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Abstract

The MUSiC algorithm is a model unspecific search for new physics phenomena at the CMS
experiment. It serves as a complementary analysis strategy to dedicated searches looking for
physics beyond the Standard Model. So far, MUSiC analyses have not found deviations from
StandardModel expectations. In this work, it is proposed that theMUSiC algorithm be modified
to incorporate a newly published machine learning algorithm known as New Physics Learning
Machine (NPLM). This algorithm is first tested on a case study containing data sets with different
event weight distributions and varying percentages of negatively weighted events. NPLM is then
employed for the 1e+ 1µ+ pmiss

T MUSiC event class for 2017 data, at a centre of mass energy√
s = 13 TeV. Three alternative hypothesis are introduced to test NPLM sensitivity, namely, the
variation of the expected cross section of tt̄ processes withMtt̄ > 700 GeV, of Higgs processes
and, lastly, of Multi-Boson processes. This work provided the first ever implementation of any
machine learning approach to MUSiC analyses. It was concluded that NPLM is a promising
candidate to such approach.

Zusammenfassung

Der MUSiC-Algorithmus ist eine modellunspezifische Suche nach Phänomenen der neuen
Physik am CMS-Experiment. Er dient als ergänzende Analysestrategie zu speziellen Suchen,
die nach Physik jenseits des Standardmodells suchen. Bisher haben die MUSiC-Analysen keine
Abweichungen von den Erwartungen des Standardmodells gefunden. In dieser Arbeit wird
vorgeschlagen, den MUSiC-Algorithmus so zu modifizieren, dass er einen neu veröffentlichten
Algorithmus für maschinelles Lernen, bekannt als New Physics Learning Machine (NPLM), an-
wendet. Dieser Algorithmus wird zunächst an einer Fallstudie getestet, die Datensätze mit unter-
schiedlichen Ereignisgewichtsverteilungen und unterschiedlichen Anteilen negativ gewichteter
Ereignisse enthält. NPLM wird dann für die MUSiC-Ereignisklasse 1e+ 1µ+ pmiss

T für Daten
aus dem Jahr 2017 bei einer Schwerpunktsenergie

√
s = 13 TeV eingesetzt. Drei alterna-

tive Hypothesen werden eingeführt, um die NPLM-Empfindlichkeit zu testen, namentlich die
Variation des erwarteten Wirkungsquerschnitts von tt̄-Prozessen mit Mtt̄ > 700 GeV, von
Higgs-Prozessen und schließlich von Multi-Bosonen-Prozessen. Diese Arbeit war die erste
Implementierung eines maschinellen Lernansatzes für MUSiC-Analysen überhaupt. Es wurde
festgestellt, dass NPLM ein vielversprechender Kandidat für einen solchen Ansatz ist.
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Chapter 1
The Standard Model

“My [algebraic] methods are really methods of working and thinking;
this is why they have crept in everywhere anonymously.”

– Emmy Noether

Fundamental physics searches for a complete understanding of the matter content in the
universe, alongside with its associated interactions. To the point of writing, this search has
culminated in the development of the Standard Model of Particle Physics (SM), describing all
known particles and three of the four known forces, i.e. electromagnetism and the weak and
strong nuclear forces (section 1.1). Gravity has not yet been successfully incorporated into the
SM.

The SM is one of many possible Quantum Field Theories (QFTs). The primary motivation
to use field theory is to describe local phenomena, i.e. to avoid that interactions happen
instantaneously, which is not physical. Classically, General Relativity and Maxwell’s Equations
provide a field theory description for gravity and electromagnetism, respectively. It would
be equally desirable to describe particle interactions locally. However, from Heisenberg’s
uncertainty principle, one can calculate the Comptonwavelength, representing the scale at which
the appearance of particle/anti-particle pairs becomes possible and the one-particle Schrödinger
equation breaks down. Thus, a new mathematical formalism describing particle interactions
is required. In particle physics, an equally important motivation for field theory lies in the
identicalness of particles. A photon arising from a distant start, or one arising from a light bulb
in a living room, share the same proprieties and are indeed indistinguishable without apparent
reason. In a QFT framework, particles are seen as excitations of their respective dynamical
fields, solving both the locality and identicalness problems.

To build a QFT, it is first necessary to postulate the symmetries of the system. To be
compatible with Special Relativity, all QFTs must have global Poincaré symmetry. A QFT is
then identified by its internal symmetry group, or gauge group. In the case of the SM, that
group is U(1)Y ×SU(2)L×SU(3)C . Together, U(1)Y ×SU(2)L describe Electroweak Theory
(section 1.3), where Y stands forweak hypercharge and left-handed fermions. During symmetry
breaking, particles in the SM acquire mass through the Higgs mechanism (section 1.4), and the
electroweak force splits into the electromagnetic force, described by Quantum Electrodynamics
(QED) (section 1.2), and the weak force. Finally, SU(3)C , where C stands for colour charge,
relates to the strong nuclear force, described by Quantum Chromodynamics (QCD) (section
1.5). The strong and electroweak forces have not yet been unified.
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1.1. Particle Content

1.1 Particle Content
How particles behave under transformation groups will depend on their intrinsic spin, which

may be an integer or half-integer value. Particles with spin 0 are denoted as scalar objects, spin
1/2 as spinors and spin 1 as vector objects 1. Spinors correspond to matter particles, also called
fermions, while scalars and vectors correspond to force carriers, also called bosons.

Currently, the SM comprises of twelve fermions, four spin 1 vector or gauge bosons and one
spin 0 boson. A summary table is found in Fig. 1.1. The fermions are split into quarks and
leptons. Electrically charged fermions can interact electromagnetically, through the exchange
of photons, and weakly. Weak interactions may happen through neutral currents, exchanging Z
bosons, or through charged currents, exchangingW± bosons. Neutrinos are electrically neutral
and only take part in weak interactions. Neutrinos are also taken to be massless in the SM,
although this is known to not be the case. Note thatW± bosons are also electrically charged and,
consequently, interact with themselves. Quarks are the only fermions carrying colour charge
and, consequently, the only ones interacting with carrier particles of the strong nuclear force,
the gluons. Moreover, the gluons are the only bosons carrying colour charge and so, they also
interact with themselves. Finally, all observed massive particles interact with the Higgs boson,
which will be discussed later.

Figure 1.1: The Standard Model [1].

The dynamics of a single fermion or boson can be described by generalizing the Schrödinger
equation. Let ϕ(x), ψ(x) and Aµ(x) represent a scalar, spinor and vector field, where x is a

1There are also hypothetical spin 2 particles, like the graviton, which are tensor objects.
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Chapter 1. The Standard Model

spacetime point. The fields then obey the Klein-Gordon (Eq. 1.1), Dirac (Eq. 1.2) and Proca
(Eq. 1.3) equations, respectively,

(∂µ∂µ +m2)ϕ(x) = 0 (1.1)

(iγµ∂µ −m)ψ(x) = 0 (1.2)

∂µ(∂
µAν(x)− ∂νAµ(x)) +m2Aν(x) = 0. (1.3)

Note thatm stands for the particle mass associated with each field; γµ are theDirac matrices,
with anti-commutation relations {γµ,γν} = 2ηµν , where ηµν is the Minkowski metric tensor;
and ∂µ stands for the partial derivative over the four spacetime coordinates. Moreover, the
Klein-Gordon equation results in two possible solutions, which are interpreted as particle and
anti-particle fields. An anti-particle shares the same m as its partner particle, but all other
associated quantum numbers are inverted. The Dirac equation also presents two possible
solutions. This is seen more clearly when one assumes a plane wave solution to the derived
relativistic energy momentum relationE2 = p2+m2. As a final remark, note that for a massless
vector field following the Proca equation, one recovers Maxwell’s equations in a vacuum.

1.2 Quantum Electrodynamics
As previously stated at the beginning of the chapter, it would be desirable to describe quantum

interactions locally. Focusing on a free fermion, e.g. the electron, one can write the Lagrangian
density L from the Dirac equation (Eq. 1.2) as

L = ψ̄(x)(i/∂ −m)ψ(x) (1.4)

where the slashed notation was introduced, i.e. /∂ ≡ γµ∂µ. Consider now an abelian unitary
gauge group U of dimension d. When a given transformation U(θi), parametrized by θi,
i = (1, 2, ..., d), is applied to the field ψ(x), it may be applied globally or locally. More
precisely, the complex phase shift

ψ(x) −→ ψ′(x) = U(θi)ψ(x) = eiqθ
iT i

ψ(x), (1.5)

may be the same everywhere in the field, or may vary for each spacetime point, i.e. θi → θi(x).
Note that q denotes the coupling constant (the elementary electric charge) and T i are complex
hermitian matrices representing the corresponding group generators. Since elements in U
commute with each other, the commutation relations [T i,T j] = i fijk T

k vanish, as all structure
constants become 0. Indeed, for two successive field transformations one has that

eiqχ(x)eiqχ
′(x)ψ(x) = eiq(χ(x)+χ′(x))ψ(x) (1.6)

where χ(x) ≡ θi(x)T i(x). and similarly for chi′(x). . The SM group U(1)Y is then represented
by a group of 1× 1 abelian matrices, i.e. the complex numbers.

Upon applying a local gauge transformation, it is important to note that the Lagrangian
density (Eq. 1.4) is no longer gauge invariant. A neat trick to recover such invariance is to

4



1.3. Electroweak Theory

introduce a vector field Aµ(x), whilst generalizing the definition of derivative ∂µ to covariant
derivative Dµ(x), where

Aµ(x) −→ A′µ(x) = U(θi)Aµ(x) = Aµ(x) +
1

q
∂µθ

i (1.7)

Dµ(x) ≡ ∂µ + iqAµ(x). (1.8)

It is the second term in the convariant derivativeDµ(x)which introduces the interaction between
the vector and spinor fields, with coupling q. Using the Proca equation (Eq. 1.3), one can
introduce a kinetic term for the free propagation of the gauge field Aµ(x). The Lagrangian
density is then modified to

L = ψ̄(i /D −m)ψ +
1

4
F µνFµν +

1

2
m2

AA
µAµ (1.9)

where F µν ≡ ∂µAν − ∂νAµ is the electromagnetic field strength tensor. Since only the vector
mass term breaks local gauge invariance, one postulates that the vector field Aµ(x) must be
massless. Indeed, this is the observed massless photon field, which interacts with electrically
charge particles! Since the photon field is itself electrically neutral, self-coupling does not occur.
Considering electron - photon interactionswith coupling e = −1·q, theQEDLagrangian density
reads

LQED = ψ̄(i /D −m)ψ +
1

4
F µνFµν (1.10)

It is remarkable that purely from mathematical arguments, i.e. the requirement that the
Lagrangian density be locally invariant to the introduction of a complex phase in the spinor
field, one finds a justification for the existence of photons! As a final remark, note that one may
use Noether’s Theorem to show that a consequence of this particular Lagrangian symmetry is
the conservation of electric charge.

1.3 Electroweak Theory
In the previous section, the discussion focused on the electromagnetic force, associated with

U(1) transformations. In this section, the discussion is turned to the weak force. In 1956, Chien-
Shiung Wu showed experimentally that the weak force, unlike electromagnetism, differentiates
between particle chiralities [2]. Only left-handed fermions, or right-handed anti-fermions,
participate in weak interactions. Thus, the weak force is associated with transformations from
the non-abelian group SU(2)L, capable of making such distinction. The left-handed fermions
are organized into doublets, or isospinors, ψ1/2

L , where each component is a regular Dirac spinor.
The right-handed anti-fermions are described as singlets ψ̄R. Analogously to Eq. 1.5, an
isospinor transforming under SU(2)L can be written as

ψ1/2(x) −→ ψ′1/2(x) = SU(αa)ψ1/2(x) = e
iI
2
αaτa

ψ1/2(x), (1.11)

where αa = (α1, α2, α3) are real parameters and τ a = (τ 1, τ 2, τ 3) are the Pauli matrices, i.e.
the generators of the group. In this case, the coupling charge I is calledweak isospin. Redefining
τ
2
≡ T 1/2, the angular momentum relations from quantum mechanics become apparent

[T
1/2
i ,T

1/2
j ] = iϵijkT

1/2
k (1.12)
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Chapter 1. The Standard Model

by identifying T 1/2
i with the angular momentum operators Ji.

To describe weak interactions locally, the transformation parameter αa should become
dependent on space-time position, αa(x), as it was done with θi in the previous section. Since
there are now three SU(2)L group generators, as opposed to just one in the U(1) case, the
analogous covariant derivative to equation 1.8 will now introduce three new vector fields

Dµ(x)
a ≡ ∂µ +

iI

2
τa ·W a

µ (x) (1.13)

whereW a
µ = (W 1

µ ,W
2
µ ,W

3
µ ) will correspond to three new gauge bosons. Before attempting

to write a Lagrangian density, it is important to note that due to the non-commutativity of the
group, the field strength tensor must now include the commutation relations, thus becoming

W a
µν = ∂µW

a
ν − ∂νW a

µ + iI
[
W a

µ ,W
a
ν

]
. (1.14)

The Lagrangian density now explicitly reflects the distinction in chiralities, with the covariant
derivative in Eq. 1.13 only being applied to the left-handed fermionic field,

LSU(2)L = iψ̄Lγ
µDµψL + iψ̄Rγ

µ∂µψR −
1

2
Tr

(
W a

µνW
aµν

)
. (1.15)

1.4 Higgs Mechanism
The introduction ofmassive gauge bosons in Electroweak theory implies a spontaneous gauge

symmetry breaking. The mechanism to explain this symmetry breaking was independently
proposed, in 1964, by Peter Higgs [3] and François Englert et. al. [4]. The idea consists in
introducing a two-component complex scalar field ϕ, known as the Higgs field, introducing
four new degrees of freedom. This results in a non-vanishing ground state of the system. The
introduced degrees of freedom give mass to the three electroweak gauge bosons, W± and Z0,
and to an additional massive spin-0 particle H0, known as the Higgs boson. The Higgs boson
was experimentally discovered in 2012 [5] [6], confirming the theoretical prediction.

1.5 Quantum Chromodynamics
The introduction of QCD was motivated by the discovery of the ∆++ resonance, since

all three up quarks in the composite particle have the same spin s = +1
2
[7]. This property

apparently violates the Pauli exclusion principle and so, a new quantum number needed to be
introduced. This new variable is now known as colour charge and only applies to elementary
particles interacting via the strong nuclear force. Colour charge can take the values of red, green
or blue and thus, the strong nuclear force is associated to transformations from the group SU(3),
with three complex dimensions. Unlike QED where there was only one group generator, the
SU(3) is associated to 8 generators, since there are 8 independent directions in the matrix space.
These generators represent the transformations carried out by the gluons in colour space, and
so, there are indeed 8 gluons in the SM. The Lagrangian of QCD can then be constructed as

LSU(3) = ψ̄i
q(γ

µDµ)ijψ
j
q +mqψ̄

i
qψqi −

1

4
Ga

µνG
aµν . (1.16)

6



1.5. Quantum Chromodynamics

where ψi
q represents a quark field with colour i, ψq = (ψred

q , ψgreen
q , ψblue

q )T , mq introduces a
non-zero quark mass via the Higgs mechanism and Ga

µν is strength tensor of the gluon field,
with an adjoint colour index a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, given by

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfa
bcG

b
µG

c
ν (1.17)

where gs stands for the strong coupling constant and fabc are the structure constants of SU(3).
Lastly, the covariant derivative Dµ is given by

(Dµ)ij = δij∂µ − igstaijGa
µ (1.18)

with taij representing a matrix proportional to the Gell-Mann matrices λaij , which are the higher
dimensional analog to the Pauli matrices. The usual convention is to take taij = 1

2
λaij .
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Chapter 2
CMS Experiment at the LHC

“Lots of data gets collected through the latest technology today,
and not all of it is about people’s consumer preferences.”

– Lisa Randall

2.1 The Large Hadron Collider
The Large Hadron Collider (LHC) was established to deliver high energy collision data,

allowing for the study of particle physics at the TeV scale. It is the largest, and most energetic,
particle accelerator in the world, designed to deliver proton-proton collisions up to a centre-of-
mass energy of

√
s = 14 TeV, at a luminosity of 1034 cm−2 s−1. The LHC can also collide heavy

ions, however that is outside of the scope of the present work. It is located at the European
Organization for Nuclear Research (CERN), at the border between France and Switzerland, near
Geneva. The LHC was built inside the 26.7 km circular tunnel previously hosting the Large
Electron-Positron Collider (LEP), which finished operations in 2000. It is located at a mean
depth of 100 meters underground. Superconducting electromagnets, cooled to 1.9 K through a
liquid-helium system, keep the beams in a circular trajectory. The two proton beams are then
made to collide at four different points, each one hosting a different experiment, namely:

• A Toroidal LHC Apparatus (ATLAS) – Multi-purpose experiment.
• Compact Muon Solenoid (CMS) – Multi-purpose experiment (section 2.2).
• A Large Ion Collider Experiment (ALICE) – Heavy ion collisions.
• The Large Hadron Collider beauty Experiment (LHCb) – Specializes in b-physics
and matter-antimatter asymmetry.

To achieve the high energy particle beams, the LHC relies on a pre-acceleration system. The
protons are sourced from hydrogen atoms, which have been stripped of their electrons. They
are accelerated to 160MeV at the Linear Accelerator 4 (LINAC4), which then injects them into
the Proton Synchrotron Booster (PSB). In the PSB, the protons are accelerated up to 2 GeV
and are subsequently injected into the Proton Synchrotron (PS). The PS further accelerates the
protons to 25 GeV. Finally, the PS injects the beam into the Super Proton Synchrotron (SPS),
which in turn increases their energy to 450 GeV. This is the required injection energy for the
LHC, where the protons will go through a last acceleration phase, bringing their energy to a
theoretical maximum of 7 TeV. The CERN accelerator complex is schematically shown in Fig.
2.1.

8



2.1. The Large Hadron Collider

Figure 2.1: The CERN accelerator complex [8].

The LHC became operational in 2008, with the first data taking period, Run 1, starting in
2011, at centre-of-mass energies of 7−8 TeV. After an upgrade period where the beam is turned
off, known as a long shutdown (LS) period, the Run 2 data taking period started in 2015, at 13
TeV. At the point of writing, Run 3 is currently underway, having started at the end of 2022 at a
centre-of-mass energy of 13.6 TeV.

The centre-of-mass energy when the beams collide is not enough to quantize the number of
collisions in a given time period dt. For that, the cross-section σ of the process must be taken
into account, and multiplied by the integrated luminosity Lint (Eq. 2.1),

N = σ Lint = σ

∫
L dt. (2.1)

The cross-section is a physical constant, predicted by the SM, representing the probability that
a given process occurs. The luminosity, on the other hand, depends purely on experimental
parameters and is calculated as

L =
N1N2Nbf

4πσxσy
F, (2.2)

whereN1,N2 andNb are the number of particles in each bunch, and the total number of bunches,
respectively; f is the revolution frequency; σx and σy are the distribution widths of the particles
in the x − y plane; and F is a correction factor to account for the crossing angle when the
bunches collide.
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2.2 The Compact Muon Solenoid Experiment
Located near the French village Cessy, the CMS experiment hunts for new physics in proton-

proton, or heavy ion, collision data. Although both the CMS and ATLAS collaborations share
the same purpose, the two experiments have employed different detector designs. In the present
chapter, the CMS design is briefly presented, from the inner- to the outermost subsystems.
A schematic of the CMS detector is shown in Fig. 2.2. A detailed description of the full
experimental apparatus can be found in [9].

Coordinate System – Both Cartesian and cylindrical coordinate systems are used at CMS.
The origin is set at the interaction point (IP), the x axis points towards the centre of the LHC,
the y axis towards the surface and the z axis towards the counterclockwise beam direction.
The azimuthal angle ϕ is defined from the x to the y axis, while the polar angle θ is defined
from the z to the y axis. In hadron colliders, the polar angle commonly is expressed through
the pseudo-rapidity1 η defined in Eq. 2.3 . The coordinate system, as well as the relationship
between θ and η, are shown in Fig. 2.3.

η = − ln

[
tan

(
θ

2

)]
(2.3)

Figure 2.2: Schematic of the CMS detector components [10].

1Pseudo-rapidity is a useful parameter because it allows the definition of the Lorentz invariant distance (in the
relativistic regime) ∆R ≡

√
∆η2 +∆ϕ2.
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2.2. The Compact Muon Solenoid Experiment

Figure 2.3: (left) CMS coordinate system showing the interaction point (IP); the Cartesian x
axis, pointing to the centre of the LHC, the y axis pointing towards the surface and the z axis
pointing in the counter-clockwise beam direction; the polar angle θ, defined from the zto the y
axis, and the azimuthal angle ϕ, defined from the x to the y axis. The values of pseudo-rapidity
η associated with each axis and coordinate region are also shown. (right) Polar angle and
pseudo-rapidity equivalence [11].

2.2.1 Silicon Trackers

When a collision happens, the product particles start their outward journey through the CMS
detector components. After moving through the ultra-high vacuum inside the beam pipe, and
exiting the pipe itself, the first component that the particles encounter is the silicon tracking
system. Besides identifying interaction and decay vertices, the tracker measures the momentum
of electrons, muons and hadrons. This is done by measuring the position of the particles
with a precision ±10µm. The more the particles bend in the magnetic field produced by the
solenoid magnet (see 2.2.4.), the higher their momentum. This allows to discriminate between
particles. To measure the high particle flux close to the interaction point, the tracking system
must be spatially compact but still present a good enough spatial resolution. These requirements
imply that a highly granular structure is necessary. Silicon detectors were chosen for their
granular module feasibility, but also for their fast response. Moreover, to protect the materials
from radiation damage, the tracker is operated at −20C. The tracking system can measure the
properties of particles within a pseudo-rapidity range of |η| < 2.5, achieving a 90% and 98%
efficiency for electrons and muons, respectively. For hadrons, the efficiency ranges between
85 − 95%, depending on the energy. The tracker is composed of the following concentric
subsystems:

• PIXEL – The pixel detector is the innermost subsystem of the tracker. It contains four
2D–layers of silicon sensors (the pixels) at approximately 3, 7, 11 and 16 cm from the
interaction point 2 [12]. This layout allows for 3D track reconstruction by taking several
measurements of the particles’ position. Each pixel measures 150 × 100 µm2 and every
time a charged particle passes through it, enough energy is deposited to eject an electron
from its silicon atoms. These electrons are collected through an applied voltage and
converted into an electric signal. A readout chip is located beneath each pixel, which then
amplifies this electric signal.

2The particle flux at a 3 cm radius is about 6× 108 particles per cm2s−1.
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Figure 2.4: (top) The CMS Silicon Tracking system [9] showing, in the centre, the collision
point as a black dot; the PIXEL subsystem (PIXEL), which is enclosed by the Tracker Inner
Barrel (TIB) and the Tracker Inner Disks (TID); the whole subsystems are then enclosed in by
the Tracker Outer Barrel (TOB) and the Tracker EndCaps (TEC ±). The y axis shows the
distance r from the collision point in millimeters; the z axis (at the bottom) shows the
longitudinal distance z from the collision point in millimeters; and the upper part of the figure
shows the corresponding pseudo-rapidity. (bottom) Upgraded Pixel detector subsystem,
highlighting the design differences between the previous three layer design of silicon sensors to
the current four layer design [12].

• TIB & TID (Tracker Inner Barrel & Tracker Inner Disk) – At radii larger than 20 cm,
the particle flux decreases and silicon micro-strips can be used instead of the silicon
pixels. The TIB is composed of four concentric layers of silicon micro-strips, with a
width between 80− 180 µm. The micro-strips work similarly to the pixels, where excited
electrons are captured and the electrical signal is amplified by readout chips. There are two
TID, one at each end of the TIB. They are composed of three small disks each, allowing
to reconstruct particle tracks with higher pseudo-rapidity.
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• TOB & TEC± (Tracker Outer Barrel & Tracker EndCaps) – The TOB surrounds the
TIB and both TIDs, and is composed of six concentric layers of silicon micro-strips. The
TEDs are located at each end of TOB, closing the tracker system. Similarly to the TIDs,
the TECs allows for the reconstruction of tracks with higher pseudo-rapidity.

A schematic of the Silicon Tracker systems is shown in Fig. 2.4.

2.2.2 Electromagnetic Calorimeter

Besides momentum, total energy of particles must also be measured. Depending on the
nature of the particle, its energy will be deposited in different calorimeter systems. The Electro-
magnetic Calorimeter (ECAL) is located about 1.3m away from the collision point, surrounding
the silicon tracker, and is therefore the next subsystem that the particles encounter on their way
out of CMS. A detailed overview of the ECAL can be found in [13].

Figure 2.5: (left) Schematic illustration of the ECAL showing its subsystem, namely, the
central barrel subsystem in grey and yellow, the pre-shower detector (ES) in pink and the
ECAL Endcaps (EE) in green. (right) Partial ECAL cross-section showing the positive
pseudo-rapidity values (dashed lines) accessible by the top components of the inner barrel
(EB), the pre-shower detector (ES) and the Endcap (EE) [14].

Although its main purpose is to measure the energy of electrons and photons, (with precision
±1%), the ECAL, togetherwith theHadronCalorimeter (HCAL), also plays a role in determining
the energy of hadronic jets. One of the challenges inmeasuring particle energies is the small time
interval between consecutive bunch crossings. The material used for the ECAL must therefore
have a short scintillation-decay time. It must also satisfy the space constrains inside the solenoid
magnet, withstand its strong magnetic field and be suitable for a high radiation environment. For
these reasons, the chosen material was lead-tungstate crystal. This crystal structure, which is
denser than steel but highly transparent, emits light proportionally to the energy deposited by the
particles that pass through it. To avoid particles escaping the ECAL undetected, the crystals are
aligned homogeneously and hermetically. The crystals scintillate at approximately 4.5 γ/MeV
at 18◦C, however, this rate is highly dependent on temperature. Thus, the temperature is kept
stable at ±0.1◦C by a purpose built system. In the 25 nanoseconds between bunch crossings,
these crystals emit about 85% of light, allowing for lower cross-contamination. This light is then
seen by photo-detectors attached to the back of each crystal, and converted into an electrical
signal. To cover a pseudo-rapidity range of |η| < 3.0, the ECAL, similarly to the tracker system,
consists of a central barrel component and two endcaps, one at each end. An illustration of the
ECAL subsystems can be found in Fig. 2.5.
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• Preshower detector (ES) – The endcaps are supplemented by a preshower detector,
composed of lead and silicon trips detectors. The lead initiates the electromagnetic shower,
and the strips provide precision measurements. Due to its highly granular structure, the
ES allows for individual resolution of shower clusters. This is particularly important to
distinguish between a single high energy photon from a lower energy photon pair resulting
from pion decays or other diphoton resonances.

2.2.3 Hadron Calorimeter

Located outside the solenoid magnet, the HCAL [13] is in place to measure the energy
of composite particles, e.g. pions or kaons. It also allows for the estimation of the missing
transverse momentum pmiss

T .

The particles are measured through layers of alternating brass absorbers and plastic scin-
tillator tiles. When the high energy particles encounter the heavy brass nuclei, they produce
hadronic showers. The bi-products of the showers are then detected by the scintillators, through
electron excitations caused by the passage of charged particles. Photons are then emitted during
electron de-excitation, which are guided through wavelength-shifting fibers to photo-diodes.

The HCAL comprises four different sections, Barrel (HB), Endcaps (HE), Outer detector
(HO) and the Forward detector (HF). The HB covers a pseudo-rapidity region up to |η| < 1.3
while the HE can reach a pseudo-rapidity up to |η| < 3. Lastly, the HF can detect particles in a
region of |η| < 5, through the emission of Cherenkov radiation.

2.2.4 Superconducting Solenoid

One way to identify the charge and momentum of particles is precisely by observing their
behaviour within a magnetic field. When amagnetic field is present, electrically neutral particles
will not interact with it and will keep following straight trajectories. On the other hand, the
trajectories of electrically charged particles will be bent, as a result of the Lorentz force. Particles
with opposite charges will bend in opposite directions and particles with lower momentum will
have trajectories with higher curvature.

In CMS, a magnetic field is created by a superconducting solenoid coil [9]. The magnet
system measures 12.9 m in length and has an inner and outer diameters of 5.9 m and 6.4
m, respectively, making it the largest superconducting solenoid ever built. Rutherford cables
conduct a current of 19.14 kA over 2168 turns, creating an uniform magnetic field of 3.8 Tesla,
with field lines parallel to the beam direction. To sustain the superconducting regime, the
coil is embedded in a liquid-helium cooled aluminium tank, kept at an approximate working
temperature of 4.5 Kelvin. The design of the aluminium structure securing the magnet in place,
besides counter-acting the mechanical forces induced by the magnetic field itself, also allows for
the relatively thin overall design. This is a crucial feature, as the available space inside CMS is
limited and, thus, should be prioritized for detector modules. The whole magnet system is then
enclosed by an iron yoke, which returns the magnetic flux. In this region, the residual magnetic
field is 2 Tesla. With this set-up, the silicon tracker is able to achieve a charge misidentification
of less than 5% for muons with pT < 200 GeV.
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2.2.5 Muon Chambers

Since muons have a much higher mass compared to electrons, they are less affected by the
magnetic field produced by the superconducting solenoid magnet. This allows muons to pass
by through all inner sub-systems and eventually escape the solenoid magnet. Thus, the muon
chambers are located in the outermost layer of the CMS detector [15]. They measure the muon
tracks, allowing for the calculation of the momentum.

The components of the muon chambers are: the drift tubes (DTs) located in the barrel
section, the cathode strip chambers (CSCs) located at the endcaps and the resistive plate
chambers (RPCs). The barrel section can detect muons in the pseudo-rapidity region |η| < 1.2
while the endcaps have a reach of 0.9 < |η| < 2.4. Note that there is an overlap between
0.9 < |η| < 1.2.

• Drift Tubes
The drift tubes measure 2meters in length and have a cross sectional area of 13×42 square
millimeters. The tubes themselves are filled with a gas mixture. Moreover, an anode wire
can be found at the center of each tube. This allows for a high electrical potential to be
created between the wire and the tube walls. When electrically charged muons interact
with the gas mixture, ionizing some of the atoms, the free electrons will drift along in
the direction of the electric field, created by the CMS magnet, towards the anode wire.
The accumulated charge can then be measured as current spikes. The achievable spacial
resolution is around 100 µm. Note that, with this set up, it is not possible to determine
the location of the muons along the wire direction.

• Cathode Strip Chambers
The cathode strips are mounted in the endcap region, in trapedoizal chambers. CSCs
consist of gaseous detectors containing several perpendicularly aligned wires and cathode
strips, which are read out separately. Unlike the drift tubes, the CSCs do not rely on drift
effects, making them suitable to operate in non-uniform magnetic fields. They are also
capable to withstand a high rate of muons, which is an important feature to operate in the
endcap region.

• Resistive Plate Chambers
The resistive plate chambers serve as a complement to the DTs and the CSCs and are
also based on gaseous detection. Because the RPCs are operated in avalanche mode, the
spatial resolution is lower. Although, the time resolution is significantly higher, since the
avalanche of charged particles is extremely fast. This last property is particularly useful
when trying to assign tracks to a bunch crossing.
Together with the tracking system, the transverse momentum resolution for muons in the
barrel region, with 20 < pT < 100 GeV, is higher than ∼ 2%. For muons reaching the
endcaps, with pT < 1 TeV, the resolution is still below 10% [16].
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2.2.6 Trigger & Data Acquisition System

Because of the extremely high number of collision at the LHC, resulting in around 40million
events every second, storing all the information of such events would reacquire 20 Terabytes
of storage per second. This is clearly unfeasible and the majority of event information must
be disregarded, which is done by the trigger system [17]. The selection of events to be stored
for offline analysis is based on the corresponding physics content, the available statistics and
bandwidth restrictions.

The first step in the selection process is performed by the Level-1 Trigger (L1). The L1 trigger
automatically rejects low-energy events based on input information directly from the calorimeters
and the muon systems. Events which survive this selection are read out and temporarily stored
to be more carefully evaluated by the High Level Trigger [18]. The High Level Trigger has
access to the full detector information and is programmed to make the final selection on whether
an event will be stored for further offline analyses, or if it will be permanently deleted.

To analyse all events which have passed the High Level Trigger selection, the Worldwide
LHC Computing GRID (WLCG) project was created. The WLCG is a group of computing
facilities located across the world and operated by CERN member states. The several facilities
are categorized as:

• Tier 0 computing centers – One of these is located at the CERN data center, in Geneva,
while the other is located at the Wigner Research Centre for Physics, in Budapest. Tier 0
facilities store and reconstruct the raw data.

• Tier 1 data centers – There are currently 13 Tier 1 facilities, located in several countries,
which perform further data processing. These facilities also serve as data backups, and as
distributors to the Tier 2 facilities.

• Tier 2 computing centers – There are 160 Tier 2 facilities, mostly operated by universities
or scientific institutions. The goal of Tier 2 facilities is to provide enough computing
power for event generation and offline analyses. Note that the RWTH Aachen University
hosts its own Tier 2 facility, which is operated by the Department of Physics.
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Chapter 3
Model Unspecific Searches in CMS

“Theoretical physicists used to explain what was observed.
Now they try to explain why they can’t explain what was not observed.”

– Sabine Hossenfelder

With the increasing luminosity delivered by the LHC, high energy physics has become
synonymous with big data handling. Thus, CMS employs different search strategies to find
physics beyond the SM. One possible way to find Beyond Standard Model (BSM) physics is
through precision measurements, where SM processes and input parameters are measured ever
more precisely, trying to find any discrepancy with current theory predictions. A second analysis
strategies are the so-called BSM Searches, which consider a certain theoretical model to specify
a signal search region1. While dedicated analysis benefit from a higher sensitivity in the probed
signal region, they are limited to the final states predicted by their proposed BSM model. With
numerous BSM theories being put forward, and considering the finite amount of computational
and human resources, an in-depth exploration of all possible signal regions becomes unfeasible.
It is important to note that, as a natural consequence of such search strategy, signal regions
incompatible with any current BSM theory do not received enough attention. Lastly, there are
model-independent searches which do not propose a given BSMmodel, but instead, are sensitive
to several possible signals.

Model Unspecific Search in CMS (MUSiC) [19] was developed as an important comple-
mentary approach to dedicated searches, and is the only model-independent analysis within the
CMS experiment. MUSiC is a algorithm performing BSM searches considering a wide range of
final states. It searches for discrepancies between measured data and simulated SM-like back-
ground processes, treating all regions as possible signal regions. MUSiC analyses final states
containing at least one electron, muon, photon, jet or b-tagged jet. Such final states may, addi-
tionally, contain missing transverse momentum. The SM background estimation is exclusively
based on Monte Carlo (MC) methods, and no data-driven approach is used. MUSiC analyses
hundreds of final states, and is currently the only model-independent search strategy within
CMS. Even though MUSiC losses sensitivity to specific signals, by considering all phase-space
regions equally, it can detect BSM signals that have not yet been proposed theoretically, or that
have passed unexplored in the large amounts of CMS data. The current chapter first gives an
overview of previous MUSiC results in Section 3.1, followed by a description of the measured,
and simulated, data sets used in the this work, in Sections 3.2 and 3.3, respectively. Later, the

1For instance, one can look at specific final states to search for super-symmetric particles, dark matter particles
or the graviton.
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different steps of a typical MUSiC analysis are introduced in Section 3.4, namely, the Skimming
procedure, the Classification of final states, and the discrepancy analysis through the Region of
Interest (ROI) Scanning algorithm. Lastly, a file conversion process is introduced in Section 3.5
such that MUSiC pre-processed data becomes compatible with a machine learning approach.

3.1 Previous MUSiC Results
MUSiC analysis have been actively performed in CMS since 2009 [20–29]. The latest

published result regards the RUN2 2016 full data set, at centre-of-mass energy
√
s = 13 TeV

and integrated luminosity 35.9fb−1 [19]. No significant deviations from SM prediction were
found. The final states with the highest level of discrepancy between data and SM simulation
are presented in Fig. 3.1. The event class names are specified at the bottom of the plot, the y
axis represents the total number of events per class and, at the top of the plot, the corresponding
event class p-value is shown. Within each event class bin, the event count contribution from
each SM process is shown in different colours, together with the experimentally measured total
number of events. The combined systematic and statistical uncertainty of the MC simulation for
each class is plotted as a grey crossed pattern within each bin.

Figure 3.1: The most discrepant exclusive event classes found by the MUSiC analysis in the
RUN2 2016 data set are shown at the bottom of the plot. The y axis shows the total number of
events per class, and the colours within each bin represent the contributions of different SM
processes to the total event count. For each event class, the respective p-value calculated by the
MUSiC algorithm is also displayed at the top of the plot. The total MC uncertainty (systematic
and statistical) is shown as a grey crossed pattern overlapping each bin, and the measured CMS
data is shown as black dots with the corresponding experimental uncertainty error bar [19].
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3.2 Collision Data
This thesis uses measured data from proton-proton collisions recorded by CMS, during the

2017 data-taking period. At the time, the LHC was delivering collisions at a centre-of-mass
energy of

√
13 TeV, with a proton bunch spacing of 25 nanoseconds. The full 2017 data set

is considered, consisting of a total integrated luminosity of 41.48fb−1 ± 2.3% [30]. The CMS
Physics Data and the Monte Carlo Validation group have certified all data sets used throughout
this thesis [31].

3.3 Standard Model Simulation
Since protons are composite particles, their collisions within CMS are, in fact, complex

interactions between their constituents, i.e. the valence/sea quarks and the gluons. In MC
simulations, pseudo-random numbers generators are used to model a hard scattering process,
a subsequent parton shower and, lastly, the shower hadronization. These different interaction
steps are schematically shown on the left hand side of Fig. 3.2, where a proton-proton collision
is illustrated. On the right hand side, example PDF functions are plotted, which contain
information regarding the momentum fraction carried by each quark or gluon. The PDFs
xf(x,Q2) are parametrized in x-space, corresponding to the bottom axis, and were calculated
for an energy scale of Q2 = 10 GeV [32].

Figure 3.2: (left) Schematic of a proton-proton collision showing the leading order (LO) hard
scattering of two quarks, creating a Higgs boson (H), which then decays into the bb̄ quark pair.
The image shows the additional appearance of parton showers and hadronization. (right) PDFs
of up/down valence quarks (uV /dV ), up/down anti-quarks (u /d), charm quarks (c), sea quarks
(s) and gluons (g/10), for an energy scale of Q2 = 10 GeV [32].

For this thesis, the MC generators used to simulate the full range of SM-like processes were
MadGraph5_amc@nlo version 2.2.2 [33], pythia 8.212 [34], powheg v2 [35] and sherpa
2.1.1 [36]. Additionally, the detector response is modelled with the Geant4 package [37]. The
MCgenerators mostly used the NNPDF3.0 Parton Distribution Functions (or PDFs) [38] to
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calculate cross-sections either to Leading Order (LO) or to Next-to-Leading Order (NLO). If the
theoretical prediction of a certain process in known to a higher precision, i.e. to Next-to-Next-
to-Leading Order (NNLO) or to Next-to-Next-to-Next-to-Leading Order (N3LO), then the MC
predicted cross-section is corrected by a k-factor defined as

k =
σ(N)NLO

σLO
. (3.1)

3.3.1 Expected Background

All SM processes analysed in this thesis are presented in Table 1. The first column specifies
the different background processes considered, while the second column provides further details
on the respective process, e.g. minimum thresholds for the considered invariant mass or
transverse momentum. Where no details are given, all available data is used. The third
and fourth columns show which generator was used, and at which order the process was
generated, respectively. Lastly, the fifth column specifies the final cross-section order generated,
as corrected by the k-factor, when necessary.

Table 1 : Summary of analysed SM simulated samples. The SM processes are specified in the first
column, with details given on the second column. The third and fourth columns refer to whichmatrix
element generator software was used and to which order, respectively. The last column shows the
order of the cross section of the respective process, which might have been corrected by a k-factor.

Process Details Generator Generator
order

Cross section
order

Z(→ l+l−)+jets
Ml+l− > 10 GeV
pT (Z)> 50 GeV
Ml+l− > 120 GeV

MADGRAPH
MADGRAPH
POWHEG

NLO
NLO
NLO

NNLO
NNLO
NNLO

Z(→ νν)+jets MADGRAPH LO NLO

W(→ lν)+jets
Inclusive
pT (W)> 100 GeV
Mlν > 100 GeV

MADGRAPH
MADGRAPH
PYTHIA 8

NLO
NLO
LO

NNLO
NNLO
NNLO

γ + jets MADGRAPH LO LO

[Continue on next page]
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Process Details Generator Generator
order

Cross section
order

tt̄

Inclusive
Mtt̄ > 700 GeV
tt̄γ
tt̄W
tt̄Z
tt̄γγ

POWHEG
POWHEG
MADGRAPH
MADGRAPH
MADGRAPH
MADGRAPH

NLO
NLO
NLO
NLO
NLO
NLO

NNLO
NNLO
NLO
NLO
NLO
NLO

tt̄tt̄ MADGRAPH LO LO

Top

t(tW-channel)
t(t-channel)
t(s-channel)
tγ
tZq

POWHEG
POWHEG
MADGRAPH
MADGRAPH
MADGRAPH

NLO
NLO
NLO
NLO
NLO

NNLO
NNLO
NLO
NLO
NLO

Z(→ 2l)γ MADGRAPH NLO NLO

W(→ 2l)γ pT (γ)> 40 GeV
pT (γ)> 130 GeV

MADGRAPH
MADGRAPH

LO
NLO

LO
NLO

ZZ
ZZ→ 4l
ZZ→ 2l2q
ZZ→ 2l2ν

MADGRAPH
MADGRAPH
POWHEG

NLO
NLO
NLO

NLO
NLO
NLO

WW
WW→ lνqq
WW→ 4q
WW→ 2l2ν

POWHEG
MADGRAPH
POWHEG

NLO
NLO
NLO

NNLO
NLO
NNLO

WZ

WZ→ lν2q
WZ→ 3lν
WZ→ 2l2q
WZ→ 1l3ν
WZ→ 1l1ν2q

POWHEG
MADGRAPH
MADGRAPH
MADGRAPH
MADGRAPH

NLO
NLO
NLO
NLO
NLO

NLO
NLO
NLO
NLO
NLO

γγ
40 GeV < Mγγ < 80 GeV
Mγγ > 200 GeV, pγT > 15 GeV

SHERPA
SHERPA

LO
LO

LO
LO

QCD multi-jet MADGRAPH LO LO

[Continue on next page]
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Process Details Generator Generator
order

Cross section
order

Triboson

ZZZ
WZZ
WZγ
WWW
WWZ
WWγ

MADGRAPH
MADGRAPH
MADGRAPH
MADGRAPH
MADGRAPH
MADGRAPH

NLO
NLO
NLO
NLO
NLO
NLO

NLO
NLO
NLO
NLO
NLO
NLO

Higgs

ggH→ τ τ̄ , WW(2l2ν),
ZZ(4l), ZZ(2l2ν), Zγ

VBF(H→ τ τ̄ , WW(2l2ν), Zγ)
VBF(H→ γγ)
tt̄H(not H→ bb̄)
tt̄H(H→ bb̄)

POWHEG

POWHEG
MADGRAPH
POWHEG
POWHEG

NLO

NLO
NLO
NLO
NLO

N3LO

NNLO
NNLO
NLO
NLO

3.3.2 Monte Carlo Weights

Prior to the analysis, the number of MC generated events needs to be scaled to the measured
luminosity of the CMS data sets used. Thus, each MC event is scaled by its corresponding
process-specific luminosity weight factor, wL, given by

wL(process) =
k · σ · L
N events

MC

, (3.2)

where k is the k-factor defined in Eq. 3.1, σ is the MC calculated cross-section, L is the desired
luminosity and N events

MC is the number of MC generated events. Moreover, events at the LHC
do not happen in isolation, since the proton beams cross in bunches and each bunch contains
several inelastic interactions. Due to these extra interactions, there will be an higher number of
primary event vertices, leading to a so-called pile-up effect. This is corrected by applying an
event-specific weight correction factor, wPU , defined as

wPU (event) =
N vertices

data

N vertices
MC

. (3.3)

The numerator stands for the total number of primary vertices in an event in measured data and
the denominator for the primary vertices in the corresponding MC event generated. Usually,
more MC events than data events are desired, allowing a more accurate modelling of low-data
regions. For instance, in the high-energy regime of classical MUSiC histograms, there may
be no data events in certain bins, and only one event in others. Since MC simulation cannot
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predict which high-energy intervals will have no measured data, it should provide a smoothly
decreasing event probability density, until the expected number of events is less than one in this
regime. This possible re-scaling during the event generation is included in the event weight by
the factor wgen, which is both process- and event-specific. The total weight applied to each MC
generated event is then given by

wtotal(event, process) = wL(process) · wUP (event) · wgen(event, process). (3.4)

3.4 Analysis Workflow
This thesis introduces a significant change in the classic MUSiC analysis workflow. A

schematic of a typical MUSiC analysis workflow is shown within the yellow dashed lines in
Fig. 3.3. The necessary steps for a MUSiC analysis incorporating a machine learning approach
can be found within the blue dashed lines. The common steps for both analysis are shown in
grey, namely, the Skimming and the Classification. While the Skimming remains unaltered for
the work developed in this thesis, the second step, the Classification, is slightly modified to
fit a machine learning approach. It is only after the Classification stage that a typical MUSiC
analysis and the work in this thesis diverge significantly. The last step in the MUSiC workflow
is the Scanning process, highlighted in yellow. This step is not performed at all for this thesis.
Instead, the Scanning algorithm is replaced by the New Physics Learning from a Machine
(NPLM), highlighted in blue, which is introduced in Section 4.3. The motivation for such a
replacement is also presented in the next chapter, namely in Section 4.2. However, in order to
make MUSiC analysis compatible with the NPLM methodology, one must first implement a
file conversation algorithm, also highlighted in blue. The file formats used in the analysis are
described throughout the present chapter.

3.4.1 Skimming

The Skimming converts ROOT files, based on the ROOT data analysis framework [39], into
pxlio files, based on the Physics eXtension Library (PXL) [40]. Within ROOT files, the data
may be stored in different formats. CMS has developed the Analysis Object Data (AOD), the
miniAOD and the nanoAOD formats. These formats disregard a significant portion of low-level
detector information, reducing the storage space and run-time at each iteration. This thesis uses
miniAOD data sets. These data sets are stored in several Tier-2 sites of the WLCG. During
Skimming, the ROOT files are further stripped of any irrelevant information for the MUSiC
analysis, e.g. information on low energy objects, and only necessary data sets are kept. These
trimmed down data sets are saved in pxlio files and stored locally, in the Tier-2 Aachen site.

Object & Event Selection

Even the trimmed down pxlio files contain more information than necessary for MUSiC
analysis, since no events have yet been discarded during the Skimming process. Thus, not all
events within the pxlio file will be compatible with a MUSiC analysis. It is first necessary to
determine, without any ambiguity, the physics object content of each event. For this, one must
identify the reconstructed individual objects within an event, removing any possible overlap
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Figure 3.3: Schematic of a typical MUSiC analysis workflow, within the yellow dashed lines,
and of the combined MUSiC and NPLM analysis workflow, within the blue dashed lines. The
steps illustrated with grey backgrounds, the Skimming and the Classification, are common to
both analysis strategies, while the Scanning step in a yellow background is only performed for
a typical MUSiC analysis. The steps in a blue background, the file conversation and the NPLM
implementation, were the ones introduced in this thesis for a combined MUSiC and NPLM
analysis.

between them. Since MUSiC relies exclusively on MC background estimation, the misidentifi-
cation of reconstructed objects should be minimized as much as possible, without compromising
the selection efficiency. Therefore, tight object selection criteria are applied to each event. These
criteria are summarized in Table 2.

Table 2: Object selection criteria for different pT ranges.

Object pT (GeV) Pseudorapidity
Muon (µ) > 25 |η| < 2.4
Electron (e) > 25 0 < |η| < 1.4442 or 1.566 < |η| < 2.5
Photon (γ) > 25 |η| < 1.4442
Jet > 50 |η| < 2.4
b-tagged jet > 50 |η| < 2.4
Missing transverse momentum (pmiss

T ) > 100 –

Each selected event in the precious step must have triggered at least one Single/Double
Electron Trigger, one Single/Double Muon Trigger, or a Single Photon Trigger. For each trigger,
a corresponding minimum transverse momentum is established as a criteria for the event to be
accepted. The offline MUSiC analysis places further requirements on the minimum transverse
momentum of each trigger. Both selection criteria are presented in Table 3. All events
satisfying the criteria above will go through the Classification process, described next. Both in
the classical MUSiC Scanning step, and in the NPLM approach in this thesis, only event classes
containing at least one electron or muon are targets for discrepancy searches between data and
MC expected background.
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Table 3: Summary of online and offline trigger criteria.

Trigger Trigger level requirement Analysis requirement
Single muon 1 µ with pT > 50 GeV ≥ 1 µ with pT > 53 GeV
Single electron 1 e with pT > 115 GeV ≥ 1 e with pT > 120 GeV

Double muon 1 µ with pT > 17 GeV
and 2nd µ with pT > 8 GeV ≥ 2 µ with pT > 20 GeV each

Double electron 2 e with pT > 33 GeV each ≥ 2 e with pT > 40 GeV each
Single photon 1 γ with pT > 175 GeV ≥ 1 γ with pT > 200 GeV

3.4.2 Classification

Both the Classification and the Scanning steps occur within the Three A Physics Analysis
(TAPAS) framework [41], developed at RWTH Aachen. TAPAS is built on CMS software,
CMSSW and runs on the local Aachen cluster. In previous MUSiC analysis, TAPAS would take
the resulting pxlio file from the Skimming, classify the events of a given process into event
classes, and produce ROOT files containing histograms of the kinematic variables to be analysed.
These histograms were plotted per event class found in the considered process, and would serve
as an input to the Scanning process. The three possible event classes are detailed below.

Event Classes

• Exclusive – An exclusive class is filled solely with events containing all selected physics
objects, in the respective multiplicity, specified in the name of the class. Thus, each event
can only contribute to one exclusive class. For instance, a final state with physics objects
1e, 1µ, pmiss

T only contributes to the 1e + 1µ + pmiss
T exclusive class, while a final state

with event content 2e, 2µ, 1jet only contributes to the 2e+ 2µ+ 1jet exclusive class.

• Inclusive – An inclusive class is filled with events containing both a minimum set of
selected objects, plus any additional non-jet physics objects (X). The example event
given above, consisting of 1 electron, 1 muon and missing transverse momentum, will, for
instance, contribute simultaneously to the classes 1e+X , 1µ+X and n 1e+ 1µ+X .

• Jet-inclusive – A jet-inclusive class is an inclusive class where the additional objects
X are exclusively jets. Moreover, since the MC simulation does not model higher jet
multiplicities in a sufficiently accurate manner, the exclusive classes containing more than
5 jets are assigned to the jet-inclusive class X + 5jets+ Njets.

For a better understanding of this classification, Fig. 3.4 illustrates an example construction
of event classes from two distinct final states, with one event each, and with event content
1e, 1µ, pmiss

T and 2e, 2µ, 1jet, respectively. The exclusive event classes are displayed in olive
green, the inclusive event classes in light blue and the jet-inclusive event classes in orange. The
light grey backgrounds represent which event classes are associated to which final state. Note
that event classes within the overlap region of the grey backgrounds contain two events each,
while all other classes only contain one event. Moreover, while each final state may contribute
to several inclusive or jet-inclusive event classes, it only contributes to one exclusive event class.
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Figure 3.4: MUSiC classification of two final states, 1e+ 1µ+ pmiss
T and 2e+ 2µ+ 1jet. The

first state contributes to 1 exclusive, 3 inclusive and 3 jetj-inclusive event classes. The second
state contributes to 1 exclusive, 11 inclusive and 10 jet-inclusive event classes. Note that the
classes inside the intersection of the two grey regions contain 2 events each, while the classes
outside the intersection contain only 1 event.

For this thesis, however, the Classification step was slightly modified. Although the events
are still assigned to the same event classes described above, the outputted ROOT files now
contain kinematic information per individual event, instead of histograms per event class. The
process-specific information and event classes found are stored as TTrees, while the kinematic
information of each event, as well as its MC weight (see 3.3.2), are stored as TBranches.

Kinematic Distributions

The search for signs of BSM physics may be carried out in a number of kinematic variables.
To be particularly sensitive to high transverse momenta signals, predicted by a large number of
BSM models, MUSiC chooses to focus on the three variables described below.

• Sum of transverse momentum (
∑
|p⃗T |) – It consists on the sum of the transverse

momentum of the physics objects in a given event class. It is calculated on a event-by-
event basis, for all events satisfying the analysis requirements. For classes with missing
transverse momentum, this value is included as well. Thus,

∑
|p⃗T | quantifies the total

energy in the event. For BSM models predicting new higher-mass particles, the signals
would mainly be detected in the tail of this distribution.

• Invariant mass (Minv) – It consists on the sum of the calculated invariant mass of all
physics objects in a given event, with two or more objects. If the event includes missing
transverse momentum, and since the longitudinal momentum component is unknown, the
transverse mass of the objects is used instead. For BSM predicting new massive particles
appearing as a resonant peak, the Minv distribution of the corresponding decay products
is an important search region for SM deviations.

• Missing transverse momentum (pmiss
T or MET) – It is the total missing transverse mo-

mentum of an event, resulting from particles which were not detected. Since SM processes
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with neutrinos, and detector resolution, contribute the most to the low pmiss
T region, only

events containing pmiss
T > 100GeV are considered. BSMmodels containing new particles

with large transverse momentum which do not interact with the detector will result in high
pmiss
T values2.

3.4.3 Scanning

In a classic MUSiC approach, each histogram, corresponding to a certain event class and
stored inside a ROOT file, is fed into a search algorithm, the so-called Scanning step. The
Scanning is a statistical analysis aiming at identifying discrepancies between MC simulated SM
background and CMS measured data. When a certain region of an histogram is found to contain
a significant enough deviation from the SM expectation value, the final state of its corresponding
event class may be recommended as a target of dedicated analysis.

The first step in the analysis is to compare the total MC event yield to the measured one.
Secondly, the algorithm will define several Scanning Regions within the histogram to look for
deviations. A Scanning Region is any possible connected bin region. Examples of possible
regions include single bin regions; a single bin plus its immediately adjacent(s) bin(s), to its left
or(and) right; a single bin plus its two immediately adjacent(s) bin(s); etc. However, single or
double bin regions are only allowed when the kinematic variable is the invariant mass. If the
kinematic variable is either

∑
|p⃗T | or pmiss

T , the regions must contain a minimum of three bins to
minimize the impact of statistical fluctuations. If the considered kinematic distribution contains
a total number of bins Nbins, the scanning algorithm will define a total number of Scanning
Regions equal to Nbins (Nbins − 1) /2. Moreover, a check is in place to assure that the scanning
regions have a sufficient total number of simulated events, otherwise they are removed from the
analysis and not taken further into account. However, individual bins with very low numbers
of simulated events can still be part of larger scanning regions. An important remark is that
different Scanning Regions may share some common bins, meaning that they are not disjoint.

p-value Calculation

For each region which has been identified, the Scanning algorithm also calculates their
associated p-value, which quantifies the significance of the discrepancy found within that region.
A brief introduction to the p-value hypothesis testing is given in the interlude below.

Statistics Interlude – Hypothesis Testing

Consider a statistical experiment where observed data may be represented by a random
variable. Any conjecture regarding the underlying probability distribution of the data, of
which the true distribution is unknown, is called a statistical hypothesis. For an observed data
set, one may propose several hypothesis Hµ, namely a Null/Reference hypothesis R ≡ H0

and one, or more, Alternative hypothesis Hµ̸=0. Each hypothesis proposes a different
underlying property of the data, and one can quantify the agreement of the observed data
with such properties by the calculation of a so-called p-value. If the data is represented by a
test statistic tµ, then the p-value is the one, or two, sided integral of the probability density

2For instance, if the LHC produces a Dark Matter particle, which only interacts through gravity, it would be
undetectable by any CMS subsystem. The particle would only be noticed by observant physicists analysing the
corresponding pmiss

T distribution!
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function of the test statistic tµ, f(tµ|µ), from the observed tµ,obs up to infinity,

pµ =

∫ ∞

tµ,obs

f(tµ|µ)dtµ. (3.5)

Thus, the p-value represents the probability of finding data of equal or greater incom-
patibility with predictions from the considered hypothesis. If the p-value is lower than a
specified threshold, usually 0.05, the proposed hypothesis is rejected. In particle physics, it
is also common to translate the p-value to a Z sigma significance given by

Zµ = Φ−1(1− pµ), (3.6)

where Φ is the cumulative distribution of the zero mean and unit variance Gaussian func-
tion [42]. The relation between the p-value, test statistic tµ, and Z significance is better
understood in plots shown in Fig. 3.5. The left plot shows the p-value as the blue shaded
region of the f(tµ|µ) function, where the x-axis represents the test statistic tµ. On the right
plot, the Z significance is shown in the x-axis as the distance from the Gaussian mean to
the beginning of the p-value integrated blue region.

Figure 3.5: (a) Illustration of the relation between the p-value, the observed test statistic tµ,
and the probability density function f(tµ|µ). (b) Gaussian distribution with zero mean and
unity variance ψ(x) =

(
1/
√
2π

)
exp(x2/2), showing the relation between the significance

Z and the observed p-value [42].

The p-value defined for the MUSiC analysis is a composite p-value, defined as

pdata =


∑∞

i=Ndata
C ·

∫∞
0
dλ exp

(
− (λ−NSM )2

2σ2
SM

)
· e−λλi

i!
, if Ndata ≥ NSM∑Ndata

i=0 C ·
∫∞
0
dλ exp

(
−(λ−NSM)2

2σ2
SM

)
︸ ︷︷ ︸

systematics

· e
−λλi

i!︸ ︷︷ ︸
statistics

, if Ndata < NSM , (3.7)

where Ndata is the measured number of events; C is a normalization to unity factor; and
NSM ± σSM is the SM simulated number of events with the corresponding standard deviation.
Note that σSM accounts for both the statistical and systematic uncertainties. The statistical
fluctuations are assumed to be Poisson distributed, while the systematic uncertainties, treated as
nuisance parameters, are modelled to follow a Gaussian distribution. The p-value is symmetric
to the excess and deficit of measured events compared to MC simulated events. If there are more
measured than simulated events, then the p-value is given by the first line of Eq. 3.7, where
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the sum is performed from the number of measured events up to positive infinity. On the other
hand, if there are less measured events, the p-value is given by the second line in the equation,
where the sum runs from zero up to the observed number of data events.

Figure 3.6: Schematic illustration of the MUSiC Scanning procedure showing example
Scanning Regions, in dark blue lines, and the identified Region of Interest, highlighted with a
light blue background, where the data points (black dots) are more discrepant from the
background estimation (bins). The total MC uncertainty (systematic and statistical) is
illustrated as the yellow regions.

At the end of the analysis, the region with the lowest p-value, pdatamin (and, therefore, with
the largest MC/data discrepancy) is defined as the Region of Interest. This region can then be
signaled as a promising BSM search region for dedicated analysis. The Scanning procedure
is illustrated in Fig. 3.6, where the schematic of an histogram is shown with some possible
scanning regions signalled by the dark blue lines and the Region of Interest highlighted by the
light blue background. The yellow regions in the plot labelled σ(MC) represent the total MC
simulation uncertainty.

Look-Elsewhere Effect

The p-value calculation introduced above only allows to quantify the probability of finding
a discrepancy within a specific scanning region. Since the Scanning algorithm analyses many
connected bin regions, calculating several associated p-values, the probability of finding a
significantly low p-value in an arbitrary region is higher than if the algorithm only analysed
the entire distribution at once. Thus, the significance of the p-values found is overestimated
and must be corrected. This correction is implemented by transitioning from a locally defined
p-value to a globally defined p̃-value, known as the Look-Elsewhere Effect [43]. The calculation
of the p̃-value relies on pseudo-experiments, where the MC simulation is compared to other MC
simulation, which acts as a pseudo-data set with no BSM signals. These pseudo-experiments
go through the exact same Scanning procedure described above, where Scanning Regions are
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defined and the corresponding p-values are calculated. Several thousand pseudo-experiments
are ran where, for each one, the pseudo-data set is randomly varied according to the associated
uncertainties. This results in a differentRegion of Interest from the one foundwithmeasured data.
When all local p-values from the pseudo-experiments are known, the number of experiments
with a smaller local p-value, pmin, than the one observed with measured data, pdatamin , is recorded
as Npseudo(pmin < pdatamin ). The p̃-value is then calculated as

p̃ =
Npseudo(pmin < pdatamin )

N totalpseudo
, (3.8)

where N totalpseudo is the total number of pseudo-experiments ran. The p̃-value therefore quantifies
the probability of finding a discrepancy of equal or lesser compatibility in any possible region
of the distribution. After the p̃-values are calculated for all considered distributions, of the same
kinematic variable, they can be compared to each other as a whole. This is precisely the end
goal of the Scanning algorithm.

3.5 Data Conversion
Most machine learning applications, including NPLM, work with files in the Hierarchical

Data Format (HDF5) [44], which allows for easier management of large, and possibly hetero-
geneous, data sets. Thus, it is necessary to convert ROOT files, produced during the modified
Classification step, into HDF5 files. This conversation is necessary for both ROOT files corre-
sponding to measured CMS data and to files corresponding to MC simulated data.

Each ROOT file contains events from a single SM process3 and contain, at TTree level, all
MUSiC event classes found. Within each class, there are TBranch levels corresponding to
the kinematic variables

∑
|p⃗T | (stored as "SumPt"), Minv (stored as "MET") and pmiss

T (stored
as "InvMass"). The number of entries in each TBranch corresponds to the total number
of events in the class. Within the conversation algorithm, the TBranches are read as Python
arrays, where each entry stores the corresponding kinematic information of a single event. The
three final arrays, one for each kinematic variable, are then stored as data sets in a newly created
HDF5 file, corresponding to the respective event class. Additionally, each event class TTree in
theROOTfile contains aTBranch storing a partialMC eventweight, equal towPU, event·k·σprocess.
Thus, during the conversation algorithm, the calculation of the full MC weight is implemented,
as described in Eq. 3.4. The process-specific information necessary for this calculation is stored
at TTree level: the process name is stored as "ProcessName", the total number of (accepted
or not) events as "EvCounts", the total number of weighted events as "TotalEvents" and
the sum of the generator weights as "TotalEventsUnweighted". After the calculation is
performed and each event weight has been updated, a new data set containing all MC total event
weights is appended to the corresponding HDF5 file. For ROOT files corresponding to CMS
measured data, the conversation step simply creates a data set filled with unity weights in the
HDF5 file. The conversation algorithm can be found in Appendix B.

Finally, the conversation step is tested for the four most populous event classes out of the
twenty most discrepant classes found in 2016 (Fig. 3.1), namely, the class 1e + 1µ + pmiss

T

(Fig.3.7), the class 1e + 1µ + 1jet (Fig. 3.8), the class 1e + 1µ + 1jet + pmiss
T (Fig. 3.9)

3Note, however, that different ROOT files may correspond to the same process, but contain distinct events.
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and the class 2e + 1bJet (Fig. 3.10). Comparing histograms produced from ROOT files from
a typical MUSiC analysis4 (upper plots) with histograms produced from HDF5 files (bottom
plots), it is clear that the conversation algorithm is accurate. This can be verified through
the total event counts for Monte Carlo and Data samples. Note that the classic MUSiC plots
constituted preliminary earlier works and so, there are small differences in event counts for
specific SM process groups. The bottom plots, produced from HDF5 files, use updated Monte
Carlo samples, which explain the small disparities in some event counts.

4The plots were provided by Lorenzo Vigilante. Note that the bin width varies within each histogram, according
to a bin width optimization algorithm implemented within MUSiC.
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Figure 3.7: (top) Total transverse momentum histogram for the event class 1e+ 1µ+ pmiss
T ,

taken directly from the outputted ROOT file from the unmodified Classification step; (bottom)
Total transverse momentum histogram for the same class, where each event information was
read from the corresponding HDF5 file.
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Figure 3.8: (top) Total transverse momentum histogram for the event class 1e+ 1µ+ 1jet,
taken directly from the outputted ROOT file from the unmodified Classification step; (bottom)
Total transverse momentum histogram for the same class, where each event information was
read from the corresponding HDF5 file.
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Figure 3.9: (top) Total transverse momentum histogram for the event class
1e+ 1µ+ 1jet+ pmiss

T , taken directly from the outputted ROOT file from the unmodified
Classification step; (bottom) Total transverse momentum histogram for the same class, where
each event information was read from the corresponding HDF5 file.
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Figure 3.10: (top) Total transverse momentum histogram for the event class 2e+ 1b− jet,
taken directly from the outputted ROOT file from the unmodified Classification step; (bottom)
Total transverse momentum histogram for the same class, where each event information was
read from the corresponding HDF5 file.
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Chapter 4
Machine Learning Methodology

"We are not interested in the fact that the brain has the consistency of cold porridge."
– Alan Turing

Machine learning, which is a sub-field of artificial intelligence, has been around for a couple
of decades now, as W. Pitts invented Artificial Neural Networks (ANNs) in 1943 [45]. The goal
of a machine learning algorithm is to learn certain properties about the data it receives as an
input. More concretely, one can use the definition of "learning" from Mitchell [46],

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.”

There are several kinds of tasks T where a machine learning algorithm is better suited than
a fixed computer programme. Some selected examples of complex tasks tackled by machine
learning algorithms are [47]

• Classification – the algorithm is designed to find the probability that a given input data
belongs to a certain predefined category, labelled by an integer k. Thus, the algorithm
will determine a function f : Rn → {1, ..., k}, taking the n-dimensional vector x⃗ as
input and giving the numerical value y = f(x⃗), corresponding to a certain category, as
output. Alternatively, f can also output a probability density function over the categories,
as opposed to a single value k.

• Regression – the algorithm is designed to predict a numerical value given some input
data. Although, unlike the classification task described above, the value need not be an
integer and does not represent a category. Instead, the algorithm will produce a function
f : Rn → R.

• Anomaly Detection – the algorithm takes several data samples as input and it is designed
to recognize and predict patterns in the data set. It can then identify if new data samples
are anomalous, when compared to the previously analysed data.

The above list is by no means an exhaustive one, as many other tasks can be tackled by
machine learning algorithms.
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The simplest machine learning algorithm is the Feed-forward Neural Network (FNN), which
is introduced in Section 4.1. The mathematical construction of FNN is presented, followed by
an explanation of the required training procedure. Section 4.2 then discusses the advantages of
neural networks, over binned histograms, as functions approximants. Unless otherwise specified,
the following sections are based on [47, 48].

4.1 Theory of Feed-forward Neural Networks
One starts by defining a neural network simply as a set of functions. Consider now a real

function fa⃗(x,w), where x is a d-dimensional random variable, w are free parameters and the
vector a⃗, of integers, specifies the type of neural network. The family of real functions for
all possible parameters Fa⃗ = {fa⃗(x,w),∀ w} then corresponds to a specific neural network
architecture. To be more specific, consider an integer value L to be the number of building
blocks in the network, referred to as layers, which are more concretely defined later in this
section. Moreover, let al, with l ∈ {1, 2, ..., L}, represent the total number of elements, or
neurons, within the l-th layer. Each neuron in the l-th layer can then be labelled as aln, where
n ∈ {1, ..., al}. The architecture of a neural network can then be specified as a⃗ = (a1, a2, ..., aL).
Note that the first layer, l = 0, is often called input layer, and the last l-th layer is called output
layer. Any layers in between are referred to as hidden layers. For instance, a (1, 5, 1) network
contains three layers, where the first and last layers contain a single neuron, and the second layer
contains five neurons. Additionally, following the notation from Mathematica [49], layers can
be categorized either as

• Element-wise layers s – apply a scalar function s, the so-called activation function, to
each element of the input vector. Thus, the output vector has the same dimensionality
as the input vector. The goal of this scalar function is to establish a decision boundary
for when a certain neuron is activated. The most commonly used activation functions are
later discussed in subsection 4.1.1.

• Linear layers λ – apply a linear transformation such that the dimension of the output
vector, m, might be different from that of the input vector, n. Such a transformation is
defined as

[λ(a(l)n )]m =
n∑

n=1

wm,na
(l)
n + bm (4.1)

where some free parameters are contained in m × n dimensional weight matrix, where
each entry wm,n is a multiplicative factor, called a weight; the remaining free parameters
are commonly called bias values, and are represented by bm. The weights and bias are
applied by the n-th neuron to the output of them-th neuron. Thus, the neural network has
a total number ofm(n+ 1) free parameters.

A layer, as mentioned above, is then defined as a composition of linear and an element-wise
layer. When a specific set of values is chosen for the free parameters in the network, the function
fa⃗(·,w) is defined as a composition of functions

fa⃗(·,w) = λ1 ◦ s1 ◦ ... ◦ λL ◦ sL. (4.2)
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Fig. 4.1 illustrates the application of weights and bias by each neuron of the network. The
input layer, l = 0, is shown in green and contains a0 = n neurons, while the output layer, l = 1,
is shown in blue and contains am = m neurons. Each neuron is represented as a circle labelled
by a(l)i , where l refers to the l-th layer, containing al neurons, and i ∈ {1, ..., al} specifies the
neuron. Moreover, the value of first neuron in the output layer, a(1)1 , is shown explicitly as the
result of a scalar function s = σ being applied to the output of the linear transformation of the
vector a⃗(0) = (a

(0)
1 , a

(0)
2 , ..., a

(0)
n ). In matrix notation, one can see how the vector a⃗(0) is linearly

transformed by the weight wm,n and bias bm values, and subsequently fed into the σ function, to
become the a⃗(1) = (a

(1)
1 , a

(1)
2 , ..., a

(1)
m ) vector.

Figure 4.1: Illustration of a neural network with architecture (1, 1). Each neuron is illustrated
as a circle labelled by a(l)i , where l refers to the l-th layer, containing al neurons, and
i ∈ {1, ..., al} specifies the neuron. The input layer is shown in green and contains n neurons,
while the output layer is shown in blue and containsm neurons. The blue lines connecting the
neurons are labelled by the corresponding weight matrix elements wm,n. Moreover, in matrix
notation, one can see how the vector a⃗(0) = (a

(0)
1 , a

(0)
2 , ..., a

(0)
n ) is linearly transformed by the

weight wm,n and bias bm values, and subsequently fed into the σ function, to become the
a⃗(1) = (a

(1)
1 , a

(1)
2 , ..., a

(1)
m ) vector.[50].

Moreover, if, for a certain network parametrized by a⃗, the outputs from layer l− 1 are fed as
an input to every neuron of the following layer l, for every layer in the network, the network is
said to be fully connected. In this case, its number of free parameters Npar (⃗a) is given by

Npar (⃗a) =
L−1∑
l=0

al+1(al + 1). (4.3)

This type of simple neural network is referred to as a FNN due to the forward behaviour
of the data inside the network, i.e. the data is propagated from the input to the output layer.

38



4.1. Theory of Feed-forward Neural Networks

An example of a fully-connected FNN with architecture (1, 3, 1) is illustrated in Fig. 4.2. The
input layer is shown in green and contains four neurons, the three hidden layers, shown in blue,
contain five neurons each and, finally, the last layer, shown in dark red, contains three neurons.
Note that each neuron is illustrated as a circle labelled by a(l)i where, as mentioned previously, l
refers to the l-th layer containing al neurons and i ∈ {1, ..., al} specifies the neuron. Lastly, the
arrows inside the network represent the application of weights and bias as explained previously.

Figure 4.2: Illustration of a fully-connected FNN with architecture (1, 3, 1). Each neuron is
illustrated as a circle labelled by a(l)i , where l refers to the l-th layer, containing al neurons, and
i ∈ {1, ..., al} specifies the neuron. The input layer (l = 0) is shown in green and contains
a0 = 4 neurons; the hidden layers (l = 1, 2, 3) are shown in blue and contain five neurons each
a1 = a2 = a3 = 5; and the output layer (l = 4) is shown in dark red, containing a4 = 3
neurons. The arrows represent the application of weights and bias as previously explained [50].

4.1.1 Activation Functions

The choice of scalar function s to be applied by an element-wise layer is dependent on the
problem at hand. The simplest example is the Heaviside function, defined by [51]

H(x) :=

{
0, , if x < 0

1, , if x ≥ 0,
(4.4)

where a neuron is only activated if its input variable x is a non-negative value. Other examples
include the logistic sigmoid function σ and the Rectified Linear Unit function ReLU , defined
below [51, 52]

σ(x) = (1 + e−x)−1 (4.5)

ReLU(x) = x ·H(x) = max(0, x). (4.6)

The σ function acquired its name from its sigmoidal behaviour, as it approaches zero for
increasingly negative values of x, limx→−∞ σ(x) = 0, and one for increasingly higher values
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of x, limx→∞ σ(x) = 1. This behaviour becomes relevant in the next section ??, when neural
networks will be discussed as arbitrary function approximants. It is also relevant to note that
σ is a real analytic function, being everywhere infinitely differentiable. Moreover, because
σ(x) ∈ [0, 1], the function is bounded both from below and above, and is commonly used to
describe probabilities. As a final remark, the logistic sigmoid function may also be seen as a
continuous counter-part of the Heaviside function.

All three activation functions are shown in Fig. 4.3 [53], in the interval x ∈ [−1, 1]. The
Heaviside function is plotted in orange, the logistic sigmoid function in blue and the ReLU
function in dark green. Note that the σ function was modified by a shape parameter k = 5,
defined as σk(x) := σ(kx), for visualization purposes. Other example activation functions are
also shown in the plot, namely the Mish and LReLU functions. More details on these, and
other activation functions can be found in [51, 54].

Figure 4.3: Plotting of different activation functions. The Heaviside function H(x) is plotted
in orange; the logistic sigmoid function σ5(x) is plotted in blue with shape parameter k = 5
and the ReLu function is plotted in dark green. TheMish and LReLU functions are also
plotted in red and light green, respectively [53].

4.1.2 Loss Functions

Once the neural network parameters are specified via a⃗, one must evaluate the performance
of the network fa⃗. What Mitchell [46] previously referred to as a "performance measure P",
is now known, in the machine learning literature, as a loss function. The present work will
only concern supervised machine learning methods, i.e. all the data are labelled data, so
this subsection introduces loss functions in this context. For a deeper understanding on the
construction of loss functions for semi-supervised or unsupervised learning (unlabelled data)
please refer to [51, 55, 56].

The performance of the network can be evaluated by giving it, as an input, a test data set
Dtest = {xtestj , ytestj }, where j ∈ {1, 2, ..., D} and D is the number of data tuples. Given this
information, it is possible to define the loss function Ltest for the network fa⃗, representing a
quantization of its performance, as the Mean Squared Error function ([48], pp.107),

L[fa⃗]
test =

1

D

D∑
j=1

[
fa⃗(x

test
j ,w)test − ytestj

]2
. (4.7)
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It is clear that the loss functionL[fa⃗]test approaches zero as the network prediction fa⃗(xtestj ,w)
approaches the value of the true test label ytestj . Thus, for the network to make better predictions,
the algorithm must find the optimal weight and bias values, contained in w, such that L[fa⃗]test
is minimized. To design a machine learning algorithm capable of such optimization procedure,
once can first give the network an input in the form of a training data setDtrain = {xtrainj , ytrainj }.
To minimize its corresponding loss function L[fa⃗]train, one can simply solve for its gradient to
equal 0. A common approach to achieve this is Stochastic Gradient Descent (SGD) [57, 58],
based on a gradient descent method described by

a⃗← a⃗− η∇L[fa⃗], (4.8)

where the step size parameter η is referred to as the learning rate and

∇L[fa⃗] :=
1

D

D∑
j=1

∇ [fa⃗(xj,w)− yj]2 . (4.9)

Since L[fa⃗] is written as a sum over the data set D, its total gradient can also be expressed as
a sum of the individual gradients corresponding to each data tuple (xj, yj) in the data set D,
which is what Eq. 4.9 precisely expresses. This procedure allows the neural network to gain
"experience E", commonly known as the training of the network.

Since problems tackled by machine learning usually reacquired large training data sets, em-
ploying all its data points to update the network parameters becomes computationally expensive.
So, the idea introduced by stochastic gradient descent is to modify Eq. 4.8 such that only certain
data points j, chosen uniformly at random, are considered to update the network parameters,
instead of the full data set. Thus, the new update equation becomes

a⃗← a⃗− η∇ [fa⃗(xj,w)− yj]2 . (4.10)

Note how the learning rate η has a significant impact in the training procedure, as it will impact
the computational time reacquired to minimize the gradient.

Once a set of weights and bias values is found that better fits the data, one must replace the
previous parameters a⃗ by the new ones. Then, one must update the loss function and calculate
it once again. For this, it is necessary to know the derivative of L[fa⃗], which can be calculated
by a process known as backpropagation, introduced by Rumelhart et al. [59].

Besides stochastic gradient descent, there are other optimization algorithms. Two examples
are the ADAM algorithm [60] or the Root Mean Squared Propagation (RMSprop) algorithm
[61]. RMSprop is employed in Chapter 4.3 and is also based on stochastic gradient descent.

4.2 Neural Networks as Function Approximants
Following the construction presented above, it is possible to show that a single hidden layer

neural network can approximate, to arbitrary precision, and making use of the logistic sigmoid
function, any continuous function1 taking as an input a d-dimensional variable [62–64]. Without
presenting the full mathematical proof, consider the following heuristic demonstration of the

1The function must be defined in a compact domain of RN .
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power of neural networks as function approximants. Let fa⃗, with a⃗ = (1, 2, 1), be a 3 layer
neural network taking a one dimensional input x in the first layer. Let the two neurons in the
hidden layer, labelled by 1 and 2, apply a logistic sigmoid function to their inputs, and send their
outputs to the same single neuron of the last layer. The corresponding function describing fa⃗
reads [65]

f(1,2,1)(x) = w1
′σ(w1x+ b1) + w2

′σ(w2x+ b2) + b′, (4.11)

where wi and bi, with i ∈ {1, 2}, correspond to the weights and bias applied by the hidden
neurons, andwi

′ and b′ correspond to the weights and bias applied by the neuron in the last layer.
For the specific case when w1

′ = −w2
′ = w′ and b′ = 0, Eq. 4.11 reduces to

f(1,2,1)(x) = w′[σ(w1x+ b1)− σ(w2x+ b2)]. (4.12)

Setting w′ = 1, Fig. 4.4 shows f(1,2,1)(x) plotted for different values of wi and bi. By
varying the values of w1 and w2, the transition between f(1,2,1)(x) = 0 and f(1,2,1)(x) = 1 can be
made arbitrarily sharp. This effect can be seen by comparing the function plotted in blue, where
w1 = w2 = 1 and the transition is smoother, to the function plotted in red, where w1 = w2 = 10
and the transition is sharper. On the other hand, varying the values of b1 and b2 can make the
domain in which f(1−2−1)(x) is non zero arbitrarily narrow. This effect is demonstrated by the
function plotted in purple, which has the same wi parameters as the function plotted in red, but
is much narrow as its bi parameter are varied to b1 = 90 and b2 = 120.

Figure 4.4: Illustration of how a FNN with architecture (1, 2, 1) can reproduce either a
rectangular function, shown in red, a function with a smooth peak, shown in purple, or an
intermediate case, shown in blue. The x axis acts as the one dimensional input variable, while
the y axis represents the output of the network, f(1,2,1)(x) [65].

Thus, with only three neurons, two in the hidden layer and one output neuron, the network
f(1,2,1) is able to reproduce a smooth peak (purple), a broad plateau (blue) or a rectangular
function (red). By combining several functions of this kind, i.e. building a juxtaposition of
rectangular functions, it is possible to approximate any real function to arbitrary precision [62–
64].

If the family of real functions defined in the beginning of this chapter, F , is chosen to be
comprised of piece-wise functions instead of neural networks fa⃗(x,w), then the output will
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be a binned histogram, where each bin α has an independent free parameter wα associated
to it. A straightforward disadvantage to binned histograms includes the arbitrariness of the
binning. Piece-wise functions are discontinuous in nature and, thus, can oscillate rapidly. Due
to statistical fluctuations, the best fit parameters to the data can result in histograms with large
gradients between adjacent bins, which randomly assume positive and negative values depending
on the choice of binning. If these gradients are present, binned histograms do not faithfully
reproduce the true underlying distribution. This issue is often addressed through optimization
algorithms which automatically set variable bin widths, where the bins are set to be as narrow
as possible while still being compatible with experimental resolution. Neural networks, on the
other hand, are continuous smooth functions and do not suffer from this issue.

Moreover, it was shown that a neural network with a single hidden layer, with architecture
(1, 2, 1) and, therefore, with 7 free parameters as per Eq. 4.3, can reproduce any real function
containing arbitrarily narrow peaks. Using the binned histogram method, approximating similar
features would reacquire a large number of bins. The number of free parameters would then
be given by the number of bins minus one. Additionally, as the dimensionality of the input
variable x increases, the number of necessary bins to approximate the given function increases
exponentially. On the other hand, FNNs can approximate the same distribution with a much
lower number of free parameters, only depending on the number of neurons in the hidden layer
[62]. For an higher dimensional input variable x, only two more hidden neurons are necessary
per additional dimension [63]. Similarly to the case presented above, the outputs from all hidden
neurons are sent to a final neuron in the last layer, which then generates the multi-dimensional
equivalent of a rectangular function.

4.3 New Physics Learning Machine
As explained in the previous chapter, MUSiC analysis save kinematic information in binned

histograms, employing a Region of Interest Scanning algorithm to find deviations between
measured data and SM simulation. This section introduces NPLM [65, 66], a newly proposed
machine learning algorithm, as an alternative method to find such deviations. For the advantages
of neural networks over binned histograms as function approximants, please refer to Section 4.2.

The construction and statistical foundations of the NPLM algorithm are first explained in the
subsection 4.3.1. The construction of a loss function from a maximum likelihood hypothesis
test is then explained in 4.3.2. Finally, the dependence of the NPLM performance on the non-
trainable hyper-parameters is briefly discussed in 4.3.3.

4.3.1 Statistical Foundations of NPLM

Consider an experiment consisting of repeated measurements of a d-dimensional random
variable x ∈ X , where X refers to a specified phase-space region. Take D = {x1, ..., xND}
to be the set of observed values of x, with ND representing the total number of independently
performed measurements. Each value of x follows an unknown underlying probability density
function n(x|T ), where T stands for the True Hypothesis. Like any a statistical hypothesis
test, NPLM aims to find an appropriate hypothesis that fits the data sufficiently well, i.e. an
hypothesis that, given a set of measurements, cannot be disregarded. If one has prior knowledge
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about the data distribution through a Reference Hypothesis R, then R can be compared to a
given Alternative Hypothesis Hi, i ∈ N, to check which of the two is most favoured by the data.
In the case thatR is a weighted data set, the total number of weighted events NR is given by

NR =

NR∑
i=1

wi (4.13)

where wi is the weight of the i-th event. Additionally, let n(x|R) denote the normalized
probability density function given by

n(x|R) = N(R)P (x|R) with N(R) =

∫
dx n(x|R) and

∫
dx P (x|R) = 1, (4.14)

whereN(R) corresponds to the expected observed events, as predicted by R, and P (x|R) is the
unnormalized probability density function. The true number of observations ND from the data
set D is then interpreted as being thrown from a Poisson distribution with mean N(R).

In the case of new physics searches at the LHC, R refers to SM prediction, while {Hi} is
the set of possible BSM theories. The number of expected events, in a phase-space regionX , is
then given by the total cross section in X , σX , multiplied by the integrated luminosity L,

N(R)X = σX · L. (4.15)

In dedicated analysis, an alternative hypothesisH ∈ {Hi} is proposed a-priori according to the
theory model being studied. The data is carefully analysed in the restricted phase-space region
where R and H are predicted to be most discrepant. However, in model-independent analysis,
such as MUSiC, H is left undefined and the phase-space region is minimally restricted. For
simplicity, let the subscript X be dropped in the following derivations.

Since most LHC events are known to be in agreement with the SM, the discrepancy between
R and any ofH can present itself in two ways: either as a large discrepancy in a low probability
phase-space region2; or as small correlated discrepancies over a large region. Dedicated searched
are designed to be sensitive the first scenario, where a signal would be easily detectable. That
is, of course, if the proposed BSM model is the correct one. Model-independent searches are
designed to be sensitive to both scenarios, where the sensitivity to specific signals is reduced in
favour of increased sensitivity to different signals at once.

The foundational postulate of NPLM is the construction of the event distribution n(x|w),
corresponding to the alternative hypothesis Hw, as a local re-scaling of n(x|R). The re-scaling
is defined by an exponential function parametrized by the single output of a neural network
fa⃗(·;w), as defined in Section 4.1. Mathematically, the postulate is expressed as

n(x|w) = efa⃗(x;w)n(x|R), (4.16)

wherew are the network trainable hyper-parameters and a⃗ defines the architecture of the network.
Moreover, given the observed data setD, and assuming the data points x ∈ D were thrown from
the probability distribution P (x|R), the likelihood of the reference hypothesis R is given by

L(R|D) = N(R)ND

ND!
e−N(R)

∏
x∈D

P (x|R) = e−N(R)

ND!

∏
x∈D

n(x|R). (4.17)

2Otherwise, if the signal would be in a high-probability region, one would have already found signs of new
physics.
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Similarly, if one assumes that the data set D is thrown from the alternative hypothesis Hw, the
corresponding likelihood of Hw is given by

L(Hw|D) =
e−N(w)

ND!

∏
x∈D

n(x|w), (4.18)

where N(w) is the number of expected data events as predicted by the alternative hypothesis
Hw. More explicitly, N(w) is given by

N(w) =

∫
dx n(x|w) =

∫
dx efa⃗(x;w)n(x|R). (4.19)

Given the parametrization in Eq. 4.16, the most suitable statistical test to determine which
hypothesis is most favoured by the data set D is defined by the Neyman–Pearson construction
[67], based on a Maximum Likelihood log ratio test. This construction leads to the test statistic
t(D) defined by

t(D) = 2 log
maxw[L(Hw|D)]
L(R|D)

= 2 log

[
e−N(ŵ)

e−N(R)

∏
x∈D

n(x|ŵ)

n(x|R)

]
, (4.20)

where the maximized likelihood of the alternative hypothesis is denoted with hatted hyper-
parameters, i.e. maxw[L(Hw|D)] = L(Hŵ|D). The final expression for t(D) is derived by
substituting the likelihoods by the expressions given in Eq. 4.17 and Eq. 4.18. Note that n(x|ŵ)
and N(ŵ) are defined analogously to Eq. 4.16 and Eq. 4.19, respectively. The concepts and
notation introduced so far are summarized in Fig. 4.5.

Lastly, it is important to mention that, according to Wilks Theorem [68], the test statistic
t(D) will asymptotically follow a χ2 distribution when the data is distributed according to the
reference hypothesis3, i.e. when Hw = R. Note that the corresponding χ2 function has the
same number of degrees of freedom as the maximum log-likelihood ratio. In this context, these
are the number of trainable parameters w.

Figure 4.5: Summary of the introduced concepts relating to the Reference Hypothesis R, the
True Hypothesis T and the optimized Alternative Hypothesis Hŵ, accompanied by the
corresponding notation. Adapted from [65].

3This is true for the case of infinite statistics.
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4.3.2 Constructing the Loss Function

To employ NPLM, the maximization of the likelihood log ratio in Eq. 4.20 must first be
translated into a minimization of a loss function. Note that it is possible to rewrite Eq. 4.20
such that it reads

t(D) = −2Min{w}[N(w)−N(R)−
∑
x∈D

fa⃗(x;w)]. (4.21)

However, to compute t(D), the following steps are necessary:

(i) Estimating N(w)
Note that it is not possible to determine N(w) by computing the integral in Eq. 4.19,
since the analytical form of the probability density function n(x|R) is unknown. To solve
this, one estimates N(w) using Monte Carlo methods by setting

N(w) =
N(R)

NR

∑
x∈R

efa⃗(x;w). (4.22)

(ii) Expressing t(D) as a Loss Function
Inputting the above definition of N(w) into Eq. 4.20, the test statistic expression now
becomes

t(D) = −2Min{w}

[
N(R)

NR

∑
x∈R

(efa⃗(x;w) − 1)−
∑
x∈R

fa⃗(x;w)

]
. (4.23)

It is now possible to define the loss function as

L[f ] ≡ N(R)

NR

∑
x∈R

(efa⃗(x;w) − 1)−
∑
x∈R

fa⃗(x;w). (4.24)

Introducing the target variable y with y = 0 and y = 1 for the reference and the toy data
sets, respectively, the loss function can be rewritten as

L[fa⃗(x,w)] =
∑
(x,y)

[
(1− y)N(R)

NR
(efa⃗(x,w) − 1)− yfa⃗(x,w)

]
. (4.25)

Minimizing L with respect to the neural network parameters w is therefore a standard
supervised learning process.

(iii) Divergence of the Loss Function
A final point that must be addressed is the fact that L is unbounded from below, i.e. Eq.
4.25 will tend to −∞ if L diverges in any localized region of x ∈ D. This issue is
solved by introducing aWeight Clipping parameter, which sets a maximum value to the
weights and bias of the network. The value of the weight clipping parameters must be
carefully chosen depending on the data sets used.

Note that once the network has been properly trained, and ŵ have been found through the
minimization of L, f(x; ŵ) is the best approximant to the true data distribution n(x|T ), i.e.
f(x; ŵ) ≃ log

[
n(x|T )
n(x|R)

]
.
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4.3.3 Hyper-parameter Dependence

A detailed study on the performance of NPLM based on different hyper-parameters is found
in Chapter 4.4 of the original paper [65]. Here, a summary is presented of the conclusions from
the authors. The hyper-parameters that must be set before training include:

• Learning rate (defined in Eq. 4.10)
The authors concluded that a learning rate higher than 10−3 does not allow the loss function
to converge, as L keeps oscillating as training proceeds. Moreover, a lower value does not
improve the performance of the algorithm. Thus, throughout this thesis the learning rate
is fixed at 10−3.

• Training rounds
The authors verified that at least 1.5 × 105 training rounds are needed for a good NPLM
performance. Moreover, it was also observed that increasing the training rounds to
1.5 million, effectively increasing the necessary computer power, does not significantly
improve the performance of the algorithm.

• Architecture (as constructed in Section 4.1)
The architecture of the network should be chosen as to improve the agreement between the
distribution of the test statistic and that of the corresponding χ2 function, given that the
toy data set has been generated according to the reference hypothesis R. This agreement
is quantified by the authors through the Kolmogorov-Smirnov test [69]. However, there
is no concrete method to define an appropriate architecture, as this agreement is highly
dependent on the problem. It is noteworthy to mention the increased computational
resources required for larger architectures, asmore training rounds are necessary to achieve
a reasonable agreement to the χ2 function.

• Weight clipping
In principle, a large enough weight clipping can be set for the problem at hand, such that
it does not restrict the flexibility of the neural network to vary its weights and bias values.
The problem with this approach is that it may lead to unstable training. In that case, the
test statistic distribution keeps changing as the training proceeds. On the other hand, if the
weight clipping value is too low, the network does not have enough flexibility, resulting
in low t values and missing the χ2 behaviour. Instead, a weight clipping sweep must be
performed, where one trains the same network over a range of weight clipping values and
evaluates which ones provides the best χ2 agreement. A full discussion of the weight
clipping selection can be found in Section 3.1 of [66].

Once the hyper-parameters have been set, the same network can be used to test the sensitivity
to alternative hypothesis and, if found to be sensitive enough, it can be further employed to
compare the reference model to real data.

A schematic illustration of the NPLM workflow is found in Fig. 4.6. The first step is to
follow the workflow shown in blue. One must first create the reference sampleR and generate a
toy sample DR following the reference hypothesis. This is done through the rejection sampling
algorithm [70–72], also known as the Hit or Miss method, shown in the yellow box. A brief
explanation of the method is found in the interlude below.
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Interlude – Hit or Miss Method

1. Sample an event x ∈ R with weight wx, and a random number u ∈ [0, 1].

2. Define the variable wf such that the probability of accepting an event with wx is
r(wx) = wx/wf . Notice that wx must not be negative, as this will create negative
probabilities. Additionally, wf must be lower than the maximum weight, labelled,
wmax, such that the probability of accepting the corresponding event is smaller than
1. Therefore, events with negative weights must be previously removed fromR.

3. Compare u with r(wx) and accept the event as a toy event if r ≥ u, and reject the
event otherwise.

4. Repeat the procedure until enough toy events have been selected.

Both samples, R and DR, then serve as inputs to NPLM, which will output a test statistic
t(DR), calculated through the minimum loss value found by the network. To construct the
test statistic distribution P (t|R) more toy samples must be generated and NPLM must be
trained multiple times. In the illustration, this is shown by the light grey box, suggesting that
this workflow must be performed 1 000 times for sufficient statistics. After this procedure is
complete, it is possible to compare the distribution of the test statistic with the corresponding χ2

function. If these are not in sufficient agreement, the network hyper-parameters must be adjusted
(e.g. try a different architecture or weight clipping parameter.). Only then, it is possible to move
to the next workflow, shown in green.

The green workflow is used to perform sensitivity studies on the chosen neural network,
i.e. the hyper-parameters are those found to be optimal once the workflow in blue has been
completed. This time, the same reference sample R is used, but the toy samples, labelled by
DHw , will include additional signal events. As before, 1 000 toy signal samples should be used
to construct the test statistic distribution t(DHw). Since the toy sample does not follow the
reference hypothesis anymore, it is not expected that the test statistic distribution follows a χ2

function. Indeed, the further the distribution is from the corresponding χ2, the easier it is for
the network to distinguish between toy samples generated according to the reference or to an
alternative hypothesis.

Lastly, the workflow in orange compares the reference data setR with the single data set of
measured data D≀⌊∫ . The hyper-parameters of the network should be the same as for the green
workflow. Note that the output of the network is now a single test statistic tobs, since only one
measured data set is used. The test statistic can then be used to calculate the corresponding
observed p-value through

pobs =

∫ ∞

tobs

dt P (t|R). (4.26)
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Try different hyper-parameters
based on      compatibility to
choose a NN

Repeat 1000 times
to build pdf

Training

Hit or Miss Hit or Miss
+ Signal events

Use the chosen NN

Output

Input

Use the chosen NN

Figure 4.6: Schematic of the NPLM workflow. The blue workflow regards the comparison
between the reference data setR and a toy data set DR, thrown from the reference hypothesis
R using the Hit or Miss procedure. Similarly, the green workflow comparesR to a toy data set
with added signal events DS . Both these workflows are repeated 1000 times to build the
probability distribution functions of the test statistic. Lastly, the orange workflow comparesR
with the observed data set Dobs. The outputted test statistic t(Dobs) can then be used for the
p-value calculation.
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Chapter 5
NPLM Results

“When I first got into it, nobody knew what it was that we were doing.
It was like the Wild West.”

– Margaret Hamilton

The present chapter validates NPLM on a simple case study, where weights are applied to the
input data points. In order to approximate MUSiC data sets, different weight distributions and
varying percentages of negative weights are considered. Moreover, the case study introduces the
statistical power test as a measure of hyper-parameter suitability to the problem at hand. This
extends the work presented in [65], where the hyper-parameter suitability was only evaluated
through the Kolmogorov–Smirnov test. Finally, Section 5.2 presents NPLM results on the
MUSiC event class 1e + 1µ + pmiss

T , with 2017 MC data. To test NPLM sensitivity to both
resonant and non-resonant deviations from the SM, a cross section variation is introduced,
independently, to Higgs processes, Multi-Boson processes and top quark pair processes, with
Mtt̄>700 GeV. These processes were chosen for their relevance to the particular event class
considered. As a final remark, note that, for both the case study and the MUSiC implementation,
NPLM is employed with the restrictive conditions of single-dimensional inputs and absence of
systematic uncertainties in the data sets.

5.1 Results on a Simple Case Study
Before running the NPLM algorithm on MUSiC data, it is first necessary to establish its

reliability on weighted data sets. In the present section, NPLM is tested on a uni-variate case
study, aimed at replicating the features of a total transverse momentum distribution. Nuisance
parameters are not considered and the null hypothesis R is assumed to be a perfect description
of the observed data. This section then explores the sensitivity of NPLM regarding the:

1. value of the weight clipping parameter;

2. probability distribution function of the weights;

3. relative amount of negatively weighted events.
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5.1. Results on a Simple Case Study

5.1.1 Reference Samples

The reference model considered for this study is a falling exponential distribution

n(x|R) = e−x, (5.1)

where x ∈ [0, 25 000] represents the transverse momentum variable. Four reference samples are
drawn from the distribution in Eq. 5.1, Ri = {xj}, with i ∈ {1, 2, 3, 4} and j ∈ {1, ..., NR},
withNR = 200 000. For each sample, the event weightswj follow a different weight distribution
n(w), but all weighed events sum toNR = 2 000. This condition ensures the reference samples
are sufficiently large to avoid double counting when generating unweighted toy data sets via the
Hit or Miss method. To evaluate the impact of the weight distribution function in the reference
data set, the first two samples,R1 andR2, are weighted by a Gaussian function fN(µ1, σ1) (Eq.
5.2) and the last two samples,R3 andR4, are weighted by a Gaussian mixture function.

fN =
1√

2πσ12
e

(w1−µ1)
2

2σ1
2 (5.2)

In the latter case, the first 20 000 weights were drawn from fN(µ2, σ2), the following 150 000
weights from fN(µ3, σ3), and the remaining 30 000 weights from fN(µ4, σ4). Furthermore,
to evaluate the impact of the relative amount of negative weights, the medians and standard
deviations were chosen such that the negatively weighted events inR1 andR3 account for about
8% of the total weighted events, and inR2 andR4 account for about 16%. The selected means
and standard deviations are defined in Table 1, together with the final ratio of weighted events for
each reference sample. Additionally, the event weight distributions for each sample are plotted
in Fig. 5.1.

Finally, it is important to note that large weight values (w ≫ 0) can be present in MUSiC
data sets, which reduces the efficiency of the Hit or Miss method. Thus, a maximum weight cut
off, wmax, is necessary. For the present case study, a value of wmax = 0.06 was implemented for
all reference samples. The relative amount of weights larger than wmax is 1%, which does not
significantly reduce the reference samples when the corresponding events are discarded from
the data set. Note that, after removing negative weights and weights larger than wmax from the
reference samples, a weight re-scaling is performed, to ensure the remaining weighted events
still sum to 2 000.

Table 1: Summary table of the four different reference hypothesis used, specifying their
corresponding weight distribution functions as well as the percentage of negative weighted
events in the data set generated.

Reference Sample n(w) Parameters Ratio of weighted
events with w<0

R1 fN(µ1, σ1)
µ1 = σ1 = 0.01 ∼ 0.083

R2 (µ1, σ1) = (0.078, 0.01) ∼ 0.160

R3 fN(µ2, σ2)
+ fN(µ3, σ3)
+ fN(µ4, σ4)

(µ2, σ2) = (−0.009, 0.01)
(µ3, σ3) = (0.01, 0.06)
(µ4, σ4) = (0.05, 0.01)

∼ 0.081

R4

(µ2, σ2) = (−0.02, 0.01)
(µ3, σ3) = (0.01, 0.06)
(µ4, σ4) = (0.05, 0.01)

∼ 0.161
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Chapter 5. NPLM Results

Figure 5.1: Weight distributions for the reference samplesR1 (top left),R2 (top right),R3

(bottom left) andR4 (bottom left). The ratio of negative weighted events to the total weighted
events is shown in the legend.

5.1.2 Toy Samples

LetDR label toy data sets generated according to the reference hypothesisR, and letDS label
toy data sets generated according to the alternative hypothesis S 1. The alternative hypothesis
consists of an added Gaussian signal to the reference hypothesis. This choice results in a
probability distribution P (x|S) defined by P (x|S) = P (x|R) + P (x|S ′) with

P (x|S ′) = e
− (x−x̄)2

2σ2
s where x̄ = 5 000 and σs = 100. (5.3)

For DR toy samples, the total number of events ND is drawn from a Poisson distribution
with a mean of NR = 2 000. For DS toy samples, a fixed number of 50 signal events were
added, such that the total number of events becomes ND + 50. Similarly to real data, all toy
events are unweighted. Fig. 5.2 shows the histogram representation of the reference sample R
and the toy samples DR and DS . The signal events are highlighted by the dashed green box.
Recall that NPLM uses individual event information as an input, so these histograms are for
illustration purposes only.

1The notation for the alternative hypothesis was changed fromH to S to clarify that S stands for an hypothesis
containing signal events.
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5.1. Results on a Simple Case Study

Figure 5.2: Histogram representation of the reference sampleR and the toy sample DR (left)
and DS (right), where the signal events are highlighted in the dashed green box. The x axis,
representing the sum of the transverse momentum, was normalized such that x = 1
corresponds to x = 25 000.

Note that other alternative hypothesis were not studied as the nature of the chosen alternative
hypothesis does not impact the performance of NPLM. This was shown in Section 4.1 of the
original paper [65].

5.1.3 NPLM Validation

Following the approach from the authors in [65], the architecture for this simple case study
was set to include a single hidden layer with four neurons, i.e. a⃗ = (1, 4, 1), corresponding to
13 trainable parameters.

The toy samples DR were used as inputs in the network to validate the expected χ2(13)
behaviour for the test statistic t(DR), as explained in Section 4.3.1. Several values of the weight
clipping parameter wc were tested, namely wc ∈ 1, 25, 50, 75, 100, to compare the t(DR)
distribution with the χ2(13) function. To reduce statistical uncertainty, 1 000 toy data sets were
generated for each experiment. The number of training rounds was always set to 300 000 and
the learning rate to 10−3. A weight clipping of 100 was found to be the most appropriate, as
it has been already tested in [65]. The training was observed to remain stable for all weight
clipping values, expect for wc = 75, where some fluctuations were observed even after 150 000
training rounds. Upon finishing training, the weight clipping parameter of 100 resulted in the
best percentile agreement between the test statistic values and the percentiles expected from a
χ2 distribution. These results are plotted in Fig. 5.3 and Fig. 5.4

The toy samplesDS should lead to a distribution of the test statistic t(DS) that deviates from
the χ2(13) function, since the samples were generated according to an alternative hypothesis.
The results are shown in Fig. 5.5-5.8. The test statistic distributions in blue, t(DR), result
from the comparison between a specific reference sample R and its corresponding toy sample
DR. The test statistic distributions in green, t(S), result from the comparison between a the
reference sample R with the toy sample DS , generated according to the alternative hypothesis
S. Moreover, the ability of the network to distinguish between a toy sample being generated
according to either R or S is quantified according to a statistical power test [73]. The critical
value tc was set such that tc is larger than 95% of test statistics when the toy samples DR are
considered. The result of the power test is shown at the top of each plot (power), together with
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Chapter 5. NPLM Results

Figure 5.3: Weight clipping study for wc = 1, wc = 25, wc = 50 and wc = 75. The training
was performed on a network with architecture a⃗ = (1, 4, 1) using 1 000 toy samples. The
learning rate was set to 10−3 and 300 000 training rounds were performed.
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5.1. Results on a Simple Case Study

Figure 5.4: Weight clipping study for wc = 100. The training was performed on a network
with architecture a⃗ = (1, 4, 1) using 1 000 toy samples. The learning rate was set to 10−3 and
300 000 training rounds were performed.

the corresponding weight clipping parameter applied (wc). Additionally, the power test results
are summarized in Table 2.

Reference Sample Power for wc=5 Power for wc=100
R1 0.56 0.94
R2 0.48 0.88
R3 0.52 0.97
R4 0.46 0.94

Table 2: Summary of the power test results for each of the four reference samples uses,
according to the selected weight clipping parameter.
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Conclusions

1. Value of the weight clipping parameter
It was observed that the NPLM algorithm was always more efficient in identifying toy
samples which were generated according to the alternative hypothesis S when the weight
clipping parameter was set to 100. This was the expected result, as the network has
a greater flexibility to vary its weights and bias, resulting in a better recognition of the
reference hypothesisR. The level of recognition ofR is understood through the agreement
between the test statistic distribution t(DR) with the χ2(13) function, quantified by the
p-value from the Kolmogorov–Smirnov test. Note that even when the p-value is zero for
both weight clippings, the power is significantly higher for a wc = 100. Meaning that,
even when the distribution t(DR) is not in great agreement with the expected χ2 function,
it may be in sufficient agreement, depending on what is the desired power for the problem
at hand. The use of the statistical power for network tuning is therefore a useful addition
to the original procedure proposed by the authors in [65].

2. Probability distribution function of the weights
Similar results were observed between data sets with Gaussian distributed weights (R1 and
R2) and data sets with a more complex weight distribution (R3 andR4). For a wc = 100,
three reference samples resulted in a statistical power > 0.90, with only R2 showing a
slightly lower power at 0.88. This is a preliminary check that the NPLM algorithm should
be appropriate for MUSiC data sets, which contain complex weight distributions.

3. Relative amount of negatively weighted events
The power test for R1 and R2, with wc = 100, shows that increasing the ration of
negatively weighted events from 8% to 16% decreases the power of the network from
0.94 to 0.88. However, in the case of a more complex weight distribution, when the ratio
of negatively weighted events is increased from 8% in R3 to 16% in R4, the decrease
in power is only from 0.97 to 0.94. This result can be interpreted as a preliminary check
that the number of negatively weighted events, which are common in MUSiC data sets,
should not have a significant impact on the NPLM performance, as long as the removal
of such events does not cause double counting when applying the Hit or Miss method.
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5.1. Results on a Simple Case Study

Figure 5.5: Power test results for a weight clipping of 100 (top) or 5 (bottom), when theR1

reference hypothesis is considered. DR and DS stand for toy samples generated according to
the R or S hypothesis, respectively. The p-value of the t(DR) distribution, when compared to
the χ2(13) function, plotted as the dark blue line, is also shown. Moreover, tc stands for the
critical test statistic.
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Figure 5.6: Power test results for a weight clipping of 100 (top) or 5 (bottom), when theR2

reference hypothesis is considered. DR and DS stand for toy samples generated according to
the R or S hypothesis, respectively. The p-value of the t(DR) distribution, when compared to
the χ2(13) function, plotted as the dark blue line, is also shown. Moreover, tc stands for the
critical test statistic.
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Figure 5.7: Power test results for a weight clipping of 100 (top) or 5 (bottom), when theR3

reference hypothesis is considered. DR and DS stand for toy samples generated according to
the R or S hypothesis, respectively. The p-value of the t(DR) distribution, when compared to
the χ2(13) function, plotted as the dark blue line, is also shown. Moreover, tc stands for the
critical test statistic.
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Figure 5.8: Power test results for a weight clipping of 100 (top) or 5 (bottom), when theR4

reference hypothesis is considered. DR and DS stand for toy samples generated according to
the R or S hypothesis, respectively. The p-value of the t(DR) distribution, when compared to
the χ2(13) function, plotted as the dark blue line, is also shown. Moreover, tc stands for the
critical test statistic.
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5.2. Results on MUSiC Data Sets

5.2 Results on MUSiC Data Sets

5.2.1 Reference Sample

In this section, the NPLM algorithm is applied to the event class 1e + 1µ + pmiss
T for 2017

Monte Carlo data. LetR, standing for reference sample, label the set of events which contribute
to the class. The corresponding SM process groups of such events are shown in Fig. 5.9,
plotted from information contained in the corresponding event class HDF5 file, created during
the Conversation step (Section 3.5). The labels in the legend refer to the Monte Carlo generated
processes specified in Table 1. The total number of weighted events per process group in shown
inside the brackets. Note that Fig. 5.9 serves for illustration purposes only, as NPLM receives
the full data set R as an input, containing individual event information, and not the histogram
displayed here.

This choice of event class was informed both by the results of the most discrepant event
classes found for 2016 data (Fig. 3.1) [19], as well as the number of events per class. As it was
previously discussed, it is important to avoid double counting when generating toy samples out
of the reference sample. Thus, in order to create toy data out of the available Monte Carlo data
sets for 2017, the chosen event class must have a reasonable amount of statistics. In this case,
the class 1e+ 1µ+ pmiss

T has a total number of Monte Carlo simulated events of NR = 74 389,
summing to NR ∼ 6075.6 weighted events. This results in a factor of NR/NR ∼ 12, which is
compatible with the requirements that the NPLM authors deemed necessary [65, 66].
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Figure 5.9: SM processes contributing to the event class 1e+ 1µ+ pmiss
T , with a total number

of .weighted events of 6075.59.
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Cleaning the data set for Hit or Miss

To make sure the Hit or Miss procedure can be employed to generate toy samples, one must
first remove negative weights. The number of negatively weighted events in this class is 11 042,
corresponding to ∼ 14.8% of the total generated events. Moreover, to improve the efficiency of
theHit or Miss, a maximumweight was set atwmax = 0.7, which removed a further 40 events of
the data set. Lastly, since no events with high values of the summed transverse momentum were
observed in the 2016 analysis for this event class [19], a maximum value was also set for this
kinematic variable, corresponding to x = 1350 GeV. This resulted 1 797 events being further
removed from the Monte Carlo simulated reference sample. All in all, the combined number of
removed events was 12 879 which accounts for ∼ 17.3% of total generated events, and 58.3%
of the total weighted events. This information is summarized in Table 3. Note that, after the
removal of these events, a weight re-scaling is applied, such that the total number of weighted
events remains NR = 6075.6.

Nr. of
total events

Nr. of events
with w<0

Nr. of events
with w>0.7

Nr. of events
with x>1350

Nr. of events
removed fromR

unweighted 74 389.0 11 042.0 40.0 1 797.0 12 879.0
weighted 6 075.6 −112.4 3 654.2 0.9 3 542.8

Table 3: Summary of the data set clean up parameters, together with the unweighted and
weighted number of removed events.

5.2.2 Toy Samples

Similarly to the procedure for the simple case study in Section 5.1, 1 000 toy samples, labeled
by DR, are first generated following the reference hypothesis, i.e. SM expectation. These toy
samples are used to tune the hyper-parameters of the network, which is discussed in the next
subsection. These toy samples were generated via the Hit or Miss procedure applied to the
cleaned reference data set, discussed above. A factor of wf = 0.9 was chosen such that an event
with weight equal to wmax = 0.7 has a wmax/wf ∼ 0.78 probability of being selected as a toy
event. Although this set up showed a good Hit or Miss efficiency, it was still necessary to loop
twice over the reference data set to build a toy sample with a number of eventsND, whereND is
thrown from a Poisson distribution with meanNR ∼ 6076. This does not constitute a problem,
as the probability to select the same event twice is not significant.

Similarly, 1 000 toy samples, labeled now by DS , were generated according to one of three
alternative hypothesis. For each hypothesis, the construction of the toy samples was also done
through the Hit or Miss method, with the added step of including the desired signal events. The
three considered hypothesis are described below:

• The first hypothesis was to vary the cross section of tt̄ events, withMtt̄ > 700 GeV (see
Table 1), by a scale factor of 0.5, 0.8, 1.2 or 1.5. This choice was made in order to test
whether or not NPLM can detect changes applied to a specific regime within a SM process
group. Two examples of toy samples are shown in Fig 5.10, namely for a cross section
variation by a factor of 1.2 (top) and 1.5 (bottom), which resulted in a number of weighted
events of 6199.79 and 6386.08, respectively.
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• The second hypothesis was to vary the cross section of Higgs processes by a scale factor
of 2, 5 or 10. This values were chosen due to the low count of Higgs related events in
this class. Moreover, Higgs processes were also removed completely for an additional
sensitivity test. One of the toy samples containing no Higgs processes is shown at the top
of Fig 5.11, resulting in a number of weighted events equal to 6073.2. In the same figure,
at the bottom, is shown a toy sample where the Higgs processes have their cross section
scaled by a factor of 10, resulting in a total number of weighted events of 6097.13.

• Lastly, the third hypothesis was to vary the cross section of the sub-leading Multi-Boson
processes by a scale factor of 0.8, 0.9, 0.95, 0.98, 1.02, 1.05, 1.1 or 1.2. Fig 5.12 shows
two toy samples with the cross section of Multi-Boson processes scaled by a factor of
1.05 (top) and 1.2 (bottom), resulting in a total number of weighted events of 6097.73 and
6164.16, respectively.

The scale parameters chosen above were motivated by the number of events in the specific
process group. For instance, for Higgs events, which account for 2.39 weighted events in the
reference sample, it is expected that varying the cross section by values lower than 1 will not
create a significant enough signal to be searched by NPLM.

Moreover, note that, in most plots mentioned above, it is visually hard to see the difference
between the background prediction and the toy data points. The difference is most easily
noticeable by looking directly at the event counts in brackets. This provides a good sensitivity
test for the NPLM algorithm, by testing the level of small changes in the number of events that
NPLM could be able to detect.
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Figure 5.10: The cross section of selected tt̄ processes is varied for the class 1e+ 1µ+ pmiss
T .

(top) The pseudo-data is generated according to the MC prediction, with the cross-section of
the tt̄ processes increased by 20%. This results in a number of weighted events of 6199.79 as
opposed to the 6075.59 predicted MC events for this event class. (bottom) The pseudo-data is
generated according to the MC prediction, with the cross-section of the tt̄ processes increased
by 50%. This results in a number of weighted events of 6386.08.

64



5.2. Results on MUSiC Data Sets

100 200 300 400 500 600 700 800 900 1000 1100
SumPt

2−10

1−10
1

10

210

310

410

510

610

710

810

E
ve

nt
 C

ou
nt

s 
/ 2

0 
G

eV MC without Higgs (6073.2)

MC (6075.59)

 (4269.55)tt

Single-Top (1168.86)

Multi-Boson (531.37)

W-Jets (90.96)

Drell-Yan (12.47)

Higgs (2.39)

Private work
(CMS simulation)

+METµ1e+1  (13 TeV)-141.48 fb

100 200 300 400 500 600 700 800 900 1000 1100
SumPt

2−10

1−10
1

10

210

310

410

510

610

710

810

E
ve

nt
 C

ou
nt

s 
/ 2

0 
G

eV

MC w/ 10xHiggs (6097.13)

MC (6075.59)

 (4269.55)tt

Single-Top (1168.86)

Multi-Boson (531.37)

W-Jets (90.96)

Drell-Yan (12.47)

Higgs (2.39)

Private work
(CMS simulation)

+METµ1e+1  (13 TeV)-141.48 fb

Figure 5.11: The cross section of Higgs processes is varied for the class 1e+ 1µ+ pmiss
T . (top)

The pseudo-data is generated according to the MC prediction but it does not include Higgs
processes. This results in a number of weighted events of 6073.2 as opposed to the 6075.59
predicted MC events for this event class. (bottom) The pseudo-data is generated according to
the MC prediction, with the cross-section of Higgs processes increased 10 times. This results
in a number of weighted events of 6097.13.
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Figure 5.12: The cross section of selected Multi-Boson processes is varied for the class
1e+ 1µ+ pmiss

T . (top) The pseudo-data is generated according to the MC prediction, with the
cross-section of the Multi-Boson processes increased by 5%. This results in a number of
weighted events of 6097.73 as opposed to the 6075.59 predicted MC events for this event class.
(bottom) The pseudo-data is generated according to the MC prediction, with the cross-section
of the Multi-Boson processes increased by 20%. This results in a number of weighted events of
6164.16.
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5.2.3 Sensitivity Studies

The hyper-parameter optimization strategy is first presented. This step corresponds to the
blue workflow in Fig. 4.6, where the toy samples DR are used as an input to the network,
together with the reference sampleR.

• Architecture, Learning Rate and Training Rounds
For the MUSiC implementation, the architecture a⃗ = (1, 4, 1) was also chosen as in
the case study, considering that the data sets have somewhat similar complexities. The
learning rate was set to 10−3 and the number of training rounds was set to 300 000. Other
architectures were not studied in detail, as the authors did not see significant improvements
in their original paper [65].

• Weight Clipping Parameter
Theweight clippingswc ∈ {1, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 100}were tested for an archi-
tecture a⃗ = (1, 4, 1). Due to limited computational and time resources, a smaller number
of toy samples were initially used, namely 50 and 100, to test all weight clipping values.
Fig. 5.13 shows the empirical distribution of the test statistic t, in light blue, for the weight
clipping parameters wc ∈ {1, 10, 50, 100}, as well as the percentile values for t during
training. From the empirical distributions and the percentile plots, it can be observed that
the optimum weight clipping value will reside around wc = 10, which results in a better
approximation of χ2(13) by the test statistic distribution. Thus, to fine tune the weight
clipping parameter even more, 500 toy samples were used to test the three weight clipping
parameterswc ∈ {8, 9, 10}. The agreement between the resulting test statistic distribution
t and the χ2(13) expected behaviour was quantified by the Kolmogorov–Smirnov test, the
results of which can be found in Table 4.
A final weight clipping of wc = 9 was selected, which resulted in a p-value of ∼ 10−4

and 0.0002795, at 500 and 1 000 toy samples, respectively. Thus, a wc = 9 was used
throughout the rest of this section. Fig. 5.14 shows the empirical distribution of the test
statistic t compared to the χ2

13 asymptotic limit, when 1 000 toy samples were used. The
evolution of the t percentiles during training is also shown, together with the expected χ2

13

percentiles. Note that, as discussed in the case study analysis, even though the p-value
for this weight clipping is not particularly large, it might still result in enough statistical
power of the network to distinguish between an alternative and a reference hypothesis.
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Figure 5.13: Empirical distribution of the test statistic t for different weight clipping
parameters. The expected χ2

13 asymptotic limit is also shown (top). Corresponding evolution
of the t percentiles during training, compared to the expected χ2

13 percentiles (bottom). For
each weight clipping value, 100 toy experiments were performed.
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Figure 5.14: (left) Empirical distribution of the test statistic t for weight clipping parameter
wc = 9, with the expected χ2

13 asymptotic limit show as a dark blue line. (right) Corresponding
evolution of the t percentiles during training, compared to the expected χ2

13 percentiles. For
training 1 000 toy samples were used.

Table 4: Results of the KS test for different weight clipping parameters for the architecture
(1, 4, 1). The training process lasted for 300 000 epochs, and used a varying input number of
toy data sets. A weight clipping parameter of wc = 9 was found to be the most suitable,
resulting in a KS test p-value of ∼ 10−4 and ∼ 0.0002795 when, respectively, 500 and 1 000
toy samples are used.

Weight
Clipping

50 toys
KS p-value ⟨t̄⟩ − 13

100 toys
KS p-value ⟨t̄⟩ − 13

500 toys
KS p-value ⟨t̄⟩ − 13

1 < 10−29 − 9.19± 0.75 < 10−42 − 8.82± 0.51
5 < 10−3 − 3.29± 0.89 < 10−6 − 3.14± 0.69
6 ∼ 10−3 − 1.62± 1.02 < 10−4 − 2.83± 0.74
7 0.02 − 3.01± 1.04 < 10−3 − 3.05± 0.69
8 0.08 − 1.90± 1.31 0.12 − 1.76± 0.85 < 10−4 − 1.48± 0.36
9 0.27 0.13± 1.06 0.08 0.01± 0.83 ∼ 10−4 − 0.23± 0.37
10 0.25 0.52± 1.28 0.35 − 1.53± 0.81 < 10−4 0.77± 0.37
15 < 10−3 3.49± 1.36 < 10−6 3.19± 0.89
20 0.04 0.36± 1.22 < 10−3 0.56± 0.85
30 < 10−7 6.17± 1.43 < 10−10 4.73± 1.07
50 < 10−9 5.94± 1.38 < 10−19 6.64± 1.02
100 < 10−6 5.73± 1.80 < 10−15 5.62± 1.16
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Chapter 5. NPLM Results

Since all non-trainable hyper-parameters have been set, the next step is to implement the
equivalent to the green workflow in Fig. 4.6, i.e. testing the alternative hypothesis. The inputs
of the network are now the reference sample R and the toy samples DS , where S can stand for
either the variation of tt̄ processes, Higgs processes or Multi-Boson processes. The statistical
power test was, once again, used to quantify the efficiency of the network to identify whether a
toy sample was generated according to the reference hypothesis or not. For all three hypothesis
testes, the results of the power test can be found in Table 5 and the corresponding test statistic
distributions are shown in Fig. 5.15-5.17. Note that the critical test statistic tc was calculated
such that only 5% of the t values found by the network, when the toy samples follow the reference
hypothesis, are higher than tc. This resulted in a value of tc = 24.34. The observations and
conclusions for the sensitivity tests for all three alternative hypothesis are presented below.

Varying the cross section of tt̄ processes

As it can be observed from Fig. 5.15, the network is only able to distinguish toy samples
following SM expectation to those following the alternative hypothesis when the cross section of
tt̄ processes is scaled up, or down, by 0.5. When the scale factor is reduced to±0.2, the network
cannot distinguish the toys samples anymore, since the statistical power is not sufficiently high.
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Figure 5.15: Statistical power test for different values of the cross section of tt̄ processes. The
scale factor applied is shown in each title, together with the calculated statistical power. The
blue histogram results from the training of the network when the toy samplesDR are compared
to the SM reference sampleR. The green histogram, instead, regards the results from
comparing the toy signal samples DS toR.
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5.2. Results on MUSiC Data Sets

Varying the cross section of Higgs processes

Fig. 5.16 shows that the network can only distinguish toy samples with a different SM
expectation for Higgs events, when the cross section of such events is increased by a factor of
10. This result is not surprising, since Higgs processes only contribute 2.39 weighted events out
of a total of 6075.59 weighted events in the reference hypothesis. Moreover, when Higgs events
are completely removed (top right), the network is also unable to distinguish the reference from
the alternative hypothesis.

Figure 5.16: Statistical power test for different values of the cross section of Higgs processes.
The scale factor applied is shown in each title, together with the calculated statistical power.
The blue histogram results from the training of the network when the toy samples DS are
compared to the SM reference sampleR. The green histogram, instead, regards the results
from comparing the toy signal samples DS toR.

Varying the cross section of Multi-Boson processes

As Fig. 5.17 shows in the bottom right and upper left plots, the cross section of Multi-Boson
processes must be scaled up, or down, by at least 10% for the network to gain a significant
statistical power, which was observed to be equal to 0.98 in both scenarios.

Moreover, when the cross section is varied by 5% (top right and bottom left plots), the
network loses it capacity to identify the alternative hypothesis. In this case, the statistical power
decreased by more than half when compared to the 10% scaling.
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Chapter 5. NPLM Results

Lastly, for a small variation of 2%, the toy signal samples are effectively indistinguishable
from toy samples following the reference hypothesis, as it is shown by the overlap between the
histograms in the middle left and middle right plots.
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Figure 5.17: Statistical power test for different values of the cross section of Multi-Boson
processes. The scale factor applied is shown in each title, together with the calculated
statistical power. The blue histogram results from the training of the network when the toy
samples DR are compared to the SM reference sampleR. The green histogram, instead,
regards the results from comparing the toy signal samples DS toR.
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5.2. Results on MUSiC Data Sets

Further Remarks

A summary of the statistical power of the network for the different alternative hypothesis
can be found in Table 5. Note that, for tt̄ and Multi-Boson sensitivity tests, there is a degree
of partial symmetry between the power resulting from toy signal samples which were scaled up
or down by the same scale factor. This is not surprising, but is a good consistency check that
NPLM is sensitive to both the excess or absence of events.

Also interesting to mention is, when the cross section of Higgs processes is scaled up by a
factor of 10 (upper plot of Fig. 5.11) or when the cross section of Multi-Boson processes are
scaled up by a factor of 0.05 (upper plot of Fig. 5.12), the expected number of toy data events
is nearly identical at 6097.13 and 6097.73, respectively. However, even with similar number of
weighted events, the network shows the corresponding statistical powers of 1.0 and 0.40. This
can be explained by the fact that Higgs events have a summed transverse momentum localized
at values lower than ∼ 500 GeV, while Multi-Boson events can be found throughout the whole
kinematic distribution.

Table 5: Statistical power test results for different the Higgs, tt̄ and Multi-Boson processes,
with a scaled cross-section.

tt̄
σ scale factor 0.5 0.8 1.2 1.5
Statistical Power 0.99 0.34 0.12 0.89

Higgs
σ scale factor 0.0 2.0 5.0 10.0
Statistical Power 0.11 0.06 0.66 1.0

Multi-Boson
σ scale factor 0.8 0.9 0.95 0.98 1.02 1.05 1.1 1.2
Statistical Power 1.00 0.98 0.32 0.07 0.11 0.40 0.98 1.00
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Chapter 6
Conclusions & Outlooks

MUSiC analysis provide a complementary strategy to dedicated searches, by looking for
new physics phenomena without being bound to a particular theory model. The MUSiC
algorithm analysis hundreds of final states, by assigning each event to several event classes,
namely, to a single exclusive event class, and to several inclusive and jet-inclusive event classes.
The kinematic variables analysed are the invariant mass, the summed transverse momentum
and the missing transverse momentum. Up until the point of writing, MUSiC analysis have
employed a region of interest scanning algorithm to search for discrepancies between Monte
Carlo SM simulation and CMSmeasured data, based on binned histograms. After reviewing the
advantages of neural networks as function approximants over the binned histogram method, this
thesis introduces the first ever implementation of machine learning methods to MUSiC analysis.
It was proposed that the current scanning algorithm be replaced by the recently published New
Physics Learning Machine (NPLM) algorithm [65, 66]. Moreover, the work on this thesis is the
second ever application of NPLM to any CMS analysis.

The NPLM algorithm was first tested on a simple case study to validate its suitability to
weighed data sets. Different weight distributions were tested, including varying percentages of
negatively weighted events. This preliminary check showed that the performance of NPLM is
not affected by the increased complexity of the weight distribution. NPLM was then employed
to the event class 1+1µ+pmiss

T for 2017 data. This choice was based on 2016 results, as well as
the number of total events in the class. Three alternative hypothesis were tested, namely, varying
the cross section of tt̄ processes withMtt̄ > 700 GeV, of Higgs processes and of Multi-Boson
processes. NPLM was able to detect this variations when the scale factors applied were ±0.5,
10 and ±0.1, respectively. The corresponding statistical powers were 0.99/0.89 for tt̄, 1.0 for
the Higgs and 0.98 for the Multi-Boson.

Overall, it was concluded that NPLM is a robust algorithm for anomaly detection and shows
promising applications to MUSiC analysis. Note that, although this thesis did not include any
considerations of systematic uncertainties, NPLM is fully capable of this option. Thus, to fully
evaluate whether or not NPLM shows an higher sensitivity than the current MUSiC scanning
algorithm, it is suggested that further work be done in this domain. Moreover, it is suggested that
NPLM be employed to more challenging event classes, which might contain reduced statistics.
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Abbreviations

ALICE A Large Ion Collider Experiment
ANNs Artificial Neural Networks
ATLAS A Toroidal LHC Apparatus

BSM Beyond Standard Model

CERN European Organization for Nuclear Research
CMS Compact Muon Solenoid

ECAL Electromagnetic Calorimeter

FNN Feed-forward Neural Network

HCAL Hadron Calorimeter
HDF5 Hierarchical Data Format

LEP Large Electron-Positron Collider
LHC Large Hadron Collider
LHCb The Large Hadron Collider beauty Experiment
LINAC4 Linear Accelerator 4

MC Monte Carlo
MUSiC Model Unspecific Search in CMS

NPLM New Physics Learning from a Machine

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFTs Quantum Field Theories

SM Standard Model of Particle Physics

WLCG Worldwide LHC Computing GRID
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Appendix A
Unit Convention

The natural units convention is used throughout this thesis, where the physical constants c
(speed of light), h̄ (reduced Planck constant) and ϵ0 (electric permittivity) take the value of
unity. Therefore, following units from the International System of Units units are modified to:

• [m] = GeV (mass);

• [t] = 1/GeV (time);

• [s] = 1/GeV (length).
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Appendix B
ROOT to HDF5 Conversion

1 import numpy as np
2 import h5py, glob, math, uproot, os, ROOT, argparse
3
4 data_labels = [’SingleMuon’, ’SingleElectron’, ’SinglePhoton’, ’DoubleMuon’,’DoubleEG’]
5
6 def Create_dataset(dsetName,datasetName ,dataName):
7 if len(dataName)!=0:
8 dsetName = f.create_dataset(datasetName , data=dataName,chunks=(len(dataName),),

maxshape=(None,))
9 return
10 else:
11 return
12
13 def Create_string_dataset(dsetName,datasetName ,dataName):
14 if len(dataName)!=0:
15 string_dt = h5py.special_dtype(vlen=str)
16 dsetName = f.create_dataset(datasetName , data=dataName,chunks=(len(dataName),),

maxshape=(None,), dtype=string_dt)
17 return
18 else:
19 return
20
21 def Append_to_dataset(dsetName,datasetName ,dataName):
22 if len(dataName)!=0:
23 dsetName = f[datasetName]
24 dsetName.resize((dsetName.shape[0]+len(dataName),))
25 new_shape = dsetName.shape[0]
26 entry_point = new_shape -len(dataName)
27 dsetName[-len(dataName):] = dataName
28 return
29 else:
30 return
31
32 def Read_Branches_from_classname(fileup,classname):
33 tree = fileup[classname]
34 branches = tree.arrays()
35 if branches[’SumPt’].shape[0]==0:
36 print(’Empty file!’)
37 else:
38 return branches
39
40 def Read_ListTree_from_file(fileup):
41
42 allClasses = fileup.keys()
43 nonClasses = ["ProcessName","EvCounts","TotalEvents","TotalEventsUnweighted"]
44 classtree = []
45
46 for i in range(len(allClasses)):
47 if any(j in allClasses[i] for j in nonClasses):
48 continue
49 else:
50 classtree.append(allClasses[i].replace(";1",""))
51 return classtree
52

78



53
54 if __name__ == ’__main__’:
55
56 parser = argparse.ArgumentParser()
57 parser.add_argument(’-in’,’--inputDir’, type=str, help="Directory where the process

folders are stored.", required=True)
58 parser.add_argument(’-out’,’--outputDir’, type=str, help="Directory to store the h5

files.", required=True)
59 args = parser.parse_args()
60
61 inputDir = args.inputDir
62 outputDir = args.outputDir
63
64 Lumi = 41480.
65
66 processDirList = [x[0] for x in os.walk(inputDir)]
67 processDir = []
68 select_folders = ["AnalysisOutput"]
69 temp_listdir1 = [ item for item in os.listdir(inputDir) if os.path.isdir(os.path.join(

inputDir ,item))]
70
71 processList = []
72
73 for i in temp_listdir1:
74 inputdir = os.path.join(inputDir,i)
75 for x in os.listdir(inputdir):
76 processList.append(x)
77
78 # Printing all process names, which are read from the folder names inside the input

directory
79 print "All process names are :"
80 print ’’
81 for i in processList:
82 print i
83
84 # Creating a list with the grid paths
85 for i in range(len(processDirList)):
86 if any(j in processDirList[i] for j in select_folders):
87 processDir.append(processDirList[i])
88 processDir = [x for x in processDir if "Event-lists" not in x]
89 else:
90 continue
91
92 dic_evCounts = {}
93 dic_tEv = {}
94 dic_tEvUnweighted = {}
95
96 # Looping over grid folders
97 for i in range(len(processDir)):
98
99 subdir = processDir[i]
100 processname = ’’
101 for j in range(len(processList)):
102 if processList[j] in subdir:
103 processname = processList[j]
104
105 # Checking if is a MC or data sample
106 label = 0
107 if any(i in subdir for i in data_labels):
108 label = 1
109 else:
110 label = 0
111 if len(glob.glob(subdir+"/ECP*")) == 0:
112 continue
113
114 # Opening the ROOT file
115 for fileROOT in glob.glob(’%s/ECP*’%(subdir)):
116
117 inFile = ROOT.TFile.Open(fileROOT,"READ")
118 processName = inFile.Get("ProcessName")
119 evCount = inFile.Get("EvCounts") # total number of

accepted and unaccepted events
120 totalEv = inFile.Get("TotalEvents") # sum of the total
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Appendix B. ROOT to HDF5 Conversion

weighted events
121 totalEvUnweighted = inFile.Get("TotalEventsUnweighted") # sum of the Monte Carlo

generator weights
122 inFile.Close()
123
124 pName = str(processName[0])
125 evCounts = evCount[0]
126 tEv = totalEv[0]
127 tEvUnweighted = totalEvUnweighted[0]
128
129 if dic_evCounts.has_key(pName)==False:
130 dic_evCounts[pName] = []
131 dic_tEv[pName] = []
132 dic_tEvUnweighted[pName] = []
133
134 dic_evCounts[pName].append(evCounts)
135 dic_tEv[pName].append(tEv)
136 dic_tEvUnweighted[pName].append(tEvUnweighted)
137
138 # Looping over event classes inside the ROOT file
139 with uproot.open(fileROOT) as fileup:
140 ListTree_classes = []
141 ListTree_classes = Read_ListTree_from_file(fileup)
142
143 ML_Classes = [’_2Ele_1bJet’, ’_1Ele_1Muon_1MET’, ’_1Ele_1Muon_1Jet’,’

_1Ele_1Muon_1Jet_1MET’]
144
145 for i in range(len(ListTree_classes)):
146 classname = ListTree_classes[i]
147 if classname not in ML_Classes:
148 continue
149
150 branches = []
151 branches = Read_Branches_from_classname(fileup,classname)
152
153 if branches is not None:
154 entries_SumPt = len(branches[’SumPt’])
155 else:
156 print(’! This file is empty. No entries appended to hdf5 file !’)
157 print(’’)
158
159 fileH5_Dir = outputDir+’H5’+classname+’.h5’
160
161 # Initializing the arrays to be stored inside the hdf5 file
162 SumPt = []
163 InvMass = []
164 MET = []
165 weights = []
166 PName = []
167
168 # Reading variables from branches to fill arrays
169 for i in range(entries_SumPt):
170 if branches is not None:
171 SumPt.append(branches[’SumPt’][i])
172 MET.append(branches[’MET’][i])
173 InvMass.append(branches[’InvMass’][i])
174 PName.append(pName)
175 weights.append(branches[’Weight’][i] * tEvUnweighted/tEv )
176
177 # Creating the hdf5 files
178 if os.path.exists(fileH5_Dir)==False:
179 with h5py.File(fileH5_Dir , ’w’) as f:
180 Create_dataset(’sumpt’,’SumPt’,SumPt)
181 Create_dataset(’invmass’,’InvMass’,InvMass)
182 Create_dataset(’met’,’MET’,MET)
183 Create_dataset(’Weights’,’weights’,weights)
184 Create_string_dataset(’processname’,’ProcessName’, PName)
185
186 fileH5_Dir = ’’
187 classname = ’’
188
189 else:
190 with h5py.File(fileH5_Dir , ’a’) as f:
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191 Append_to_dataset(’sumpt’,’SumPt’,SumPt)
192 Append_to_dataset(’invmass’, ’InvMass’,InvMass)
193 Append_to_dataset(’met’,’MET’,MET)
194 Append_to_dataset(’Weights’,’weights’,weights)
195 Append_to_dataset(’processname’,’ProcessName’,PName)
196
197 fileH5_Dir = ’’
198 classname = ’’
199
200 # Calculating the process-specific N_MC and updating the MC weights
201 if label == 0 :
202
203 for classname in ML_Classes:
204 outfile = ROOT.TFile(classname+’.root’, ’RECREATE’)
205 hist = ROOT.TH1D(’SumPt’+classname , ’SumPt’+classname , 10000,0,10000)
206
207 fileH5_Dir = outputDir+’H5’+classname+’.h5’
208
209 with h5py.File(fileH5_Dir , ’r+’) as f:
210 sumpt = f[’SumPt’]
211 weights1 = f[’weights’]
212 procName = f[’ProcessName’]
213 NewWeights = []
214 NewWeights_lastweight = []
215 outtxt = open(’processList_ML.txt’,’w’)
216 alreadyin = []
217
218 for entry in procName:
219 if entry not in alreadyin:
220 alreadyin.append(entry)
221
222 for i in range(len(sumpt)):
223
224 N_MC = sum(dic_tEvUnweighted[procName[i]])
225 NewWeights.append(weights1[i] * Lumi / N_MC)
226 hist.Fill(sumpt[i], weights1[i]* Lumi / N_MC)
227
228 Create_dataset(’newweights’,’NewWeights’,NewWeights)
229 hist.Write()
230
231 for process in alreadyin:
232 outtxt.write(process+’\n’)
233
234 outfile.Close()
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