0, ãk, andb̃k.
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The remainder of the right hand side of Eq. (8.2.1) can be solved term-wise with the example kernel
∫

dEK(ESD, E) cos(k
2π

∆ESD
E) = exp

(

−k
2σ2

2

)

cos

(

k
2π

∆ESD
ESD

)

∫

dEK(ESD, E) sin(k
2π

∆ESD
E) = exp

(

−k
2σ2

2

)

sin

(

k
2π

∆ESD
ESD

)

,

and thus one obtains

g(ESD) =

∫

dEK(ESD, E)f(E)

=
a0

2
+

∞∑

k=1

ak exp

(

−k
2σ2

2

)

cos

(

k
2π

∆ESD
ESD

)

+ bk exp

(

−k
2σ2

2

)

sin

(

k
2π

∆ESD
ESD

)

!
=
ã0

2
+

∞∑

k=1

ãk cos

(

k
2π

∆ESD
ESD

)

+ b̃k sin

(

k
2π

∆ESD
ESD

)

. (8.2.4)

The terms of the sums correspond to each other, so that the parameters of the solutionf(E) are

a0 = ã0, ak = ãk exp

(
k2σ2

2

)

, bk = b̃k exp

(
k2σ2

2

)

. (8.2.5)

If g(ESD) was a smooth function, the parametersãk andb̃k would eventually drop to zero ask increases.
But because of the statistical fluctuations, they are never exactly zero, even for largek. The corresponding
coefficientsak and bk of the unfolded solutionf(E) on the other hand are blown up exponentially, as
k increases. The full unfolded solution is therefore entirely dominated by random oscillations at high
frequencies, generated by random fluctuations in the original data.

It is also possible to understand this intuitively. The limited detector resolution smears out small scale
structures inf(E). The inverse procedure therefore amplifies such structures. Statistical fluctuations
always produce an artificial small scale structures, which are then accidentally amplified by the unfolding,
too.

Simply dropping terms of the expansion above some indexkmax does not work, as this also introduces
oscillations, which are known as Gibb’s phenomenon [201]. Instead, oscillations at high frequencies need
to be suppressed in a smooth way. Several approaches were proposed in the past to do this. A short
overview is given below.

In order to keep the following discussion more general, the distribution of the true values shall be called
f(x) and the distribution of the observationsg(y), so that Eq. (8.2.1) turns to

g(y) =

∫

dxK(y, x) f(x) + ε(y). (8.2.6)

Unfolding methods suppress the oscillations by an explicitor implicit regularisationof the solutionf(x).

Iterative algorithms

The D’Agostini-algorithm [205,207] and the Gold-algorithm [204] are examples of iterative algorithms.
Iterative algorithms operate on binned distributions, so that the transitionsf(x) → {fi} = f and

g(y) → {gj} = g are made. This turns Eq. (8.2.6) into a matrix equation

g = Kf . (8.2.7)

Each elementKij of the kernel matrix can now be interpreted as the probability for observing an event in
bin i, if its true value was in binj.

Iterative algorithms require, thatf andg have the same rank. Ifg has a larger rank thanf (the only
allowed case), the following modification of the original matrix equation is used instead

g = Af ⇒ AT g
︸ ︷︷ ︸

g̃

= AT A
︸ ︷︷ ︸

Ã

f ⇒ g̃ = Ãf , (8.2.8)
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whereasAT is the transposed matrix ofA. The iterative algorithms are then applied to new variablesg̃

andÃ, which have the right rank.
The solutionf is then approximated in successive steps. The D’Agostini- and Gold-algorithm do not

approximatef directly, but the transformation matrixD with the property

f = D g. (8.2.9)

The next iteration ofD is always calculated from the observationsg and the current intermediate solution
of f , which is usually initialised withg.

ApproximatingD instead off has the advantage, that a regularisation condition can be enforced upon
of D by construction. The D’Agostini- and the Gold-algorithm enforce positive-definiteness ofD, which
assures positive entries forf and damps the development of oscillations with large frequency and large
amplitudes.

The D’Agostini-algorithm is particularly well motivated by the theory of Bayesian statistic. It regards
the intermediate solution as the prior knowledge, from which the next iteration ofD is inferred in regard
to the observed data distributiong. The Gold-algorithm is not based on such a deeper concept, but very
powerful nevertheless. It is successfully applied to obtain the cosmic ray flux from fluorescence detector
data in ref. [203].

Convergence of iterative algorithms can usually be proven,but the converged solution is in general
not meaningful. The intermediate solution starts to diverge from a good regularised solution at a certain
iteration depth.

This is a consequence of the central feature of iterative algorithms. It is possible to show [208], that
they lead to faster convergence of eigen vectors of the solution f which correspond to large scale structures
than those which represent small scale structures. The amplitudes of the latter is small at the beginning
so that undesired oscillations are avoided if the iterationis stopped at an intermediate step. This leads an
implicit regularisation.

Unfortunately, the criterion of when to stop the iteration for the optimal result is not well defined.
A particularly useful criterion, the “weighted mean squared error” is expensive to calculate [203]. More
severe is a systematic bias, which iterative algorithms introduce to the first and last bins of the solution
f [203], if the data distributiong does not fall off toward both ends.

Regularised fits

The RUN-algorithm [201, 202, 209] and the SVD-based unfolding [206] are regularised fits. In these
approaches, a forward folded parameterisation off(x) is fitted tog(y) under special conditions that sup-
presses the oscillations off(x).

The parameterisation off(x) is usually a linear one

f(x|a) =
∑

i

ai pi(x), (8.2.10)

which is particularly easy to fit. Note, that the act of binning f(x) can also be formally described as a linear
parameterisation, although as a very rough one.

Inserting this parameterisation into the right hand side ofEq. (8.2.6) leads to
∫

dxK(y, x) f(x) =

∫

dxK(y, x)
∑

i

ai pi(x) =
∑

i

ai p̃i(y) (8.2.11)

with p̃i(y) =

∫

dxK(y, x) pi(x).

The unfolding is thus reduced to a fit of a system of linear functions to the observed distributiong(y).
The fit itself is explicitly regularised by introducing an additional constraint. In the case of a fit based

on the likelihood method, a regularisation termr(a) is added to the negative logarithm of the likelihood
function

− lnL(a) = − lnL0(a) + τr(a), (8.2.12)
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whereasL0(a) is the unmodified likelihood andτ is a tuning parameter of the regularisation.
The regularisation termr(a) is chosen in such a way that it has a minimum ata and becomes large,

if the solution has fast oscillations. Since the regularisation term increases in a smooth way with the
oscillations, they are gradually suppressed and Gibb’s phenomenon is avoided.

An optimal choice for the regularisation termr(a) is not established. A common choice is to minimise
the curvature of the solution [201,206]

r(a) =

∫

dx
(
f(x)

)2
, (8.2.13)

but functions of other derivatives off(x) or completely different approaches are also considered. The
solutionf(x) is a function of the tuning factorτ . The tuning factorτ has to be chosen carefully from
problem to problem. If it is too large, the solutionf(x) will be dominated by the regularisation. If it is too
small, the influence of the fluctuationsε(y) are not efficiently suppressed.

The details of the parameterisation off(x), the fit and the regularisation termr(a) vary from method
to method. TheRUN-algorithm uses a sophisticated combination of parameterisation and regularisation. It
also has a semi-automatic way of suggesting the proper tuning of r(a) as a function of the input data. The
SVD-based unfolding offers comparable features. It was decided to use theRUN-algorithm in this study.

8.2.2 RUN-algorithm

The RUN algorithm is very sophisticated and was successfully applied in many experiments [201]. The
RUN-algorithm has a well established reference implementation, which can be obtained online [210]. This
study is based on this reference implementation.

The regularisation is the central aspect of unfolding algorithms, but introduces a systematic bias to the
resultf(x). It will be shown in the following that theRUN-approach only suppresses contributions to the
solutionf(x) which are not statistically significant if the regularisation is tuned properly.

The RUN-algorithm operates on the binned distribution{gj} of the data. The main features of the
algorithm are the following:

• The detector kernelK(y, x) is built internally from a set of Monte-Carlo events, which the user has
to supply.

• The unfolded solutionf(x) is factorised in the following way

f(x) = fuser(x) fcorr(x), (8.2.14)

whereasfuser is a user-supplied input, which should be as close to the finalsolution as possible. Only
the correctionfcorr(x) is fitted by the algorithm.

• The parameterisation offcorr(x) is done with B-splines [211] of order 4. Splines have optimalap-
proximative properties [212]. B-splines form a linear independent basis of splines, so thatf(x) may
be written in the form of Eq. (8.2.10).

• The fit of the parametersa of the solution is performed with a likelihood method. The distribution
of the bin entries of the data distribution{gj} is correctly modeled as a Poisson distribution.

• The regularisation is done by minimising the curvature of the correctionfcorr. As a special conse-
quence of the B-spline parameterisation, the total curvature can be calculated with a constant matrix
C [201]:

r(a) =

∫

dx
(
fcorr(x)

)2
= aT Ca, (8.2.15)

whereasa is the parameter vector.

The advantage of Eq. (8.2.14) becomes apparent now. The fullsolution f(x) may have a large
curvature, but with a proper choice offuser, the correctionfcorr(x) will be rather smooth. In such a
case, the regularisation produces the minimal bias.
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The regularised unfolding is based on the maximisation of the likelihood of the parameterised solution

f(x) = fuser(x) fcorr(x) =
∑

i

ai pi(x) fuser(x), (8.2.16)

which is forward folded with the detector kernelK(y, x). The folded basis functions are

p̃i(y) =

∫

dxK(y, x) fuser(x) pi(x). (8.2.17)

The expected value in binj of the data distribution{gj} is calculated as

〈gj〉 =
1

yj − yj−1

∫ yj

yj−1

dy K(y, x)f(x) =
∑

i

Aji ai (8.2.18)

with Aji =
1

yj − yj−1

∫ yj

yj−1

dy p̃i(y),

the Poisson distribution is the statistical model of the distribution of observed valuegj around the true value
〈gj〉.

This defines the necessary input for a likelihood function without the regularisation term. The negative
logarithm of this function can be written as

− lnL0(a) = −
∑

j

〈gj〉(a) +
∑

j

gj ln〈gj〉(a) + const. (8.2.19)

Adding the regularisation term leads to

− lnL(a) = − lnL0(a) +
1

2
τr(a) = − lnL0(a) +

1

2
τaT Ca, (8.2.20)

with τ as the tuning parameter of the regularisation. The factor1/2 is just a convenient definition, as will
become apparent below.

A minimisation of this function yields a regularised solution as a function ofτ . For a fixedτ , this
can be done with standard methods. To see the effect of the regularisation,− lnL(a) is expanded into a
Taylor-series around a point̃a close to the minimum:

− lnL(a) ≃ − lnL(ã) − (a − ã)h +
1

2
(a − ã)T H(a − ã) +

1

2
τaT Ca, (8.2.21)

with the gradient vectorhi = −∂
(
− lnL(a)

)
/∂ai and the Hesse matrixHij = ∂2

(
− lnL(a)

)
/(∂ai∂aj).

Close to the minimum, this approximation is usually good andhigher order terms of the Taylor series may
be neglected. If constant contributions are omitted, the expression simplifies to

− lnL(a) ≃ −aT (h + Hã) +
1

2
aT Ha +

1

2
τaT Ca (+const.) (8.2.22)

At the minimum, the Hesse matrix is approximately equal to the inverse of the covariance matrixV of
the solution vector̃a

H ≃ V −1. (8.2.23)

The next step is to derive a transformation fora, which transformsH to the unitary matrix and further
simplifies Eq. (8.2.22). The covariance matrixV is then a unitary matrix, too, and the components of the
transformed parameter vector are uncorrelated random variables with varianceσ = 1.

Since the Hesse matrix is positive definite and symmetric at the minimum, it is possible to find an
orthogonal matrixU1 (a rotation in parameter space) that diagonalisesH

U1
T HU1 = D, (8.2.24)
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whereasD is diagonal. To turnD into the unitary matrix, another matrixD−1/2 is appended to the
transformation, which is defined as

D
−1/2
ij =

{

1/
√
Djj , i = j

0 , i 6= j,
(8.2.25)

so that
D−1/2U1

T HU1D
−1/2 = 1. (8.2.26)

It is possible to append yet another orthogonal matrixU2 without changing this result:

U2
T D−1/2U1

T HU1D
−1/2U2 = U2

T
1U2 = 1. (8.2.27)

This freedom will be exploited in a few steps. Comparing Eq. (8.2.27) with Eq. (8.2.22) shows, that the
transformation leads to a new parameter vectorā with

a = U1D
−1/2U2 ā (8.2.28)

and a corresponding new set of basis functionsp̄(x), which are a linear combination of the original basis
functions

fcorr(x) = aT p(x) = āT U2
T D−1/2U1

T p(x) = āT p̄(x) (8.2.29)

with p̄(x) = U2
T D−1/2U1

T p(x).

The transformation turns Eq. (8.2.22) into

− lnL(a2) ≃ −āT U2
T D−1/2U1

T (h + Hã) +
1

2
āT ā

+
1

2
τ āT U2

T D−1/2U1
T CU1D

−1/2U2 ā (+const.). (8.2.30)

The freedom of the last rotation matrixU2 may be now used to make also the regularisation matrixC in
the last term diagonal. To show this, the other transformations are applied toC to get a matrixC1

U2
T D−1/2U1

T CU1D
−1/2U2 = U2

T C1U2. (8.2.31)

The matrixC is positive definite and symmetric, applyingD−1/2 or U1 does not change this property.
Thus, an orthogonal matrixU2 may be chosen such, that

S = U2
T C1U2 (8.2.32)

is a diagonal matrix. The diagonal entries inSjj in S may be freely arranged in increasing orderSjj ≤
Sj+1j+1 by permutating pairs of columns and rows ofU2.

With this final step, Eq. (8.2.22) reduces to

− lnL(a2) ≃ −āT U2
T D−1/2U1

T (h + Hã) +
1

2
āT (1 + τS)ā (+const.). (8.2.33)

The solution of this equation is obtained with the minimum condition∇ lnL(ā)
!
= 0 as

ā = (1 + τS)−1 U2
T D−1/2U1

T (h + Hã). (8.2.34)

The solution shows, that a regularised parameterāj is reduced by a factor relative to the unregularised
parameter̄a′j

āj =
1

1 + τSjj
ā′j . (8.2.35)

The damping factor depends on the curvature of the corresponding basis function̄pj(x) of the parameter
and the tuning parameterτ .
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It is thus demonstrated, that the regularisation vanishes for terms with a small curvature, while the
parameters of basis functions with fast oscillations are pulled to zero in a smooth way, avoiding Gibb’s
phenomenon. The tuning parameterτ defines how early the suppression sets in. Through the suppression,
the regularised solution has an effective rank

m0 =
∑

j

1

1 + τSjj
, (8.2.36)

which is smaller than the total number of basis functions anddepends on the tuning parameterτ .
To semi-automatically suggest a value forτ , RUN performs a significance analysis on the unregularised

parameters̄a′j . These parameters have variance1. If a parameter̄a′j is insignificant, its mean〈ā′j〉 is
approximately zero and(ā′j)

2 approximately follows aχ2 distribution. This allows to define a confidence
level of the hypothesis that the parameter is insignificant,given an observed value of(ā′j)

2. In RUN, a
confidence level of95 % is used which corresponds to(ā′j)

2 ≤ 3.84.
A lower limit of the effective rankm0 is given by the firstj in descending order, for which this hy-

pothesis has to be rejected. The tuning parameterτ is then obtained by solving Eq. (8.2.36) with a given
m0.

Finally,m1 binned data points{fi} can be extracted from the solutionf(x)

fi =
1

xi − xi−1

∫ xi

xi−1

dx
∑

j

ājfuser(x) p̄j(x). (8.2.37)

The sum and the integral commute, so that standard uncertainty propagation can be used to turn the covari-
ance matrixV = (1 + τS)−2 of the parameter vector̄a into a covariance matrix of the solution vector
f .

The parameters̄ai are uncorrelated, but not the final data points. The author ofRUN recommends to
extractm1 ≤ m0 bins fromf(x), to reduces the bin-to-bin correlations. If the bin-to-bincorrelations are
negligible, the final bins of the solution can be visualised and interpreted in the usual fashion as points with
error bars.

Systematic analysis and optimal settings

TheRUN-algorithm automatically calculates a recommended value for effective degrees of freedomm0 of
the solution, but the value still has to be supplied by the user. The algorithm only provides a lower limit for
m0. It seems to be an open question question, whether this lowerlimit is an optimal choice. Even in the
numerical example of the original publication of the algorithm [201], the author uses a considerably larger
value form0.

Another free parameter of the algorithm is the number of knotsnknot for the B-spline parameterisation.
The author ofRUN recommendsnknot = 2m0 + 3, but it is also clearly stated, that sometimes more or
less knots may lead to better results. In general, the resultof RUN should depend only weakly on the exact
choice onnknot andm0, but the question for the optimal combination remains.

The optimal settings are derived from an analysis of Monte-Carlo experiments in the following, which
also serves as an end-to-end evaluation of theRUN-algorithm. Of particular interest is the analysis of the

Table 8.1: The table summarises the binning choice for the input and output of the unfolding algorithm.
The input distribution has equi-distant bins, the binning of the output distribution is more coarse and the
last two bins with small statistics are slightly larger.

distribution bins lower bin edges inlg(E/eV)

observed 20 18.0 18.1 18.2 . . . 19.8 19.9 20.0
unfolded 9 18.0 18.3 18.5 18.7 18.9 19.1 19.3 19.5 19.7 20.0
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bias of the solutionf and the size of the bin-to-bin correlations in the unfolded distribution {fi}. The
binning choice of the input and output distributions is thereby fixed and summarised in Table 8.1.

In case of the input distribution, the binning has a negligible impact on the unfolding, as long as the
number of bins is about twice as large asm0. The binning choice of the output is a compromise between
using as few bins as possible to keep the bin-to-bin correlations small, and yet having enough to observe
the interesting features in the unfolded flux distribution.

The Monte-Carlo events are generated in a similar way as in Chapter 7, and make use of the data models
derived in there.

(1) A true energyE is drawn at random from a model of the true flux. The model is a piece-wise power
law with spectral indices based on ref. [188]:

dJ
dE

∝







E−3, lg(E/eV) < 18.4

E−2.7 10−0.3×18.4, 18.4 ≤ lg(E/eV) < 19.6

E−3.9 10−0.3×18.4 101.2×19.6, 19.6 <≤ lg(E/eV).

(8.2.38)

The trailing factors fulfill the boundary conditions. A corresponding true zenith angleθ is drawn at
random from the distribution

dJ

dsin2 θ
∝ 1 (8.2.39)

in the range60◦ < θ < 82◦ for each true energyE. An ideal energy estimatorRµ is calculated with
Rµ = (E/Ecal)

1/γ .

(2) The ideal energy estimatorRµ is fluctuated according to the model of the shower-to-showerfluctua-
tions and the model of the SD resolution:Rµ → Rsh-sh

µ → RSD
µ . The reconstructed energy estimator

is converted back into an energy with the calibration functionRSD
µ → ESD.

(3) The true cosmic ray energyE is fluctuated according to the model of the fluorescence detector
resolution:E → EFD.

(4) The event is accepted at random according to the model of the SD reconstruction probability.

These steps are repeated untilN = 45000 pseudo events are collected, and, independently,NMC Monte-
Carlo events. Only accepted events count as pseudo events, but acceptedand rejected events count
as Monte-Carlo events.RUN uses both accepted and rejected events to calculate the detector kernel
K(ESD, E) internally. The rejected events are used to calculate the detector efficiency. The numberNMC

is chosen such, that the number of accepted events in the Monte-Carlo sample is20 × N . Both data sets
together form a Monte-Carlo experiment and 20 independent Monte-Carlo experiments are generated. The
Monte-Carlo experiments are then unfolded withRUN.

To assess, whether the bin-to-bin correlations of an unfolded distribution may be neglected,RUN pro-
poses the following test [202]:

(1) Take the full covariance matrixV [f ] of the unfolded distribution. Generate a large number (5000
events in this case) of random samples from the full covariance matrix, with a multivariate normal
distribution with zero mean

h(x) =
1

(2π)k/2|V |1/2
exp

(

−1

2
XT V −1X

)

. (8.2.40)

(2) Calculate theχ2 for each sample, taking only the diagonal entries in the covariance matrix into
account

χ2
obs =

∑

i

X2
i

Vii
(8.2.41)

Calculate the probabilityP (χ2 ≥ χ2
obs) =

∫∞
χ2

obs
dχ2 fχ2(χ2|ndof), whereasfχ2(χ2|ndof) is the theo-

reticalχ2 distribution forndof degrees of freedom.
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Figure 8.4: Shown is one of the Monte-Carlo experiments, which are used to test the unfolding with the
RUN algorithm. This example is unfolded withm0 = 9 andnknot = 21. a) The dashed line is the flux
model. The true flux (blue squares) is a random sample derivedfrom the flux model. The observed flux
(gray circles) is measured in the detector. The unfolded flux(black circles) is the result of the unfolding.
b) The same is shown, but the fluxes are shown relative to a reference fluxA×E−2.7. c) The points show
the deviation of the unfolded result from the flux model. d) The histogram shows the result ofχ2-test of
the bin-to-bin correlations, as described in the text.
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If the correlations are negligible, the obtained distribution is approximately flat.
Fig. 8.4 shows an example Monte-Carlo experiment. The inputdistribution is well reproduced by the

unfolding except in the last bin. A comparable measure of theunfolding bias is the sum

∑

i

(
Ji − J0,i

J0,i

)2

(8.2.42)

over all bins of the solution, whereasJi andJ0,i are the unfolded and the true flux in bini.
The distribution obtained from theχ2-test in the example is not exactly flat. Instead it has a “U”-shape,

which is a result of the bin-to-bin correlations. A comparable measure of the non-flatness of the distribution
is obtained by fitting a second order polynomial

p0 + p1 x+ p2 x
2, (8.2.43)

the valuep2/σ[p2] serves as a measure of the curvature and therefore of the sizeof the bin-to-bin correla-
tions.

Fig. 8.5 show the impact of the unfolding parametersm0 andnknot on these measures. The smallest
bin-to-bin correlations are obtained, if the effective number of degrees of freedom in the unfolding is equal
to the number of bins in the final distribution:m0 = m1 = 9. Increasing the number of knotsnknot

increases the bias of the result, if a smaller value is usedm0. At m0 = 9 and above, the impact ofnknot

becomes negligible.
Based on these results, the following unfolding parametersare selected:

m0 = 9 and nknot = 2m0 + 3 = 21.

The systematics of the unfolding with these parameters are further analysed. The results are shown
in Fig. 8.6. The unfolded result cannot be entirely bias-free as mentioned before. However, theRUN-
algorithm should introduce only a small bias compared to thestatistical uncertainty in each bin for an
optimal choice ofm0, which is can be confirmed.

Only the last bin shows a considerable bias, while it is negligible in the other bins. The bias of10 %
in the last bin will be corrected in the unfolding of the data,while adding a systematic uncertainty of the
same order to this bin.

TheRUN-algorithm calculates the full covariance matrixV of the statistical uncertainty of the unfolded
flux J . This matrix is not diagonal. If the off-diagonal entries are neglectedσest,i[J ] = Vii, one obtains an
estimate of the real fluctuations which is about20 % too small on average, as shown on the right hand side
of Fig. 8.6.

In order to approximately compensate this, the uncertaintiesσest,i[J ] of the unfolded data will be in-
creased by20% in graphic displays. Fits of the unfolded flux should make useof the full covariance matrix,
which will be given along with numerical tables of the unfolded flux.

188



CHAPTER 8. FLUX OF ULTRA-HIGH ENERGY COSMIC RAYS

0m
7 8 9 10 11 12

un
fo

ld
in

g 
bi

as

0

0.05

0.1

0.15

0.2
knotn

02 m
 + 302 m
 + 602 m

(a) Unfolding bias

0m
7 8 9 10 11 12

−
di

st
rib

ut
io

n
2 χ

no
n−

fla
tn

es
s 

of
 

0

2

4

6

8

10
knotn

02 m
 + 302 m
 + 602 m

(b) Bin-to-bin correlations

Figure 8.5: Shown is the result of the optimisation analysisof the unfolding parametersm0 andnknot. The
measures are defined in the text, small values are better.
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Figure 8.6: Shown is a statistical analysis of the bias and the reported statistical uncertainty of theRUN-
unfolding in case of the parameter choicem0 = 9 andnknot = 21. Left: The profile (black) shows
the average bias of the unfolded fluxJ with respect to the true fluxJ0. Thin vertical bars show the
size of the statistical uncertaintyσ[J ] of the unfolded flux in each bin. Thick vertical bars indicatethe
statistical uncertainty of the average bias. Small gray points represent the individual bias in the 20 Monte-
Carlo experiments. Right: The points represent the relative difference of the statistical uncertaintyσest[J ]
calculated byRUN and the root of the varianceσ2[J ] obtained from many Monte-Carlo experiments.
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8.2.3 Application to data

The RUN-unfolding with optimal settings is now applied to 45063 SD events in the zenith angle range
60◦ < θ < 82◦, which were collected between 2004/01/01 and 2009/01/01. This high quality event
sample is the result of selections, which are summarised in Chapter 7. The energyESD of the SD events is
calibrated with the fluorescence detector (FD), as described in Chapter 7.

The Monte-Carlo input for the detector kernelK(ESD, E) used in the unfolding is generated as de-
scribed above. The number of accepted events in the Monte-Carlo is 20 times larger than the number of
real events. There are several systematic uncertainties toconsider for the unfolded cosmic ray flux{Ji},
which are summarised in Fig. 8.7 and Fig. 8.8.

The FD energy scale is the largest systematic uncertainty. The FD energy has a global systematic un-
certaintyσFD

sys[E] = 22 %, as discussed in Chapter 6. The SD energyESD is calibrated to the FD energy
EFD and thus fully inherits this uncertainty. In order to use standard error propagation to derive the sys-
tematic uncertainty on the fluxJ(E) from this energy uncertainty, the unfolded flux{Ji} is approximately
interpolated with the following approach

J(E) ≃ exp((1 − p) lnJi + p ln Ji+1) for lnEi ≤ lnE < lnEi+1 (8.2.44)

with p = (lnE − lnEi)/(lnEi+1 − lnEi).

The corresponding systematic uncertaintyσE
sys(J) of the flux isσE

sys[J ] ≃ (dJ/dE)σFD
sys[E] and reaches

100 % in the highest energy bin1019.7 E < E < 1020 eV.
Another global systematic uncertainty derives from the SD exposure. The exposure calculation was

described in the first section of this chapter and has an estimated systematic uncertainty of3 %. It affects
all data points{Ji} in the same way and contributes an uncertaintyσexp

sys[J ] = 3 % to the flux.
The remaining systematic uncertainties concern the detector kernelK(ESD, E). The statistical nature

of the detector kernelK(ESD, E) itself introduces an uncertainty to the unfolding. The uncertainty is
evaluated by repeating the unfolding 100 times with 100 independently generated Monte-Carlo inputs. The
final unfolded flux{Ji} is actually the average of these 100 unfoldings and the variance is regarded as a
systematic uncertainty. Apart from this intrinsic uncertainty of the kernelK(ESD, E), there are systematic
uncertainties to consider:

• SD energy calibration. The energy calibration constantsEcal andγ have statistical and systematic
uncertainties which generate an additional systematic uncertainty in the SD energyESD of up to8%,
as shown in Fig. 8.7.

• SD resolution. The SD energy resolution also shown in Fig. 8.7 is limited partly by shower-to-
shower fluctuations of the energy estimatorRSD

µ and by the sampling fluctuations of the detector.
The systematic uncertainty of the both resolution combinedis estimated to be5 % (absolute change,
not relative change).

• SD reconstruction probability. The model of the SD reconstruction probabilityPSD was fitted to
the data in Chapter 7. The statistical and systematic uncertainties in the threshold parameters lead to
a systematic uncertainty in the fluxJ below the point of full efficiency at1018.7 eV.

Details about these uncertainties can be found in Chapter 7.The uncertainty of each one of these models
is propagated into the fluxJ with a Monte-Carlo approach. The model is varied randomly according to
its statistical and systematic uncertainties. Then, a new detector kernelK̃(ESD, E) is generated with the
varied model. The unfolding is done with the varied detectorkernel K̃(ESD, E). This is repeated 100
times. The propagated uncertainty of the model is the squareroot of the difference between the variance
of the fluxJ with the varied kernel̃K(ESD, E) and the variance of the fluxJ with the unmodified kernel
K(ESD, E) which was called intrinsic uncertainty above.

Finally, the kernel related uncertainties are added quadratically to form the kernel uncertaintyσK
sys[J ],

which is shown in Fig. 8.8b). The kernel uncertaintyσK
sys[J ] has bin-to-bin correlations, which are neglected

in the following. In all but the highest energy bin, the kernel uncertaintyσK
sys[J ] is at the level of10 %. In

the last bin, it is at the level of50 %.
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Figure 8.7: The plot compares the systematic uncertainty ofthe reconstructed cosmic ray energy with the
energy resolution (see text). Systematic uncertainties are correlated and represented by the filled areas. The
SD energy resolution and its components are shown by lines, which represent the size of the uncorrelated
fluctuations of the energy from event-to-event.
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Figure 8.8: The plots show the systematic uncertainties in the derived flux as a function of the cosmic
ray energy. In a), systematic uncertainties which are specific to this study are shown in detail. These
uncertainties are combined in b), and compared to the commonuncertainties of the SD exposure and the
FD energy scale (see text).
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8.2. UNFOLDING OF THE COSMIC RAY FLUX

Fig. 8.9 presents the unfolded fluxJ(E) its various uncertainties. Tables of the unfolded fluxJ(E)
and its full covariance matrix are provided in Appendix G. Correlations between adjacent bins of up to
±40 % are found, which are negative below1018.9 eV and positive above. The total uncertainty of the flux
is strongly dominated by the systematic uncertainties.

Two consistency checks are applied to the fluxJ(E), which are also shown in Appendix G. They test
for a dependency on the atmospheric profile during summer andwinter months and for a possible time
evolution of the data quality during the five years of data acquisition. No dependency or inconsistency is
found.

The spectrum is very steep and the interesting details only show up, if the fluxJ(E) is normalised to
an arbitrary reference fluxJnorm(E). The following reference flux is used in this study

Jnorm(E) = A

(
E

1019 eV

)−2.8

, (8.2.45)

whereasA is fitted to the unfolded fluxJ in the energy range1018.6 eV < E < 1019.7 eV, yielding

A = 4.029 × 10−20 km−2yr−1sr−1eV−1. (8.2.46)

The normalised resultJ/Jnorm− 1 is shown in Fig. 8.10.

Effect of unfolding

Fig. 8.9 and Fig. 8.10 allow to compare the raw flux estimate which is not corrected for the SD resolution
and detection efficiency effects with the unfolded fluxJ(E).

The largest difference is observed atE < 1019 eV, where the raw flux estimate is by factor of two
smaller due to the reduced SD detection efficiencyPSD. In the energy range1018.5 eV < E < 1019 eV,
the raw flux is about10 % larger due to bin-to-bin migration effects.

At E > 1019 eV, the unfolding has only a small impact on the result. This is because the random
fluctuations of the SD energyESD decreases as the energy increases and eventually become smaller than
the bin size. As a consequence, the bin-to-bin migration effects become negligible.

Flux suppression

The unfolded fluxJ(E) becomes steeper below1018.5 eV and above1019.7 eV. Both features are in
qualitative agreement with other analyses [17,30,188,213–215]. The feature around1018.5 eV is called the
ankle of the cosmic ray fluxJ(E). The suppression above1019.7 eV is of particular interest, since it may
be generated by the GZK-effect described in Chapter 3.

The GZK-effect predicts an attenuation of cosmic rays over the scale of a few tens of Mpc starting
between1019.5 eV and1019.7 eV. A Mpc is the typical distance between galaxies. The cosmic rays at
higher energies interact frequently with photons of the cosmic microwave background. The cosmic rays
are either destroyed by photodisintegration if they are heavy nuclei or loose energy by pion production if
they are protons. The observed onset of the suppression at about 1019.7 eV fits well to the expected onset
for cosmic protons, as shown in Fig. 3.3a) of Chapter 3.

The significance of the suppression above1019.7 eV is derived from the unfolded fluxJ(E) under the
assumption that the flux is a simple power law between1018.5 eV and1019.7 eV

J(E) = A

(
E

1019 eV

)α

, (8.2.47)

analogue to Eq. (8.2.45). The power law is fitted to data points in the range1018.5 eV < E < 1019.7 eV.
The predictionJpredof this fit is compared with the observed fluxJobs in the highest energy bin1019.7 eV <
E < 1020 eV. Out of the three systematic uncertainties, only the kerneluncertaintyσK

sys[J ] needs to be
regarded. The other systematic uncertainties affect all data points in the same way so that the influence
cancels in this analysis.

The result of the comparison is shown in Table 8.2. The flux suppression is significant at the level of
three standard deviations.
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Figure 8.9: Black squares show the cosmic ray fluxJ(E) derived with the unfolding method from very
inclined air showers (60◦ < θ < 82◦). Gray circles represent the “raw” flux estimate, which is not
corrected by the unfolding technique. White circles show theunfolded fluxJvert(E) from an independent
analysis of FD and SD data which is based on vertical showers (0◦ < θ < 60◦) [30]. The colored boxes
represent different systematic uncertainties of the unfolded fluxJ(E). The systematic uncertaintiesσE

sys[J ]

andσexp
sys[J ] of the FD energy scale and the SD exposure apply to bothJ(E) andJvert(E) in the same

way. The systematic uncertaintyσK
sys is specific toJ(E). The shown statistical uncertainty ofJ(E) uses

the approximationσi[E] = 1.2 ×
√
Vii, since the bin-to-bin correlations ofJ(E) cannot be shown. The

approximation is derived from an analysis of Monte-Carlo experiments described earlier in the text.

Table 8.2: The results of the flux suppression analysis are shown, as described in the text. The constants
A andα of the fit of Eq. (8.2.47) are given together with their statistical uncertainties and correlation,
with A0 = 4.029 × 10−20 km−2yr−1sr−1eV−1. The valuesJpred andJobs denote the predicted and the
observed flux in in the energy bin1019.7 eV < E < 1020 eV. The last column shows the significance
of the differenceJpred − Jobs in standard deviations. The fluxes are normalised to an arbitrary constant
Jc = 10−34 m−2s−1sr−1eV−1.

A/A0 α corr. Jpred/Jc Jobs/Jc sigma

stat. 1.00 ± 0.02 −2.78 ± 0.03 0.520 0.0578 ± 0.0045 0.0196 ± 0.0063 5.0
stat.+sys. 1.00 ± 0.04 −2.78 ± 0.06 0.159 0.0585 ± 0.0083 0.0196 +0.0096

−0.0137 3.1
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from a fit ofJnorm(E) to the unfolded fluxJ(E) in the energy range1018.6 eV < E < 1019.7 eV.
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Comparison with an independent analysis

The unfolded cosmic ray fluxJ(E) is derived from very inclined air showers (60◦ < θ < 82◦) measured
with the Pierre Auger Observatory. Also shown in Fig. 8.9 andFig. 8.10 is the unfolded fluxJvert(E)
derived from vertical showers (0◦ < θ < 60◦) measured with the Pierre Auger Observatory [30]. The
latter is the latest official result published by the Pierre Auger Observatory and shall be calledvertical flux.

Both analyses are based on independent data because of the disjunct zenith angle ranges. They use
different reconstruction and energy calibration methods and therefore have different systematics. The flux
Jvert(E) is derived from SD and FD events. The data points between1018 eV and1018.4 eV are derived
from an FD measurement of the cosmic ray flux. The data points above1018.4 eV are FD calibrated SD
events like in the case ofJ(E).

From the statistical point of view, both results are estimates of the same true fluxJ0(E) and therefore
expected to agree. The systematic uncertaintyσE

sys[J ] = 22 % of the FD energy scale and the systematic
uncertaintyσexp

sys[J ] = 3 % of the SD exposure affect both results in the same way and therefore cancel in a
direct comparison.

The flux estimatesJ(E) andJvert(E) are indeed very similar. The agreement is particularly goodin
the range1018.7 eV < E < 1019.5 eV. The ankle and the flux suppression are observed in both estimates.

Some deviations are nethertheless noticeable in Fig. 8.10.The vertical fluxJvert(E) appears slightly
shifted and tilted compared toJ(E). The flux suppression appears to set in at about1019.7 eV in J(E) but
already at about1019.5 eV in Jvert(E).

To quantify this deviation, the vertical fluxJvert(E) is re-binned to match the binning used forJ(E).
SinceJ(E) andJvert are samples of the same true fluxJ0(E), the difference

∆Ji = (Jvert,i − J0,i) − (Ji − J0,i) = Jvert,i − Ji (8.2.48)

in bin i should have an expectation〈∆Ji〉 = 0 and a variance

σ2
i [∆J ] = σ2

i [Jvert] + σ2
i [J ]. (8.2.49)

If this hypothesis was true and if the uncertaintiesσ2
i [∆J ] were Gaussian, the following sum over allN

bins

χ2
obs =

N∑

i

(
∆Ji

σi[∆J ]

)2

(8.2.50)

would follow aχ2-distribution withN degrees of freedom and the hypothesis could be rejected at a well
defined confidence levelP (χ2 > χ2

obs).
In reality, there are bin-to-bin correlations in the unfolded fluxesJvert(E) andJ(E) and part of the

uncertainty ofJB is systematic, so that the calculated confidence level looses its exact meaning and can
only be regarded as a measure of the agreement or disagreement.

Fig. 8.11 shows the deviation∆J/σ[∆J ] of Jvert(E) andJ(E). The points with the largest deviations
are found at the onsets of the flux suppression and the ankle.

If only statistical uncertainties are regarded in the comparison, the fluxes are clearly incompatible:

χ2
obs

N
≈ 6.0 → P (χ2 ≥ χ2

obs) ≈ 2 × 10−8. (8.2.51)

If systematic uncertainties are included in the analysis, the results roughly agree:

χ2
obs

N
≈ 1.1 → P (χ2 ≥ χ2

obs) ≈ 0.39. (8.2.52)

The analysis indicates some tension between the vertical flux Jvert(E) and the result of this study
J(E), which has to be pushed to the edge of its systematic uncertainties to get an agreement. This should
be investigated further in the future.
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Figure 8.11: The plot shows the deviation of the flux obtainedin this study from the latest reference
result [30] in standard deviations. The reference flux is thesame as in Fig. 8.9 and Fig. 8.10.

8.3 Summary

The cosmic ray fluxJ(E) in the energy range1018 eV < E < 1020 eV was derived in this chapter from
45063 selected SD events in the zenith angle range60◦ < θ < 82◦, collected between 2004/01/01 and
2009/01/01. The energyESD of these SD events was calibrated against the FD energyEFD.

Detector effects were removed from the cosmic ray fluxJ(E) with an unfolding method, theRUN-
algorithm. The unfolding depends on a detailed statisticalmodels of the SD resolution and efficiency,
which were taken from Chapter 8. The output of theRUN-algorithm was studied in detail with Monte-
Carlo experiments and was found to be suitable for the unfolding of the cosmic ray fluxJ(E).

The uncertainty of the cosmic ray flux is dominated by the systematic uncertaintyσsys[E] = 22 % of
the FD energy scale. It generates a corresponding systematic uncertaintyσE

sys[J ] in the cosmic ray flux
J(E) between60% and a factor of two. Uncertainties in the energy calibrationand the unfolding add10%
uncertainty to the fluxJ(E) in most bins except the highest energy bin1019.7 eV < E < 1020 eV, where
the uncertainty is about50 %.

A flux suppression above1019.7 eV is observed despite these large uncertainties with a significance of
three standard deviations. The onset of this suppression qualitatively agrees with the onset predicted by
the GZK-effect for intergalactic protons. This seems to be in contradiction with the indications found in
Chapter 7 that the cosmic rays above1019.7 eV could be mostly heavy nuclei.

The flux J(E) derived from very inclined air showers is compared with an independent estimate
Jvert(E) derived from vertical showers in the zenith angle range0◦ < θ < 60◦. Both are independent
estimates of the same true cosmic ray flux and agree within onestandard deviation.

Comparisons between the vertical fluxJvert(E) and the fluxJ(E) obtained from very inclined air
showers will improve the understanding of the systematic uncertainties in both flux estimates. Eventually,
the estimates will be brought into statistical agreement which will then allow all cosmic ray analyses to use
the full zenith angle range of recorded SD events.
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This work described a complete procedure to derive the fluxJ of ultra-high energy cosmic rays in the
energy range1018eV < E < 1020eV from data of very inclined air showers, which were recorded with the
Pierre Auger Observatory between 2004/01/01 and 2009/01/01. The analysis used the high event statistics
gathered by the surface detector (SD) of the observatory. The SD measurement of the cosmic ray energy
E was based on a calibration of the SD signal described by the energy estimatorRµ with the fluorescence
detector (FD), which is able to perform a calorimetric measurement ofE.

All steps in this work required input about the average properties of very inclined air showers on the
ground and their fluctuations, as well as the SD signal response to such showers. The input was obtained
by simulating and studying 6480 very inclined air showers and the same number of SD events in the zenith
angle range60◦ < θ < 88◦. The simulations were computed with the program CORSIKA [49, 89], the
high-energy hadronic interaction models QGSJet-II [115–120] and EPOS [130, 131], and the low energy
hadronic interaction model FLUKA [102,103].

Particularly important for the SD event reconstruction wasthe lateral particle densitynµ and the total
numberNµ of muons on the ground:

• The muon densitynµ was parameterized. The parameterization is not based on theoretical input,
but on a fit of a linear parameterization to the simulation output. Thenµ-model agrees with the
simulation at the level of10 %.

• A systematic uncertainty of about30 % was found in the simulated number of muonsNµ, which is
of the same order as the difference found between proton and iron induced showers.

• Shower-to-shower fluctuations ofNµ of 3 to 4 % were observed in case of iron showers and14 % to
21 % in case of proton showers. The ranges represent the systematic uncertainties. The fluctuations
of Nµ are approximately Gaussian with a tail towards small valuesof Nµ.

The SD signal responsefµ(Sµ) to muons and the contribution〈ǫ〉 of electromagnetic particles to the SD
signal were studied with simulated SD events, which were further inputs for the SD event reconstruction:

• A modelfµ of the signal response of SD station to muons was derived, which included signal fluc-
tuations generated by muons and electromagnetic particlesin the shower front.

• The signal contribution〈ǫ〉 of electromagnetic particles to the SD signal was compared with the
model from ref. [16]. Deviations between10 % and20 % were found. The deviations were absorbed
into thefµ-model so that the combination of both models in this study was almost bias-free.

A new software was written within the AugerOff line-frame to perform the SD event reconstruction.
The new software combined the features of two existing programsefit [17,161–165] andSdHorRec [14]
and added minor improvements. Its purpose is to reconstructan energy estimatorRµ ∝ Nµ ∝ E1/γ and
the direction(θ, φ) of air showers recorded with the SD. The bias and resolution of these reconstructed
variables was analyzed with simulated SD events.

• The resolution ofRµ and(θ, φ) depends on the energyE and zenith angleθ of the shower. For a
1019 eV shower with an inclinationθ = 70◦, the resolution ofRµ is 16 % and the angular resolution
0.4◦.

• The systematic uncertainty ofRµ in the zenith angle range60◦ < θ < 82◦ is at the level of3%. The
systematic uncertainty of the zenith angleθ is 0.1◦.

The reconstruction software was designed to make the modelsof the muon densitynµ and the SD
signal responsefµ easily replaceable. This feature was used to compare the models derived in this study
with others from ref. [10,11,15,17].

• An overall bias of20 % in the energy estimatorRµ is generated by the model of the electromagnetic
signal component〈ǫ〉, if its bias is not implicitly or explicitly corrected.

• If overall biases are corrected, the performance of all models in the zenith angle range60◦ < θ <
82◦ is comparable. The models derived in this study achieve a slightly better resolution ofRµ in
simulated events and fit better to real events in most cases.
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The energy calibration was based on a fit of the power lawE = Ecal × Rµ
γ to high quality events

recorded simultaneously in the SD and the FD. Selection cutsaccepted 411 events for this study. A new
method was introduced to perform the fit which used a completeprobability density functionftot of the
distribution of these events for the first time.

• The effect of the limited SD efficiency between1018 eV and1018.5 eV is included in theftot-model,
which allowed to use events in this energy range to constrainthe fit. Before, it had been necessary to
rejected such events. The new method improved the event statistics by a factor of three.

• The modelftot was used to fit a model of the SD detection efficiency to the data.

• The modelftot was further used to fit the shower-to-shower fluctuations ofRµ to the data. The
fluctuations ofRµ are sensitive to the cosmic ray composition. They decrease from about20 % at
1018 eV to less than10 % at 1020 eV. This observation is compatible with a scenario where the
composition of cosmic ray masses is getting heavier as the energyE increases, but not significant
enough to draw definite conclusions.

• The calibration constantγ is sensitive to a change in the composition of cosmic ray masses. The
fitted value is compatible with the scenario mentioned above, but the observation is again not very
significant.

• A large excess of muons in real events is found compared to airshower simulations at the same
energy. Real events show20 % more muons at1019 eV than the closest simulated scenario.

• The FD measurement of the cosmic ray energyE has a systematic uncertainty of22 %. The en-
ergy calibration transfers this uncertainty to the SD. Statistical and systematic uncertainties in the
calibration fit add another4 % to 7 %.

The cosmic ray fluxJ(E) was reconstructed from 45063 selected SD events in the zenith angle range
60◦ < θ < 82◦. The apparent cosmic ray flux is distorted by the limited SD resolution and detection
efficiency, especially between1018 eV and 1019 eV. An unfolding method was used to correct these
effects. The unfolding used the models of the SD resolution and detection efficiency which were derived
for the energy calibration. The fitted shower-to-shower fluctuations ofRµ were another input.

The uncertainty of the fluxJ(E) was dominated by the systematic uncertainty of the FD energyof
22 %. The corresponding systematic uncertainty of the flux varied between60 % and100 %. Uncertainties
in the unfolding and the energy calibration added about10% uncertainty to the fluxJ(E) below1019.7 eV
and about50 % in the range1019.7 eV < E < 1020 eV.

A flux suppression above1019.7 eV was observed with a significance of three standard deviations. The
onset of this suppression agrees qualitatively with the predicted GZK-effect [31,32].

The fluxJ(E) derived from very inclined air showers in the zenith angle range60◦ < θ < 82◦ was
compared with an independent estimateJvert(E) derived from vertical showers in the zenith angle range
0◦ < θ < 60◦ [30]. Both are independent estimates of the true cosmic ray flux and agree within one
standard deviation.

Comparisons between the vertical fluxJvert(E) and the fluxJ(E) obtained from very inclined air
showers will improve the understanding of the systematic uncertainties in both flux estimates. Eventually,
the estimates will be brought into statistical agreement which will then allow all cosmic ray analyses to
seamlessly use the full zenith angle range of recorded SD events.
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Appendix A
Analytical and numerical calculations

A.1 Point of shower maximum and particle interaction lengths

Input for the calculations in Fig. 3.7 in Chapter 3 are the following.

• A parameterisation of the slant depthX(h) and the densityρ(h) in the spring atmosphere [42,43] in
Malarg̈ue, Argentina. The altitude of the experiment is taken as1400 m and taken into account.

• The hadronic attenuation lengthsΛπ ≈ 120 g cm−2 andΛK ≈ 140 g cm−2 for pions and kaons,
taken from [21]. The attenuation lengths are approximatelyvalid in the energy range of10 GeV to
1000 GeV. The electromagnetic radiation lengthX0 ≈ 36.6 g cm−2 for dry air is taken from [23].

• The following parameterisation of the observedXmax in Fig. 3.2:

Xmax(E)/g cm−2 = 725 +

{

71 × [lg(E/eV) − 18.35] if lg(E/eV) < 18.35

40 × [lg(E/eV) − 18.35] if lg(E/eV) ≥ 18.35.
(A.1.1)

The total atmospheric depthXatm for an air shower is obtained by integrating the air densityρair(h)
along the path of the shower:

Xatm =

∫ 0

dtop

dd ρair
(
h(d)

)
, (A.1.2)

whered(h) is the distance of a point on the shower axis with the altitudeh and the point where the shower
axis intersects with the ground, as illustrated in Fig. 2.4.The interchanged integral limits are necessary,
becaused is zero at the ground, whileX is zero at the top of the atmosphere.

The relation of the distanced to the altitude above the groundh is geometrical

d(h) =
[
(R+ h)2 +R2 (cos2 θ − 1)

]1/2 −R cos θ, (A.1.3)

with R as Earth’s radius including the local altitude of Malargüe above the sea level, andθ as the zenith
angle of the shower. This simple result is obtained by assuming that the Earth is a sphere in good approxi-
mation over the involved distances.

Eq. (A.1.3) can be inverted to yieldh(d). The valuedtop = s(112 km) is the top end of the atmospheric
parameterisation ofρair(h). This completes the integral in Eq. (A.1.2), which is shown in Fig. 3.7a) as a
function of the zenith angleθ.

The distancedmax of the electromagnetic shower maximumXmax is obtained by solving the equation

Xmax =

∫ dmax

dtop

dd ρair
(
h(d)

)
(A.1.4)
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A.2. EXP-NORMAL DISTRIBUTION

for dmax. This is done numerically. Oncedmax is obtained,hmax can be calculated with the inverted form of
Eq. (A.1.3). Fig. 3.7c) and d) show both values as a function of the zenith angleθ.

The interaction lengthlint (a distance in meters) in Fig. 3.7b) is calculated from the hadronic attenuation
and radiation lengths (which are slant depths):

{λh, λem} =

∫ 0

lint

dh ρ(h) ≈ ρ(h) × lint ⇔ lint = {λh, λem}/ρ(h). (A.1.5)

A.2 Exp-normal distribution

The exp-normal distribution turns up in the context of this work. It describes the distribution of a random
variable, which is the logarithm of a variable with a normal distribution.

It can be derived from the normal distributionf(x) by the change of variablesy = lnx:

f(x) ∝ exp

(

− (x− µ)2

2σ2

)

⇒ g(y) ∝ exp

(

− (ey − µ)2

2σ2
+ y

)

. (A.2.1)

This is the inverse change of variables which is required to obtain the common log-normal distribution.
The parametersµ andσ2 are not equal to the mean and variance of ofg(y). They are just parameters of
the distribution after the change of variables.

Calculating analytically the normalisation and the first moments ofg(y) turns out to be extremely
difficult. Closed forms can be derived by calculating the characteristic function:

φy(t) =

∫ ∞

−∞
dy exp(ity) exp

(

− (ey −m)2

2σ2
+ y

)

=

∫ ∞

−µ

dz(z + µ)it exp

(

− z2

2σ2

)

, (A.2.2)

using the substitutionez = y + µ in the second line. This integral was solved with the programMathe-
matica [216] under the conditionµ > 0:

φy(t) = 2
1
2
i(i+t)σit

[

σ Γ

(
1

2
+
it

2

)

1F1

(

− it
2

;
1

2
;− µ2

2σ2

)

(A.2.3)

+
√

2µΓ

(

1 +
it

2

)

1F1

(

−1

2
i(i+ t);

3

2
;− µ2

2σ2

)]

. (A.2.4)

The solution contains the gamma functionΓ(z) and the confluent hypergeometric function1F1, which is
defined as

1F1(a; b; z) =
Γ(b)

Γ(a)

∞∑

k=0

Γ(a+ k)

Γ(b+ k)

zk

k!
. (A.2.5)

The expansion of the characteristic function int yields the moments ofg(y) (see e.g. [147]):

φy(t) =

∞∑

k=0

(it)k

k!
µ∗

k, (A.2.6)

whereasµ∗
0 is the normalisation ofg(y) andµ∗

k/µ
∗
0 thek-th moment.
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The expansion yields:
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(A.2.7)
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(A.2.9)

whereasψn(z) = dn+1

dzn+1 ln Γ(z) is the polygamma function, erf(z) the error function, and1F1(a; b; z)
(m,0,0)

them-th derivative of 1F1(a; b; z) with respect toa.

A.3 Effective area of a SD station and average muon signal

To calculate the excepted number of muons in a SD station froma given ground density of muonsnµ,
a formula for the effective ground areaAstation of the station shall be derived. This effective area is the
equivalent ground area, into which a muon of inclinationθµ has to fall to enter the active detector volume
of the station. The area is illustrated in Fig. A.1, a geometrical analysis leads to

Astation(θµ) = Atop +Aside = πr2 + 2hr|tan θµ|, (A.3.1)

≈ 10.2 m + 4.3 m|tan θµ| (A.3.2)

with r = 1.8 m andh = 1.2 m as the radius and height of the active detector volume from Chapter 4.
Another interesting related quantity is the average signal〈Sµ〉 produced by an ideal muon in the active

detector volume. Ideal means here, that the muon does not decay in the volume and that it has sufficient
energy to maintain a Cherenkov light production efficiency of 100 % along its track in water. This is case
for muons above1.5 GeV [16].

For such an ideal muon, the average muon signal〈Sµ〉 is proportional to the average track length〈lµ〉
of the muon in the active detector volume. With the definitionof the unit VEM from Chapter 4 one obtains

〈Sµ〉(θµ) =
〈lµ〉(θ)
〈lµ〉(0◦)

Sµ(0◦) =
〈lµ〉(θ)
h

VEM. (A.3.3)

It is possible to derive a closed form of the distribution oflµ analytically [217], which is quite complex.
On the other hand, it was realised by several authors (seee.g.[16]) that an analytical formula for the average
track length can be obtained by a simple argument.
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A.3. EFFECTIVE AREA OF A SD STATION AND AVERAGE MUON SIGNAL

Figure A.1: The drawing illustrates the effective ground areaAstation = Atop +Aside of a SD station and the
track vector in the active detector volumelµ of an ideal muon (see text). Both depend on the inclinationθµ

of the muon.
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Figure A.2: The left plot shows the effective ground areaAstationof a SD station in units of the lid area. The
area diverges forθµ → 90◦. The right plots shows the average track length in units of the vertical height
of the detector volumeh.

204



APPENDIX A. ANALYTICAL AND NUMERICAL CALCULATIONS

The argument starts with a division of the effective ground areaAstation into infinitesimal oriented area
elements dA. The center of each area element is a possible impact point ofa muon with a corresponding
track length vectorlµ. The average track length then is

〈lµ〉 =

∫

Astation
lµ dA

∫

Astation
eµ dA

=

∫

Astation
lµ dA⊥

∫

Astation
cos θµ dA

=
Vstation

cos θµAstation
, (A.3.4)

with eµ = lµ/lµ as the normalised muon direction, dA⊥ = eµdA = cos θµdA as the perpendicular
component of the area element with respect toeµ, andVstation as the active detector volume. The last step
exploits, that dV = dA⊥ lµ is also an infinitesimal volume element of the detector.

InsertingVstation = πr2h and Eq. (A.3.1) gives

〈lµ〉 =
πr2h

cos θµ(πr2 + 2rh tan θµ)
=

h

cos θµ + 2h
πr sin θµ

, (A.3.5)

and an average muon signal of

〈Sµ〉 =
1 VEM

cos θµ + 2h
πr sin θµ

. (A.3.6)

Fig. A.2 summarises the numerical results.
It shall be noted, that there also exist another convention of the effective area of the station in the

literature, which corresponds to a different definition of the muon densitynµ, e.g.in ref. [10]. In this work,
the muon densitynµ is defined as the time integrated flux through an infinitesimalground plane area. In
the reference, it is defined as the time integrated flux through an infinitesimal area element of the shower
front plane.

The effective area of the SD station in the latter case isAstation cos θ, whereasθ is the inclination of the
shower axis. For muons close to the shower axis whereθµ ≈ θ, this definition has the advantage that the
effective area does not diverge atθµ → 90◦. But if this approximation does not hold, the other definition
only makes the calculation of the effective area more complex and the definition used in this work becomes
more intuitive.

A.4 Projection of surface detector stations

In Chapter 6, it becomes necessary to project the position ofa SD station located on the curved surface of
the Earth into a Cartesian ground coordinate system, which is tangential to Earth’s surface at the impact
point of an air shower.

The apparent position of the SD station in this plane is the projection of the station position along the
average trajectory of the particle hits. It is assumed that these particles are mostly muons which travel in
straight lines and originate from a common point at the maximum of the shower in the atmosphere. In that
case, the projection is well defined. In very inclined air showers (60◦ < θ < 90◦), this approach works
well.

Other possible projection schemes are shown in Fig. A.3. Technically, the simpled possible projection
is that along the z-axis of the Cartesian ground coordinate system. Better is a projection along the direction
of the shower axis. Both kinds of projections introduce a radial offset∆r of the SD station in the lateral
shower coordinate system with respect to the correct projection. The size of this bias is calculated geomet-
rically for different zenith anglesθ. The distancedmax(θ) between the shower impact point and the point
of the shower maximum is taken from Appendix A.1.

The results are shown in Fig. A.4. The shower axis projectionproduces a smaller bias∆r/r. The
bias has an impact on the shower reconstruction in which the measured signalS in a station is compared
with the expected signal〈S〉(r) at the apparent radial distancer of the station from the shower axis. The
expected signal〈S〉 as a function of the radial distancer from the shower axis is roughly a power law with
an indexα ≈ −2, as shown in Chapter 3

〈S〉 ∝ r−2, (A.4.1)
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A.4. PROJECTION OF SURFACE DETECTOR STATIONS

(a) Vertical projection (b) Axial projection

Figure A.3: The drawings show two possible projections of SDstations into a Cartesian coordinate system,
which is tangential to Earth’s surface at the impact point ofan air shower. The shower axis is defined by
the zenith angleθ and the distanced between the impact point and the shower maximum. The real muon
trajectory that leads to the SD station is expected to start at the shower maximum (thin line). The projection
along the real muon trajectory (black points) has a radial distancer to the shower axis, which has an offset
∆r to a) the vertical projection or b) the shower axis projection (both indicated with white points). The
angleα is the angular distance from the position of the SD station and the impact point for an observer at
the center of the Earth with the radiusR.

r/km

−4 −2 0 2 4

r|
/r

∆|

−510

−410

−310

−210

−110

1

r>0∆ r<0∆

vertical projection

r/km

−4 −2 0 2 4

r/
r

∆

−510

−410

−310

−210

−110

1
shower axis projection

r/km

−4 −2 0 2 4

d’
/d

∆

−410

−310

−210

−110

1 °/θ
60
70
80
84
88

Figure A.4: Shown are geometrical calculations based on Fig. A.3. Left: The graphs show the bias∆r/r of
the apparent position of the SD station in the lateral coordinate system introduced by the vertical projection.
The bias is positive in the late part of the shower and negative in the early part. Center: The graphs show
the bias∆r/r of the apparent position of the SD station in the lateral coordinate system introduced by the
shower axis projection. The bias is always positive. Right:The graphs show the relative increase∆d′/d
of the distance∆d′ + d between the muon origin and the position of the SD station with respect to the
distanced of its apparent position in the ideal ground plane.
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therefore the bias∆S in the expected signal is about∆S/〈S〉 ≈ 2∆r/r. The bias∆S becomes significant
at θ > 84◦, if the approximate projections are used instead of the projection along the average muon
trajectory.

Also shown in Fig. A.4 is the additional path length∆d′ that the muon has to travel from the apparent
position of the SD station in the ideal ground plane to its true position on the ground. The prediction〈S〉
is calculated in the ground plane. The prediction is only comparable with the true measurement, if the
apparent collection area of the station does not change significantly and if additional muon attenuation
may be neglected over the additional distance∆d′. The relative error in the apparent collection area equals
(∆d′/d)2 and is negligible up toθ = 88◦. It is assumed that the additional muon attenuation can be
neglected if∆d′/d < 0.01. In this case, the projection remains valid up toθ ≈ 84◦.

A.5 Calculation of the data modelftot

The following probability density function (p.d.f.) is derived in Chapter 7:

f ′tot(R
SD
µ , EFD|p) =

∫

dθ
∫

dE gFD-rec(EFD|E, θ,p) hFD-hyb(E, θ|p) ×
∫

dRsh-sh
µ PSD(RSD

µ , θ,p) gSD-rec(R
SD
µ |Rsh-sh

µ , θ,p) hSD-sh-sh(R
sh-sh
µ |Rµ(E),p) (A.5.1)

whereasgFD-rec andgSD-rec model the measurement uncertainty of the FD and the SD respectively, hFD-hyb

is the distribution of the true energies observed in the FD,PSD is the SD reconstruction probability (which
is not a p.d.f.), andhSD-sh-shis the model of the shower-to-shower fluctuations. The energy E and the zenith
angleθ are the true values of the cosmic ray,Rµ is the ideal energy estimator corresponding toE, andRsh-sh

µ

is the true energy estimator realised in the particular event. The calibration functionRµ = (E/Ecal)
1/γ

predicts the relation betweenRµ andE which removes the remaining degree of freedom in the integral.
Furthermore,f ′tot has to be normalised by integrating over the input range ofEFD andRSD

µ , respectively:

ftot(R
SD
µ , EFD) =

f ′tot(R
SD
µ , EFD)

∫ RSD
µ

max

RSD
µ

min dRSD
µ

∫ EFD
max

EFD
min dEFD f ′tot(R

SD
µ , EFD)

. (A.5.2)

Solving these equations requires a calculation a three-dimensional convolution integral overRSD
µ ,EFD,

andθ and additionally a two-dimensional integral for the normalisation. These calculations can only be
done numerically. The computation needs to be fast, becauseftot is recalculated several hundred times in
a single maximum likelihood fit. A Monte-Carlo integration cannot be used, because typical minimisation
algorithms like those in MINUIT [148] requireftot to be deterministic. Some approximations are necessary
to perform the computation in reasonable time. The current approach is simple and there likely is still room
for improvement in the future.

The calculation time increases exponentially with the number of dimensions to integrate over in Eq. (A.5.1).
It is already implicitly assumed in Eq. (A.5.1), that any dependency of the component p.d.f.s on the shower
azimuthφ is negligible. The integration over the zenith angleθ is now carried out approximately in order
to reduce the problem to two dimensions.

Most events are found in the comparably narrow zenith angle range from60◦ to 70◦, and all but one of
the model components depend only weakly onθ in this range:

• The FD-resolution ofEFD and the SD-resolution ofRsh-sh
µ depend only weakly onθ in the regarded

zenith angle range. The former will be shown later in this chapter, the latter is shown in Chapter 6.
This leads to the substitution:

gFD-rec(EFD|E, θ,p) → gFD-rec(EFD|E,p)

gSD-rec(R
SD
µ |Rsh-sh

µ , θ,p) → gSD-rec(R
SD
µ |Rsh-sh

µ ,p).

• The shower-to-shower fluctuationshSD-sh-share independent of the zenith angleθ, as shown in Chap-
ter 5.
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The model of the SD reconstruction probabilityPSD is thus the onlyθ-dependent model component
left. The correlation between energyE and zenith angleθ in hFD-hyb is weak and the p.d.f. approximately
factorises:

hFD-hyb(E, θ|p) ≈ h̃FD-hyb(E|p) × h̃FD-hyb(θ|p).

The distribution of hybridshFD-hyb is fixed in the maximum likelihood fit. IfPSD(RSD
µ ,p) was fixed, too,

the integration overPSD could be carried out just once in the beginning of every minimisation to obtain an
average reconstruction probability〈PSD〉, which then used in the rest of the calculations

∫

dθ hFD-hyb(E, θ|p)PSD(RSD
µ , θ,p) = h̃FD-hyb(E|p) 〈PSD(RSD

µ ,p)〉.

Unfortunately,PSD(RSD
µ ,p) has free parameters, which are fitted with the maximum likelihood method.

Thus, the first approach fails and the following approximation is used instead
∫

dθ hFD-hyb(E, θ|p)PSD(RSD
µ , θ,p) ≈ h̃FD-hyb(E|p)PSD(RSD

µ , 〈θ〉,p),

which would only be exact, ifPSD was a linear function ofθ.
The remaining integrals overRSD

µ andEFD in Eq. (A.5.1) are discretized and calculated on a lattice.
This is the simplest form of a numerical integration, based on the formula

∫ xn

x0

dx f(x) ≈
∑

i

f(x̄i)∆xi (A.5.3)

with x̄i =
1

2
(xi+1 + xi), ∆xi = (xi+1 − xi).

The lattice uses equi-distant steps inlgEFD andlgRSD
µ , becauseRSD

µ andEFD span over orders of magni-
tude. The differentials inf ′tot need to be substituted accordingly

dE = ln 10E d lgE → ln 10 Ē∆lgE

dRsh-sh
µ = ln 10Rsh-sh

µ d lgRsh-sh
µ → ln 10 R̄sh-sh

µ ∆lgRsh-sh
µ .

The optimal grid constants were found by experimenting: 70 steps inlgRSD
µ in the interval(−1.2, 1.5) and

50 steps inlgEFD in the interval(17.5, 20.5) are an acceptable tradeoff between speed and quality.
The lattice calculation has the other advantage. Once it is completed, the function value offtot at a given

point (RSD
µ , EFD) can be calculated very fast. This is ideal for the application of ftot in the maximisation of

the likelihood functionL(p):

L(p) =
∏

i

ftot
(
(RSD

µ )i, (EFD)i|p
)
. (A.5.4)

The normalisation offtot can be calculated very fast for the same reason.
The numerical computation offtot is still time consuming. With the current approach, a singlemin-

imisation step in MINUIT takes about a second on an AthlonTM 64 3700+ CPU. The same step with a
100 × 70 grid already takes about 30 seconds. The numerical minimisation routines usually needs about
100 iterations, thus a single fit with a fine grid can easily take an hour and more.
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Appendix B
Air shower simulation: Technical
summary

The tables Table B.1 and Table B.2 give a technical summary ofthe air shower library described in Chap-
ter 5. The showers were simulated with CORSIKA [49,89], using QGSJet-II [126], EPOS [130,131], and
FLUKA [102,103]. Fig. B.1 shows the computation time and disc space requirements of the showers.

The whole library was generated in two main production runs:the run IDs 4681-6480 mark the first
run, run IDs 1-4680 the second. The second production run haslower run IDs than the first run due to
historical reasons. The first run was generated with the U.S.standard atmosphere model, while the second
uses the Malarg̈ue spring atmosphere [41,43], which is close to a yearly average atmosphere over Malargüe.
Fixes of minor technical issues (like program crashes) led to the use of three different versions of the main
program CORSIKA in the second run.

Another difference between the runs is the use the radial thinning. CORSIKA allows to remove particles
with a probability∝ r/r4thin inside a cone of radiusrthin around the shower axis. This option was turned on
in the first production run and turned off in the second run.
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Figure B.1: The points show the CPU time and the storage requirements of the simulated air showers. The
CPU time refers to the computing time on an AMD OpteronTM CPU with2 GHz. In total, the production
took approximately 4000 CPU days and631 GByte of disc space. The lines are simple fits to the data. It
is a coincidence, that the applied thinning strategy produces nearly equal average file sizes for proton and
iron showers, although the latter have more muons.
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Table B.1: The showers in the library are distributed in small finite regions of the parameter space. The
table shows the starting point of each region and its width. Each region contains five proton showers and
one iron shower for both QGSJet-II and EPOS, which makes 6480showers in total.

Parameter Distribution Start point Width

lgE/eV flat 18.0, 18.5, 19.0, 19.5, 20.0 0.1
θ/◦ sin(θ) cos(θ) 60, 62, 64, 66, 70, 74, 78, 82, 86 2
φ/◦ flat 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 10

Table B.2: The table shows a summary of the technical aspectsof the simulated air shower library.

Parameter Value Comment

simulation program CORSIKA options: CURVED, UPWARD, (SLANT)
6.511 run ID 4681-6480, no SLANT option
6.616, 6.617, 6.720 run ID 1-4680, with SLANT option

HE hadronic model QGSJet-II-3, EPOS-1.61 for hadrons withE > 80 GeV
LE hadronic model FLUKA2006 for hadrons withE ≤ 80 GeV

thinning level 10−6 energy fraction, where thinning sets in
wmax(hadrons, µ) E/1015 eV weight limit for hadrons, muons
wmax(e, γ) E/1013 eV weight limit for electrons, photons
rthin 150 m run ID 4681-6480, with radial thinning

- run ID 1-4680, no radial thinning

pthr(hadrons, µ) 0.1 GeV momentum threshold for hadrons, muons
pthr(e, γ) 250 keV momentum threshold for electrons, photons

ground altitude 1425 m above sea level
B 24.6 µT magnitude of geomagnetic field
θB −35.2◦ inclination of geomagnetic field
δB 4.2◦ declination of geomagnetic field
atmosphere model U.S. standard run ID: 4681-6480

Malarg̈ue spring run ID: 1-4680
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Appendix C
SD station: signal response model

Technically, the model of the signal response to muonsfµ(Sµ|θµ, k) described in Chapter 5 is derived
through the following steps:

(1) Extract the total signalS1 from every station in the library of simulated SD events thathas one muon
hit. Stations with total signals below the T1 threshold are included. Proton and iron showers are
treated alike, as well as the showers generated with the hadronic interaction models QGSJet-II and
EPOS.

(2) Correct the total signal responseS1 to one muon with the model of average signal ratio〈ǫ〉 from
ref. [16], which is also used in the event reconstruction in Chapter 6.

(3) Make histograms of the distributions ofS1/(1 + 〈ǫ〉) as a function of the average local muon incli-
nationθµ at the position of the station. Fourteen distributions are generated in steps of2◦ between
θµ = 60◦ andθ = 88◦. Each distribution has 500 bins spanning from0 VEM to 100 VEM.

Distributions for intermediateθµ-angles are obtained via linear interpolation of the existing ones:

fµ(S1
µ|θµ, 1) = (1 − p) fµ(S1

µ|θµ,1, 1) + p fµ(S1
µ|θµ,2, 1), (C.0.1)

with p = (θµ − θµ,1)/(θµ,2 − θµ,1). A linear interpolation produces the correct mean and variance of
the intermediatefµ, but not necessarily the right higher moments. Still, for small intervales inθµ, the
approximation is good.

The signal distributions forkmuons are derived from the distributions for one muon by auto-convolution,
following Eq. (5.5.7). Performing a numerical auto-convolution is computationally expensive. It takes
O(Nk) time in the typical notation of informatics withk as the number of muons andN = 500 as the
number of bins in the histogram. The evaluation of thefµ(Sµ|θµ, k)-model has to be fast, because the
p.d.f. is called up to106 times in the reconstruction of a single event. Therefore,fµ(Sµ|θµ, k) is pre-
calculated up tok = 9 and approximated by a normal distribution fork ≥ 10 with mean and width

µ = k

∫

dxx fµ(x|θµ, 1) (C.0.2)

σ2 = k

(∫

dxx2 fµ(x|θµ, 1) −
(∫

dxx fµ(x|θµ, 1)
)2
)

, (C.0.3)

following the standard approach. The Central Limit theoremassures thatfµ approaches a normal distribu-
tion for largek.

Fig. C.1 shows the result of this implementation. Introducing the approximation atk = 10 is acceptable,
but leads nethertheless to a visible discontinuity in the shape offµ(Sµ|θµ, k), as the normal approximation
ignores a tail towards large signals.
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Figure C.1: The plot illustrates the auto-convolution approach to obtainfµ(Sµ|θµ, k) from fµ(Sµ|θµ, 1)
used in this study. Depicted are the p.d.f.sfµ(Sµ|θµ, k) for several values ofk at two muon inclinations
θµ. At k ≥ 10, the auto-convolution is replaced by a Gaussian approximation, as described in the text. The
approximation can be noticed by a slight change in the shape of fµ(Sµ|θµ, k).

Other authors point out [218] that the numerical computation of the auto-convolution for largek is
faster, if it is performed in Fourier space. The characteristic function offµ(Sµ|θµ, k) is

f̂µ(Ŝµ|θµ, k) =

∫ ∞

−∞
dSµ e

iSµŜµ fµ(Sµ|θµ, k), (C.0.4)

whereaŝSµ is the corresponding variable ofSµ in Fourier space.
It has the useful property, that an auto-convolution is an exponentiation

f̂µ(Ŝµ|θµ, k) =
(
f̂µ(Ŝµ|θµ, 1)

)k
, (C.0.5)

seee.g. ref. [147]. The characteristic function̂fµ(Ŝµ|θµ, 1) can be stored in memory. The time for the
exponentiation scales likeO(ln k), so that the full auto-convolution in Fourier space than takesO(N ln k)

time. A Fast-Fourier transformation [219] needs onlyO(N lnN) time to computefµ from f̂µ. If k is
large, this approach can provide a huge speed up.

The Gaussian approximation offµ(Sµ|θµ, k) at largek may thus be completely avoided. Also, a
better interpolation inθµ is possible with characteristic functions. A first implementation of the Fourier-
based computation is included in theOff line-HAS package [167], but still needs more refinement to run at
acceptable speed and is therefore not used in this study.
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Appendix D
Reconstruction of SD and FD events:
technical details

SD event reconstruction

Fig. D.1 shows a flow chart of the module sequence used to reconstruct the SD events described in Chap-
ter 6. The T4 selection of the recorded SD events is done with aseparate program and described in
Appendix E. The rest of the reconstruction is implemented inthe AugerOff line-framework [137, 168].
The SD reconstruction is based onOff line-v2r5p7-Godot. The moduleSdHorizontalReconstruction is
used in the internal revision number 8254. The source code ofthis revision can be obtained online [167].

TheOff line-reconstruction is based on a sequence of modules. Each module performs a specific task
and may be configured with a steering card. After the preprocessing by the T4 selection program, the SD
events are read by theEventFileReaderOG module. The raw SD event contains only FADC traces of the
signals in individual stations. The moduleSdCalibratorOG performs the conversion of these FADC traces
to signals in units of VEM, as described in Chapter 4. It also finds the signal start time in each trace with
the trace cleaning procedure described in Appendix E.

The SdEventSelectorOG module is the next step in the sequence. It implements the rejection of
lightning events, calculates whether the event passes the T5-Prior criterion, and marks whether events if
they are in bad time period of data acquisition. The necessity to reject certain periods of data acquisition is
explain in Chapter 8.

The SdPlaneFitOG module fits the shower direction using a model of a plane shower front moving
with the speed of light. This preliminary shower direction is required in the next reconstruction steps which
are implemented in theSdHorizontalReconstruction module. This module performs the reconstruction
of the energy estimatorRµ of the cosmic ray and the reconstruction of the shower direction using a model
of a curved shower front. The reconstruction of the energy estimator is based on models of the lateral
density of muonsnµ in the shower at the ground level (MuonProfile), the signal response of the SD
stations to such muons (TankResponse), and the contribution of electromagnetic particles to this signal
(EMComponent).

TheSdEventPosteriorSelectorOG calculates whether the event passes the strict T5-Posterior crite-
rion. Finally, the event is written in the ADST-format [220]. Events in this format can be used in data
analyses or investigated with theEventBrowser program.
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Figure D.1: Shown is a flow chart of the SD reconstruction of very inclined showers based on Offline
modules. The new module SdHorizontalReconstruction is highlighted. The reconstructed data is written
in the ADST format [220], which can be displayed with the EventBrowser program or used for analy-
ses. The reconstruction chain uses pre-selected SdT4h events as input, the station selection in the module
SdEventSelectorOG is turned off, it is only used for its other selection flags (see text).
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APPENDIX D. RECONSTRUCTION OF SD AND FD EVENTS: TECHNICAL DETAILS

FD event reconstruction

The reconstructed FD events are taken from an official production [220], which is also based onOff line-
v2r5p7-Godot [137]. The FD event reconstruction describedin Chapter 6 is implemented as the following
sequence of modules:

(1) EventFileReaderOG: Read the raw FD and SD event data.

(2) SdCalibratorOG: Find the signal start times in the triggered SD stations, which are regarded as part
of the event by the FD trigger as described in Chapter 4. Perform the VEM calibration of the signals
in these SD stations.

(3) FdEventSelectorKG: Perform a basic event pre-selection, for example to chooseonly events which
were recorded simultaneously with two FD buildings or whichhave many triggered SD stations.
Optionally reject laser shots.

(4) FdCalibratorOG: Convert the raw ADC signal in each camera pixel into counts of UV photons.
Correct for the overall SD-FD timing offset which is generated by the different data acquisition
systems of the FD and the SD.

(5) FdPulseFinderOG: Locate the signal pulse in each pixel. Calculate the arrival time for the pulse
and its integrated photon count.

(6) PixelSelectorOG: Reject isolated pixels with no close neighbors which are generated by random
noise.

(7) FdSDPFinderOG: Find the shower detector plane of the event. Reject pixels if they are incompati-
bility with this plane.

(8) HybridGeometryFinderOG: Find a SD station close the shower detector plane. Use its signal
arrival time together with the signal arrival times in the camera pixels to reconstruct the distance and
orientation of the shower axis.

(9) FdApertureLightOG: Reconstruct the light profile of the shower at the aperture of the telescope.

(10) FdProfileReconstructorKG: Reconstruct the energy loss profile of the shower, based on light pro-
file at the aperture of the telescope, the reconstructed shower axis, models of the atmospheric scatter-
ing of light, models of the emission of Cherenkov and fluorescence light, and a model of the invisible
energy of the shower. The integral of the profile yields the position of the electromagnetic shower
maximumXmax and the shower energyE.

215



216



Appendix E
SD event reconstruction: background
rejection

Trace cleaning

The current trace cleaning algorithm is based on ref. [171].The algorithm starts at the level of the individual
PMTs of a station:

(1) Extract signal pieces from the full high gain trace of each PMT. A signal piece is defined by at least
n ≥ 2 bins subsequent bins, where each bin has at least 3 FADC counts above the baseline. Store
the start and stop index of the piece, calculate its integrated signalS and peak signalSpeak.

(2) Join pieces of the first step separately for each PMT. Pieces are joined, if the gap between two pieces
is smaller than 20 + length of a first piece, and at least one of the two conditions is met:

(a) The first piece has a signalS1 > 0.3S2, whereasS2 is the signal of the second piece.

(b) The second piece has a peak signalSpeakof less than 5 FADC counts above the baseline.

(3) Merge the signal pieces of different PMTs, so that only one set of pieces remains. Overlapping
pieces between different PMTs are merged by enlarging the time window of the piece and averaging
the signalsSi of the overlapping pieces.

(4) The start time of the merged trace of the station is determined from the merged piece with the largest
integrated signal.

T4 selection

The T4 selection for very inclined showers [173] is based on atop-down approach. At the time of this
writing, the selection is done with a stand alone program andnot within the AugerOff line framework, but
work is in progress to intregrate it in the near future.

The T4 algorithm is applied after a preselection and the already described trace cleaning. The preselec-
tion removes all known faulty stations and stations which are not part of the regular SD grid (like the infill
described in Chapter 4). The algorithm starts withn preselected and triggered stations, and then applies
the following steps:

(1) Set the numberk of rejected stations to zero.

(2) Remove isolated stations. An isolated station has less than one neighbor in a distanced1 = 4.7 km
or less than two neighbors in a distanced2 = 6.2 km. If n > 40, d1 is reduced to3.4 km to save
computing time.
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(3) Apply a preliminary reconstruction of the shower axis.

(a) Calculate the barycenter, according to

rb =

∑n−k
i=1 riSi

1/3

∑n−k
i=1 Si

1/3
, (E.0.1)

whereasri andSi are the ground position and signal of the station. In the following,r′
i denotes

the station coordinates relative to the barycenter.

(b) Fit the model of a plane shower front model moving with thespeed of light to the signal start
timesti, while neglecting the individual altitudez′i of each station with respect to the ground
plane

c(〈ti〉 − t0) = −a ri ⇔ 〈ti〉 = t0 −
1

c
(ux′i + vy′i), (E.0.2)

with a = (u, v, w)T as the shower incoming direction, as illustrated in Fig. 6.9a). Free pa-
rameters of the model areu, v, andt0. An unique and fast solution for three parameters can
be obtained from the linear least squares method for parameter estimation, as described ine.g.
ref. [147].

(c) The shower front fit is improved by approximately taking the altitude of the stations into ac-
count

〈ti〉 = t0 −
1

c
(ux′i + vy′i + w0z

′
i), (E.0.3)

whereasw0 =
√

max(0, 1 − u2
0 − v2

0) is the fixed vertical component of the normalised shower
direction from the first fit. Becausew0 is not considered as a free parameter, the linear least
squares method can still be applied.

(d) If n− k = 3, refine the fit further by adding an approximate term for the spherical shape of the
shower front

〈ti〉 = t0 −
1

c
(ux′i + vy′i + w1z

′
i + w1r

2
i /(2dmax)), (E.0.4)

whereasr2i = x′i
2

+ y′i
2 − (ux′i + vy′i)

2 is the radial distance to the preliminary shower axis
going through the barycenter andw1 is the fixed value from the second fit. The radius of the
shower front sphere is roughly approximated here bydmax ≈ 7.1 km/ cos θ.

(4) If n− k > 3, accept the current configuration under the following conditions:

(a) Physical values foru andv: u2 + v2 < 1.

(b) Small residuals∆ti = |ti − 〈ti〉|:

max(∆ti) < (n− 2)min(w, 0.2) × 250 ns
√∑

i(∆ti)
2

n− 3
< (n− 2)min(w, 0.2) × 200 ns

The factor(n − 2) relaxes the restriction in case of large events, taking intoaccount that the
shower front model is only approximate. The factormin(w, 0.2) tightens the restrictions as
the shower inclination grows, because the natural varianceof the arrival time is smaller in very
inclined showers as discussed in Chapter 3.

(c) Compact spatial configuration. The radial distanceri to the preliminary shower axis may not
be too large:

max(ri) <
√
n− 2 × 1.3 km.

Again, the restriction is relaxed for larger showers.

(d) Configuration may not be aligned. The principal axes of the configuration are calculated in the
ground plane. The length of both axes has to be larger than0.3 km.
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APPENDIX E. SD EVENT RECONSTRUCTION: BACKGROUND REJECTION

(e) The configuration still has to fulfill the T3 trigger condition, see Chapter 4.

If n− k = 3, accept the current configuration under a variation of the conditions:

(a) Physical values foru andv: u2 + v2 < 1.

(b) At least two stations with a integrated signal-to-peak ratio> 1.6.

(c) The sides of the triangle formed by the station positionsare smaller than2.8 km. The area
of the triangle is between0.2 km and1.2 km. The lower limit on the area efficiently rejects
aligned configurations.

(d) The configuration still has to fulfill the T3 trigger condition, see Chapter 4.

(5) If the configuration is not accepted, increasek by one. Repeat (2) and (3) with all possible combina-
tions of rejectingk stations, starting with the stations that have the lowest signals. Reject the event
altogether, ifk > n− 3.

Only the selected stations with signal, and the active but silent stations are considered in the following
reconstruction steps. The rejected ones are marked as accidentally triggered.
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Appendix F
Event selection: examples of rejected
events

This appendix shows some example events which are rejected by quality cuts applied to SD and FD events
in Chapter 6 and Chapter 7.

Fig. F.1 shows examples of events, which are rejected by the SD selection. Example events rejected by
the cutsSdThetaMin andSdBadPeriod are not shown, they do not have a special signature.

• Fig. F.1(a) shows a typical class of events which are rejected by the T4 algorithm. The footprint of
the event is not compact enough for the a reliable reconstruction of the shower energy and direction.

• Fig. F.1(b) shows an events, which did not pass the T5 selection, as the station with the largest signal
(the bottom left) is not surrounded by six active stations. The core position of such an event is not
well constrained by data, which would result in large statistical and systematical uncertainties of the
reconstructed energy and direction.

• Fig. F.1(c) shows a spectacular example of a less common class of events, which are rejected by the
T5 selection. Events such as this one pass the T5-Prior criteria, but not the T5-Posterior one. This
particular very inclined shower (θ ≈ 83◦) fell into a hole in the array, thus the stations close the to
core are missing.

It happens sometimes in near horizontal showers, that the station with the largest signal is not the one
closest to the shower core. In this event, the station with the largest signal is in the early part of the
event above the hole and had six active neighbors, thus it wasable to pass the Prior T5 requirement.

• Fig. F.1(d) shows an event with is rejected by the cut on the zenith angle. The near horizontal shower
has a reconstructed zenith angle of about87◦. The event illustrates the butterfly structure of the muon
density profile in the shower front plane well, which appearsvery strongly at these inclinations (see
Chapter 5). Projected on the ground, the butterfly structureturns into the shape of a mirrored ”S” of
the footprint.

The reconstruction is biased in case of these near horizontal showers and therefore they are rejected.

Fig. F.2 and Fig. F.3 show events, which are rejected by the FDquality cuts. Fig. F.2(a)-(c), the right
side of Fig. F.3(a), Fig. F.3(b), and Fig. F.3(d) show the energy loss profile of the shower as a function of
the slant depth, the red curve represents the fit of the Gaisser-Hillas formula to the data. The point at the
maximum shows the uncertainty of the position of the shower maximum with the horizontal error bars, and
the uncertainty of the normalisation of the Gaisser-Hillasformula with the vertical error bars. The quality
of the fit is indicated by the reducedχ2 value in the top right corner of the plot.

Fig. F.2(d) shows the detected photon flux at the camera and the fraction of Cherenkov light contributing
to this photon flux. The latter is estimated by the reconstruction algorithm. Several types of Cherenkov
light are distinguished by different colors, important forfollowing discussion is only the total sum.
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(a) SdT4Level: Event 4162698.

x [km]
22 24 26 28 30 32

y 
[k

m
]

4

6

8

10

12

14

(b) SdT5Level - Prior T5: Event 4776361.
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(c) SdT5Level - Posterior T5: Event 1868111.
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(d) SdThetaMax: Event 2924050.

Figure F.1: The plots show examples of SD events in a top view on the SD array, which are rejected by the
SD event selection used in this work. Colored circles represent triggered stations. The color indicates the
arrival time of the signal, blue are early signals, red late signals. Full and open circles represent stations
with recorded signals. The radii of the circles are proportional to the logarithm of the recorded signal. Dark
small gray circles represent represent active untriggeredstations, light small gray circles represent stations
that are inactive at the time of the event or not yet deployed in the field. The shower core is indicated by
a black point with error bars. The arrival direction of the shower projected on the ground is indicated by a
black line which ends in the shower core point. The plots are taken from theEventBrowser in the ADST
package [220].
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APPENDIX F. EVENT SELECTION: EXAMPLES OF REJECTED EVENTS
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(a) FdDistanceXmaxFoV: Event 200715903239
(Coihueco).
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(b) FdRelativeEnergyUncertainty: Event 200710701679
(Coihueco).
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(c) FdXmaxUncertainty: Event 200611201758 (Coihueco).
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(d) FdCherenkovFraction: Event 200807502450
(Coihueco).
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(e) FdDistanceTankCore: Event 200707201985 (Los
Leones).
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(f) FdActiveCrown: Event 200509200780 (Coihueco).

Figure F.2: First set of examples of FD events, which are rejected by the quality cuts used in this work
(see text). The Auger ID is shown below each example. The plots are taken from the EventBrowser in the
ADST package [220].
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(a) FdReducedChi2GaisserHillas: Event 200513701806 (Coihueco).
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(b) FdReducedChi2Line: Event 200627003626 (Coihueco).
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(c) FdPixel: Event 200713704719 (Los Morados).
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(d) FdTrackLength: Event 200635101702 (Coihueco).

Figure F.3: Second set of examples of FD events, which are rejected by the quality cuts used in this work
(see text). The Auger ID is shown below each example. The plots are taken from the EventBrowser in the
ADST package [220].
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APPENDIX F. EVENT SELECTION: EXAMPLES OF REJECTED EVENTS

Fig. F.2(e) and Fig. F.2(f) show the top view of the SD array asin Fig. F.1. Additionally, the pattern
filled ellipse indicates the reconstructed core position ofthe FD.

The left side in Fig. F.3(a) and Fig. F.3(c) shows a view of thecamera pixels The colored pixels are
triggered pixels which survived the pixel selection algorithm, the color indicates the arrival time; blue is
early, red is late. Gray pixels have triggered but are rejected by the pixel selection. The black region at the
top in Fig. F.3(a) indicates the cloud level in the field of view of the camera. The red curve indicates the
position of the shower detector plane fitted to the pixel data.

No example events for the cutsFdThetaMin andFdMieDatabase are included, as event rejected by
these cuts do not have a special signature.

• Fig. F.2(a) shows a typical event, that has its shower maximum outside the field of view of the camera.
The reconstructed parameters of such events have large statistical and systematical uncertainties, and
are therefore rejected. In some way, the cut is similar to theT5 criteria in surface events.

• Fig. F.2(b) shows a comparably far shower with an energy around 1018 eV. The photon flux at the
camera is low, which propagates into a low resolution of the integrated energy.

• Fig. F.2(c) shows a high energy shower, which had its shower maximum very above the center of
the array, with a direction quite close to the camera axis. Inthis case, the resolution of the camera
pixels is not fine enough to resolve the point of the shower maximum well, as opposed to the sit-
uation of a close shower which is seen from the side. For the quality of the reconstructed energy,
this is a comparably weak cut, because it mostly rejects events which are also dropped by the cuts
FdDistanceXmaxFoV and FdRelativeEnergyUncertainty.

• Fig. F.2(d) shows an event, where the shower direction was very close the camera axis, and therefore
most of the light in the camera is actually Cherenkov light and not fluorescence light. We trust the FD
reconstruction to handle such events up to a fraction of80%. There are not enough events with larger
fractions to conclude, whether they introduce a bias or not.They are cutted away to be conservative.

• Fig. F.2(e) shows an example event, which was dropped because the station with the largest signal
was too far away from the reconstructed shower core on the ground.

• Fig. F.2(f) shows an example event, which was dropped because shower fell into outside the array. To
properly derive the trigger probability of the SD from FD hybrids, such events have to be excluded.

• Fig. F.3(a) shows an event, which was rejected due to a bad fit of the Gaisser-Hillas function to
the energy loss profile. The camera view indicates, that the shower passed through a thin cloud.
The sharp second maximum may be caused by Cherenkov light scattered by the cloud. Currently,
there is no cloud rejection algorithm for the FD reconstruction, which is why such events need to be
recognised and rejected through the quality of the fit of the Gaisser-Hillas formula.

• Fig. F.3(b) shows a distant event, which triggered only a fewpixels. The observed energy loss profile
is also compatible with the fit of a line, which means that the Gaisser-Hillas function is not well
constrained by the data and therefore the event is rejected.Although the cut is well motivated, it
shows only little effect on the optimisation analysis.

• Fig. F.3(c) shows an event with only five pixels. The precision of the reconstructed shower axis
depends on the number of pixels, as does the resolution of theshower maximum.

• Fig. F.3(d) shows an event, which is dropped because of its short track length in the camera.
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Appendix G
Cosmic ray flux: tables and consistency
checks

The unfolded cosmic ray fluxJ(E) in the energy range from1018 eV to 1020 eV derived from fluorescence
detector calibrated surface detector events is presented in Chapter 8. The tables Table G.1 and Table G.2
present the numerical result of that chapter.

Two cross-checks are applied to the raw fluxJraw, which is not unfolded and thus statistically simpler to
handle because there there are no bin-to-bin correlations.For the sake of these cross-checks the unfolding
is irrelevant. The results are shown in Fig. G.1.

The density profileρatm(h) of the atmosphere over the southern Pierre Auger Observatory changes
during summer and winter. This can have a small impact on the produced number of muonsNµ during the
shower development and produce shifts in the SD reconstructed cosmic ray energyESD ∝ Nµ, as discussed
in Chapter 5. The impact can be estimated by comparing the fluxJsummercollected during October to March
with the flux collected during April to September in each year. No summer-winter effect is found within
the statistical resolution.

There could be an unknown time evolution in the data. The dataquality could have improved or
degraded over the five years of data acquisition between 2004/01/01 and 2009/01/01. The cosmic ray flux
has to be time independent. The data is tested against a possible time dependence by comparing the flux
Jearly collected up to 2007/07/17 with the fluxJlate after this date which divides the collected SD exposure
in two equal halves. No effect is found within the statistical resolution.
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Table G.1: The table shows the unfolded cosmic ray fluxJ(E) obtained from FD calibrated SD events
in the zenith angle range60◦ < θ < 82◦. The flux is normalised to an arbitrary constantJc =
10−34 m−2s−1sr−1eV−1. Three systematic uncertainties are distinguished:σE

sys[J ] caused by uncertain-
ties in the FD energy scale,σK

sys[J ] caused by the uncertainties in the unfolding, andσexp
sys[J ] caused by the

uncertainty in the SD exposure. The covariance matrix is shown in Table G.2.

index lg(E/eV) J/Jc ∆JE
sys/Jc ∆JK

sys/Jc ∆Jexp
sys/Jc

1 18.0 − 18.3 5912 +4854
−4854

+510
−647 177

2 18.3 − 18.5 690 +514
−514

+69
−66 21

3 18.5 − 18.7 170.28 +111.26
−111.26

+12.54
−12.80 5.11

4 18.7 − 18.9 44.75 +26.94
−26.94

+3.20
−4.24 1.34

5 18.9 − 19.1 13.71 +8.24
−8.24

+0.59
−0.47 0.41

6 19.1 − 19.3 3.61 +2.27
−2.27

+0.22
−0.34 0.11

7 19.3 − 19.5 0.992 +0.610
−0.610

+0.076
−0.064 0.030

8 19.5 − 19.7 0.275 +0.223
−0.223

+0.035
−0.027 0.008

9 19.7 − 20.0 0.0196 +0.0198
−0.0198

+0.0072
−0.0122 0.0006

Table G.2: Shown is the statistical covariance matrix of theflux J(E) in Table G.1. The diagonal entries
in bold type represent the relative uncertaintyσ[J ]/J . The off-diagonal entries represent the correlation
coefficients. The indicesi andj correspond to the index in Table G.1.

i\j 1 2 3 4 5 6 7 8 9
1 0.0073
2 -0.4030 0.0194
3 0.1098 -0.3557 0.0246
4 -0.0171 0.0678 -0.2528 0.0320
5 -0.0109 0.0232 -0.0186 -0.0600 0.0383
6 0.0094 -0.0243 0.0451 -0.0879 0.0855 0.0541
7 -0.0039 0.0095 -0.0205 0.0473 -0.1123 0.20720.0758
8 0.0005 -0.0029 0.0045 -0.0088 0.0308 -0.1217 0.33270.1006
9 0.0007 0.0029 -0.0002 -0.0047 0.0025 0.0082 -0.1112 0.3975 0.2758

lg(E/eV)
18 18.5 19 19.5 20

〉J〈
) 

/ 
 w

in
te

r
 −

 J
su

m
m

er
(J

−0.4

−0.2

0

0.2

0.4

data
fit

 0.010±C = −0.014 
 = 8.5/14 = 0.6dof/n2χ

(a) Check for seasonal effect

lg(E/eV)
18 18.5 19 19.5 20

〉J〈
) 

/ 
 la

te
 −

 J
ea

rly
(J

−0.4

−0.2

0

0.2

0.4

data
fit

 0.010±C = −0.007 
 = 7.5/14 = 0.5dof/n2χ

(b) Check for time evolution of data

Figure G.1: The points compare the relative difference between pairs of flux estimates, which are described
in the text. The solid lines are fits of a constantC to the data points. The value ofC is given in the legend.
Theχ2 shows the significance of a possible deviation fromC = 0.
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[102] A. Fasśo et al., The physics models of FLUKA: status and recent developments, Computing in High
Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA, USA, March 24-28, 2003,
(paper MOMT005), eConf C0303241 (2003), arXiv hep-ph/0306267 (2003).

[103] A. Fasśo, A. Ferrari, J. Ranft, and P. Sala,FLUKA: a multi-particle transport code, CERN-2005-10
(2005), INFN/TC 05/11, SLAC-R-773 (2005).

[104] C. Meurer,Muon production in extensive air showers and fixed target accelerator data, Ph.D. thesis,
Karlsruhe University, Karlsruhe, Germany (2007).

[105] R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev,Air shower calculations with the new version of
SIBYLL, Proc. 26th Int. Cosmic Ray Conf. (1999).

[106] T. K. Gaisser and F. Halzen, Phys. Rev. Lett.54, 1754 (1985).

[107] L. Durand and P. Hong, Phys. Rev. Lett.58, 303 (1987).

[108] J. C. Collins and D. E. Soper, Ann. Rev. Nucl. Part. Sci.37, 383 (1987).

[109] R. S. Fletcher, T. K. Gaisser, P. Lipari, and T. Stanev,Phys. Rev. D50, 5710 (1994).

[110] V. N. Gribov, Sov. Phys. JETP26, 414 (1968).

[111] V. N. Gribov, Sov. Phys. JETP26, 483 (1969).

[112] K. A. Ter-Martirosyan, Phys. Lett. B44, 179 (1973).

[113] K. A. Ter-Martirosyan, Phys. Lett. B44, 377 (1973).

[114] M. Baker and K. A. Ter-Martirosyan, Physics Reports28, 1 (1976).

[115] N. N. Kalmykov and S. Ostapchenko, Yad. Fiz.56, 105 (1993).

[116] N. N. Kalmykov and S. S. Ostapchenko, Phys. At. Nucl.56, 346 (1993).

[117] N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Bull. Russ. Acad. Sci. Phys.58, 1966 (1994).

[118] N. N. Kalmykov and S. S. Ostapchenko, Yad. Fiz.58, 21 (1994).

[119] N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Izv. RAN Ser. Fiz.58, 21 (1994).

[120] N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Nucl. Phys. B Proc. Suppl.52B, 17 (1997).
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(2008).

[159] M. Ave et al., Phys. Rev.D 67, 043005 (2003).
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[179] I. Allekotte, H. Asorey, X. Bertou, and M. Ǵomez Berisso,You thought you understood hexagons?,
Auger internal note GAP-2008-114 (2008).

[180] P. Summers and B. Fick,A Numerical Recipe for Fluorescence Detector Geometric Reconstruction,
Auger internal note GAP-2003-045 (2003).

[181] M. Ungeret al., Nucl. Instrum. Meth.A588, 433 (2008), arXiv astro-ph/0801.4309.

[182] J. Bellido,Alignment and Synchronization of Bay4 at Los Leones and Bay3at Coihueco using the
CLF, Auger internal note GAP-2004-059 (2004).

[183] C. Bonifaziet al. (Pierre Auger Collab.), Nucl. Phys. Proc. Suppl.190, 20 (2009), arXiv astro-
ph/0901.3138.

[184] T. K. Gaisser and A. M. Hillas,Reliability of the Method of Constant Intensity Cuts for Reconstruct-
ing the Average Development of Vertical Showers, Proc. 15th Int. Cosm. Ray Conf., Vol.8, 353
(1977).

[185] B. Dawsonet al.(Pierre Auger Collab.),Hybrid Performance of the Pierre Auger Observatory, Proc.
30th Int. Cosmic Ray Conf. (2007).

[186] C. Di Giulio, P. Facal San Luis, G. Rodriguez Fernández, and V. Verzi,Estimation of the shower
energy andXmax with the spot reconstruction method, Auger internal note GAP-2009-040 (2009).

[187] N. G. Busca,The ultra high energy cosmic ray flux from the Southern PierreAuger Observatory
data, Auger internal note GAP-2006-108 (2006).

[188] J. Abrahamet al. (Pierre Auger Collab.), Phys. Rev. Lett.101, 061101 (2008), arXiv astro-
ph/0806.4302.

[189] J. Brack, (2007), private communication.
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