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Zusammenfassung

Die vorliegende Arbeit präsentiert eine Monte Carlo Studie zu Theorien mit Large Extra Di-
mensions (LEDs) im myonischen Zerfallskannal und das dazugehörige Entdeckungspotential des
Compact Muon Solenoids, kurz CMS Detektors. LEDs sind zusätzliche, räumlich kompaktifizierte
Dimensionen welche nur für die Gravitation zugänglich sind. Die Einführung von LEDs wurde
dadurch motiviert, dass die gravitative Wechselwirkung zuvor nie bei Abständen kleiner als ein
Millimeter getestet worden ist. Im Falle der Existenz von LEDs wird die fundamentale Skala der
Gravitation von der sogenannten Planck Skala MPlanck ∼ 1016 TeV zur elektroschwachen Skala
MEW reduziert, welche mit MEW = 1 TeV deutlich niedriger ist als die Planck Skala und damit
auch das Hierarchie Problem löst. Obwohl vorhergehende Experimente an den Beschleunigern
wie LEP am CERN und Tevatron am Fermilab nach der Existens von LEDs gesucht haben, war
bisher noch kein Nachweis für LEDs möglich.
Durch die signifikant höhere Schwerpunktenergie von bis zu 14 TeV am LHC, verglichen zu den
anderen genannten Beschleunigern, wird es schon mit den frühzeitigen Daten von etwa 100 pb−1

möglich sein, (Ausschluss-)Grenzen auf verschiedene Parameterpunkte zu erweitern, welche für
die Beschleuniger LEP und Tevatron unzugänglich waren.
Die hier vorgestellte Studie basiert auf vielen, unabhängig voneinander angewandten Schnitten
auf die Myoneigenschaften. Die Monte Carlo Simulationen wurden mit dem Computer-Framework
SHERPA (Simulation for High-Energy Reactions of PArticles) generiert und anschließend wurde
mit der CMS Software (CMSSW) eine volle Simulation des CMS Detektors durchgeführt.





Abstract

This thesis presents Monte Carlo studies of models with Large Extra Dimensions (LEDs) in the di-
muon channel and their discovery potential with early data taken by the Compact Muon Solenoid,
shortly CMS detector. LEDs are additional compactified spatial dimensions where only gravity
can propergate into. The postulation of LEDs has been motivated by the fact that gravity had
never been tested at distances shorter than a millimeter. Assuming LEDs, the fundamental scale
of gravity decreases from the so called Planck Scale, MPlanck ∼ 1016 TeV to the Electroweak Scale,
which is much lower at MEW ∼ 1 TeV and thus solves the Hierarchy Problem. Although at former
accelerators like LEP at CERN and Tevatron at Fermilab searches for LEDs have been performed,
there has been no evidence of LEDs so far.
Due to the significantly higher center of mass energies up to 14 TeV at LHC compared to Tevatron
and LEP, already early data of 100 pb−1 will extend the limits for parameter points, which have
been inaccessible for the other two accelerators.
The analysis shown in this thesis is a cut-based one, meaning that only rectangular cuts have been
applied. The Monte Carlo simulations have been done using the multipurpose event-generation
framework SHERPA (Simulation for High-Energy Reactions of PArticles) and afterwards the
CMS Software (CMSSW) to get a full simulation of the CMS detector.
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Chapter 1

Introduction

In this thesis several conventions and short forms will be used which need to be explained. The
very common natural units � = c = 1 are used. The space-time coordinate x is representative
for the contravariant vector x = xμ = (t, �x) by default. The corresponding covariant vector is
obtained by : xμ = gνμxν with the metric tensor gμν = diag(1,−1,−1,−1) so that the invariant
mass m of a particle is given by:

p2 = pμpμ = E2 − |�p|2 = m2 (1.1)

This formula is also known as energy-momentum relation. If a particle obeys this relation, it is
called on-shell , if not it is off-shell. The invariant mass of a system is a conserved quantity. It
represents the energy of the particles (in their center of mass frame) before a reaction (collision)
takes place. One can see, that the invariant mass of a single particle is its rest mass, where else the
invariant mass of a system of particles is larger than the sum of the single masses. This work will
mainly concentrate on the invariant mass of two muons, from now on called invariant di-muon
mass. The variables px, py, py are physically adequate but experimentally the CMS detector
measures the variables pt which is the transverse momentum pt =

√
p2

x + p2
y, the polar angle ϕ

and the pseudorapidity η = − ln
[
tan
(

θ
2

)]
. Both sets of variables (coordinates) are equivalent and

can be transformed to each other.
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Chapter 2

Theoretical Considerations

2.1 The Standard Model

The Standard Model (SM) is a gauge theory, which describes strong, weak and electromagnetic
interactions, via the exchange of the corresponding gauge fields: eight massless gluons and one
massless photon, respectively, for the strong and electromagnetic interactions, and three massive
bosons, W± and Z, for the weak interaction [1]. In the Standard Model the structure of matter
is explained by the known leptons l and quarks q (and the corresponding anti-particles l̄ and
q̄), which are organized in a three-fold family structure. Quarks participate in every interaction,
whereas leptons do not interact strongly. Experimentally quarks have not been observed as free
particles. They are the constituents of mesons (q q̄) and (anti-)baryons (q q q and q̄ q̄ q̄).
Quantum Field Theory (QFT) is the mathematical description of the Standard Model which
characterizes particles as quantized fields. The interactions between elementary particles are
mediated by four types of gauge bosons (Figure 2.1). The interactions themselves and the quantum

Figure 2.1: Particles of the Standard Model are divided into three generations of leptons and
quarks. The four known types of gauge bosons are in the most right column [2].

fields are described by the lagrange density (Lagrangian) L. It is constructed that it leads to the
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Euler-Lagrange equation:

∂L
∂φi

− ∂μ

(
∂L

∂(∂μφi)

)
≡ 0,

and thus provide the equation of motion. A spin 1/2 particle is described by the Dirac equation
(iγμ∂μ − m)ψ = 0, and the corresponding Lagrangian L,

L = ψ̄(iγμ∂μ − m)ψ = ψ̄(i�∂ − m)ψ,

where ψ and ψ̄ describe independent fields. The gravitational force is not considered in the
Standard Model, as it does not play a role at the distances of interacting elementary particles.
No quantum field theory for gravity has been successfully formulated so far.

2.1.1 Gauge Theory and Symmetries

The Standard Model is a gauge theory based on local symmetry describing the microscopic inter-
actions. It is partly represented as an abelian and as a non-abelian gauge theory.

The gauge principle: A Dirac field will be submitted to a gauging processes [3]. The choice
of a Dirac field is arbitrary, as the whole procedure shown here also works for (complex scalar)
Klein-Gordon fields. The Lagrangian:

L = ψ̄(i�∂ − m)ψ, (2.1)

is invariant under a phase transformation of the form U = eiqχ :

ψ → ψ′ = Uψ, (2.2)
ψ̄ → ψ̄′ = ψ̄U �, (2.3)

where U ∈ U(1) is a unitary operator of the corresponding symmetry group, and q and χ are
scalars, which means that L is invariant under global gauge transformations.

If the unitary transformation is depending on the space-time variable U ≡ U(x) and χ ≡ χ(x),
the derivative of the Dirac field has to be written as:

∂μψ → ∂μψ′ = eiqχ(x)∂μψ + iqψ∂μχ(x), (2.4)

and therefore the Lagrangian assumes the form:

L′ = ψ̄(i�∂)ψ − qψ̄γμψ∂μχ − mψ̄ψ ��= L, (2.5)

which means, that this Lagrangian is not invariant under local gauge transformations. To restore
the local invariance, the definition of a covariant derivative is necessary with the implementation
of a new gauge field Aμ, which transforms like:

Aμ(x) → A′
μ(x) = Aμ(x) − ∂μχ(x), (2.6)

where χ(x) is a scalar field depending on the space-time variable x. So the new, covariant derivative
can be written as:

Dμ = ∂μ + iqAμ(x). (2.7)

Restoring local gauge invariance is equivalent to adding an interacting gauge field. This also
allows to make the reverse consideration, meaning that the interaction of fields (the elementary
particles) can be described in an elegant way by demanding the Lagrangians to be local gauge
invariant. QED, Quantum Electro Dynamics, is an example for a local gauge theory, where the
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gauge field Aμ describes the gauge boson of the electromagnetic field, the photon. A mass term,
written as

m2

2
AμAμ, (2.8)

of the gauge field would spoil the local gauge invariance of the QED. Experimentally it has been
shown, that the photon is a massless particle, indeed.

Non-Abelian gauge theory: A particle traveling in space-time not only changes its phase,
but can also change other properties like color (strong interaction) or flavor (charged currents of
the weak interaction). Therefore it is crucial to consider not only a one-dimensional parameter
χ(x) within the transformation, but more generally a whole set of parameters. This can be
achieved with a unitary n×n matrix description of a more complex transformation acting on the
wave function ψ(x):

U ≡ e
i
O(G)P

j=1
Tjaj

. (2.9)

The matrices aj and Tj are depending on the considered group [4]. For a group of the dimension
O(G) = n, the number of Tj matrices is fixed by the relation n2 1. The hermetic matrices Tj have
to satisfy the relation

[Ti, Tj ] = icijkTk, (2.10)

which means that they do not commutate. cijk is called the structure constant and has to be
completely asymmetrical under permutations of its indices.

2.1.2 Standard Model of Electroweak Interactions

The electromagnetic and the weak forces can be described simultaneously by a non-abelian gauge
theory, called the GSW-Model [5] of the electroweak force formulated in the 1960s. The weak
force maximally violates parity 2, meaning that it distinguishes between left and right. In particle
physics the helicity of a particle is calculated as :

H =
�p · �σ

|�p| · |�σ| , (2.12)

where �p is the momentum of the particle and �σ the rotation axis of its spin. For H = +1 the
particle is called right handed, for H = −1 it is left handed. The projection of a field into
complementary left and right handed parts is done with the projection operators:

PR =
1
2
(1 + γ5),

PL =
1
2
(1 − γ5).

An elegant way to characterize left- and right-handed particles is by the weak isospin. Left-
handed particles have isospin I = 1/2 so that they form a doublet with respect to the weak
force: (

νe

e−

)
L

(
νμ

μ−

)
L

(
ντ

τ−

)
L

(
u
d′

)
L

(
s
c′

)
L

(
t
b′

)
L

I3 = 1/2
I3 = −1/2.

1For e.g. the special unitary group SU(2) the number of Tj matrices is given by n2 − 1 as one parameter of the
matrices is fixed by the constraint of the determinant of the matrices.

2Π: parity-operator

Πf(x) = f(−x) =

8<
:

f(x) p = +1

−f(x) p = −1
(2.11)
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The right-handed particles with isospin I = 0 transform like singlets:

eR, μR, τR, uR, dR, sR, cR, bR, tR.

This implies that right-handed neutrinos cannot be transformed in the Standard Model as they
only form a singlet. As the electroweak force is not symmetric w.r.t. left- and right-handed
fermions, the description can be done by the gauge group SU(2)L × U(1)Y , where L stands for
left-handed and Y is the hypercharge which is related to the electric charge Q by the Gell-Mann-
Nishiyima relation [4]:

Q = I3 +
1
2
Y, (2.13)

where I3 is the third component of the isospin w.r.t. the quantization axis. It can be seen that
left-handed leptons must have Y = −1, whereas the right-handed leptons have Y = −2. To
enforce the local gauge invariance, an external gauge field is needed which modifies the covariant
derivative. In the case of SU(2)L the Pauli matrices T = (τ1/2, τ2/2, τ3/2) are used as generators
of the group. It is necessary to introduce a triplet of gauge fields:

Wμ =

⎛
⎝ Wμ

1

Wμ
2

Wμ
3

⎞
⎠ . (2.14)

For U(1)Y just one additional gauge field Bμ is needed. The covariant derivative then takes
the form

Dμ
EW = ∂μ + ig T · Wμ + i

g′

2
Y Bμ. (2.15)

For left-handed leptons with T = τ/2 and Y = −1 the derivative is calculated as

Dμ = ∂μ + i
g

2
τ · Wμ − i

g′

2
Bμ, (2.16)

where for right-handed ones with T = 0 and Y = −2 the covariant derivative becomes:

Dμ = ∂μ − ig′Bμ. (2.17)

The next step now is to identify the fields Wμ and Bμ with the experimentally measured vector
bosons as shown in Figure 2.1. The fields W (±)μ are calculated as follows:

W (±)μ =
1√
2
(Wμ

1 ± Wμ
2 ). (2.18)

The electromagnetic field Aμ and the field of the neutral weak current Zμ are

Aμ = Bμ cos θW + Wμ
3 sin θW , (2.19)

Zμ = −Bμ sin θW + Wμ
3 cos θW . (2.20)

The electromagnetic-weak-charge ratio is given as

e = g′ cos θW = g sin θW , (2.21)

where e is the electric charge, g, g′ are the weak charges, and θW the weak mixing (Weinberg)
angle.
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2.1.3 Quantum Chromodynamics (QCD)

QCD is the theory of strong interactions which only involves the quarks and gluons but not leptons.
It is a non-abelian gauge theory based on the group SU(3)C due to three additional degrees of
freedom, the color charges red , green and blue (R,G,B). The entire wave function Ψ of quarks
then can be written as a product of the Dirac wave function ψ(x) and the color-spinor χcolor:

Ψ = ψ(x) · χcolor (2.22)

So quarks can be charged R,G, or B and anti-quarks R̄, Ḡ, or B̄ w.r.t. the color spinor Ψ. To
conserve the SU(3)C invariance the quarks must have the same masses in all color states. Quarks
never appear as isolated particles, which is called confinement. Hadrons (particles consisting of
quarks) are always in a colorless state. The mediators of the strong force, the massless gluons
themselves carry a color-charge, so that gluons also feature self-coupling. As darstellung of the
SU(3)C group, the 8 Gell-Mann matrices λi are used. QCD interaction is described by the
Lagrangian:

LQCD = −1
4

8∑
a=1

Fa,μνF
μν
a +

nf∑
j=1

q̄j(i��D − mj)qj (2.23)

where the qj are the quark fields, nf the number of different quark flavors and mj their respective
masses; ��D = Dμγμ is the covariant derivative with Dμ = ∂μ + igs

2 λiG
μ
j , and Fμν

a is the field-
strength-tensor given by:

Fμν
a = ∂μGν

a − ∂νGμ
a − gsfabcG

μ
b Gν

c , (2.24)

containing the gluon field Gμ
a and describing its self-interaction. As QED interactions get stronger

with shorter distances, the QCD coupling strength rises with distance. If one quark has enough
energy to depart from another quark, the energy stored in the interacting field gets so high that
new hadrons are created from the field; this is called hadronization.

2.1.4 The Higgs Mechanism

In the previous section the gauge structure of interacting fields has been discussed. Demanding
that the Lagrangians have to be locally gauge invariant, interacting fields have been introduced.
These fields describe massless gauge bosons. Experimentally it has been shown that bosons of the
weak force, W± and Z0 do have mass. Since the theory of electroweak interaction does not contain
these masses, there has to be a mechanism responsible for them. A solution of this problem is the
Higgs mechanism. Its approach to make massive W± and Z0 bosons is to introduce a doublet of
two complex fields, φ+ and φ0:

Φ =
(

φ+

φ0

)
=

1√
2

(
φ3 + iφ4

φ1 + iφ2

)
(I = 1/2, Y = 1) (2.25)

with the Lagrangian:

LHiggs = (Dμ
EW Φ)�(DEW,μΦ) − V (Φ�Φ) = LHiggs = (Dμ

EW Φ)�(DEW,μΦ) + μ2Φ�Φ − λ(Φ�Φ)2.
(2.26)

Now the vacuum expectation value VEV of the neutral Higgs field φ0 is set to be different
from 0 whereas the VEV of the charged field φ+ has to vanish 3.

〈0|Φ|0〉 =
1√
2

(
0
v

)
, v =

√
−μ2

λ
(2.27)

By this choice of the VEV, the symmetry of the lowest energy state of the potential V (φ) is
broken as shown in Figure 2.2. This also implies that the whole electroweak symmetry is broken
from SU(2)L ×U(1)Y to U(1)em. This means that the symmetry group U(1)em is not broken and
the photon remains massless by the choice of the higgs dublet.

3If the charged part would not vanish, the photon would also acquire a mass.
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Figure 2.2: Potential of non-broken (left) and broken ground state symmetry (right) [6].

The field Φ(x) can be expanded around the minimum v according to:

Φ(x) =
1√
2

(
0

v + η(x)

)
. (2.28)

Plugging this field into the Lagrangian LHiggs in Equation 2.26, the masses of the gauge bosons
W± and Z are set with MW = gv

2 and MZ = MW
cos θW

; the later relation is experimentally confirmed
by measurements.

2.1.5 Basics of Field Quantization

In analogy to non-relativistic Quantum Mechanics, fields of elementary particles can also be
quantized and treated as operators. Let Φ describe a scalar particle with spin 0. The commutation
relations between operator of the field Φ(�x, t) and the canonical conjugated momentum Π(�x, t)
has to be set (in analogy to non-relativistic Quantum Mechanics) as follows:[

Φ(�x, t), Φ(�x′, t)
]

= 0[
Π(�x, t), Π(�x′, t)

]
= 0[

Φ(�x, t), Π(�x′, t)
]

= iδ(�x − �x′)

The fields can be expanded in Fourier-space:

Φ(�x, t) =
∑

k

a(�k) · uk(�x), (2.29)

Π(�x, t) =
∑

k

a(�k) · u∗
k(�x), (2.30)

with the plane waves uk(�x). The next step is to determine the solution of the Klein-Gordon
equation with a quantized field (the same procedure is used for Dirac fields).

Φ(x) =
1√
2π

3

∞∫
0

d3�k

2k0

(
a(�k)e−ikx + b�(�k)e+ikx

)
(2.31)

Φ�(x) =
1√
2π

3

∞∫
0

d3�k

2k0

(
a�(�k)e+ikx + b(�k)e−ikx

)
(2.32)

As demanded by the commutator relation above, all commutators of a(�k) and b(�k) have to equal
0 except:
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[
a(�k), a�(�k′)

]
= 2k0δ3(�k − �k′) (2.33)[

b(�k), b�(�k′)
]

= 2k0δ3(�k − �k′) (2.34)

These operators a�(�k) and a(�k) can be interpreted as creation and annihilation operators, just
like for the harmonic oscillator. They act on the ground state (vacuum) as follows:

a(�k)|0〉 = b(�k)|0〉 = 0
a�(�k)|0〉 = |a(�k〉)
b�(�k)|0〉 = |b(�k〉)

So the quantized field acts on the vacuum by creating a particle or destroying an anti-particle (the
conjugated one the opposite). To estimate the evolution of a field, the commutator Φ(x) with
Φ�(x′) and Π(x′) (especially for different times) has to be computed :

ΔF (x − x′) := −i
〈
0
∣∣T [Φ(x), Φ�(x′)

]∣∣ 0〉 . (2.35)

T is the symbol of the time ordered product, depending on the time variable of the fields. It
obeys the law “late goes left”, meaning that the state later in space-time is on the left side of the
commutator. Setting in the fields Φ and Φ� and computing the residual integral, one gets:

ΔF (k) =
1

k2 − m2 + iε
, (2.36)

which is the Feynman-Propagator for Klein-Gordon fields and contains the information of the
evolution of the field. The propagators are used in Feynman graphs to describe virtual particles
as e.g. gauge bosons.

2.1.6 The Drell-Yan process

This study will concentrate on di-muon pairs originating from the Drell-Yan process. The process
p + p → μ+μ− + X can be mediated by a photon γ as well as by a Z0 Boson. For simplicity,
only the photon mediation will be taken into the calculation as shown in Figure 2.3. Following
the Feynman rules for QED, the matrix element of this process assumes the form:

− iM = iQj
e2

q2
[ν̄(p2)γμu(p1)] [ū(p3)γμν(p4)] . (2.37)

The matrix element has to be squared and averaged over spin and color:

¯|M2| =
(

1
2

)2

3
(

1
3

)2

Q2
j

e4

q4
Tr[��p2γ

μ
��p1γ

ν ]Tr[��p3γμ��p4γν ]. (2.38)

Here the Feynman notation of p/ = γμpμ has been used for the four momenta of the interacting
particles and Tr denotes that the traces of the matrices have to be calculated. The cross section
which is related to the matrix element is defined by:

dσ =
1
2ŝ

¯|M2|d cos(θ)
16π

. (2.39)

The cross section of this process is then of the form:

dσ(qj q̂j → μ+μ−)
d cos(θ)

= Q2
jα

2 π

6
1
ŝ

(
1 + cos2(θ)

)
(2.40)

σ(qj q̂j → μ+μ−) = Q2
j

4πα2

9ŝ
(2.41)
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Figure 2.3: Incoming quark and anti-quark annihilating into a lepton pair mediated by a virtual
photon.

The total cross section σ is obtained by computing the integral

σ =
∑
i,j

∫
σ̂ij(ŝ)dŝ

1∫
0

dx1

1∫
0

dx2 fi(Q2, x1)fj(Q2, x2)δ(ŝ − x1x2s). (2.42)

Here, f(Q2, x) is the parton distribution function and gives the probability of an interaction with
a parton with the fractional energy x at the energy scale Q. ŝ is the centre of mass energy of the
collision, Qj is the fractional charge of the quarks (for leptons Qj = 1), and θ the decay angle
which gives the angular distribution of the final state particles.

2.1.7 Shortcomings of the Standard Model

The Standard Model makes precise predictions of particles’ interactions. However there are still
several problems that the SM is not able to solve. The most prominent ones are listed below:

• Neutrino mass
From neutrino experiments it is known that due to oscillations of the flavor neutrinos need
to have a non-vanishing mass. In the theory of electroweak interactions masses of neutrinos
are not foreseen as this mass term would connect the left- and right-handed states. As
right-handed neutrinos are not contained in the electroweak theory, these masses cannot be
described with the SM.

• Unification
The Standard Model is based on different gauge groups with different coupling constants.
A theory which unifies all these gauge groups as subgroups of a unified theory is the aim
of the so called Grand Unified Theory GUT. In the SM this unification is not possible as
the coupling strengths of the electroweak and strong interaction do not unify at a certain
energy scale.

• Problem of Hierarchy and Fine-tuning
One known interaction is not addressed by the Standard Model at all, the gravitational
force. For low energies, gravity does not play a role. For example the ratio of (Newtonian)
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gravitation and electromagnetic force of two electrons in an arbitrary distance r is (for low
energies the running of the coupling αQED has not to be considered):

Fgrav

Fel
= 10−40. (2.43)

The apparent weakness of the gravitational force is not yet understood. This is called
the hierarchy problem. Another very close issue is the problem of fine-tuning. The Higgs-
Mechanism predicts the mass of the Higgs boson to be of the order of the vacuum expectation
value of v =

√
μ
λ = 246 GeV. Computing the tt̄ one-loop corrections (Figure 2.4) of the Higgs

mass, the effective mass (the one which is measured) of the Higgs boson has the form:

Figure 2.4: tt̄ -loop correction to the Higgs mass.

m2
H,bare = m2

H,eff +
λ2

f

8π2
Λ2 −O(log(λ2))... + h.c. (2.44)

where λf is the self coupling constant of the higgs bosons and Λ the cut-off scale up to
where the SM is believed to be valid 4. Gravity itself is supposed to become strong at
scales where the Compton wavelength λC (the characteristic value of quantum effects) and
Schwarzschild-radius rs are of the same magnitude:

λC = rs

2Gm

c2
=

h

mc

MPlanck ≈
√

c�

G
=

1√
G

≈ 1019 GeV.

Defining the Planck scale MPlanck as cut-off of the SM, the effective mass of the Higgs boson
has to be fine-tuned down the the electroweak scale MEW , where the mass of the Higgs is
expected. This tuning has to be done for (Λ/MEW )2 = 1032 orders of magnitude. This is
not only an aesthetic problem but also a technical one, as huge hierarchies in nature tend
to collapse.

4The integral of the loop amplitude
R Λ d4k

2πk2 has to be evaluated at the cut-off scale.
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2.2 Theory of Extra Spatial Dimensions

In collider experiments like the ones at LEP the SM has been tested at distances down to 10−18 m.
For gravity this has never been possible as the necessary energies could not be supplied up to now.
The distances down to which gravity has been tested are in the sub-millimeter range. Below the
sub-millimeter scale there is no knowledge about gravity at all. This is the motivation of the
recent theories of Large Extra Dimensions (LED).

2.2.1 Kaluza Klein Theory of Extra Dimensions

Shortly after the formulation of general relativity by Albert Einstein in 1915, the physicists
Theodor Kaluza and Oskar Klein figured out that it is possible to unify general gravity with
electromagnetism, which is described by a U(1) symmetry group, by postulating one additional
spatial dimension [7]. This dimension in the Kaluza-Klein-Theory has to be cylindrically com-
pactified with radius R in order to be consistent with known observations, e.g. Newton’s law of
gravity. Describing both, electromagnetism and gravity, the theory of Kaluza and Klein made
following ansatz for the metric tensor with the scalar field φ, which is the so-called “dilaton“-field
and the vector field Aμ of electromagnetism (Here I, J are used for the coordinates in the whole
space, the four standard dimensions plus the extra spatial dimensions. The indices (4,5,6...D) with
D = 3 + 1 + n, are used to indicate the number of dimensions, where n is the number of extra
dimensions):

g
(5)
IJ =

(
g
(4)
μν + φ2AμAν φAμ

φAν φ2

)
(2.45)

Using this tensor, the Maxwell equations of electromagnetism and general relativity can be derived
simultaneously. This tensor leads to the infinitesimal line element

ds2 = gμνdxμdxν + φ2(Aνdxν + dy)2, (2.46)

where y represents the coordinate in the extra spatial dimension. As already mentioned, the
extra dimension in direction of y has to be compactified with the boundary condition φ(xμ, y) =
φ(xμ, y + 2πR). This can be used and a Fourier-expansion of the fields can be performed [8]:

gμ,ν(xμ, y) =
α=∞∑

α=−∞
gμνe

iα y
R , (2.47)

Aμ(xμ, y) =
α=∞∑

α=−∞
Aμeiα y

R , (2.48)

φ(xμ, y) =
α=∞∑

α=−∞
φ(xμ)eiα y

R . (2.49)

In order to obtain the equations of motion, the Klein-Gordon equation can be calculated for the
(massless) 5 scalar field in extra dimensions

(D)∂J∂Jφ = 0, (2.50)
((4)∂μ∂μ + ∂2

y)φ = 0, (2.51)

((4)∂μ∂μ +
α2

R2
)φ = 0. (2.52)

Comparing the last equation with the Klein-Gordon equation with a mass term, one sees that
extra dimensions lead to effective masses of the considered field:

m2
α =
∣∣∣∣α2

R2

∣∣∣∣ . (2.53)

5For illustration a massless scalar field is totally adequate and can easily be generalized to vector or tensor fields
with masses. In that case the additional mass is just summed with the conventional one.
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So in a higher dimensional theory fields gain an (additional) effective mass for lower dimensional
subspaces, called Kaluza-Klein (KK) modes. The zero-th mode of the Fourier series can be
identified with the conventional field. This is illustrated in the simplified Figure 2.5.

Figure 2.5: Illustration of cylindrical extra spatial dimension with radius R and resulting KK-
modes.

2.2.2 Renaissance of Extra Dimensions, the ADD Model

With the upcoming quantum theory and its precise predictions of new phenomena, the theory
of Kaluza and Klein has not been developed further. Also the fact that the scalar field φ in the
metric above did not conserve the chirality of massless particles disfavored this theory [9]. Then
in 1998 Arkani-Hamed, Savas Dimopoulos and Gia Dvali [10] proposed the ADD model of Large
Extra Dimensions. They introduced n extra spatial dimensions with a compactification radius of
R as shown in Figure 2.5. The extra dimensions, are fully accessible for gravitation only whereas
the SM particles are confined to the three dimensional subspace, the so-called brane. The whole
space, called the bulk, contains the brane and the extra dimensions). In distinction to the other
known three interactions (QED, QFD, QCD) gravity does not couple to any charge, but is a more
general interaction and couples to all forms of energy itself. So gravitation can propagate into the
LED due the energy of the extra dimensions. For the D-dimensional space-time the Newtonian
gravitation can be calculated with the Poisson equation

ΔVD = −4πGDρm with the mass density ρm = Mδ(�r) and GD =
1

M2+n
S

. (2.54)

MS represents the counterpart of the Planck scale for higher dimensional theories. Using Gauss’
law ∫

V
∇Φ dV =

∫
∂V

Φ d�S (2.55)

to transform the volume integral into a surface integral, the equation assumes the form:∫
∂V

∇VDd�S = 4πGDM. (2.56)

This integral has to be computed with D-dimensional spherical coordinates. Thereby the gravi-
tational potential in D dimensions can be written as:

VD(r) = − 2Γ
(

2+D
2

)
GDM

(1 + D)πD/2r1+D
, (2.57)
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with the surface of the z-dimensional sphere Γ(z). Considering the compactification of the n
LEDs, the potential can be expanded into two asymptotic solutions:

VD ≈

⎧⎪⎨
⎪⎩

−GDM
πrn+1 r < R,

− GDM
2πrRn

(
1 + 2e−

R
r

)
r � R.

(2.58)

The extra dimensional gravitation spreads like rn+1 for distances smaller than the radius R, as it
is propagating also into extra dimensions at that ranges, shown in Figure 2.6.

Figure 2.6: The one-dimensional field of a particle has a different spatial dependency for distances
smaller than the compactification radius R.

Also for large distances the formula has another form than the Newtonian gravitation V (r) =
−GM

r . As the behavior of gravity at macroscopic distances is known from experiments, the last
equation must be related to Newtonian gravity:

lim
r�R

VD(r) != V (r), (2.59)

GD
1

2πRn
= G. (2.60)

By comparison the relation of the lowered fundamental scale MS and the Planck scale MPlanck is
calculated as follows:

M2+n
S Rn ≈ M2

Planck. (2.61)

So if MS is actually of the same magnitude as e.g. the electroweak scale (instead of 1019 GeV), no
fine-tuning of the higgs mass will be required anymore. From Equation 2.61 the compactification
radii of extra dimensions for the lowered fundamental scale of MS = 1TeV can be calculated. For
up to four extra dimensions the values for R are listed in Table 2.1.

n 1 2 3 4
R [m] 1012 10−4 10−9 10−12

Table 2.1: Size of the LEDs for MS = 1TeV.

Except for the case of n = 1 which would have been observed already the cases n > 1 still
have to be tested further 6.

To obtain a quantum theory of LED two pieces have to be calculated: First, the energy scales
of the bulk and the brane action have to be matched to determine the strengths of the higher
dimensional couplings. Second, an effective Lagrangian of higher dimensional gravity has to be
formulated to be able to calculate the couplings.

6There are some results from collider experiments for up to 6 EDs. They will be described in the next chapter.
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2.2.3 Matching the ADD theory to the 3 + 1-dimensional world

As the EDs are supposed to be compactified and only accessible for the graviton, the Einstein-
Hilbert action of the ADD theory has to be investigated. The action can be split into the brane
and the bulk part.

S = Sbrane + Sbulk. (2.62)

Naturally the bulk consists of the extra dimensions and the brane. As the SM is confined to the
brane an effective formulation of the brane phenomena is desired. The Einstein-Hilbert action in
4 dimensions for gravitation is:

S = d4x

∫
L, (2.63)

S(4) = −M2
Planck

∫
d4x

√
g(4)R(4), (2.64)

with the Planck constant M2
Planck, the curvature R(4) (which originates from the contraction of the

Ricci Fields), and the Minkowski metric tensor in four dimensions g(4). This can be generalized
to a higher dimensional theory:

S(4+n) = −Mn+2
S

∫
d4+nx

√
g(4+n)R(4+n). (2.65)

In order to compare these formulae, another assumption has to be made. Let the space-time be
nearly flat, so that gμν can be expanded in a Taylor series:

gμν = ημν + hμν , (2.66)
⇒ ds2 = (ημν + hμν)dxμdxν − r2dΩ2

(n), (2.67)

where dΩ(n) are the spherical coordinates of the extra dimensions [11] and ημν represents the
totally flat Minkowski metric whereas hμν is a four dimensional fluctuation around ημν . From
these constraints the relation between the high dimensional action S(4+n) and the action in four
dimensions S(4) is determined and gives the relations of the determinants of the metric g and
scalar curvatures R as: √

g(4+n) = rn
√

g(4), (2.68)

R(4+n) = R(4). (2.69)

Here r is the compactification radius of the LEDs to avoid confusion with the curvature R. Using
this relation again in S(4+n) the connection between the EDs and the four dimensions assumes
the form:

S(4+n) = −Mn+2
S

∫
d4+nx

√
g(4+n)R(4+n) (2.70)

= −Mn+2
S

∫
d4x

∫
dΩ(n)r

n
√

g(4)R(4) (2.71)

= −Mn+2
S (2πr)n

∫
d4x

√
g(4)R(4). (2.72)

Matching the coefficient of the above action with the Planck scale MPlanck, the fundamental
equation of LEDs can be written as (compare to Equation 2.61):

M2+n
S Rn ≈ M2

Planck, (2.73)

where R has been used as the radius of the EDs. This equation shows the essence of this higher
dimensional theory. The measured Planck scale MPlanck is a derived value of the lowered funda-
mental scale MS and the radius of the EDs. The formula above can be derived from geometric
constrains by comparing the higher dimensional field with the Newtonian one, as shown in Equa-
tion 2.61, but explains also the connection of coefficients in the 4+n and four-dimensional theory.
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2.2.4 Phenomenology of Extra Dimensional Gravity coupling to the SM

The bulk action in the previous section has been calculated under the assumption of a nearly flat
space-time. These fluctuations have to be taken into account to describe the action on the brane,
as the brane action is important for the confined SM. Let the bulk coordinate be XM (M = 0...D),
and the position on the extra dimensional bulk (excluding the brane) by xm, (m = 4...D). To
emphasize the position of the brane in the bulk the coordinate Y M is used.

As only bulk fluctuations are relevant for this theory to describe couplings on the brane, the
introduction of the induced metric is needed:

gμν = GMN∂μYm∂νYm, (2.74)

with the corresponding infinitesimal line element:

d2s = gIJdY IdY J . (2.75)

The brane fluctuations can be set to zero by demanding Y I = δμ
ν xμ. The brane action is then

given by:

S =
∫

d4x
√

gLSM (gμν , φ, Aμ...) (2.76)

Expanding S around the flat induced metric:

SSM =
∫

d4xLSM +
∫

d4x
δSSM

δgμν
|g=ηδgμν(x) + ... (2.77)

with
δgμν(x) =

1

M
n/2+1
S

Gμν(x) , Gμν(x) : superposition of KK modes. (2.78)

Here it can be seen that the fluctuations of the bulk which have an impact on the brane action
are superpositions of KK graviton tensor fields. So in the ADD theory the fluctuations hμν are
identified with the KK tensor fields. Further the energy-momentum-tensor of the Standard Model
Tμν

SM can be written as:

Tμν
SM = |g|− 1

2
δSSM

δgμν
. (2.79)

Remembering that GIJ can be expanded like

GI,J(xμ, y) =
α=∞∑

α=−∞
gμνe

iα y
R , (2.80)

the action assumes the final form :

S = − 1
MPlanck

∫
d4x
∑
α

Gα
μνT

μν . (2.81)

So it is obvious that the bulk graviton couples linearly to SM matter with the coupling strength:

Lgrav = − 1
MPlanck

∑
α

Gα
μνT

μν . (2.82)

Every KK mode couples to SM matter very weakly with 1/MPlanck. The couplings are de-
termined by the energy-momentum-tensor of the SM and the KK mode. The virtual graviton
process valid for LHC collisions will be discussed in the next chapter.
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Chapter 3

Experimental probes of Models with
LEDs

To prove the existence of LEDs (as predicted in the ADD model), several experiments have been
performed over the last ten years. In this chapter the three most important ones are listed.

3.1 Tabletop Experiments of the Inverse-Square Law

The Eöt-Wash Group [12] of Washington University has specialized (using new techniques) in
high-precision studies of weak-field gravity at short ranges [13]. The torsion-balance instrument,
shown in Figure 3.1, consists of a torsion-pendulum detector suspended by a thin 80 cm long
Tungsten fiber. The pendulum is positioned above an attractor that rotates with a uniform
angular velocity ω by a geared-down stepper motor. The detector’s 42 test bodies are formed
as (4.767 mm diameter) cylindrical holes machined into a (0.997 mm thick) Molybdenum detector
ring. The gravitational interaction between the attractor holes and the masses of the detector
apply a torque on the detector which can be measured by an oscillation with an autocollimator
system [14].

Figure 3.1: Torsion pendulum used by the Eöt-Wash group to measure deviations from the New-
tonian gravity law [13].

The interaction is parametrized by a Yukawa-interaction:

V (r) = −G
m1m2

r

[
1 + αe(−r/λ)

]
. (3.1)
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With a 95 % confidence level the Eöt-Wash group measured that the Newtonian gravity holds
to a length scale of λ = 56μm so that the compactification radii of LEDs have to be smaller than
R= 44μm shown in Figure 3.2.

Figure 3.2: Exclusion limits (95% CL) obtained by the Eöt-Wash Group [12]. The parameter α
for LED is set to α = 8

3 which is determined by comparision with Yukawa-interaction.

3.2 Cosmological Constraints

In supernovae the theoretical energy losses due to emissions of gravitons can be used to derive
a limit on the lowered fundamental scale MS [15]. A supernova cools faster if it emits gravitons
compared to the cooling without the emission of gravitons, as the normal cooling process is due
to the emission of neutrinos. For the temperature T < R−1 smaller than the compactification
radius no KK modes can be produced, but if T > R−1 a large number of KK modes are excited
in the supernova. The number NKK of produced KK modes can be written as:

NKK ∼ (T · R)n. (3.2)

As each mode couples with 1/MPlanck, the cooling is expressed using Equation 2.61:

NKK ∼ 1
MPlanck

(T · R)n ≈ Tn

Mn+2
S

. (3.3)

Rearranging this equation a limit on MS can be calculated by measuring the cooling temperature.
Due to the measurement of the γ-ray background created by the radiative decays of the KK modes
(KK Mode → γγ) of the supernova SN1987A at EGRET (Energetic Gamma Ray Experiment
Telescope) in the year 1987, it has been possible to state lower limits for the fundamental scale.
The results are listed in Table 3.1.

As there have been huge systematical uncertainties on the knowledge of the core of the su-
pernova, the limits are very sensitive to the fitting procedure which has been used in [15]. E.g.
another reasonable fit would lower the limit for n = 2 to MS = 1TeV.
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n 2 3 4
MS [TeV] 50 4 1

Table 3.1: Exclusion limits from supernova SN1987A cooling with 95% CL [15].

3.3 Collider Physics

The phenomenology of collider processes of theories with ED has been studied exhaustively in [16]
and [17]. They have used different conventions in the treatment of the number of extra dimensions
and will be called HLZ [16] convention and GRW [17] convention here. There are two main paths
in the search for LED at colliders.

• The first one concentrates on the emission of real gravitons schematically shown in Figure
3.3. Due to very weak couplings further interaction of the graviton inside the detector is
very improbably. The graviton leaves the detector undetected and creates missing energy in
the event. Measuring the missing energy ��E of collider events, the production of gravitons
can be estimated.

Figure 3.3: Example for the production of real gravitons [8] in e+e− scattering.

Especially for early LHC data where the main challenge will be to properly understand the
detector, the analysis of this channel may have difficulties.

• The other attempt is to look for modifications of di-lepton or di-photon cross sections.
The virtual graviton contributes to the Drell-Yan process and so more 1 lepton or photon
pairs can be produced. The Drell-Yan process has been studied very precisely in theory
and therefore is one of the best calculated processes up to NNLO in both, QED and QCD
corrections [18, 19, 20], in particle physics. The parametrization of the modified Drell-Yan
cross section is as follows:

σtot(Mμμ, cos θ∗) = σSM + η σint + η2σKK , (3.4)

with η = F
M4

S
. Here σSM , σint and σKK are the cross sections of the Standard Model, the

interference term and the direct Kaluza-Klein graviton coupling, and θ∗ is the decay angle
of the process and will be described later. The interference process consists of the same
initial and final state particles. In Figure 3.4 all possible leading order processes of di-lepton
production are shown.

The factor F depends explicitly on the convention used:

1Can also be less, depending on the convention; as only GRW and HLZ are used in this study, the destructive
interference is neglected.
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Figure 3.4: Leading order (2 → 2) processes for di-lepton production from hadronic initial states.
The first process (virtual γ∗/Z exchange) is occurring in the SM. The second process has the same
initial and final state as the SM processes. SM processes and the process qq̄ → GKK → l+l− are
not indistinguishable and therefore called interference term. The third process is not included in
the SM and only possible with gravitons as intermediate particles.

F =

⎧⎪⎨
⎪⎩

log
(

M2
S

s

)
n = 2

2
n−2 n > 2

(HLZ) (3.5)

F = 1 ∀ n (GRW) (3.6)

As shown in the previous chapter the graviton can only be described as a tensor field and must
therefore be a spin 2 particle. This different spin (as compared to the SM vector bosons) then
causes a different angular distribution of the final state particles. So the total cross section of the
additional virtual graviton exchange is a function of the invariant di-muon mass and the decay
angle θ∗, which is the angle of the positive lepton’s momentum w.r.t. the momentum axis of the
initial state quark (both quarks are assumed to collide in a head-on collision) in the rest frame of
the intermediate particle.

The Feynman rules for graviton couplings have been calculated from its Lagrangian

Lgrav = − 1
MPlanck

∑
α

Gα
μνT

μν . (3.7)

Here Tμν is the energy-momentum tensor of the SM particle which contains its Hamiltonian∫
d3xT00 = H. Gα

μν is the α-th Kaluza-Klein graviton mode. So KK gravitons couple to energy
in general.

The amplitude of the coupling of the virtual graviton to a SM particle is as follows:

A ∼ 1
M2

Planck

∑
α

1
s − m2

α,KK

. (3.8)

The number of excitations is so large that the separation of the masses of the KK-modes is
practically not possible. Thus the discrete sum in the Formula above is replaced by an integral
over a continuous mass distribution:

A ∼
∞∫
0

dm2
α,KK ρ(mKK)

i

s − m2
α,KK + iε

, (3.9)

where

ρ(mkk) =
πn/2Rnmn−2

α,kk

Γ(n/2)
. (3.10)
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Here Γ(n) is the familiar Gamma function. The cross section of the virtual graviton exchange
is proportional to the number of KK modes, so the fundamental scale MS cannot be measured
directly. As the number of KK modes would naturally diverge, the ADD theory is only valid
up to a certain cutoff, called Mf . The exact relation of MS and Mf is not known, but as the
fundamental scale of the ADD model is in the range of MS , it is assumed in phenomenology that
these values are of the same order [21].

In addition to the above processes, QCD correction have to be taken into account which means
that the initial quarks can emit QCD bremsstrahlung or quark gluon and additional gluon gluon
couplings take place. These processes contribute to the Drell-Yan cross section and cannot be
neglected. Examples are shown in Figure 3.5.

q
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q

GKK
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Figure 3.5: Examples for di-lepton production with additional QCD corrections (2 → 4 processes)
with hadronic initial state. The large variety of graviton couplings cannot be neglected and
contributes significantly to the cross section.

Virtual graviton exchanges have already been studied in collider experiments. The recent best
limits in the Drell-Yan channel for ADD have been set at the D∅-detector at the Tevatron [22, 23]
in pp̄ collisions at a centre of mass energy of 1.96 TeV, shown in Table 3.2 and Figure 3.6.

Convention di-muon channel electromagnetic channel
GRW 1.07 TeV 1.66 TeV

Table 3.2: D∅ limits at 95 % CL for the fundamental scale Mf [22, 23].

In this thesis the analysis will be done with simulated Monte Carlo events of the upcoming
LHC data collected with the CMS detector. Due to the significantly higher centre of mass energy
it will be possible to probe di-muon events in the TeV scale.
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Figure 3.6: Drell-Yan mass distribution for the di-muon channel (left) and the electromagnetic
(di-electron and di-photon) (right) at D∅.
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Chapter 4

Experimental Setup LHC and CMS

CERN (original name “Conseil Européen pour la Recherche Nucléaire”) is the world’s largest
particle physics laboratory sited close to Geneva in Switzerland on the border to France shown
in Figure 4.1. CERN hosts a large number of accelerators and experiments where accelerated
particles are being collided, e.g. at the Large Hadron Collider (LHC).

Figure 4.1: LHC design and hosted experiments [24].

4.1 LHC

The Large Hadron Collider (LHC)[25] is a two-ring-superconducting-hadron accelerator and col-
lider installed in the existing 26.7 km tunnel that was constructed between 1984 and 1989 for
the CERN LEP machine (Large Electron Positron (Collider)). The LEP ring has been replaced
by proton-proton technologies which are now used for the LHC accelerator. It is designed for
collisions with a centre of mass energy of 14 TeV, which has never been achieved before in any
other experiment. Also the design luminosity (see Equation 4.2) of 1034 cm−2 s−1 is much higher
as compared to other collider experiments.

It is also planed to accelerate lead ions at LHC in the near future in order to perform heavy
ion experiments. There are four main experiments located at LHC. ATLAS[26] and CMS[27] are
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both multi-purpose detectors and designed to investigate physics at the Tera-scale. ALICE [28]
is a heavy ion experiment and designed to be sensitive to lead nuclei collisions. The LHCb [29]
experiment focuses on measurements of quark mixing and CP-violation in the b quark sector. The

Figure 4.2: Schematic figure of all accelerators at CERN, including the LHC.

whole acceleration procedure is done as follows (Figure 4.2):
Protons are produced by ionizing hydrogen. They are let to the linear accelerator LINAC2.

The proton bunches delivered by the LINAC2 are collected in the Proton Synchrotron Booster
(PSB) and Proton Synchrotron (PS) where they are grouped into bunches and later directed to
the Super Proton Synchrotron (SPS), which is the last pre-accelerator before the bunches reach
the LHC, where they are accelerated to their final energy. Taking into account the boundary
conditions like pre-accelerators, magnets etc., an optimization procedure has resulted in the LHC
proton beam parameters as seen in Table 4.1.

Parameter Units Injection Collision
Energy [GeV] 450 7000
Luminosity [cm−2s−1] 2.5 × 1034

nB Number of bunches 2808
Bunch spacing [ns] 24.95
NB protons per bunch [p/bunch] 1.7 × 1011

Beam current [A] 0.86
Energy spread, total (4σ) 10−3 1.9 0.45

Table 4.1: LHC proton beam parameters [24] at design conditions.
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To keep the beam on the circle track, dipole magnets are used. They provide a field of 8.4 T.
As the two proton beams run in different directions, the magnets need to have different polarities
for each beam. The so called cryodipole carrying the two proton beams, has a complex design
and is also hosting the superfluid helium to cool the magnets down to a temperature of T= 1.9 K,
shown in Figure 4.3. Superconducting magnets are used to provide these high magnetic fields.

Figure 4.3: Schematic figure of the cryodipole (including the cross section view) carrying the beam
pipe [30].

4.1.1 Collider related physics

At colliders the centre of mass energy
√

s equals 2E, twice the beam energy of one beam due
to frontal collisions of the beams 1. As previously mentioned besides the centre of mass energy,
the luminosity is a characteristic parameter of a collider. With NB particles per bunch and nB

bunches, the luminosity L is calculated as

L =
nBN2

B

4πσxσy
· f. (4.1)

Here σx and σy are the Gaussian widths of the beam, and f is the revolution frequency. The
relation of event rate and luminosity is given by

ṄEvents = L · σ. (4.2)

Here σ is the total cross section of the process. Often the total number of events after a certain
time t1 is important to know. The integrated luminosity is given by

t1∫
0

ṄEvents(t) dt =

t0∫
0

L(t) dt · σ, (4.3)

NEvents = Lint · σ. (4.4)

Protons are no elementary 2particles, but consist of partons. So at high energy collisions at
LHC the protons are destroyed and the fractional centre of mass energy called ŝ, is distributed to

1The Mandelstam variable for a two body reaction is: s = (p1 + p2)
2.

2Here the particles of Figure 2.1 are assumed to be elementary, because up to now there is no experimental
evidence for them to have inner structure. This will also be probed at LHC.
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the constituents:

ŝ = xa · xb · s. (4.5)

The xa,b denote the energy fractions of the partons defined as xa = 2Ea√
s

.

The total cross section of a certain process pp → X at a centre of mass energy
√

s can be
written as:

σ =
∑
i,j

∫
σ̂ij(ŝ)dŝ

1∫
0

dx1

1∫
0

dx2 fi(Q2, x1)fj(Q2, x2)δ(ŝ − x1x2s). (4.6)

Here, f(Q2, x) is the parton distribution function and gives the probability of a parton to interact
with the fractional energy x at the energy scale Q.

4.2 CMS

The Compact Muon Solenoid (CMS) [31] is a multi-purpose detector operating at the LHC, CERN.
It is consisting of several detector types to detect different types of particles in one apparatus.
The main features of the detector are that it is built in a relatively compact way with a length of
21.6 m and a diameter of 14.6 m, and hosts a superconducting solenoid magnet inside.

Figure 4.4: A full overview of the CMS detector at LHC [30]. All parts are listed showing both,
the endcaps and the barrel region.

The overall structure is shown in Figure 4.4. The most central part of the detector is the 4 T
superconducting solenoid, whose coil surrounds the tracker and calorimeter. At the outside of the
solenoid the return yoke of the magnet and the muon system are located, consisting of four muon
stations. One muon station itself consists of several layers of aluminium drift tubes (DT) in the
barrel region, and cathode strip chambers (CSC) in the endcap region, complemented by resistive
plate chambers (RPC). All parts will be described briefly.
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4.2.1 The Tracker

The CMS tracker is entirely based on silicon detectors [32]. It is surrounding the beam pipe in
radial direction and forms the most inner part of the whole detector which is shown in Figure 4.5.

The CMS tracker is composed of 1440 pixel modules and 15 148 strip detector modules. Ac-
cording to the position, the silicon detector size differs (100×150) μm2 to 10 cm×80 μm . Also the
thickness changes going from 500 μm in the outer tracker region to 320 μm in the inner tracker.

Pixel detector

The silicon pixels [33] consist of highly n-doped implants. The junction to the p-doped area forms
a ring structure. The read-out is performed in three parts: a data link to the pixel driver, a fast
control link from the pixel driver to the pixel controller and a control link. The granularity of pixels
and the high coverage around the interaction point guarantee a resolution of the vertex within an
uncertainty of ∼ 10 μm. It has been built to provide measurements of primary (immediately after
the collision) and secondary (for processes where a short living particle, like b-mesons) vertices.
At radii of (4.4, 7.3, and 10.2 ) cm, three cylindrical layers of pixel detector modules surround the
interaction point, and two disks of pixel modules on each endcap side, as shown in Figure 4.5. In

Figure 4.5: The Tracker System [30] of the CMS detector.

total the pixel detector covers an area of about 1 m2 and consists of 66 million pixel sensors.

Silicon strip tracker

The outer radial region between 20 cm and 116 cm of the tracker system is occupied by the silicon
strip tracker, Figure 4.6. It is built of four subsystems (TIB, TID, TOB, TEC). The Tracker Inner
Barrel and Disks (TIB/TID) extend radially up to 55 cm and are composed of four barrel layers,
supplemented by three disks (endcaps) at each end. The TIB/TID is surrounded by the Tracker
Outer Barrel (TOB). It has an outer radius of 116 cm and consists of six barrel layers. The Tracker
EndCaps (TEC+ and TEC-) are sited beyond the z axis and cover a larger z region. Overall (as
seen in Figure 4.5) the tracker system covers a η-region of 2.5. The silicon strip tracker consists
of 15 148 detector sensors implemented in 24 244 modules, covering a total area of 210 m2. As
shown in Figure 4.6 the double sided modules (in blue) consist of two one sided modules (in red)
mounted back to back. It is built for precision measurement of tracks [34]. If charged particles
cross a silicon sensor as shown in Figure 4.7, electron-hole pairs are produced along the particle
trajectory within the n-bulk. The applied electrical field forces the electrons of the bulk to drift
to the n+ layer and the holes to the p+ implants with a drift time of 10 ns (a typical value for
silicon) and can be read out further.
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Figure 4.6: Silicon strip tracker system. Shown in red the one sided modules and in blue the
double sided modules [30]. The numbers at the edges of the dashed lines represent the value of
the pseudorapidity η.

Figure 4.7: Schematic design of a CMS silicon microstrip sensor [34].

The silicon strip detector is operating at −20◦ C in order to reduce damage from hard radiation.
The mechanical accuracy of the tracker adjustment by construction precision 3 is in the range of
50 μm. This unique detector part in CMS makes it possible to measure the transverse momentum
of charged particles with an accuracy of

σ(pt)
pt

= 0.15
pt

TeV
⊕ 0.5% (4.7)

depending on the energy of the particle 4.

4.2.2 ECAL/HCAL

Calorimeters are detectors to measure the energy of passing particles [35] [36]. In CMS there are
two different calorimeter systems used, named ECAL and HCAL. They are positioned inside the
solenoid 5 and need to withstand a high radiation level.

3No alignment with cosmic data considered here.
4Example for muons as can be seen in the Reconstruction chapter.
5HCAL HO, the outer calorimeter of the HCAL is positioned outside the solenoid, see next section.
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Electromagnetic calorimeter

The electromagnetic Calorimeter (ECAL) is a homogeneous calorimeter, meaning that it is con-
sisting of one material type only. The ECAL is built to measure electrons and photons mostly,
which interact electromagnetically in the detector. The measurement of weakly interacting parti-
cles is performed with the missing transverse energy.
The ECAL is made of 61 200 lead tungstate (PbWO4) crystals in the barrel part and 7 324 crystals
in each of the two endcaps (Figure 4.8). PbWO4 has appropriate characteristics for operations
at LHC, a high density of ρ =8.28 g/cm3, a short radiation length of X0 = 0.89 cm, and a small
Molière radius6 of R = 2.2 cm which favor the use of (PbWO4) for the ECAL of the CMS detector.

Figure 4.8: The CMS Electromagnetic Calorimeter [34].

The scintillating light of the calorimeter is read out via photodetectors. They have to be
radiation tolerant and to be able to operate at a strong magnetic field of 4 T. Two kinds of
photodetectors are used in the ECAL. In the barrel region (|η| < 1.479) avalanche photodiodes
are used. They have an excellent quantum efficiency of 75 % for light at a wavelength of 430 nm.
In the endcaps (1.479 < |η| < 3) where the radiation rate is higher, vacuum phototriodes are
used, e.g. photomultipliers with a single gain stage [35] [36]. The inferior quantum efficiency of
22 % is compensated by the larger surface coverage of the phototriodes. The CMS ECAL has an
expected design energy resolution of:

(
ΔE

E

)2

=
(

2.8%√
E

)2

+
(

0.12
E

)2

+ (0.3%)2. (4.8)

HCAL

The CMS Hadron calorimeter (HCAL) is built to measure hadron jets and (indirectly) neutrinos
or other particles due to missing transverse energy. The HCAL consists of four parts, the barrel
(HB) |η| < 1.3 and the endcaps (HE) 1.3 < |η| < 3.0, both located inside the solenoid, the outer
calorimeters (HO) which is also positioned in the barrel range but outside the solenoid and the
forward calorimeter which is located at the very margin of the detector right above the beam pipe
covering a range up to η = 5.2, as shown in Figure 4.9. The CMS HCAL (including the HO) is
expected to reach an overall energy resolution of [37]:

(
ΔE

E

)2

=
(

120%
E

)2

+ (5%)2. (4.9)

6Radius of a cylinder around the particle trajectory which contains ∼ 95 % of the original energy.
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Figure 4.9: The CMS Hadron Calorimeter parts HB, HE, HO and HF, and their η coverage [30]
is shown.

Barrel design (HB) and Outer calorimeter design (HO)

The HB is a sampling calorimeter using brass absorber plates (50.0 mm − 56.5 mm thick) to gen-
erate hadronic showers and several layers of 3.7 mm thick plastic scintillator tiles with embedded
wavelength shifting fibers to collect the emitted light. To ensure sufficient sampling depth for
showers that are produced very late in the detector, the barrel region of the HCAL is extended
with an additional outer calorimeter (HO) outside of the solenoid. It utilizes the solenoid as
absorber material so it consists of plastic scintillators only. The scintillator light is read out via
hybrid photodiodes.

Endcap design (HE)

The calorimeter endcaps are positioned at the ends of the solenoid. Non-magnetic brass plates
are used as absorbers while 18 layers of trapezoidal-shaped scintillators create light which is read
out by hybrid photodiodes.

Forward calorimeter design (HF)

The forward calorimeter is made of radiation tolerant quartz fibers and steel absorbers. The fibers
provide fast collection of the Cerenkov light produced in the HF. The Cerenkov light itself is lead
to photomultipliers in order to be read out. This construction makes the HF sensitive to the
electromagnetic part of the shower.

4.2.3 Muon System

As presented in this thesis the muon final state is very important for the searches of new phe-
nomena. That is why the CMS experiment was built paying attention to the central importance
of detecting muons. The tasks of the muon system (Figure 4.10) can be summarized as follows:
Identification of the muon, measuring the (transverse) momentum and charge, and triggering.
The layout of the muon system [30] [36] is highly influenced by the geometry of the solenoid.
So the muon system consists of a cylindrical barrel section |η| < 1.2 completed by two planar
endcaps 0.9 < |η| < 2.4. Three types of detectors are used in the muon system corresponding to
the requirements and the positions they are used at.

• Drift tube (DT) chambers are used in the barrel region as the muon rate is low and the
magnetic field is weak. Also the background rate generated by neutrons is small. These
facts favor the use of DTs.
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Figure 4.10: The CMS muon system consisting of the barrel and the endcaps [30]. In the barrel
region DTs are used whereas CSCs are used in the endcaps to identify muons. Endcaps and barrel
are completed with RPCs.

• In the two endcaps where the magnetic field is strong (| �B| > 3 T) and non-uniform, and the
background rates are high, Cathod Strip Chambers (CSC) are used. With their superior
radiation resistance and fast response time, CSCs are more adequate to identify muons in
the endcaps. DT and CSC are also capable to trigger an event with muons.

• A much better trigger property is provided by Resistive Plate Chambers (RPC) embedded
in both, the barrel region and endcaps. The RPCs provide a fast (a few ns) and independent
trigger due to their fast response and good time resolution. The position resolution is coarser
as compared to the DT and the CSC.

Drift tube chambers

The functionality of a drift chamber is similar to a wire chamber. Inside a gaseous (CMS DTs
use a mixture of 85 % Ar and 15 % CO2) filled chamber an anode wire is located at which a
high potential (+3600 V) is applied where the walls of the chamber have to be grounded or a
opposite signed potential has to be appied (-1200 V). The particle passing the DTs ionizes the
gas. The electron generated by the ionization move to the anode wire whereas the ions move to
the cathode walls. The ionization caused by electrons and ions then is read out as an electric
signal. Knowing the drift time (CMS DT 380 ns for 21 mm ∼ 55 μm/ns) in the gas a reasonably
precise knowledge of the position of the passing particle is acquired. The DT chambers are built
concentrically around the beam pipe with growing diameter depending on the distance to the
beam. One wheel consists of twelve chambers each covering 30◦ of the azimuthal angle. A DT
chamber is made of three (only two for the last chamber) Superlayers (SL), each consisting of four
layers of rectangular drift cells that are shifted by half of a cell, as shown in Figure 4.11. The two
outer SL are parallel to the beam direction and measure the track in the plane of the magnetic
bending (the r − φ-plane). The SL in the center is rotated by 90◦ and measures the track in
z-direction to provide a 3D measurement.

Not all drift cells in CMS are built with the exact same design. Their scales depend on the
type of the SL. The outer width is 42 mm and the height 13 mm whereas the length (direction of
the beam pipe) is varying (2.5 m for the r-φ-SLs). A traversing particles through a drift cell can
be measured with a precision of ∼ 200 μm.
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(a) Superlayer (b) Drift cell

Figure 4.11: Superlayer consisting of drift cells (left) and cross section of a drift CMS drift cell
(right) [30].

Cathode strip chambers

The CSCs are multiwire proportional chambers made of six anode wire planes and seven cathode
strip planes perpendicular to the wires as shown in Figure 4.12. In the endcap regions CSC are

Figure 4.12: The CMS CSC used in the endcaps of the muon system [30].

used due to their radiation tolerance and fast response time. Particles passing the CSCs lead to gas
ionization along the track. The electrons of the ionized gas drift to the array of wires and develop
an avalanche near the wires. The moving charges induce charges in the cathode strips. These
signals are measured and the track of the passing particle can be interpolated later. The endcaps
consist of 540 CSCs divided into four endcap disks ME1 to ME4. One endcap is divided further
into two rings (the inner most into three), where one inner ring is consisting of 18 trapezoidal
chambers (36 for the others). Each wire plane consists of about 1000 wires with a gap of 3.2 mm.
They provide a measurement in φ-direction. The cathode strips have a changing width due to
their trapezoidal form and cover a constant Δφ slice of 2 mrad and 5 mrad. The seven cathode
planes are separated by a 9.5 mm gas gap (mixture of Ar, CO2, and CF4).
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Resistive plate chamber system

The third segment of the muon system is the resistive plate chamber system which has a fair
spatial resolution but a time resolution (of a few nanoseconds) comparable to that of scintillators.
This feature makes RPCs especially usable for trigger purposes. RPCs are used in both, barrel
and endcaps. Six layers are embedded in the barrel and three in the encaps. RPCs are able to
operate in avalanche mode or in streamer mode (discharge mode). Each RPC detector consists
of a double-gap bakelite chamber (Figure 4.13), operating in avalanche mode. The gaps have a
2 mm width.

Figure 4.13: The CMS RPC system used in both the barrel and the endcaps of the muon system
[30].

The gas gap is sandwiched between the two resistive electrode plates. These plates are painted
with a graphite coating, which is used to distribute the high voltage on the electrodes. The plates
are separated from the graphite coating by an insulating foil. In avalanche mode the release
of the primary charge by the incoming ionizing radiation is followed by the propagation and
multiplication of the electrons. This is shown schematically in Figure 4.14:

Figure 4.14: Schematic draw of the avalanche mode of the RPCs [38].

4.2.4 Solenoid

The worlds largest superconducting solenoid (Figure 4.15) with a mass of ∼ 300 t, is sited in the
center of the CMS detector. It is designed to reach a 4 T magnetic field to secure a sufficiently
curved track of charged particles to measure the momentum and sign of their charges. With a 6 m
diameter it surrounds the full tracker and calorimeter system (Figure 4.4) and stores 2.6 GJ energy



42 CHAPTER 4. EXPERIMENTAL SETUP LHC AND CMS

at full current. The 10 000 t weighing return yoke located in between the muon system guarantee
the return of the magnetic flux. The solenoid is cooled with a helium refrigeration system plant
[35] [36].

Figure 4.15: The Superconducting Solenoid [35] in CMS.

4.2.5 Trigger

LHC at its design luminosity will lead to particle collisions every 25 ns (time for each bunch
crossing). Most of the events are soft, meaning that the collision did not produce new particles
but the protons did change their direction or emitted a photon due to bremsstrahlung. Storing all
this event data is technically not possible for today’s computing performance. Therefore a trigger
system has been developed for the CMS detector. It consists of two parts: The level 1 trigger (L1)
is a hardware based trigger and provides decisions every 25 ns in order to reduce the event rate
from 40 MHz to 100 kHz. The software based trigger called high level trigger (HLT) is an offline
trigger and has more time for making decisions, and reduces finally the event rate from 100 kHz
to 100 Hz, which is possible to manage. Detailed lists of trigger thresholds are given in [39] [36].

4.3 Running conditions and data taking

In fall 2008 the first beam successfully circumnavigated the LHC circle. Unfortunately an incident
concerning several dipole magnets made it impossible to get data from collisions. To avoid another
incident and understand the response of all components used, a strategy for the first beams has
been performed [40] starting at the end November.

Month Comment Beam Bunch protons Peak Integrated
energy [TeV] number / bunch Lumi. cm−2s−1 luminosity

1 Commissioning
2 “Pilot physics” 0.45 43 3 × 1010 8.6 × 1029 ∼ 200 nb−1

3-5 bunch intensity 1.1 156 10 × 1010 6.9 × 1031 ∼ 50 pb−1

6-7 move to 3.5 TeV 3.5 156 7 × 1010 4.9 × 1031 ∼ 30 pb−1

8-11 increase lumi. 5 432 9 × 1010 2.1 × 1032 ∼ 200 pb−1

Table 4.2: LHC luminosity performance plan (preliminary) [40] and corresponding beam energies.
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Chapter 5

Monte Carlo and Computing Setup

Nowadays the theory of particle physics is described by quantum field theory. In this theory per-
turbative calculations for interactions have shown to predict experimental results precisely. This
is not true for QCD processes, where the quark and gluon fields are confined asymptotically due to
the scaling behavior of the coupling constant of QCD, αs, which becomes small only for large mo-
mentum transfers (large energies or small distances). This confinement to some extent restricts
the validity of perturbative calculations in QCD. Thus, a quantum-mechanically correct treat-
ment of a collision is currently not possible [41]. Besides the already mentioned non-perturbative
confinement, even for perturbatively accessible energy scales a full calculation is restricted to a
relatively small number of particles involved, as the number of Feynman amplitudes to be cal-
culated grows factorially with the number of involved particles. A realistic description of QCD
bremsstrahlung is beyond this limit, and can be performed only by imposing further approxima-
tions and phenomenological models.
Numerical methods like Monte Carlo simulations [42] have been used to describe scattering pro-
cesses at colliders. Monte Carlo simulations rely on random or pseudo-random numbers.

5.1 MC Generators & SHERPA

Approaches such as the PYTHIA [43] Monte Carlo event generator have succeeded describing former
and recent data [44]. A scattering process is evaluated at tree level 2 → 2 (two initial and final
state particles) only (no loop diagrams or higher order QCD radiations) matrix element. The QCD
corrections are computed via a parton shower algorithm 1. The non-perturbative confinement is
treated by phenomenological hadronization models [45]. Facing new challenges at LHC (c.o.m.
energy up to

√
s = 14 TeV), this procedure is insufficient [41] for the description of higher jet

multiplicities and QCD corrections of a scattering event. To describe LHC collisions more precisely
higher jet multiplicities have to be estimated not only via the parton shower algorithm but already
by the phase-space integration of the higher order matrix elements as the matrix elements have
to be evaluated at scales, which are far from the hadronization scale.
SHERPA is a C++ based event generation framework [46] able to simulate all stages of high energy
scattering, from the hard scattering up to the final state particles observable in the detector as
shown in Figure 5.1. Also the underlying events due to multiple parton interactions in one event
can be simulated in SHERPA as well. A crucial point of any generator is the combination of the
matrix element and the parton shower as this predicts the evolution of the initial state partons
of the matrix element to a hadronizing jet. In SHERPA this has been improved by the CKKW
[48, 49] merging method. CKKW allows to consider higher order tree level processes contributing
to the cross section of the process. Therefore CKKW divides the phase space for parton emission
into a regime of jet production, described by the corresponding matrix element, and a regime of
the evolution of the jet, performed by a parton shower [50]. The borderline of these regimes is
defined by the k⊥ algorithm (in the literature also called “Durham algorithm”) [51]. In the k⊥

1Several other generators calculate the matrix element but also use the PYTHIA parton shower generator.
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Figure 5.1: Schematic view of a p-p collision [47]. The hard process (dark red blob) followed by
the decay of unstable particles (red blobs). From the red blob the parton shower invokes and emits
hadrons. These hadrons finally hadronize and become jet shown in the green blobs. Underlying
events are shown in the purple blob. Finally the hadrons decay further or radiate final state
photons.

algorithm two particles i and j belong to different jets if they are separated by a distance

yij ≡ 2 min(E2
i E2

j )(1 − cos θij)/E2
CM ≤ ycut , (5.1)

where Ei,j are the energies of the particles, θi,j is the angle between their momenta and ECM is the
center of mass energy of the collision [48]. These distances are compared to the resolution variable
ycut, which is a free parameter in SHERPA . Numerous hadronic final states do not necessarily come
from different jets, but can be reduced to an initial jet that hadronized or emitted additional QCD
bremsstrahlung. So the k⊥ algorithm clusters (color charged) particles which were produced in
QCD processes and matches them to one colorless jet. Thus, yij is the minimum distance of two
particles which is resolved in the momentum space. If two particles are not resolved, they are
clustered by combining their four momenta pi,j = pi+pj . If ycut < yi,j the two particles are resolved
and Sudakov form factor [52] reweightings are applied to the matrix element. Descriptively the
Sudakov form factors represent the probability for a quark or gluon to evolve from a scale Q to Q1

without any branches. So the Sudakov form factors take care of the probability that the resolved
particles originated from partons of the matrix element. For ycut > yij the particles originate from
the same jet and SHERPA treats these particles as objects that have been separated due to parton
showering.
Goal of the SHERPA framework is to describe any hard n-particle final state configuration to
a certain order (where n is currently limited to ≤ 5 for computational reasons). The general
scheme of the SHERPA algorithm including the procedure of CKKW merging can be summarized
in following steps [49]:

1. A process to be studied is selected and the maximum parton multiplicity to be generated
is specified. The cross section for all requested parton multiplicities is calculated. SHERPA
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does not use pre-calculated matrix elements but integrates the phase space. For N possible
Feynman graphs of the selected process the probability to select the matrix element i (i =
1...N) with jet multiplicity n is:

P (n, i) =
σn,i∑k=N

k,j σk,j

, (5.2)

where σn,i is the i-th tree-level cross section of the multi jet process with the jet multiplicity
n at a fixed strong coupling scale αs.

2. The kinematics of the matrix element is calculated after a parton multiplicity has been
chosen. The parton momenta are distributed to the jets corresponding to the matrix element
squared |Mn,i|2. This is done by phase space sampling.

3. The next step is to determine the QCD energy scales at which the k⊥ clustering of the jets
is performed. These scales are called nodal values and due to the high energy dependency
of the coupling constant αs it is very important to know these values. To determine the
nodal values the resolution values yj (compare with yi,j) are calculated by the k⊥ clustering
for each jet. So every particle in the distance of yj has been clustered to the j-th jet. After
this is done for every jet, the nodal values are set as qj = ECM/yj .

4. After the nodal values have been determined, they are applied as a coupling constant weight
for the strong coupling αs(qj) in order to take care of the energy dependency of αs.

5. The event is now reweighted with the product of Sudakov form factors and the coupling
strength. If it exceeds the limits of the matrix element sampled in step 2, it is discarded
and the algorithm returns to step 1, otherwise it is used further.

6. The previous reweightings and coupling constants are taken as initial conditions for the
parton shower. Once the parton showers are attached to the outgoing particles, phenomeno-
logical models are used to determine the evolution of the parton shower. Inside the parton
shower, additional emissions are vetoed that lead to additional jets that are beyond the scale
ycut.

Hence, there is a maximal number nmax of jets covered by the matrix elements (due to computa-
tional reasons), higher jet multiplicities must be accounted for by the parton shower. This leads
to a modified treatment of the parton shower for those events with nmax jets stemming from the
matrix elements.

However there is still the non-vanishing probability to cluster a jet from the parton shower
with one jet which has been radiated due to initial state radiation (double counting). This is
avoided by a possible jet veto, which is technically performed considering once again the Sudakov
form factors and the probability for the jet to branch.

The following main modules are used in SHERPA .

• AMEGIC++ (A Matrix Element Generator in C++) which is based on Feynman diagrams, using
PHASIC++ (the Phase Space Integrator in C++) for integrating the Monte Carlo phase space.

• The evolution of each parton shower is computed by APACIC++ (A Parton Cascade in C++).

• AMISIC++ (A Multiple Parton Interaction in C++). This module simulates multiple parton
interactions, crucial for realistic scenarios at hadron colliders. The multiple parton interac-
tions are further treated with APACIC++.

• AHADIC++ (A Hadronization (Module) in C++). This module translates initial partons (gluons
and quarks) into final state hadrons, detectable in the experiment.



46 CHAPTER 5. MONTE CARLO AND COMPUTING SETUP

The ADD model implementation of SHERPA [53] provides additional vertices and couplings to
the Standard Model. The Kaluza-Klein graviton coupling to the Standard Model is included ac-
cording to Equation 2.82. The implementation of the ADD model is constructed upon a helicity
formalism of spin-2 particles. The helicity amplitudes are integrated in order to get the graviton
couplings.

In general the user has to edit the configuration file Run.dat where the process, physics model, and
other parameters like kinematic constraints are defined (see appendix). All necessary ADD-model
parameters can be set like in the following example.

N_ED = 2 ! Number of extra dimensions in ADD model
M_S = 2.50e3 ! string scale for ADD model [TeV], meaning depends

! on KK_CONVENTION
M_CUT = 10.00e3 ! cut-off scale [TeV] for the c.m. energy.
KK_CONVENTION = 5 ! Sum(HLZ) (1=simple, 2=exact)

! 5=GRW (Lambda_T(GRW)=M_S)

M_CUT is a parameter that bans ADD-like couplings at energy scales larger than M_CUT. The
configuration file Run.dat is used to create the libraries of the process defined in the configuration
file [54]. These libraries are used to calculate the cross section of the process. Libraries and cross
sections are needed in order to create MC events.

5.2 CMSSW

The CMS Software (CMSSW) [55] is a framework of software needed for the simulation, calibra-
tion, alignment, and reconstruction of data (Monte Carlo). CMSSW provides different modules
so that special analyses can be performed. A specific analysis module is a piece (or component) of
code that can be plugged into CMSSW. So all physicists in CMS benefit from the same framework
and core software but are able use their own modules for their special needs.

5.3 Generation of MC Samples

The general chain of MC production is shown in Figure 5.2. Firstly there is the collision data

Figure 5.2: Production chain of MC production and collision data taking. Up to the step of
detector response (RAW format), the computing chain is fixed. The desired Reconstructor and
the data format for skimming is depending on the needs of the end user.

(the event needs to be triggered by the HLT) or, as presented in this thesis, Monte Carlo (MC)
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generated data. For MC data the response of the detector material has to be simulated. This is
done with the program GEANT [56, 57] and stored in the DIGI format. Now the information of
the detector material interacting with the particles are transformed into the RAW format, which
contains the response of the different detector parts and the digitalizing of the taken detector sig-
nals (like converting a electronically signal in the RPC into a digital information). The simulation
of the detector response is redundant for collision data as the detector information is digitized by
the electronics immediately. The reconstruction step, more precisely explained in the next chap-
ter, applies algorithms to the digitalized signals so that physical objects can be reconstructed and
their properties (charge, track, energy) can be measured. This is called the RECO format. The
end-user can work on RECO files. To further reduce the amount of data the collaboration uses
PAT (Physics Analysis Toolkit) [58] where the user decides how much information is necessary to
keep and can drop the rest. For a cut based analysis like the presented one, even PAT data con-
tains unnecessary information to some degree. So PAT files themselves are skimmed (skimming
is an expression for pre-selection) using Root trees [59] provided by the CMS Aachen 3A SUSY
group.
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Chapter 6

Muon Reconstruction and Selection

In this chapter the reconstruction and selection of muons is presented. As the ADD model of
LEDs predicts theoretical deviations from the Standard Model in the invariant di-muon mass
distribution Mμμ and the decay angle cos θ∗, both distributions are reconstructed and discussed.
According to Figure 5.2 the detector signals are treated with different algorithms in order to
reconstruct physical objects. The impact of different outer conditions such as a not perfectly
aligned detector is discussed, too.

6.1 Muon Reconstruction

The identification of muons is to some degree straightforward compared to other particles. Muons
are the only particles passing the whole detector and creating a signal in the muon system. The
muon’s properties (e.g. charge or pt ) are mainly derived from its curved track in the magnetic
field of the solenoid. The track itself is reconstructed according to the hits of the muon traversing
the detector. In CMS the muon reconstruction is performed with three algorithms, one basic
reconstruction algorithm and two advanced algorithms.

• Reconstruction of the muon from local pattern recognition is the basic reconstruction al-
gorithm. Here the local hits in the detectors are used and the track of the muon is fitted.
The algorithm starts from a seed. A seed consists of a set of reconstructed hits in a certain
detector part.

• Standalone muon reconstruction is limited to the muon system, only taking signals from the
DTs, CSCs, and RPCs as input.

• Global muon reconstruction: The track of the muon in the muon system is extrapolated to
the inner tracking system and a combined reconstruction is performed.

Standalone muon reconstruction
The standalone muon reconstruction is built upon the local reconstruction where the tracking
detectors (DT and CSC) and the (timing) detector RPC are used. The reconstruction begins
with the innermost track segments of the muon system. These track segments are used as seeds
for the muon trajectory building. A Kalman-Filter [60] is used to define a cone inside the next
chambers. Inside this cone the trajectory of the former chambers is extrapolated and hits are
sought that match to the trajectory. If there is no matching hit in a following chamber, the search
is continued in the next chamber. The search is applied backward to the innermost chambers
after the procedure has reached the outermost measurement system. After each step the track
parameters are updated and material effects are taken into account. Also a loose χ2-cut is applied
to the trajectories to reject bad hits, mostly due to showering or cosmic hits. This procedure of
reconstruction is basically the same for the track and hit reconstruction of the particles passing
the tracker system. The silicon strip detectors are used to reconstruct the track whereas the pixel
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signals deliver the seed positions.
Global muon reconstruction
After the construction of standalone muons the trajectories can be extended into the tracker sys-
tem and the hits of the muon in the tracker can be included. Again material effects are considered
as uncertainties. Track parameters and uncertainties define a region of interest in the tracking
system where additional hits are expected. The final reconstruction is done after trajectory build-
ing (all seeds are recognized and all possible trajectories), trajectory cleaning (cleans ambiguities
of several trajectories originated from one single seed using the number of hits and the χ2 of track
fit) and finally a fit that smoothens the track using all information gained in the steps before.
In addition to these three standard reconstructors the CMS collaboration also developed several
special muon reconstruction algorithms. They are optimized to the non-perfectly aligned detector
and the special constraints of so-called high-pt or TeV-muons. After a critical energy EC a muon
looses more energy due to bremsstrahlung than by ionization. A (very simple) approximation for
muons is EC ≈ 24TeV

Z meaning for iron ∼ 1 TeV [61]. There have also been attempts to recon-
struct muons only with properties delivered by the tracker system (or the “tracker plus first muon
station”). This has been studied in the CRAFT’08 CMS-paper [62] and will be compared to the
global muons in this chapter.
The perfectly aligned detector geometry is simulated with the IDEAL_V12 scenario inside CMSSW.
Section 6.1.1 deals with the ideal geometry scenario and introduces to basic properties such as effi-
ciency and resolution of global muons. In Section 6.4 the impacts of different detector alignments
will be discussed further for both global and tracker only muons.

6.1.1 Muon Selection Criteria

The goal within this study is to separate the signal events (ADD) from the background only
(Standard Model (SM)) by cuts on different muon properties. As discussed in Section 3.3 the
virtual graviton exchange is a Drell-Yan process with an additional g g → GKK → μ+ μ− contri-
bution and the interference process q q̄ → GKK → μ+ μ−. So the signal events have a signature
as follows:

• As the two muons originate from a non-charged virtual particle they have to have opposite
charges.

• Due to the additional processes there will be more di-muon -pairs produced at high invariant
masses.

• Compared to the SM the angular distribution will be different as the graviton is a spin-2
(tensor-) particle and not a vector boson like a photon or a Z-boson.

Backgrounds with a di-muon final state are:

• Standard Model Drell-Yan Quark and antiquark qq̄ annihilate to a virtual photon or
Z-boson. The intermediate particle then decays into a di-muon pair. This is the main
background of the studied signal and gives an almost (differences in the angular distribution)
identical final state.

• Top anti-top quarks Two oppositely charged top quarks tt̄ are also likely to produce di-
muon pairs. A top decays with almost 100 % probability into a b quark and a W boson. The
b quark hadronizes, called b-jet whereas the W boson may decay in a muon (and neutrino).
Due to the b-jet tt̄ events will have a higher jet-multiplicity than Drell-Yan events.

• Double vector bosons The pair production of vector bosons is also possible at the LHC.
The two bosons can also decay into two muons in the final state. Possible occurrences are
(ordered in decreasing cross sections) WW , WZ, ZZ.
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• W+Jets A quark pair annihilating into a W± boson where one of the quarks has emitted
a gluon in the initial state (before the hard process). The W -boson may possibly decay into
a muon and a muon-neutrino. The other muon may come from the hadronizing jet. As one
muon stems from a jet, it has a different signature compared to muons which originates from
hard scattering processes.

• Multi-Jet Multi-jet events have a huge cross section for hadron colliders at processes with
low fractional momentum transfer. Hadronizing jets can decay further into muons. Multi-
jet events will have a very different signature from the other backgrounds and are discussed
separately.

The reconstruction of these events is mainly depending on the acceptance and the triggering
of the CMS detector. Therefore the following two preselection cuts are applied:

1. Triggering. As described in Section 4.2.5 an event needs to be triggered in order to be stored.
The CMS experiment provides a large variety of triggers with different thresholds. Several
triggers have been studied concluding that the single muon trigger HLT_Mu9 combined with
the double muon trigger HLT_DoubleMu3 is the best and sufficient choice for the presented
analysis. The single muon trigger is based on the global muon (combining muon system and
tracker) reconstruction and requires at least one global muon with pt > 9 GeV [63]. The
double muon trigger HLT_DoubleMu3 requires two global muons, with each pt > 3 GeV. To
reconstruct the event the muons have to be inside the acceptance range of the CMS detector
(or else they are not seen by the detector). The detector is limited to a |η|-range less than
|η| ≈ 2.5 whereas the muon trigger electronics is limited to |η| < 2.1. Muons which are
produced outside this range cannot be triggered. Taking the trigger efficiency into account
the η-range is restricted to be smaller than |η| < 2.1.

2. A reconstructed event has to contain at least two muons in order to be able to reconstruct
the invariant di-muon mass.

To ensure a clean and trustworthy muon signature several selection cuts have to be applied.
The Muon Physics Object Group (POG Muon) [64] of the CMS collaboration evaluated different
cuts very intensely to ensure that the muons originate from a hard process 1 with high accuracy.
The cuts listed in [65] are the best choice for most muon analyses.

The POG muon cuts been adapted for this analysis. The requirements of criteria that both
muons have to fulfill are as follows:

• The muon has to be reconstructed in the tracker and the muon system, this is called a global
muon.

• The transverse momentum has to be higher than pt > 20 GeV. A higher requirement of the
transverse momentum (up to ∼200 GeV) would not harm the ADD signal as it is in the TeV
scale, but would cut away the Z-peak at ∼ 90 GeV. The Z-peak is needed for calibrations
of the invariant di-muon distribution and measuring the luminosity.

• Number of hits in the detector (tracker and muon system) NHits > 11.

• The quality of the track fit normalized to the degrees of freedom χ2/ndf < 11. The degrees
of freedom are calculated from the number of hits and the parameters of the fitted track.

• Vertex compatibility of the reconstructed track with the measured primary vertex in a range
of |d0| < 2 mm in the xy-plane. |d0| is the impact parameter.

1It is also possible that muons do not come from a vector boson but are created inside the detector due to
material effects or from multi-jet effects.
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• Muons from a γ∗/Z/GKK-decay do not have additional particles next to their tracks in gen-
eral. This is called isolation. Isolation is calculated in the φ-η-plane by ΔR =

√
(Δφ)2 + (Δη)2,

where ΔR is a Lorentz invariant distance in the φ-η-plane, shown in Figure 6.1. For high
energetic muons it is more favorable to consider relative isolation instead of static isolation.
The static isolation is suggested by the muon POG. In a cone ΔR < 0.3, calculated in the
tracker system, there must not be more than 10 % of the muon’s pt, excluding the muon’s
itself, along the muon track.

Isotrack =

∑
ΔR<0.3

pt

pt
< 0.1 (6.1)

Figure 6.1: Definition of the isolation cone for a muon ΔR =
√

(Δφ)2 + (Δη)2. The direction at
the vertex defines the cone axis [35]. The dashed cone defines the veto area to exclude the muon
itself.

It is a very efficient cut to reduce multi-jet background due to the signature of muons which
are coming from jets. In this case a lot of energy is stored in a cone surrounding the muon.
Thus a prompt muon must be isolated.

• The muons arising from a neutral gauge boson have opposite charges. So the last cut
demands opposite sign from the two highest energetic muons selected. This cut has only
very little effect on Drell-Yan muons (neither SM Drell-Yan nor ADD Drell-Yan) but reduces
the number of background events.

To illustrate the different signatures of the processes the CMS-Event display Fireworks [66]
can be used. Exemplary one ADD Drell-Yan and event one multi-jet event are shown with very
loose cuts applied in order not to cut away too many particles, shown in figures 6.2 and 6.3.

6.1.2 Muon Reconstruction Efficiencies

The term "efficiency" is very widely used which makes it necessary to define it clearly for this study.
In this study efficiency means the number of selected events corresponding to the ones generated
in Monte Carlo. This includes the acceptance of the detector in the η-plane, the trigger efficiency
of the detector, and the quality cuts as explained above. This will be called selection-efficiency as
it represents all muons after applying the selection criteria. Technically the efficiency is estimated
with the following procedure: In every event each generated muon is scanned for at most one
selected muon inside a cone (Figure 6.1) of ΔR < 0.01 (this value has been chosen according to
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(a) φ-plane (b) z-plane

(c) Full detector view

Figure 6.2: ADD Drell-Yan event plotted with the event display CMS-Fireworks. The event is
consisting of two muon tracks only without any (or very little so that it is not shown by Fireworks)
energy deposit in the calorimeter system. The highlighted muon chambers denote that the muon
passed the detector at that positions.

Figure 6.4). If there is one generated muon in this cone, the muon is called matched (the muon
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(a) φ-plane (b) Full detector view

Figure 6.3: Multi-Jet event plotted with the event display CMS-Fireworks. In both views the
energy deposit in the calorimeter system (blue and red towers) illustrate that the event contains
electromagnetic and hadronic constituents. The yellow cones in view (b) are symbols for the jets.
It can be seen that the created muons originate geometrically from the jet cone and therefore have
a very “low” isolation.
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Figure 6.4: Cone ΔR between reconstructed and generated particles. A Drell-Yan dataset has
been used for this illustration.

must not be matched twice) 2.

εμ =
Nselected,matched

Ngenerated
(6.2)

The efficiency is a function of mainly η (Figure 6.6) and pt (Figure 6.5). Alternatively, instead
2The selection efficiency is also corrected to the acceptance of the detector which means that only muons inside

the acceptance range of η are matched.
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of the transverse momentum pt the invariant di-muon mass Mμμ can be used shown in Figure
6.6(a).
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(a) Full |η|-range < 2.1
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(b) The barrel region only (|η| < 0.9)

Figure 6.5: Muon reconstruction efficiency depending on the transverse momentum pt shown for a
high-pt Drell-Yan process (generator cut on the invariant di-muon mass: 500 GeV< Mμμ< 10 TeV
). It can be seen that the efficiency drops with rising pt. In Figure (b) only the barrel region
|η| < 0.9 has been used to reconstruct the muons. The efficiency in the barrel region is better
than in the endcaps.

(a) di-muon efficiency for a high-pt Drell-Yan sample
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(b) Efficiency for two different Drell-Yan samples w.r.t
η

Figure 6.6: Muon reconstruction efficiency as function of the invariant di-muon mass Mμμ and
|η|. The high-pt Drell-Yan sample has been used in both plots, on the left and red on the right.
Figure (b) shows that high-pt muon reconstruction is significantly less efficient compared to low-pt

muons (in the Z peak area). Also the η dependency is shown as the efficiency drops significantly
for high pseudorapidities.

The efficiency is decreasing with rising transverse momentum and high pseudorapidities |η| as
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shown in Figures 6.5 and 6.6. The efficiency drops down to a value of 60 % for the selection of two
muons in the Mμμ-distribution. This is mainly due to the cut on the track quality χ/ndf < 11. As
previously mentioned muons with energies above ∼1 TeV are no more minimum ionizing particles
but loose more energy due to bremsstrahlung in matter than due to ionization. Also in Figure
6.6 it can be seen that the efficiency significantly decreases in the transition region of the wheels
0 and 1 of the muon system at |η| = 0.3 .

6.1.3 Muon Reconstruction Performance

Although the identification of muons with the CMS detector is straight forward (Section 6.1)
the reconstruction of high energy muons is a very challenging task. The trajectory of muons are
reconstructed using Kalman filter techniques, where the track is fitted iteratively in the muon
system and tracker. Charge and pt of the muons are obtained from the fit parameters. The
dependency of pt on the track parameters is shown in Appendix B.1 3 and assumes the form:

s =
1
8
L2QB · 1

pt
, (6.3)

where L is the length of the lever arm, B the strength of the magnetic field, Q the charge of the
particle, and s the size of the sagitta. A Gaussian uncertainty on the sagitta s propagates to the
transverse momentum like σ(s) ∼ σ(1/pt). In Figure 6.7 the core 4 pt-resolution is shown. Up to
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Figure 6.7: pt-resolution for global and tracker only muons of the CMS detector (|η|<2.1). The
transverse momenta up to 400 GeV are dominated by the tracker resolution. For higher momenta
the muon system is dominating the resolution as the large lever arm is needed to measure the
curvature of the tracks of the high energy muons.

(400 − 500) GeV the tracker fit dominates the global resolution. For higher transverse momenta
the measurement of pt is dominated by the muon system. This is due to the large lever arm which
makes it possible to measure even small curvatures that are characteristic for high energy muons.
The corresponding Mμμ-resolution is shown in Figure 6.8.

3Although the reconstruction is done differently the illustration with the of the sagitta s has the same dependency
of pt.

4Core resolution means that the correlation as shown in Figure 6.14 at the center of the curve is assumed to be
Gaussian. The tails of this distribution are not Gaussian and have to be treated differently.
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Figure 6.8: Mμμ-resolution for global muons of the CMS detector (|η|<2.1). It can be seen that
the uncertainty of the Mμμ-resolution rises from 1 % at the Z-peak up to 7 % in the TeV region.

6.2 Invariant Mass Reconstruction

The reconstruction of the invariant di-muon mass of the selected muons is a simple task. After
the two muons have been selected, their four momenta p = (E, �p) are summed as:

Mμμ =

√√√√( 2∑
i=1

Ei

)2

−
∣∣∣∣∣

2∑
i=1

�pi

∣∣∣∣∣
2

, (6.4)

Mμμ =
√

E2
1︸︷︷︸

=m2≈0

+ 2E1E2︸ ︷︷ ︸
2| �p1|·| �p2|

+ E2
2︸︷︷︸

=m2≈0

− |�p1|2︸︷︷︸
=0

−2�p1 · �p2 |�p2|2︸︷︷︸
=0

, (6.5)

Mμμ =
√

2|�p1| · |�p2|(1 − cos (α1,2)). (6.6)

where α1,2 is the angle between the two muon momenta, E1,2 the muon energies, and �p1,2 the three
momentum of the muons. In CMS the energy is set in relativistic approximation to E = |�p| and
so the muon masses can be neglected. The invariant di-muon mass distribution is shown in Figure
6.9 for all listed processes (background and signal) and normalized to an integrated luminosity
of
∫

L = 100 pb−1:
Three different ADD parameter points have been chosen as reference. The Drell-Yan processes

for SM only and SM+LED (ADD) are slightly moving apart at ∼ 600 GeV. For large invariant
di-muon masses the SM Drell-Yan process dominates to the background as the applied cuts are
optimized to select Drell-Yan muons.
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Figure 6.9: Di-muon invariant mass distribution after simulated detector reconstruction for an
integrated luminosity of

∫
L = 100 pb−1.

6.2.1 Multi-Jet Estimation

The Multi-jet contribution is not shown in Figure 6.9. This is due to the fact that no multi-jet
event 5 survives the applied cuts. As multi-jet Monte Carlo simulations are very untrustworthy
(see Section 5.1) multi-jet events need special treatments. To estimate the multi-jet contribution
“data-driven” techniques [67] can be used. Although in this study no LHC data has been used, this
method is practised on MC events only and prepared to be exercised on real data. One method
is the cut factorization method which has been used in this study. The goal of this method is to
estimate the invariant di-muon mass distribution of multi-jet events. The procedure is comprised
of the following steps:

• A single muon variable not correlated to the invariant di-muon mass has to be found. In this
case it is sufficient for the variable not to be correlated to the muon pt, as pt and invariant
di-muon mass are almost 100 % correlated (neglecting the dependency of the angle between
the muons). For multi-jet samples the isolation variable is almost independent (less than
1 % correlation) from the muon pt as shown in Figure 6.10. This means that there is the
same probability for a high-pt-muon to have a low isolation and vice versa.

• The di-muon invariant mass distribution is divided into a control and a signal region. As
shown in Figure 6.9 the signal region starts at ∼ 700 GeV. To be more conservative, the
control region is set to 400 GeV.

• Two different Mμμ-distributions are needed. One distribution is gained by inverting the
isolation cut (here the absolute isolation and not the relative one is used) and plotting the
invariant di-muon mass. The other distribution is gained by holding the isolation fixed 6.

5The official Multi-jet samples are divided into low pt hat bins, meaning that the lowest pt of a jet within the
sample is limited to a pt cut on generator level.

6Unfortunately the inversion of the isolation cut did not provide enough statistics in the control region so that
also the χ2-cut had to be relaxed. But this will not be a problem as soon as real data is taken and more statistics
is available.
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Figure 6.10: Correlation of isolation and pt of muons from multi-jet processes. The tracker
isolation is shown for different muon transverse momenta for a multi-jet Monte Carlo sample. As
the two-dimensional plot is nearly uniform in direction of the isolation (slices in y-direction), no
correlation between pt and isolation can be derived.

• The distribution with inverted isolation is scaled down to the fixed-isolation distribution.
This is possible because isolation and transverse momenta are not (or very little) correlated.
This has been done in figures 6.11 and 6.12.
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Figure 6.11: Estimation of multi-jet (QCD) events with the cut factorization method for 100 pb−1.

• The multi-jet contribution is estimated from the scaled distribution. As shown in Figure 6.11
the estimated green distribution of multi-jet events is several orders of magnitude below the
event rate of the SM Drell-Yan background and so can be neglected for the further analysis.



60 CHAPTER 6. MUON RECONSTRUCTION AND SELECTION

 [GeV]μμDiMuon Mass M
50 100 150 200 250 300

E
ve

nt
s 

/ 5
0 

G
eV

-710

-610

-510

QCD, non-inverted Isolation

QCD, non-inverted scaled to inverted distribution

Figure 6.12: Control region of the cut factorization method for 100 pb−1.

6.3 Reconstruction of the Decay Angle

Besides the invariant di-muon mass the decay angle θ∗ of the muon will also have deviations from
the Standard Model according to the ADD theory. In this study the decay angle is defined as the
angle between the positive charged muon and the beam axis in the rest frame of the decaying
intermediate particle [21], as shown in Figure 6.13.

Figure 6.13: Definition of the decay angle θ∗. The choice of the angle between the positive charged
muon and the beam axis is conventional.

This is done technically by a Lorentz transformation for which the rest frame for the sum of
the four vectors psum = p1 + p2 of the selected muons is calculated.

⎛
⎜⎜⎝

m′
sum

0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
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β2 1 + (γ − 1)β2
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β2 (γ − 1)βyβz
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−βz γ (γ − 1)βzβx

β2 (γ − 1)βzβy

β2 1 + (γ − 1)β2
z

β2

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

Esum

px,sum

py,sum

pz,sum

⎞
⎟⎟⎠ . (6.7)

Solving this system of equations for the boost parameters β one gets �β = (−px

E ,−py

E ,−pz

E ).
These boost parameters (βx, βy, βz) then are applied to the single muon four vectors separately.
By this procedure both muons are boosted to the rest frame of the decaying particle. The angle
between the positive charged muon momentum and the beam axis is reconstructed as decay angle
θ∗.
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6.4 Impact of the Detector Misalignment

Alignment is the orientation and adjustment of objects in relation to each other or to a static
coordinate system, this means that misalignment is the uncertainty of positioning of the various
detector components w.r.t. the others in the CMS experiment. As the CMS experiment did not
take any collision data so far, up to the year 2008 the alignment of CMS was only known with the
precision of mechanical (also laser adjustment methods) adjustments [68]. The CRAFT (CMS
Run At Four Tesla) [69] data taking helped understanding the present alignment. While the
CRAFT data taking [62] cosmic muons have been measured with the CMS detector. This helped
in understanding the present alignment of the CMS detector.

Three different alignment scenarios are studied: STARTUP_V12 [70], 50 pb−1 [71], and the
already mentioned IDEAL_V12 alignment:

• STARTUP represents the conditions before the CRAFT data have been used to improve
the alignment of the CMS detector. The tracker and muon system uncertainty is listed in
the Table 6.1

Pixel Barrel Pixel Endcap TIB TID TOB TEC± DTs CSCs
Radial uncer. [μm] 105 120 482 445 106 95 1200 1400

Angular uncer. [μrad] 270 100 412 250 75 50 1600 570

Table 6.1: Uncertainty of positioning in radial direction and angular justification for the
STARTUP alignment scenario [72].

• 50pb−1 is an alignment scenario which has been derived utilizing the cosmic data from
the CRAFT. Especially the muon system took advantage from the cosmic rays as most of
the data has been cosmic muons. The Tracker conditions are identical to the STARTUP
scenario. The muon system’s precision has changed compared to STARTUP as given in 6.2

DTs CSCs
Radial uncer. [μm] 500 1200

Angular uncer. [μrad] 400 570

Table 6.2: Uncertainty of positioning in radial direction and angular justification for the 50 pb−1

scenario [72].

• IDEAL assumes a perfectly aligned detector in every component. So the intrinsic resolution
is not spoilt by misalignment effects.

6.4.1 pt-Resolution

For one ADD Drell-Yan sample (450 GeV < Mμμ< 10 TeV) the relation between the transverse
momenta at generator and reconstruction level of global muons have been compared in Figure
6.14 with a two dimensional diagram.

In the IDEAL and 50 pb−1-scenario there is a strong correlation of the generated and recon-
structed muon pt up to 2000 GeV. In the 50 pb−1-scenario the diagram gets wider as compared
to the IDEAL-scenario in the high-pt region. There are also more mis-reconstructed muons 7 in
the 50 pb−1-scenario. In the STARTUP-scenario there is a very wide core area and the number of
mis-reconstructed muons is much higher than in the other two alignment scenarios. For high-pt-
muons (higher than ∼ 1400 GeV) there is almost no correlation for generated and reconstructed

7Here mis-reconstructed muons are muons, whose pt is significantly not inside the Gaussian core area. The
Gaussian area has been estimated with three standard deviations (3σ) from the mean.
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(b) 50 pb−1 CRAFT Alignment
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Figure 6.14: Comparison of reconstructed and generated transverse momenta for one Drell-Yan
sample for global muons. The widths of the distributions indicate the precision of the muon re-
construction. The points outside the main cone (outside a 3 σ CL of a fitted Gaussian distribution
in vertical slices) are called mis-reconstructed muons.

muons. The core resolutions for global muons in all three alignment scenarios are shown in Figure
6.15.

The resolution for the STARTUP scenario is very different from the 50 pb−1 and IDEAL
scenario. For high transverse momenta the relative uncertainty on the momentum is more than
100 %. As explained previously one alternative procedure of reconstructing muons is the usage
of tracker only muons. This reconstructor uses only the information which is delivered by the
tracker system. The core resolutions for tracker only muons are shown in Figure 6.16.

For the STARTUP scenario tracker only muons have the better pt resolution. The huge
uncertainty of the transverse momentum of global muons in the STARTUP scenario is caused due
to the bad alignment in the muon system. This has been mainly improved by the CRAFT’08
data. As shown in Figure 6.15 and Figure 6.16 the 50 pb−1 is based on the same tracker alignment
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Figure 6.15: pt-resolution of global muons for the three different alignment scenarios listed for
|η| < 2.1.
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Figure 6.16: pt-resolution of tracker muons for the three different alignment scenarios for |η| < 2.1.

as the STARTUP scenario but the muon system alignment is much closer to the IDEAL scenario.

6.4.2 Charge Mis-Assignment

Another important point of interest is the probability of muons to be reconstructed with the
wrong sign of charge. In single muon analyses this might not play an important role. But in this
study where a di-muon analysis is performed, the sign of the muon charge is very important to
know as in every event two opposite charged muons are selected. For a Drell-Yan sample (same
one as used in the resolution studies) the charge mis-assignment has been studied (Figure 6.17).
In the IDEAL scenario the probability of charge mis-assignment is flat and at ∼ 10−3. In the
50 pb−1 scenario the probability is flat at ∼ 10−2, but rising at the endcap-region (|η| ≥ 1.4).
This can be explained by cosmic muons that mostly cross the detector perpendicular to the beam
axis meaning through the barrel region and less cosmic muons through the endcaps. As there has
been less statistics of cosmic muons in the endcaps, the alignment has been improved in the barrel
region mainly. The charge mis-assignment probability in the STARTUP scenario is one order of
magnitude higher compared to the other alignment scenarios, especially in the endcap region. For
the IDEAL-scenario this has also been studied in the CMS Note [73] with very comparable results.
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Figure 6.17: Probability of mis-assignment of the global muon charge w.r.t η for a SM Drell-Yan
sample (450 GeV < Mμμ < 10000 GeV).

6.4.3 Mμμ-Distributions for Different Alignments

In Figure 6.18 the invariant di-muon mass distribution of global muons is shown for an integrated
luminosity of

∫
L = 100 pb−1. Within the statistical uncertainty there is no difference between

the IDEAL and the 50 pb−1 scenarios while the STARTUP scenario differs significantly. The
difference can be explained due to the bad efficiency of high-pt muons in the STARTUP scenario
and the inferior momentum resolution.

6.4.4 Muon Mis-Reconstruction

The probability to mis-reconstruct muons is addressed in this section. Mis-reconstructed muons
are significantly displaced (here 3 σ deviation from the core area in Figure 6.14 is meant) muons
according to Figure 6.14 and can be estimated by plotting the pt-ratio of reconstructed muons over
the generated pt in Figure 6.19. In contrast to the core resolution where a Gaussian fit is used,
the mis-reconstructed muons form a non-Gaussian tail. Although the invariant di-muon mass
distribution for 50 pb−1 and IDEAL scenario are equivalent, the probability to mis-reconstruct
global muons in the 50 pb−1 alignment is higher compared to the IDEAL scenario but still the
better choice compared to the tracker only muons in the 50 pb−1 scenario.

Consolidating all findings up to here, the choice has been made to use global muons for the
further analysis. Without the improvement of CRAFT’08 data the better choice would have been
to use tracker muons. But as shown in this chapter, global muon have been improved and have
several advantages compared to the tracker-only muons. As soon as first collisions take place, the
alignment of the CMS detector will improve further.
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Figure 6.18: Di-muon invariant mass distribution for
∫

L = 100 pb−1 in three different alignment
scenarios for global muons for a ADD Drell-Yan sample and the SM background. The IDEAL
and 50 pb−1 CRAFT alignment scenarios are identical within the statistical uncertainty whereas
the STARTUP scenario reproduces the Mμμ distribution very differently.



66 CHAPTER 6. MUON RECONSTRUCTION AND SELECTION

reco
t

 /  pgen
t

p

-210 -110 1 10 210

R
el

at
iv

e 
R

at
e

-510

-410

-310

-210

-110

Tracker muons

Global muons

(a) STARTUP

reco
t

 /  pgen
t

p

-210 -110 1 10 210

R
el

at
iv

e 
R

at
e

-510

-410

-310

-210

-110

Tracker muons

Global muons

(b) 50 pb−1 CRAFT Alignment

reco
t

 /  pgen
t

p

-210 -110 1 10 210

R
el

at
iv

e 
R

at
e

-510

-410

-310

-210

-110

Tracker muons

Global muons

(c) IDEAL

Figure 6.19: Comparison of reconstructed and generated transverse momenta for one ADD Drell-
Yan (450 GeV < Mμμ< 10 TeV) sample. As shown the tracker only muons in the STARTUP
scenario are mis-reconstructed with a lower probability compared to global muons. As the
STARTUP and 50 pb−1 alignment use the same tracker alignment the tracker only muons are
mis-reconstructed with the same probability in the CRAFT alignment scenario. The mis-
reconstruction probability for global muons in the 50 pb−1 alignment is lower compared to tracker
only muons.
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Chapter 7

Analysis

After the reconstruction of the events of the Standard Model (SM) background and the LED
signal (ADD) of the Monte Carlo events, the question arises, how the signal can be separated
and identified in data. Therefore it is important to know how likely the background can fluctuate
and “fake” a signal. The intermediate particles (Z /γ ∗ /GKK) are not directly detectable in
data but only the final state (which is di-muon in this analysis), so a statistical decision has to
be taken if a graviton signal is present according to the number of observed di-muon events and
the integrated luminosity. To determine the significance of a potential signal different techniques
and estimators1 can be used. The parametrization of the total cross section has been done in
Equation 3.4. Invariant di-muon mass Mμμ and decay angle cos θ∗ are analyzed in this chapter.

7.1 Hypothesis test

Hypothesis tests are methods to evaluate the statistical significance of observed data according to
different competing hypotheses, and are used to distinguish between the null hypothesis H0 and
an alternative hypothesis H1. The null hypothesis assumes that there is no signal whereelse the
existence of a signal in addition to the background is described by the alternative hypothesis. The
hypotheses are evaluated using a test statistic variable t which is calculated from the data. To
estimate whether the observed data favors the null or the alternative hypothesis a critical value
tc has to be set [74]. In Figure 7.1 two different hypotheses are plotted, the null hypothesis H0

and the alternative hypothesis H1. After the choice of the critical value tc, the areas α and β are
fixed, shown in Figure 7.1. In statistics the area α is called rejection region of the null hypothesis
and β is called the rejection region of the alternative hypothesis. E.g. tc has been chosen so that
β corresponds to 5 % (0.05) of the full integral of fH1(t) (see Figure 7.1). So if the test statistic
t, is in the rejection area of the alternative hypothesis β, the alternative hypothesis is rejected 2

with 95 % confidence level (CL). The more confident the rejection is supposed to be, the smaller
β has to be set (by choosing tc). If a 99 % CL is desired, β has to be chosen to be 1 % of the full
integral of fH1(t). So β is the conditional probability that t is less or equal to the critical value tc
for the alternative hypothesis, and α the conditional probability that t is greater or equal to the
critical value tc for the null hypothesis. This can be summarized as follows:

P (t ≤ tc|H1) = β =

tc∫
−∞

fH1(t)dt, (7.1)

P (t ≥ tc|H0) = α =

∞∫
tc

fH0(t)dt . (7.2)

1An estimator is a statistical method to estimate statistical significances. Basic estimators like s
σ(b)

(signal count
over fluctuation of the background) can be used to make a rational choice of cuts.

2Actually the alternative hypothesis is not rejected but one can only say that there has not been enough statistics
to reject the null hypothesis.
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Figure 7.1: Null- and alternative hypothesis w.r.t the test statistics t. The two different hypotheses
are analytically described by the functions fH0(t) for the null- and fH1(t) for the alternative
hypothesis. Both functions are normalized to fH1,2(t) and represent probability densities.

α and β are interpreted as confidence intervals and specify to which degree the rejection or
acceptance of one hypothesis is statistically significant [75].

Generally two types of errors are distinguished concerning false rejection of the null hypothesis
in favor of the alternative hypothesis and false rejection of the alternative hypothesis and keeping
the null hypothesis. These two errors are summarized in Table 7.1.

Conclusions from the hypothesis test
Reality ↓ Do not reject H0 Reject H0

H0 true
√

Type I Error
H1 true Type II Error

√

Table 7.1: Possible conclusions obtained from a hypothesis test. The Type I error is called a false
discovery and the Type II error is called false exclusion.

7.1.1 Usage in particle physics

According to the Lemma of Neyman and Pearson [76] the separation power (1−β) of a hypothesis
test for small statistics is maximal if the test statistic is chosen to be the likelihood ratio

Q =
L(s+b)

L(b)
(7.3)

of the null and the alternative hypothesis, where Q is the ratio of the likelihood functions of
signal + background, L(s+b) and background only, L(b). In this analysis the SM will be treated
as null hypothesis (background only) and the ADD theory as alternative hypothesis signal +
background, L(s+b). Another advantage of the likelihood ratio Q is that it can be used to combine
different search channels, which can be different distributions, e.g. invariant di-muon mass and
the decay angle θ∗, or even entirely different experiments (e.g. combination of data which has
been collected in different detectors). Combining i = 0, 1, ..., N search channels the test statistic
Q then can be written as [77] :

Q =
N∏

i=1

Qi (7.4)
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The CLS-method (also called the modified frequentist approach [78] ) is one way to implement
a hypothesis test in particle physics. In this method the negative log likelihood ratio t = −2lnQ is
used as test statistic 3. In Figure 7.2 the alternative (signal+background) hypothesis is described
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Figure 7.2: −2lnQ-distribution for signal + background and background only. The test statistic
value tdata of the data point separates the regions of rejection, named CLS+B (corresponding to
β) and 1 − CLB (corresponding to α). The signal + background hypothesis is described by the
normalized distribution Fs+b and the background only hypothesis by Fb.

by the normalized blue distribution, named Fs+b(−2lnQ) where the null (background only) hy-
pothesis is described by the green one, named Fb(−2lnQ). Both distributions are shown for the
test statistic t = −2lnQ. The test statistic value tdata of the −2lnQ distribution is calculated from
the data point (Section 7.1.2).

Comparing Figure 7.2 with Figure 7.1 the following relation can be found:

1 − α = CLB =

∞∫
xData

Fb(x)dx, (7.5)

β = CLS+B =

∞∫
xData

Fs+b(x)dx, (7.6)

where x is the substitution for −2lnQ and Fb,s+b(x) are the normalized distributions of the
background and of signal+background. Conventionally the limits for discovery and exclusion are
set as follows in the CLS-method: If the region of rejection of the background only distribution
(area to the left of the data point) is

1 − CLB < 2.85 · 10−7, (7.7)

which corresponds to 5 σ confidence level of a one sided Gaussian distribution, the data is claimed
to be incompatible with the background only hypothesis .So in a frequentistic sense this means

3This choice of test statistic has some advantages for computational needs. The logarithm reduces the amplitude
of the likelihood function but as a monotone function it does not change the position of the likelihood’s extrema.
Most computer algorithms are trained to minimize numerically, so instead of maximizing the likelihood, the negative
likelihood can be minimized. The factor 2 is added to the definition to make it more similar to the χ2-value.
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that the background does look like the observed data with a probability of ∼ 2 · 10−7 only. If
a discovery is not possible an exclusion limit can be set with 95 % CL corresponding to 1.96 σ
confidence level of a one sided Gaussian distribution. In the CLS-method the exclusion limit is
therefore set as:

CLS =
CLS+B

CLB
< 0.05, (7.8)

which is more conservative than setting only CLS+B < 0.05 in order to reduce unphysical occur-
rences described in [77]. As shown in Figure 6.9, the event counts in this analysis are very small.
Many analyses in the CMS collaboration therefore require additionally a minimum of five signal
events NS > 5 in order to avoid the optimization of the analysis to regions (in the di-muon or
another distribution) where the exclusion of one parameter point is possible earlier than discovery
w.r.t. the integrated luminosity. This has also been investigated and discussed (shown in Figure
7.14) in this analysis.

7.1.2 Technical Implementation

In reality when the CMS detector will take data there will only be one value of −2lnQ, the data
point in Figure 7.2 (the marked data line). To estimate the the prior probability density of the
−2lnQ distribution numerous toy-Monte Carlo experiments have to be performed.
In this study the HybridCalculator of the RooStats CMS-package [79] has been used. The Hy-
bridCalculator uses extended log likelihood ratios [80] as test statistic with:

Lext =
e−ννN

N !

N∏
i=1

f(xi), (7.9)

where f(xi) is the (conditional) normalized probability density function (p.d.f.), the number of
expected events (mean) ν, and the number of observed events (data points) N , where x is the
variable depending on the distribution (in this study the invariant di-muon mass). As N is the
total number of observed events in the whole distribution, the HybridCalculator estimates this
value by dicing N w.r.t. a Poisson distribution with the mean value ν. The extended log likelihood
Lext describes both, the different numbers of events in the signal 4 region of the background only
and signal+background distribution (therefore the normalization factor of extended log likelihood
is used), and the shapes of the background only and signal + background distributions.

The test statistic −2lnQ then assumes the final form:

− 2lnQ = −2ln
Lext(s + b)

Lext(b)
, (7.10)

−2ln
N∏

i=1

Qi = −2ln

⎛
⎝ e−νs+bνN

s+b

N !
e−νbνN

b
N !

N∏
i=1

fs+b(xi)
fb(xi)

⎞
⎠ . (7.11)

Here N denotes how often the HybridCalculator dices data points into the p.d.f. fs+b,b(xi) for
each −2lnQ of the background only and signal+background hypotheses by performing toy-Monte
Carlo experiments and so represents a fixed number.

7.2 Systematic Uncertainties

Another feature of the HybridCalculator is the treatment of systematic uncertainties. They can
be implemented as prior probability densities, which means that systematic uncertainties are not
due to a fluctuation in the statistics but more a lack of knowledge in the experiment. A prior
probability distribution is a probability distribution representing knowledge about an unknown
quantity before any data have been observed. The unknown quantity can be a parameter or a
hypothesis. In this study the following systematic uncertainties have been taken into account:

4Region of the invariant di-muon mass which is used to study the existence of LEDs.
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• Luminosity. Since the luminosity and the event rate is connected by the equation :

NEvent = Lint · σ, (7.12)

a precise knowledge of the luminosity is needed. For early data two measurement techniques
can be used.
First one is the measurement of the luminosity according to Equation 4.2:

L ∼ 1
σxσy

(7.13)

directly by scanning the width of the beam spot σx and σy [81]. Due to the uncertainties
of the tails of the beam spots for the first runs of the LHC, σx and σy can not be measured
well enough to estimate the luminosity in a range better than (8-10) %.
Another possibility is to use a very well calculated process like the inclusive Z-production.
The electroweak physics group of CMS [82] estimated the uncertainty of the cross section
of the Drell-Yan process for early data (∼ 100pb−1) [83]. For a luminosity of

∫
L = 45 pb−1

it is expected to be able to measure the cross section with an uncertainty of less than 3 %.
Taking into account the theoretical uncertainty of the Z-boson production cross section at
the Z-peak, a 5 % luminosity uncertainty is a reasonable expectation.

• Cross sections. Although the cross section for the Z-peak is calculated very precisely, the
cross section in the tails of the high invariant di-muon mass region has a high theoretical
uncertainly. They are due to the rising PDF (Parton Distribution Function) uncertainties
which have been recently studied by the CMS TeV Muon reconstruction group [84]. The
PDF uncertainties were calculated using the LHAGLUE interface to the parton distribution
functions library LHAPDF [85]. The CMS TeV Muon reconstruction group generated 26
Drell-Yan di-muon samples with masses from 40 to 6000 GeV at a center of mass energy of√

s = 14 TeV and applied a reweighting technique with asymmetric errors [86]. The trans-
formation has been done to the

√
s = 10 TeV scenario in 2009 [87]. At invariant masses

Mμμ of 700 GeV or higher the uncertainty is rising from 15 % at 700 GeV to 19 % at Mμμ >
2500 GeV. Although the PDF uncertainties have been studied for the SM Drell-Yan process
only, the same uncertainly for the ADD signal is reasonable.
Unfortunately the CKKW merging method has not been validated for the ADD implemen-
tation in SHERPA so far, and therefore only the 2 → 2 process without additional jet will
be used (Figure D.1). The next to leading order (NLO) QCD corrections of the Drell-Yan
process have been calculated w.r.t. the differential cross section as a function of the invariant
di-muon mass [88]. They have been applied to the produced Monte Carlo samples for the
ADD and the SM processes shown in Figure 7.3. Overall an uncertainty of up to 25 % is
realistic for the NLO cross section for both SM Drell-Yan and ADD Drell-Yan for invariant
di-muon masses of 800 GeV and higher at

√
s = 10 TeV.

• Shape uncertainty. The uncertainty of the shape of the invariant di-muon mass distribu-
tion is estimated by a comparison of two different Drell-Yan samples with a di-muon final
state. Therefore the private production of SHERPA samples has been used and compared
with the event generator PYTHIA. As the uncertainty of the tails are important, the Z-peak
has been used to normalize the samples to each other. The resulting difference is according
to the considered bin of the magnitude of up to factor two to three as shown in Figure 7.4.
This difference has been parametrized (shown in Figure D.4) and used as uncertainty in
each corresponding bin.

• Extrapolation of the CLB-distribution. In practice it is difficult to perform the toy-
Monte Carlo experiments more than 2 · 107 times which is necessary to estimate the sig-
nificance of a possible discovery. As in the critical region 1-CLB the probability density
of the -2lnQ-distribution of the background is very low (Figure 7.2), the toy-Monte Carlo
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Figure 7.3: QCD NLO corrections for SM and shown ADD parameter points [89].
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Figure 7.4: Comparison of SHERPA and PYTHIA Drell-Yan processes in di-muon final state for
100 pb−1. The absolute difference of the shown distributions has been parametrized and taken
into account as systematic uncertainty.

statistics is insufficient in that region. Thus an extrapolation of the CLB distribution is
needed. The extrapolation of the CLB-distribution is done with an exponential function. As
small deviations of the fit cause a large change in the discovery significance (shown in Figure
7.5), this fit has to be validated before. This has been done by performing once at least two
million toy-Monte Carlo experiments (running for at least one week on the local computer)
for each parameter point of the lowered fundamental scale Mf . The most robust fit has been
estimated considering the quantity χ2/ndf of the fit and by comparing the significance with
other estimators such as the pN estimator of the Aachen MUSiC group [90].

• Limited number of MC statistics. The statistical error of each bin of a certain
distribution is dependent on the number of simulated MC events NSim. The number of
expected events nevertheless is given by the relation NExp = Lint · σ. NSim and NExp are
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Figure 7.5: Systematic uncertainty of the extrapolation of the CLB-distribution. Three fits with
different starting points (SP) and their extrapolations are shown. All extrapolations have been
fitted with an χ2/ndf < 1.6.

not necessarily equal. Thus each simulated event has an additional uncertainty of a factor:

ξ = NExp/NSim = Lint · σ/NExp. (7.14)

This uncertainty is negligible in this study as the ratio of expected and simulated events
ξ = NExp/NSim is of the order of 10−4. This will be discussed further in Section 7.4.

All these priors are implemented as Gaussian distributions (characterized by the expectation value
(mean) and the standard deviation (width)) for which the width is chosen as the relative respective
uncertainty. The technical implementation is as follows. E.g. the prior probability density of
the luminosity is handled by a Gaussian distribution where the mean is set to the expectation
value (the corresponding luminosity for which the CLB is evaluated at). The uncertainty of the
luminosity is set as the standard deviation of this Gaussian distributions. So the value of the
luminosity is diced according the Gaussian distribution for every toy-Monte Carlo experiment. In
the CLS-method the systematic uncertainties broaden the CLS+B and CLB distributions.

7.3 Invariant Di-muon Mass Distribution Analysis

The invariant di-muon mass distribution is the most promising analysis channel for the search
of LED as shown in 7.6 and has been used for the di-muon analysis at Tevatron only. As no
uncertainty due to a limited number of MC statistics has been taken into account, a cut on the
Mμμ-distribution has to applied in order not to be sensitive to statistical fluctuations, e.g. in the
region of the Z-peak. The best separation can be achieved for a cut on Mμμ at 650 GeV as the
distributions for SM and ADD at that invariant mass begin to separate. The mass where the
separation gets relevant of course depends on the parameter point but a variation of the cut on
Mμμ between 600 GeV and 800 GeV has negligible impact on the significance. So only events with
Mμμ>650 GeV are used for this analysis.
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Figure 7.6: The invariant di-muon mass distribution in the signal region for an integrated lumi-
nosity of 100 pb−1.

7.4 Decay Angle Distribution Analysis

The theory of LEDs predicts a different angular distribution of the di-muon pair compared to
the Drell-Yan process in the SM. The decay angle cos θ∗ (as defined in chapter 6.3) has been
calculated [91, 92] and its distribution is shown in Figure 7.7. Where the SM Drell-Yan vector
boson exchange results in the known 1 + cos2 θ∗-distribution, the decay angle of the ADD theory
is different as the graviton is a spin 2 particle. Also for the different initial state particles (gluon
+ gluon or quark + anti-quark) the decay angle assumes different distributions.

So the processes gg → GKK → ff̄ and qq̄ → GKK → ff̄ lead to different distributions
w.r.t. the decay angle cos θ∗. The contributions of gg and qq̄ depend on the mass of the decaying
graviton [91], as shown in Figure 7.8.

Different cuts an the invariant di-muon mass have been applied in order to illustrate the cos θ∗

distribution. This has been done with reconstructed events and also with events on generator
level to estimate the reconstruction effects of the CMS detector, as shown in Figure 7.9.

It can be seen that the higher the invariant di-muon mass cut the more the ADD and SM
distributions describe different shapes as predicted in the figures 7.7 and 7.8. As discussed, these
differences are due to the spin of the graviton which is not present in the SM. But these plots have
been obtained with 100 000 generated events according to an integrated luminosity 5 of 500 fb−1.
Even then, shapes for ADD and SM for an invariant di-muon mass higher than 3500 GeV are
dominated by statistical fluctuations, as shown in Figure (7.9, e and f) as the cross section drops
with the invariant di-muon mass. This channel is therefore not advantageous for the first data
being taken but is promising for analyses with more statistics in a combined channel with the
invariant di-muon mass.

5The parameter point GRW, Mf = 2.5 TeV has a total cross section of ∼ 0.2 pb for a generator cut on the
invariant di-muon mass of (450 to 10 000 ) GeV.
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Figure 7.8: Contribution of gluon-gluon and quark-antiquark fusion for graviton production w.r.t.
the graviton mass in the ADD theory [91].
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(c) di-muon mass > 2500 GeV Generated, |η| < 2.1
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Figure 7.9: Comparison of the decay angle | cos θ∗| at generator level and after reconstruction
(for both an |η| < 2.1 has been applied). ADD in the legend always means SM+LED. With
rising invariant di-muon mass cut the contribution of the SM is suppressed for the ADD scenario.
Sub-figures (g) and (f) represent the cos θ∗ distributions on generator level without |η|-cut.
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7.5 Cut optimization

To utilize the different angular distributions of ADD and SM, a possible cut on the pseudorapidity
η has been investigated. As shown in Figure 7.10 the muons from the graviton GKK are produced
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Figure 7.10: Comparison between the η-distributions predicted by the ADD model (here Mf =
2.0 TeV) and in the SM, for invariant di-muon masses Mμμ> 650 GeV.

more in central (small values of |η|) direction. This has been used to investigate if it is beneficial
to narrow the η-region in order to gain a better signal to background ratio. The estimator
Nsignal/σ(Nbackground) (number of signal events over background fluctuations) has been used with
the uncertainties explained in the previous section (the dominant cross section error ∼ 25% is
added to the statistical error in quadrature). The results are shown in Figure 7.11. As the ADD
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Figure 7.11: The significance of a narrower |η|-cut is shown. As ADD parameter point the
Mf = 2.0 TeV sample has been chosen for an integrated luminosity of 100 pb−1.

samples contain both, graviton and SM contribution, the SM and ADD distribution have been
subtracted to obtain the pure graviton couplings. Due to the interference of the graviton and SM
gauge boson as shown in the theory chapter, this procedure is not entirely correct but sufficiently
accurate to estimate the graviton contributions. For |η| > 1 the significance is nearly flat. The
highest significance can be achieved by cutting symmetrically at |η| = 1.35. As the changes of
the significances are very small, and the event rate is reduced additionally by any cut on |η| (for
discovery at least five events for signal+background are required) this cut is not too promising for
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early data analyses. For higher integrated luminosities, this extra information may be beneficial
to characterize the potential signal and help to separate the graviton contribution from the SM
Drell-Yan process.

7.6 Expected Sensitivity and Limits for early data

The ADD samples have been produced in the GRW [17] convention which does not depend on
the number of extra dimensions but only on the lowered fundamental scale Mf . The investigated
parameter points have been chosen as Mf = 2.0 TeV, 2.5 TeV, 3.0 TeV, 3.5 TeV, and 4.0 TeV.
Under the premise that the generated Monte Carlo samples are correctly characterizing the ADD
and the SM di-muon distributions, the −2lnQ-value of the data point, −2lnQdata, is set to the
median of the CLS+B-distribution for the estimation of the discovery potential and to the median
of the CLB-distribution to estimate the exclusion potential. This has to be done as there is no
experimental data available yet. So with a 50 % probability the real data point is higher or lower
than −2lnQdata. The values of −2lnQ±1σ

data points (84 % or 16 %) and −2lnQ±2σ
data points (97.5 %

or 2.5 %) have been set as data points as well to estimate the σ bands of the sensitivity within
the uncertainties shown in Figure 7.12. This is necessary to estimate the impact of a (statistical)
fluctuation of the −2lnQdata point of real data. The width of the these σ bands depend on the
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Figure 7.12: -2lnQ-distribution for two different parameters of the lowered fundamental scale Mf

and luminosities. Also the −2lnQ positions the 1 σ and 2 σ width are taken as data points (have
also to be set to the right of the median to get the two sided σ band).

statistical uncertainty (intrinsic width of the CLS+B and CLB-distribution) and on the systematic
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uncertainties as they broaden the CLS+B and CLB distributions.
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Figure 7.13: Exclusion limits for Mf as a function of the integrated luminosity for 95 % confidence
level (1.96 σ).
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The luminosity dependency of the exclusion and discovery limit is shown in figures 7.13 and
7.14. For low luminosities up to ∼ 60 pb−1 the statistical uncertainty due to a low number of
expected events is dominating the exclusion limit, whereas for high luminosities the σ-bands are
getting wider significantly. This is due to the very large systematic uncertainties which have been
taken into account for this analysis. They are clearly dominating the sensitivity of this study
for integrated luminosities above ∼ 200 pb−1. As shown in figures 7.13 and 7.14 an integrated
luminosity of less than 20 pb−1 will be sufficient to extend the highest recent limits set by the D∅

experiment of MS = 1.66 TeV.
To compare the results with other analyses it is necessary to convert the shown parameter

point of the fundamental scale into the HLZ convention. Therefore the Formula 3.5 can be used:

1
M4

S(GRW )
=

F

M4
S(HLZ)

, (7.15)

4

√
F · M4

S(GRW ) = MS(HLZ), (7.16)

where F can be written as:

F =

⎧⎪⎨
⎪⎩

log
(

M2
S

ŝ

)
n = 2

2
n−2 n > 2

(HLZ). (7.17)

The variable ŝ = s · x1 · x2 represents the center of mass energy of the parton-parton interaction
and is different for every collision which took place, as the momentum fraction of the partons x1,2

is different in every collision. So the transformation to HLZ for two extra dimensions n = 2 is
not directly calculable from Formula 3.5. To conversion into the HLZ (n = 2) case has been done
by running SHERPA several times in the HLZ convention for two extra dimensions at different
fundamental scales and comparing the cross section generated by SHERPA . Once the cross section
of a fixed fundamental scale MS in the GRW convention and in the HLZ convention for n = 2 are
equal, the GRW limit can be transformed to HLZ (n = 2). The values of discovery and exclusion
for an integrated luminosity of

∫
L = 100pb−1 for the GRW and HLZ conventions are listed in

Table 7.2:

MS(GRW) [TeV] MS(HLZ)[TeV]
Expected potential for

∫
L = 100 pb−1 n=2 n=3 n=4 n=5 n=6

95 % exclusion 2.65 2.81 3.15 2.65 2.39 2.22
5 σ discovery 2.3 2.43 2.74 2.3 2.08 1.93

Table 7.2: Conversion of the lowered fundamental scale MS from GRW to HLZ for
∫

L = 100pb−1.

As shown in Figure 7.14, the signal events NS for each parameter point does not drop below
the threshold of NS = 5 so that this criterion does not to be considered at all.
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Chapter 8

Conclusions

The theory of extra dimensions in the ADD model predicts an interesting experimental signature
for virtual graviton exchanges in high energy scattering processes. As discussed in this study,
the di-muon pair production is a clean signature in CMS. Already with an integrated luminosity
of 100 pb−1 at a center of mass energy of

√
s = 10 TeV the recent limits of the lowered funda-

mental scale Mf can be extended. As also to some extend the systematic uncertainties (e.g. the
luminosity and the cross section uncertainties) will be reduced with continuous data taking, the
CMS experiment will be able to investigate the ADD model to a high degree. The matrix element
generation framework SHERPA has been used and compared to theoretical predictions as the NLO
QCD corrections of the Drell-Yan process. All relevant backgrounds have been studied with the
conclusion that the SM Drell-Yan process is the only dominant background. The applied cuts
have been discussed with the aim to achieve the best possible separation of the signal from the
background. Concerning the impacts of the misaligned CMS detector, three different alignment
scenarios have been investigated and compared. The discovery and exclusion potential has been
estimated with the CLS-method where all relevant systematic uncertainties have been taken into
account. The results have been compared with the CMS Note AN-2009/062 [93] where the di-
photon channel has been studied. As the branching ratio GKK→γγ

GKK→μ+μ− of the KK graviton is twice
as high for di-photons compared to di-muons, also the event rates for di-photons are twice as high.
But due to the better reconstruction efficiency of the CMS detector for muons than for photons,
the channels are comparable in the sensitivity. According to [93] the di-photon channel is slightly
more sensitive than the di-muon channel. A comparison has also been done to the analysis pre-
sented in the Physics TDR of the CMS detector [30]. This analysis has been done with a center of
mass energy of

√
s = 14 TeV. For the same integrated luminosity the

√
s = 14 TeV analysis is able

to set almost twice as high exclusion and discovery limits compared to the presented
√

s = 10 TeV
study.

As this study uses the Z-peak for calibration purposes, the presented analysis can also be used
to understand the CMS detector for the very first collisions to measure the SM precisely.
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Appendix A

Sample production in SHERPA 1.1.2

The kinematic cuts and the decay chain to be specified needs to be set in SHERPA as follows:

(processes){
%-------------------------------------------------------
%-- Processes to calculate -----------------------------
%-------------------------------------------------------
%
% jet jet -> muon- muon+ + (n-jets)
%

Process : 93 93 -> 13 -13 93{1}
Order electroweak : 2
Print_Graphs
End process

%
}(processes)
(selector){
!-------------------------------------------------------
!-- Parton level selectors -----------------------------
!-------------------------------------------------------

JetFinder sqr(20/E_CMS) 1.
Mass 13 -13 500 10000

}(selector)
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Appendix B

Measurement of the transverse
momentum of muons in the muon
system

A particle of charge Q and velocity �v experiences a force �F in a magnetic field �B:

�F = Q�v × �B (B.1)

So only the perpendicular part of the velocity (momentum) experiences the force. Comparing
this force with the centripetal force, the equation assumes the form:

F =
dpt

dt
hence pt = γmvt → pt

dt
= γm

dvt

dt
(B.2)

dvt

dt
=

v2
t

r
=

F

γm
=

QvtB

γm
(B.3)

r =
γmvt

QB
=

pt

QB
(B.4)

If the the particle has a curved track like in Figure B.1 the equation B.2 assumes the form:

r =
p sin ϑ

QB
(B.5)

Further from fig. B.1 one gets:

Figure B.1: Curvature of charged particles in a magnetic field
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APPENDIX B. MEASUREMENT OF THE TRANSVERSE MOMENTUM OF

MUONS IN THE MUON SYSTEM

h2 = r2 −
(

L

2

)2

= r2

(
1 − L2

4r2

)
(B.6)

h = r

(
1 − L2

4r2

) 1
2

≈ r

(
1 − 1

2
L2

4r2
+ O(1/r4)

)
(B.7)

s = r − h = r
L2

8r2
=

L2

8r
(B.8)

Putting the equations B.2 and B.6 together, the dependency of sagitta s and pt can be expressed
as:

s =
L2QB

8
1
pt

(B.9)

So the magnitude of curvature depends on the pt and the direction depends on the charge.
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Appendix C

Used Data Samples

Name NEvents Cross section (LO)
/WJets-madgraph/Fall08_IDEAL_V11/GEN-SIM-RECO 1 · 107 40 nb
/TTbar/Winter09_IDEAL_V11_FastSim/GEN-SIM-RECO 1 · 107 317 pb
/WW_incl/Summer08_IDEAL_V11/GEN-SIM-RECO 2.5 · 105 44.8 pb
/WZ_incl/Summer08_IDEALV11/GEN-SIM-RECO 2.5 · 105 17.4 pb
/ZZ_incl/Summer08_IDEAL_V11/GEN-SIM-RECO 2.5 · 105 7.1 pb

Table C.1: Used MC-Samples excluding Multi-jet

Name NEvents Cross section (LO)
/QCDpt470/Summer08_IDEAL_V11/GEN-SIM-RECO 3 · 106 315 pb
/QCDpt800/Summer08_IDEAL_V11/GEN-SIM-RECO 3 · 106 11.9 pb
/QCDpt1400/Summer08_IDEAL_V11/GEN-SIM-RECO 1.5 · 106 0.172 pb
/QCDpt2200/Summer08_IDEAL_V11/GEN-SIM-RECO 1.5 · 106 0.0014 pb
/QCDpt3000/Summer08_IDEAL_V11/GEN-SIM-RECO 1.5 · 106 86 · 10−7 pb

Table C.2: Used Multi-jet samples.

The event generation is done with SHERPA 1.1.2. For the detector simulations CMSSW_2_2_9
has been used. The production of events is split up into three bins of the invariant di-muon mass
Mμμ:

Mass region [GeV] Number of events generated
50-150 50000

150-450 (500) 50000
450 (500)-10000 100000

where only the last bin has a signal contribution. The generations have been performed for
background and signal+background (p + p → μ+μ− + X) in SHERPA. Following parameter
points in GRW convention have been produced:

Fundamental Scale MS [TeV ] 1.5 2.0 2.5 3.0 3.5 4.0 SM
Number of ED n 2 2 2 2 2 2 −−

GRW convention does not depend on the number of ED and so the number of Monte Carlo
samples have been reduced. The conversion into the dimension depending HLZ convention is a
straightforward exercise.
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Appendix D

Additional ADD and
SM-distributions

Figure D.1: Comparison of the 2 → 2 and 2 → 2 + 2 → 3 process for MS = 2.5 TeV (GRW) ADD
Drel-Yan.
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Figure D.2: Generator level cos θ∗ distribution for the Drell-Yan process. The function A + B ∗
cos2 θ∗ has been fitted, where A and B are the fit parameters .
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Figure D.3: cos θ∗-fit for Mμμ>3.0 TeV and MS = 2.0 TeV (GRW).

Figure D.4: Fitted exponential function to the difference of the SM-Mμμ-distributions of SHERPA
and PYTHIA.
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Trivia

I would like to conclude this thesis with a very joyful event. The day before yesterday, November
the 24th in the year 2009 has been a very special one. The first collisions at LHC took place.

Figure D.5: First collision event reconstructed with the CMS detector.

Hopefully we will be able to get a new idea of phyisics in the Tera-scale with the LHC. I
am glad to be witness of it and congratulate all scientists who spend a lot of time and effort in
designing, planing, builing (repairing), and finally now “using“ the LHC. I also hope that many
theses will be written using the LHC data, as I claim to be (very likely) the first one ;-) (see Figure
D.5).
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