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Abstract
A study of different model approaches for missing /ET searches in the mono-lepton channel

with a lepton plus /ET in the final state. In the first part of this analysis dark matter is
considered to be a Majorana fermion. It is found, that compared to the usual Dirac

fermion approach there is no difference regarding the kinematics but a difference of a factor
of two on the cross section in the Majorana case.

A short analysis of non integer coupling values for the mediators coupling to quarks shows,
that this provides no fundamental changes for the process’s kinematics.

Further, the interference, which is described by a parameter ξ, is analyzed. In contrast to
an EFT, where cases of unequal couplings to up and down type quarks have been

restricted, one finds a rather different behavior of the simplified model, when it comes to
gauge invariance and unitarity. It is found, that this difference of behavior opens the cases

ξ = −1, 0 for a simplified model within a certain range of validity.
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Chapter 1

Introduction

1.1 Dark Matter

Starting with the very first attempts on describing nature from a rather philosophical point
of view as it was done in the ancient Greece, physics has made a huge development. This
development does not only consist of an enhancement and clarification of the insights; it also
contains changes regarding the epistemology behind this science.
Modern physics like we know it from our days has its roots in the early 20th century. In this
era theoretical physics was increasing in popularity, yielding a generation of very successful
physicists - physicists like Einstein, Dirac or Heisenberg, who are known as founders of
modern physics. The result of this persistent development is the empiric science we know
from our days. Based on a symbiotic relation between the theory and experiment, physics
of our time work in way where falsifiable theories make predictions, which have to be proven
by the experiment. The most famous example for a successful application of this interplay
of theory and experiment is the discovery of the Higgs boson. This particle was predicted
by the theoretical physicists Peter Higgs, Robert Brout and Francois Englert in
1964 and was detected about 50 years later at the LHC experiment in 2012.
But this is not the only way how physics is performed nowadays. The four fundamental
interactions we know today, namely the gravitational, electromagnetic, weak nuclear and
the strong nuclear interactions, are described correctly by the standard model (SM) and the
general theory of relativity (GTR), where the last mentioned describes gravitation. Besides
problems within these working theories, like the lack of an explanation for the existence of
three particle generations (SM) or the problems regarding a quantum theorie of gravitation
(GTR), there are also some observations, which can not be explained by using these theories.
Here, physicists are encouraged to work out new theoretical predictions and to perform new
or adjust existing experiments for an appropriate analysis of this new physics.
One of these observations was a measurement of the rotational velocity of stars with regard to
their distance from the center of galaxy (see fig.1.1). Besides assuming a varying gravitational
constant in order to explain this result, one can introduce a new type of matter, called dark
matter (DM). This sort of new matter is going to be the main subject of this bachelor thesis.

1.2 Dark Matter Candidates and Searches for Dark

Matter

Although physicists have some hard evidence for the existence of dark matter, there is no real
general consent regarding the nature of this new type of matter. Caused by this divergency
of opinions there are a lot of possible candidates today [17]. The most general distinction one
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Example for such a measurement for the galaxy NGC 3198 (adapted from [33])

can make about this candidates is whether they are considered as baryonic or non-baryonic
particles. Baryonic dark matter is rather considered in cosmological approaches. Most
famous candidates of this sort are massive astrophysical compact halo objects (MACHOs).
Non-baryonic candidates are considered to be new particles which do not couple to the
photon and thus have no electrical charge. The most common framework in this category is
the so called WIMP - a weakly interacting massive particle. This attempt supposes a particle,
which is only involved in gravitational and weak interaction and is often complemented by
the assumption to be a Dirac or Majorana fermion [17].
Besides different approaches regarding the candidates for DM there are also different ways
of detecting or rather searching for the respective non-baryonic candidates. In general there
are three ways of searching for dark matter (see also fig.1.2):

a) Direct detection:
In direct detection experiments physicists measure an energy emission, like for example
the emission of a phonon in a solid, which is caused by the recoil of dark matter from
standard model matter. Examples for such a search are the experiments LUX and
XENON100 [17].

b) Indirect detection:
Experiments which try to measure the production of standard model matter caused
by the annihilation of a DM pair are called indirect detection experiments. Here we
can mention Ams and IceCube as known experiments [17].

c) Production at colliders:
Another way to search is to produce a DM pair at collider experiments like for example
at the LHC’s CMS experiment. Here one should be able to see a signal in the so called
transverse momentum spectrum pT . Since this is the kind of DM searches, which
this thesis is concerning with, there will be a more detailed explanation of this in the
following section [17].

In this thesis a simplified model, which has a WIMP approach implementation, will be used.
This model describes the production of DM (labled as χ) with two quarks in the inital state
and a lepton plus missing transverse energy ( /ET ) in the final state. The DM pair is pro-
duced by the decay of a new vector boson (labled as Vmed) and the lepton plus a neutrino
are produced by a decaying W boson (see fig.1.3). In this model DM is either assumed to
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Figure 1.2: Three ways of searching (adapted from [30])

be a Majorana or a Dirac fermion. This thesis does a study on generator level for both
approaches. The theoretical differences between the two spinors are also pointed out and
discussed.
In both models unequal coupling of the new mediator to either up or down type quarks is
considered as an interference. A parameter, which describes this interference, will also be
introduced and there will be a discussion of its validity.

Figure 1.3: Feynman diagram for the mono-lepton channel
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Chapter 2

Theoretical Framework

2.1 The Standard Model

Like mentioned in the introduction, the standard model of particle physics is able to explain
and describe three out of four known fundamental physical interactions; the electromagnetic,
weak and strong interaction. This theory was acquired in the second half of the 20th century
and can make precise predictions even when it comes to interactions on a subatomic scale
and thus is considered as one of the most successful theories. Although many of its predic-
tions have been proven by experiments, there are still aspects, where a description within the
standard model or finding an explanation based on it fails. The existence of three fermion
generations was already mentioned as one of these aspects. Another example is the lack of
an explanation for the difference in the energy scale of weak and gravitational interaction.
The standard model of particle physics is a quantum field theory. This means, that its fun-
damental objects are quantized fields appending to respective particles. Since it is symmetric
under several gauge transformations, the standard model is also a gauge theory. It satisfies
the laws of special relativity, what makes it a relativistic quantum field theory.
The particles of the standard model can be divided in two categories, namely fermions and
bosons. Fermions are particles with half-integer spin. Within fermions the theory makes
a distinction regarding leptons - like the electron and its neutrino - and quarks - like the
up and down quark. Furthermore there are three generations of fermions, which are only
differing in their mass. Matter is composed of this kind of particles.
Particles with an integer spin are called bosons. In the standard model these are those parti-
cles, which mediate the known forces. For each known force there exists a respective boson.
The strong force is mediated by the gluon and is only participated by quarks. This kind of
interaction is described by a type of charge - the so called color. The electromagnetic force
is mediated by the photon, which couples to electrical charged leptons or quarks. Z bosons
as well as W± bosons are mediating the weak force, which is participated by every fermion.
Besides these five bosons there is also the Higgs boson. This particle is the excitation of a
so called higgs field, which gives the SM particles their rest mass. Fig. 2.1 shows a table of
the described particles [22,23].

2.2 Detecting Dark Matter with the CMS

Some brief information on the Large Hadron Collider’s (LHC) Compact Muon Solenoid
(CMS) detector will be given in this section, as this thesis is related to a possible detection
of DM at this detector. Furthermore, important quantities that are used in the analysis will

11
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Figure 2.1: A compact table describing the particles of the standard model [34]

be introduced and in some cases theoretically derived.
The CMS detector was build within the scope of the LHC experiment [31]. Beside ATLAS
it is rated as one of the two biggest detectors of the LHC and was build as a general-purpose
detector [31]. Therefore it is used for several searches, including the search for the Higgs
boson and searches for evidence regarding Supersymmetry (SUSY) [17,25,31]. The technical
structure of this detector is reflecting its purpose of use. In order to be able to measure
several particles, it has a layer structure, where every part of this layer is relevant for the
measurement of a respective type of particle. From the core to the outside the layer structure
is as follows [31] :

• Silicon Trackers:
This tracker is supposed to register and measure the particle momenta by recording
the particles’ path. It is entirely made of silicon what provides a reasonable radiation
hardness, since this can be a problem at the center of the detector, due to the high
particle density. The inner part is constructed of pixel sensors, due to their high
granularity and the outer part is constructed from silicon strip sensors.

• Electromagnetic Calorimeter (ECAL):
The function of this layer is to measure the energy of particles forming an electromag-
netic shower, such as photons and electrons. It is comprised out of a lead tungstate
(PbWO4). The electromagnetic shower is connected to the energy of the particles.

• Hadronic Calorimeter (HCAL):
With this sampling calorimeter hadronic particles like neutrons and protons are mea-
sured. It is made out of bass, which is due to the density of this material. Furthermore
it has a plastic scintillator coating in form of tiles.

• The magnet:
The CMS has a solenoid magnet, which can produce a field strength of up to 3,8 T. It
is placed in the very center of the detector to provide this magnet field for the other
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layers. The magnet field is of particular importance, since it bends electrically charged
particles depending on their momenta.

• Muon chambers:
Muons have a mass 200 times larger than electrons. They pass the calorimeters and
the magnet and one therefore needs another detector in order to measure them. In
the CMS this is solved by gaseous chambers. In the barrel region the trajectory of
the muons is measured by drift tubes and in the end cap by so called cathode strip
chambers. Within both regions there are resistive plate chambers, which are used as a
muon trigger.

A more detailed presentation of the layer structure of the CMS experiment can be seen in
fig. 2.2, while fig. 2.3 shows the typical trajectory for several particles in the CMS.
A very important kinematic quantity for measurements with the CMS is the so called trans-
verse mass MT . A short derivation of this quantity for the example of a W+ boson decaying
into a µ+ and a νµ (see fig. 2.4) will be done. In this derivation the beam direction is the
z-axis and natural units will be used.

Figure 2.2: Layer structure of the CMS [31]

Let us start with the invariant mass of the W boson which is defined as

mW
2 = EW

2 − ~pW
2. (2.2.1)
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By using momentum conservation one can derive that

mW
2 = (Eµ + Eν)

2 − (~pµ,T + ~pν,T )2 − (pµ,z + pν,z)
2 ,

with ~p =

pxpy
pz

 =

(
~pT
pz

)
,

(2.2.2)

where the momentum along the beam axis of the neutrino (denoted by ”pν,z”) is unknown,
since it is not measured by the detector. However, the transverse momentum (denoted
by ”pν,T”) can be calculated back by using that the total transverse momentum has to be
conserved, too. For the missing transverse momentum ~/pT one then gets

~/pT = −Σ~p observed
T , (2.2.3)

whereby this quantity can be identified as ~pν,T in this case.

Figure 2.3: Transverse slice of the CMS detector and typical particle trajectories [32]

One can now ignore the longitudinal motion of the lepton system, since the neutrino’s lon-
gitudinal momentum is unknown, and rather use only transverse variables. The transverse
mass is then defined as

MT
2 = (Eµ,T + /ET )2 − (~pµ,T +~/pT )2 , (2.2.4)

with E2
T = m2 + ~p 2

T as the transverse energy of each particle. By plugging this relation into
the transverse mass one finally finds that

MT
2 = (Eµ,T + /ET )2 − (~pµ,T +~/pT )2

= E2
µ,T + /ET

2
+ 2 · /ET · Eµ,T

− |pµ,T |2 − |/pT |
2 − 2 · ~pµ,T ·~/pT

= m2
µ +m2

ν + 2 · (/ET · Eµ,T − ~pµ,T ·~/pT ) .

(2.2.5)
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The mass of the W boson puts a cap on this quantity. If the lepton and neutrino are
produced with an angle of 180◦ in between them (back to back), then there is no longitudinal
momentum at all (~pµ,z = −~pν,z). For this case we get that MT = mW and generally one
finds that MT ≤ mW .
For the case of a much greater mass of the mother particle (the W boson in our frame)
than the daughter masses (m2

W − m2
µ − m2

ν ≈ m2
W ) one can make the approximation that

mµ = mν = 0 and the expression for ET simplifies to ET = |~pT |. Using this leads to

MT =
√

2 · |~pµ,T | · |~/pT |(1− cosφ) , (2.2.6)

where φ is the angle between ~pµ,T and ~/pT [19, 20].
For a general decay, where particle 1 decays into a visible particle 2 and a non-visible particle
3 we get that

MT =
√

2 · |~pT | · |~/pT |(1− cosφ) , (2.2.7)

with φ being the angle between the visible and non-visible particle [19, 20].

Figure 2.4: Feynman diagram for a W+ decay

Beside the transverse mass there are two other quantities which will be used in this analysis.
One of them is the azimutal angle of the transverse plane through the detector. Since the
detector is build cylindrical one can put the z-axis onto the beam and use cylindrical coor-
dinates. The angle φ would then equal the angle φ one knows from cylindrical coordinates.
The physics in the LHC can be considered φ-invariant, since there is a general cylindrical
symmetry. For single events the φ distribution is very important.
Another important geometric quantity is the so called pseudorapidity η. This quantity is
defined as

η = −ln
[
tan

(
θ

2

)]
, (2.2.8)

with θ being the usual polar angle one knows from spherical coordinates. It can be measured
through the momentum of the detected particles since it also follows the equation

η =
1

2
ln

(
|~p|+ pL
|~p| − pL

)
. (2.2.9)

With this two quantities one can access the geometry of the events and read out the polar
as well as the azimutal distribution of them.
Since this distributions and the transverse mass are fundamental quantities reflecting the
kinematics behind the treated process they will be used to quantifiy possible differences
between the analyzed models.
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2.3 Simplified Models for Dark Matter

2.3.1 Simplified Models in General

Simplified Models are less incomplete models than effective field theories (EFTs), since they
have a mediator implementation (see fig.2.5) [1–6]. EFTs on the other hand are models,
where non-renormalizable operators describe the process of interest. For the case of searches
for DM in missing energy signatures one has such operators coupling the standard model
partons to a field that represents the DM WIMP’s. An example for such an operator would
be

LEFT =
1

Λ2
(q̄q)(χ̄χ) , (2.3.1)

with Λ being the interaction scale of the process [1]. Operators like this can describe many
important processes like the scattering of a WIMP on quarks or an annihilation process,
where a pair of WIMP produces two quarks. They can also describe our process of interest,
namely the production of a WIMP pair through the annihilation of a pair of quarks. An
analysis of such an EFT model for mono-lepton searches was done in [8, 15].

Figure 2.5: Illustration of different model approaches [4]

In an EFT one considers interactions of a model with a mediator at an energy scale much
smaller then the mass of this mediator Mmed. For such interactions one can ignore the
intermediate state and contract two vertices into one. Then perturbation theory can be
applied in order to calculate the physical processes, since their energy can be developed in
a power series like En/Λn [1]. Just this is the main point where simplified models start to
be anticipated. This approach is only consistent, if one describes processes with an energy
smaller than the interaction scale Λ. To justify the usage of simplified models it will be
demonstrated how strict the constraints on an EFT are, if it is applied to an s-channel
process like shown in figure 2.6.
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Figure 2.6: Annihilation of fermions producing a DM pair

The EFT approach is valid for energies, for which the mediator can not be produced produced
and one can therefore neglect the respective intermediate state and contract two vertices [1,6].
Mathematically this gives us the following equation:

Q < Mmed. (2.3.2)

For a simple calculation one can make the assumption that the partons within a proton carry
always a third of the proton systems center of mass energy

√
s. Although a proper description

needs parton distribution functions (pdfs) to be considered, here they will be neglected for
the course of simplicity. Within this framework one would expect the transferred momentum
to be

Q =

√
s

3
. (2.3.3)

For s-channel kinematics one additionally finds the relation [1], that

Q > 2mχ. (2.3.4)

One can now use equations 2.3.2-2.3.4 to derive bounds on the mediator and DM masses:

2mχ <

√
s

3
< Mmed. (2.3.5)

The center-of-mass energy
√
s of the LHC’s current run and therefore also of this analysis’

simulations is 13 TeV. At such high energies it is earnestly questionable, if the EFT should
still be used for analyses, since this makes very strong restrictions on the mediator mass:

2mχ < 4333 GeV < Mmed. (2.3.6)

Considering the upper mentioned pdfs does even strengthen this lower bound of the mediator
mass, since the pdfs give several partons a probability to carry even a greater fraction of the
center of mass energy. At this point the simplified model proofs itself as a more appropriate
framework, since one does not need to worry about such bounds [1–6]. The fact that it
has implemented a mediator particle solves this particular problem and opens possibilities
for further analyses. Nevertheless, one has to be careful with simplified models as well. If
one considers sufficiently small mediator masses, the mediator can be produced on-shell. In
such a case it would be necessary to also consider processes other than the production of a
dark matter pair, since the mediator could and necessarily will decay into quarks [1]. The
interesting point here is each branching ratio, with which the mediator decays either into
dark matter or into quarks. Since this branching ratio would just scale the cross section for
the mono lepton channel [26] and this analysis consists out of a shape analysis only, this can
be neglected. Summarized one has to register, that with respect to an EFT more general
assumptions have to be made for a simplified model, since it has a mediator implementation.
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2.3.2 The Models Used in this Analysis

The models that will be used in this analysis can be considered as one model with two
versions: one with a Dirac spinor implementation and one where the DM particle is described
by a Majorana spinor. Due to this they will be referred to in the following as just one model.
This simplified model has a vector mediator which does only couple to dark matter and
quarks through an axial vector interaction. An axial vector is defined as follows [16]

Aµ(x) = ψ̄(x)γµγ5ψ(x) . (2.3.7)

Its most important properties are its antisymmetric behavior under parity transformations
and charge conjugation (Aµ(x)→ A′µ(x′) = −Aµ) [16]. The latter one will play an important
role in the analysis of the Majorana model. Interactions which are described by an axial
vector are always spin dependent [1, 5, 6, 16].
The choice to just use an axial vector coupling is not arbitrary. This was decided based on
the results of [15]. Here it was found, that there is no significant difference between a vector
coupling or an axial vector coupling. For reasons of limiting and a better significance it was
decided to use only the axial vector coupling models.
Like mentioned above, the mediator of this model is a vector boson. This means that it is a
spin 1 particle. It furthermore is a color singulet and therefore has no color. The Lagrangian
term for the dark matter process of such a model is

L ⊃ 1

2
M2

medV
µVµ − gχVµχ̄γµγ5χ−

∑
u=q,d

gqVµq̄γ
µγ5q , (2.3.8)

where u and d stands for either up or down type quarks [1, 5, 6] . The sum over q plays an
important role for the interference parameter ξ, which will be explained further in the next
paragraph.
Other quantities in this operator are V µ, which describes the mediator, and gχ, the coupling
constant for how it couples to DM. In this analysis it will not be used as a parameter and
set to a constant value through all simulations1. The mediator is assumed to decay only into
a pair of DM.2

Further parameters of this model are the mediator mass Mmed, the DM mass mχ and the
decay width of the mediator Γmed. The DM particle is assumed not to decay into other
products. For the width of the mediator Γmed the so called narrow width approach will be
followed, with

Γmed =
Mmed

8π
. (2.3.9)

In this approach the mediator is assumed to couple only to one quark and color [27]. This
choice is justified, since this analysis investigates the shape of MT spectra and it was found
in an earlier work [26], that changes in the width of the mediator do not cause changes in
the shape, but scale the spectrum. Finally this reduces the number of parameters for this
analysis to three: the masses Mmed and mχ as well as the coupling parameter ξ.

2.3.3 The Parameter ξ

It was mentioned above that there is a sum over the mediator either coupling to up or down
type quarks in the Lagrangian. With choices of an unequal (equal) sign for the mediator’s
coupling to up and down type quarks one can produce cases of constructive (destructive)
interference (see fig.2.7) [8, 15]. This interference is parameterized by ξ, which is defined as

1This parameter is set to gχ = 1.
2Even for masses small enough to produce the mediator on-shell this assumption will be maintained.
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Figure 2.7: Illustration of the the interference cases. Mmed = 1600 GeV, mχ = 10 GeV.

follows.
Running the sum in the Lagrangian (see eq.2.3.8) gives∑

q=u,d

gqVµq̄γ
µγ5q = guVµūγ

µγ5u+ gdVµd̄γ
µγ5d. (2.3.10)

Factorizing this expression yields

guVµūγ
µγ5u+ gdVµd̄γ

µγ5d

=gu

Vµūγµγ5u+
gd
gu︸︷︷︸
ξ

Vµd̄γ
µγ5d

 .
(2.3.11)

In [15] it was found that
σ|gu=0 ≈ σ|gd=0, (2.3.12)

and since same final states are produced one also finds that

σ ∝ |guMu + gdMd|2, (2.3.13)

where Mu,d is the matrix element for the respective coupling. For gu,d ∈ {-1,0,1} one can
use the upper relations and define ξ to be the coupling to down quarks gd only and set
gu = 1 (see fig.2.8). With this definition one can produce every case of interference, since
it does not matter for the cross section which coupling constant has a negative sign, due
to relation 2.3.13. The only case that can not be produced with this definition is the case
gu = 0, which is also not a problem in connection with equation 2.3.12. One therefore has a
properly defined parameter describing the interference in this channel.
Nevertheless, this definition has to be treated with caution. It is just appropriate as long
as one investigates gu,d ∈ {-1,0,1}. For analyses with non-integer couplings or couplings
with |gu,d| > 1 it is necessary and much more beneficial to just refer to the couplings as two
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Figure 2.8: Illustration of the parameter ξ’s definition

parameters, instead of defining something new.
A further analysis of this parameter will be an important part of this thesis. For an EFT
there is a paper in which it is shown, that the cases ξ = −1, 0 cause problems regarding
gauge invariance [7]. For the sake of a better understanding of this analysis and a better
overview it was decided to split the theory section. Further theoretical insights will thus be
given as an introduction to each part of this work. Especially when it comes to the validity
of ξ there will be a larger theoretical introduction, where the above mentioned paper will
be discussed further. Majorana spinors will also be introduced with the discussion of some
theoretical aspects at the respective section.
In this analysis non-integer values for ξ will also be considered, where the definition from
above will not be maintained.



Chapter 3

Computational Setup and Analysis

3.1 Event Generation

The events of this analysis are generated by the Monte Carlo event generator MadGraph 5
v2.2.3. The author of the MadGraph model is Mathieu Pellen, a theoretical physicist from
the RWTH’s Institute for Theoretical Particle Physics and Cosmology. The center of mass
energy of the simulations is

√
s = 13 TeV. The simulation is performed up to leading order

with one jet at matrix element level.
The simulated process is shown in figure 1.3. The number of events that were generated for
each analysis is 200000. The cut on pT is at 20 GeV and jet matching is put to MLM.
For different purposes of this analysis the parameters of the model are changed to various
values. In the investigations on Majorana DM the mediator mass Mmed is varied between
70 GeV and 3000 GeV and the DM mass mχ is varied between 10 GeV and 2499 GeV. In
order to investigate the interference, ξ is also varied between {-1,0,1}. For the analysis of a
coupling structure between the mediator and DM, which shall resemble the standard model’s
photon’s coupling1, the coupling constants gu and gd are put to the values ±2

3
and ∓1

3
.

For the discussion of the interference parameter’s validity it was necessary to also perform
three runs with an EFT model, where the paramter ξ is varied between {-1,0,1}. A further
analysis required also several runs with both, the EFT as well as the simplified model, in
different gauges, set by using the command ”set gauge unitary/Feynman”.

3.2 Analysis of the Output

The output of the event simulation is analyzed by the lheanalyzer from the libs3a library of
RWTH Aachen’s institute IIIa.
In order to compare the kinematics of the Dirac and Majorana model the MT spectrum for
each run and the angular distributions (φ, θ) for sum runs are plotted. The MT spectra are
also plotted normalized for the sake of a shape comparison. The same plots are made for
non-integer coupling values.
The analysis of the polarization and validity of ξ required some more effort. In order to get
the angle between the W boson and the lepton or neutrino one needs to perform a Lorentz
boost into the W system. By using this, angle plots which quantify the polarization of the
W boson were made. In the last section graphs, which show the parton level cross section
versus the parton system’s center of mass energy will also be shown.

1This will be further motivated later.
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Chapter 4

Results and Discussion

4.1 Majorana Dark Matter

4.1.1 Theoretical Basics

A Majorana fermion is defined through a symmetric behavior under charge parity transfor-
mations1 [9–13, 16]. For the particle this means, that it is its own antiparticle. Mathemati-
cally this can be expressed by

χ = χc , (4.1.1)

where χ is a solution of the Dirac equation and χc is defined as

χc = Cχ̄T , (4.1.2)

with C = iγ2γ0 and χ̄ = χ†γ0. By using the definition of a Majorana particle (4.1.1) one
can derive an important insight for such particles. Since vector quantities switch their sign
under charge conjugation, one finds

χcγµχc = χ̄γµχ = −χ̄γµχ. (4.1.3)

A consequence of the relation above is that Majorana particles do not have vector couplings
[9], which correspondents to spin independent interactions.
A candidate for a Majorana particle is the neutrino. Neutrino masses can be explained by
assuming the neutrino to be a Majorana particle [28]. In SUSY the neutralino, a very good
candidate for dark matter, is also a Majorana particle [17,25].

4.1.2 Results

In this sections the results of the Majorana model’s analysis will be presented and discussed.
The main strategy is to make a comparison to the Dirac model and point out differences as
well as similarities.
In particular the parameters mχ and Mmed will be varied for all three cases of ξ. If one mass
parameter is varied, the other one will be fixed. This variation aims to point out possibly
different sensibilities of the two approaches towards one of these parameters.
For the investigation of the models’ sensitivity towards Mmed this quantity was scanned
through Mmed ∈ {70 GeV, 400 GeV, 1600 GeV, 2050 GeV, 3000 GeV} and mχ was fixed to
10 GeV. These are just arbitrary values, since this is a shape analysis with the goal to reveal
disparities or similarities between the two approaches. The shape of the MT spectra shall

1In the appendix one can find a derivation of the operator C, which performs such a transformation
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be analyzed for this purpose. Therefore normalized and logarithmic plots will be used.
The results show, that there is the same impact of a varying mediator mass on the MT

spectrum for each approach. In fig.4.1 one can see the MT spectrum for each mediator mass
and approach for the case ξ = −1, where it is apparent that the shapes are very similar for
both approaches. For lower mediator masses the cross section scales higher. Since the plots

Figure 4.1: logarithmic plot of MT with ξ = −1.Left: Dirac. Right: Majorana.

in fig.4.1 are logarithmic plots, this can be seen better in fig.4.2. Additionally it was found
that this behavior is valid for the Dirac approach as well as the Majorana approach. Here
one can again see the similarity of the shapes of both approaches. The described behavior

Figure 4.2: normalized plot of MT with ξ = −1.Left: Dirac. Right: Majorana.

appears also for the other two cases of ξ. In fig.4.3 this result is presented for the Majorana
model2.
The fact that the cross section scales higher at low mediator masses is something one would

2The plots for the Dirac case can be found in the appendix
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Figure 4.3: logarithmic plot of MT for the Majorana approach. Left: ξ = 0. Right: ξ = +1

expect. The dependency of the cross section is

σ ∝
g2
χ · s

(s−Mmed)
2 + sΓ2

med

∝
g2
χ · s

(s−Mmed)
2 +M2

med · s
64π2

,

(4.1.4)

since Γmed = Mmed

8π
. This dependency explains the observed behavior of the cross section.

The analysis of the sensitivity for changes in mχ yields the same results. The parameter was
varied between mχ ∈ {10 GeV, 100 GeV, 500 GeV, 1300 GeV, 2499 GeV}. The mediator
mass is fixed to Mmed = 5000 GeV. The graphs in fig.4.4 show the MT spectra for the different
choices of mχ for each approach. One again finds a strong similarity regarding the impact of

Figure 4.4: logarithmic plot of MT with ξ = −1. Left: Dirac. Right: Majorana.

the variation of the considered parameter mχ on the MT spectra for each approach. Here,
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too one can see a strong similarity between the shapes of both approaches for the several
choices of mχ. For lower DM masses the cross section is larger, but they do not scale it as
high as low mediator masses do. This can be seen in fig.4.5. One can see the same behavior

Figure 4.5: normalized plot of MT with ξ = −1. Left: Dirac. Right: Majorana.

for the other cases of ξ (see fig.4.6).

Figure 4.6: logarithmic plot of MT for the Majorana approach. Left: ξ = 0. Right: ξ = +1

In fig.4.2 and 4.5 a strong similarity between the shapes of the MT spectra of either Majorana
or Dirac DM was found. A direct comparison of these two approaches within one plot can
be seen in fig.4.7. The normalized plot shows that there is no difference in the shape at all,
while it can be seen in the non-normalized plot, that there is a factor of two of difference
for the cross section between the two approaches. A table of the σ that the MadGraph
simulations calculated (see table 4.1) shall confirm this factor, which is due to the fact, that
in the Majorana case one has identical particles. The combinatorics of such particles differ
from those of Dirac fermions [10,11,13].
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Figure 4.7: comparison of Dirac and Majorana MT spectrum for ξ = −1 and Mmed=400
GeV. Left: non-normalized graph for Majorana and Dirac. Right: normalized graph for
Majorana and Dirac.

ξ = +1
Mmed/GeV σM/pb σD/pb σM/σD

70 405.24 ± 0.27 202.40 ± 0.13 2.002 ± 0.002
1600 0.337943 ± 0.000175 0.168933 ± 0.000092 2.000 ± 0.002
3000 0.015049 ± 0.000008 0.007518 ± 0.000004 2.002 ± 0.002

ξ = 0
Mmed/GeV σM/pb σD/pb σM/σD

70 1534.76 ± 0.92 769.21 ± 0.45 1.995 ± 0.002
1600 1.305404 ± 0.000872 0.652477 ± 0.000428 2.001 ± 0.002
3000 0.063214 ± 0.000043 0.031614 ± 0.000022 2.000 ± 0.002

ξ = −1
Mmed/GeV σM/pb σD/pb σM/σD

70 5726.95 ± 3.25 2869.34 ± 1.74 1.996 ± 0.002
1600 4.8834 ± 0.0032 2.4431 ± 0.0017 1.999 ± 0.002
3000 0.2378 ± 0.0002 0.1188 ± 0.0001 2.002 ± 0.002

Table 4.1: Table of cross sections for the different cases of ξ

The summary of the results of this section is, that there is no difference for the kinematics
beside a two times larger cross section, if one uses Majorana DM over Dirac DM. For the
sake of completeness the angular distributions of each approach for one particular case were
also plotted (see fig.4.8), since these are important quantities for the kinematics of a process.
The results confirm the previous insights, as one also has no difference between the two
approaches for these distributions.
For further analyses the Majorana approach will be used. In some cases there will also be
the comparison to the Dirac approach again.
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Figure 4.8: angular distributions for ξ = −1, Mmed = 400 GeV and mχ = 10 GeV

4.2 Non-Integer Coupling

4.2.1 Motivation

A common way to analyze new physics is to assign theoretical elements, which already have
proven their validity, to the unknown new mechanism or physical incident. In this section
such an assignment will be made, regarding the coupling structure of the mediator Vmed.
It will be analyzed, if assuming a coupling structure between the mediator and quarks, like
the photon has it when it couples to quarks, leads to any remarkable results. Since the
photon is massless and thus does not decay, one could initially refuse such an assumption.
But in this analysis the point of interest are rather the coupling constants gu and gd. The
values of these constants will be set to non-integer numbers like in case of the photon coupling
to quarks.
Since up or down quarks carry an electrical charge of +2

3
e or −1

3
e, only these values will be

used in this rather short analysis. The parameter space thus is given by gu,d ∈ {±2
3
,∓1

3
}.

The values for the mediator and dark matter masses will be fixed to mχ = 10 GeV and Mmed

= 400 GeV. As it was mentioned earlier, in this section the coupling constants gu,d will be
used instead of the parameter ξ.

Results

In section 2.3.3 the interference cases of the mono-lepton channel were introduced. When
this interference was first introduced in [8], only integer values for the coupling constants
were considered. This analysis has shown that one can produce the same cases of either
destructive of constructive interference with non-integer values, too (see 4.9).
Furthermore one can see, that the interference cases do only depend on the relative sign
between the couplings gu and gd. A relative minus sign between this constants causes con-
structive interference, while the same sign for both constants correspondents to destructive
interference. A deeper look into the cross section’s dependency on the matrix elementsMu,d

can explain this behavior:
It was already stated that

σ ∝ |guMu + gdMd|2 . (4.2.1)
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Figure 4.9: non-logarithmic (left) and logarithmic (right) MT spectra

A further execution of this equation gives

σ ∝ g2
u|Mu|2 + g2

d|Md|2 + gugd · Re (M∗
uMd +M∗

dMu) . (4.2.2)

It is easy to see, that the cross section scales different for various couplings gu,d. Furthermore
the rate of interference does also depend on both coupling factors, since the last term in the
upper equation describes it. One also understands, that the sign of the interference term
has to be negative, since a different sign of gu and gd produces constructive interference and
vice versa.
Summarized this short analysis has shown, that the interference cases in the mono-lepton
channel can also be produced with non-integer values for the couplings.

4.3 Validity of ξ

4.3.1 Theoretical Basics

In this section the parameter ξ with it being defined like in section 2.3.3 is going to be
discussed. There, it had been declared to be the coupling to down quarks and therefore was
defined like

Vµūγ
µγ5u + ξ · Vµd̄γ

µγ5d, (4.3.1)

where the coupling to up quarks is set to one.
The variation of this parameter within ξ ∈ {−1, 0, 1} causes a huge impact on the cross
section. Such a behavior has already been shown in the previous section and is also illustrated
in figure 4.10.
One interpretation of this behavior is to describe it as cases of different interferences. Such
an explanation arises from the cross section’s dependency on the matrix element. It was
already found, that

σ ∝ g2
u|Mu|2 + g2

d|Md|2 + gugd · Re (M∗
uMd +M∗

dMu)︸ ︷︷ ︸
interference term

. (4.3.2)
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Figure 4.10: Interference behavior for different ξ with Mmed = 1600 GeV and mχ = 10 GeV

what in with the definition of ξ is written as

σ ∝ |Mu|2 + ξ2|Md|2 + ξ · Re (M∗
uMd +M∗

dMu)︸ ︷︷ ︸
interference term

. (4.3.3)

This interpretation was first used in [8], where an EFT for the same process as this work
investigates was analyzed.
The validity of such an approach is of great importance. Due to the much lower cross section
for the destructive interference case, one also has a smaller sensitivity and needs to worry
about a too strong background or too weak signal. Therefore reference [7] has gained great
attention. In this paper the authors show, that for an EFT the case ξ = −1, 0 are restricted.
The argumentation of this paper is as follows:
The starting point of argumentation is, that for such an EFT the operator which is used
to describe the interaction of the mono lepton channel violated the gauge invariance of the
SU(2)L symmetry, if one used different couplings to up and down quarks.
Using this SU(2)L violating operator would lead to the violation of the so called Ward
identity. The Ward identity is very important for gauge theories. It can be seen as the
quantum field theoretical analogon of Noether’s theorem, since every symmetry of the theory
has such an identity. The satisfaction of this identity is connected to the guarantee of the
respective gauge invariance [18, 22, 23]. For the mono-lepton channel the authors of the
discussed paper have derived such a Ward identity for the SU(2)L symmetry of an EFT.
The result is

MαεLα ≈
qα
mW

Mα(q) = iM(φ+(q)) ≈ 0, (4.3.4)

where εLα is the longitudinal polarization vector of the W boson. The sum over the amplitudes
of the the mono-W decay are given by

qαMα =
gW
Λ

[
v̄(p2)(1− ξ)γµ PL√

2
u(p1)

]
[ū(k1)γµv(k2)] . (4.3.5)

The Ward identity requires this term to be zero. Since this is obviously just the case if
ξ = +1, the authors use this to restrict the other two values for ξ, or even more generally
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every combination of unequal couplings to up and down quarks.
The case of constructive interference, where the SU(2)L Ward identity is thus violated,
scaled so high because of the Ward identity’s violation causing an increased production of
longitudinally polarized W bosons. The concrete cross section for the case of constructive
interference (ξ = −1) is calculated in the paper and it is shown, that one has an additional
term in the cross section, which grows with the partonic center of mass energy, like

σ ∝ ŝ

m2
W

. (4.3.6)

Here the partonic center of mass energy is denoted as ŝ in order to avoid confusion with the
center of mass energy

√
s of the proton system. This additional term in the cross section

leads to the violation of unitarity for ŝ � m2
W . For

√
s = 13 TeV this condition clearly is

satisfied and one thus has problems at high ŝ. One explicit consequence of this violation is
a very strong divergence of the parton level cross section.
Summarized, this paper makes the following argumentation:

• for ξ 6= 1 the SU(2)L gauge invariance is violated and thus the respective Ward identity
is broken

• in this cases more longitudinally W are produced as a consequence of the above men-
tioned violation

• at high energies there is a very strong divergence of the parton level σ, which violates
unitarity

At this point a more general question of whether the upper mentioned violations should be
arranged with, since the EFT as well as the simplified model are toy models, could be asked.
However, this thesis aims to make a less general discussion. It will be investigated whether
the results of the above mentioned paper are applicable to a simplified model, as well. Since
there is a mediator implementation in this model, and thus there is a different intermediate
state, this should be well motivated. The strategy of analysis is to check the behavior of
the three main arguments of the authors of [7]. Therefore the following aspects will be
investigated:

• check the polarization of the W boson in the simplified model for several mediator
masses

• make a plot of the partonic level cross section and analyze it, also for various mediator
masses

• check if the simplified model is gauge invariant for the cases ξ 6= 1

These steps are ordered chronologically with respect to the investigations that were done.
This decision was made in order to show the development of the whole analysis.
In order to understand the analysis of the W boson’s polarization a short derivation of the
the three possible polarizations for a W will be made. Let us start with the matrix element
M for the mono leptonic W decay:

M =
gW√

2
εµ(p1) ū(p3)γµ

1

2
(1− γ5)ν(p4)︸ ︷︷ ︸
jµ

, (4.3.7)

where gW is the constant for the weak interaction, εµ is the polarization vector, jµ is the
weak charged current, p1 is the W boson’s momentum and p3 and p4 are the leptons and
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neutrinos momenta. It is worked in the rest frame of the W boson, and therefore jµ becomes

jµ = 2E


0

− cos θ
−i

sin θ

 = mW


0

− cos θ
−i

sin θ

 , (4.3.8)

since in this frame one finds E = El = Eν = mW
2

. Here, θ is the angle between the lepton
and the W boson (see figure 4.11)3. The three different polarizations4 are described by these
polarization vectors:

εµT+ =
1√
2


0
1
−i
0

 εµT− = − 1√
2


0
1
i
0

 εµL =


0
0
0
1

 (4.3.9)

Plugging these two results into equation 4.3.7 let’s one calculate the respective matrix ele-
ment and one finds

MT± =
gW√

2
εT±µ jµ = ±gWmW

2
(0,−1,±i, 0)


0

− cos θ
−i

sin θ

 = ±gWmW

2
(cos θ ± 1) , (4.3.10)

for transverse polarization and

ML =
gW√

2
εLµj

µ =
gWmW√

2
(0, 0, 0,−1)


0

− cos θ
−i

sin θ

 = −gWmW√
2

sin θ (4.3.11)

for longitudinal polarization. Calculating the absolute values gives finally [29]

|MT±|2 =
g2
Wm

2
W

4
(1± cos θ)2

|ML|2 =
g2
Wm

2
W

2
sin2 θ.

(4.3.12)

The figure below shall illustrate each polarization (the scaling factors g2
W and m2

W are set to
1).
Since the other analysis steps are rather straight forward, the necessary information will be
mentioned while presenting the results.

4.3.2 Results

In order to get the right angle, a Lorentz boost was performed into the W boson’s rest frame.
It was necessary to find a way to quantify how big the rate of each W polarization is. This
was solved by fitting a function of the form

f(θ) =
a

4
(1 + cos θ)2 +

b

2
sin2 θ +

c

4
(1− cos θ)2 (4.3.13)

3In the results section this angle will also be referred to as ∆φ
4Since the W is a boson, it is a spin 1 particle. Therefore its spin can take the values Sz = ±1, 0.

The cases of Sz = ±1 correspond to transversal polarization, whereas the case with Sz = 0 corresponds to
longitudinal polarization.
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Figure 4.11: polarizations of the W boson (adapted from [26,29])

to the results, with a,b and c being parameters. To get the rate of each polarization, each
parameter was normalized and thus one gets

T+ =
a

N
L =

b

N
T− =

c

N
, with N = a+ b+ c (4.3.14)

to be the rate for each polarization. For a better depiction of the results’ polarization
fractions, the fitted functions were also plotted into the canvas. The scaling factors g2

W and
m2
W were ignored.

In the figures 4.12-4.14 one can see the behavior for each cases and various mediator masses.
The results for ξ = 0 will not be presented, since this case shows the same results as ξ = −1,

Figure 4.12: Comparison for Mmed = 70 GeV. Left: ξ = +1. Right: ξ = −1

except having a lower cross section. It was furthermore decided to show three values of
Mmed, namely Mmed ∈ {70 GeV, 1600 GeV, 3000 GeV}. The plots show, that there is less
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Figure 4.13: Comparison for Mmed = 1600 GeV. Left: ξ = +1. Right: ξ = −1

longitudinal polarization for the case ξ = +1, when decreasing the mediator mass. Especially
for Mmed = 70 GeV the rate of transverse polarization is higher than the rate for longitudinal
polarization (≈35%). For every value of Mmed the longitudinal polarization is less than the
transverse, but this difference shrinks for higher mediator masses. For ξ = −1 by contrast,

Figure 4.14: Comparison for Mmed = 3000 GeV. Left: ξ = +1. Right: ξ = −1

the longitudinal polarization fraction is always greater (≈60%). Nevertheless, one can see
that for Mmed = 70 GeV the rate for longitudinal polarization shrinks a little (≈56%). It
was checked if there is a dependency of the W’s polarization on the polarization of the initial
quarks. The results, which can be found in the appendix, have shown, that there is no such
dependency.
A comparison to the W polarization of an EFT shows, that this analysis does not give
an access to the question, if the results of the above mentioned paper are applicable to
a simplified model as well, at all. As fig.4.15 shows, there is no difference in the rate of
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longitudinal or transverse polarization if one changes the parameter ξ’s value. This means,
that the restriction on longitudinally polarized W, was rather an energetic argument in the
above mentioned paper. It was not stated, that the rate for the production of differently
polarized W bosons changes for the case ξ 6= 1 but that one has more longitudinally polarized
W at all, due to the higher cross section. A production of so much longitudinally polarized
W bosons in the intermediate state leads to the violation of unitarity and the divergence of
the parton level cross section and thus is considered to be unphysical [7].

Figure 4.15: Comparison for an EFT with mχ = 10 GeV. Left: ξ = +1. Right: ξ = −1

Nevertheless, these results can be used to explain the behavior depicted in figures 4.12-4.14.
As the EFT is valid for very large mediator masses, both results match to each other. In
figure 4.15 one sees, that the rate for each polarization does not change at all for the EFT,
if one changes the value of ξ. For the simplified model it was found, that the difference
between the two cases of ξ is shrinking for higher mediator masses. In the limit of a very
high mass the simplified model will yield the same results as the EFT.
Since the analysis above does not provide an access to the question, it will be continued
with the second part of this investigation. As it was stated above, here the same parton
level cross section plots will be made as the theorists have done it in their paper. For these
plots the parton distribution functions (pdfs) had to be unfolded in order to get the cross
section on the y-axis. A parton distribution function gives one the probability for a parton
to carry a certain amount of the energy of the hadron, whose constituent the parton itself
is. Such a distribution function is needed, since the simple assumption of hadrons consisting
out of three quarks is not precise enough. In fact these three quarks are the so called valence
quarks and there are additional gluons and so called sea quarks within a hadron.
This unfolding of the pdfs takes the following form:

σ
(√

ŝ
)

=
1

f1(x1, Q) · f2(x2, Q)
· σtotal

#Events
. (4.3.15)

Here,
√
ŝ is defined as

√
ŝ = |pz(q1)| + |pz(q2)| and σtotal is the cross section of the whole

simulation. This unfolding is done for every event and can therefore be understood as an
integration over the phasespace.
A problem arises, for energies above at about a third of the proton system’s center of mass
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energy
√
s. Since one has rather low statistics for such high energies, the errors on the

respective cross sections are very high. This distorts the results and it was therefore decided
to plot the results up to

√
ŝ ≈

√
s

3
.

For these plots it was decided to look at five different mediator masses again. This time the
mediator mass varies between Mmed ∈ {70 GeV, 400 GeV, 1600 GeV, 2025 GeV, 3000 GeV}
and mχ is again fixed to 10 GeV. The results will only be shown for Mmed ∈ {70 GeV, 400
GeV, 3000 GeV}. The considered cases of ξ are ξ = ±1. Such plots are made for every
model used in this analysis: the simplified model with either Dirac or Majorana DM and
the EFT.
The results are shown in figure 4.16-4.18. One can see, that there is a difference between the
EFT and the simplified models, for both cases of ξ. Especially for ξ = +1 one has a very
different slope. There is a clear peak over the mass of both mediators Mmed +mW .

Figure 4.16: Parton level σ for Mmed = 70 GeV. Left: ξ = +1. Right: ξ = −1

Figure 4.17: Parton level σ for Mmed = 400 GeV. Left: ξ = +1. Right: ξ = −1
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More interesting for this analysis is the difference for ξ = −1. One can see that the EFT
grows much stronger with

√
ŝ than the simplified model does, when high mediator masses

are considered. There even is a general difference between the slopes. In [7] it was men-
tioned, that for this case the EFT would grow like σ ∝ ŝ. In point of fact, such a behavior
can be seen in fig.4.18 in the right plot, since the EFT is clearly growing like an exponential
function. For the simplified model in contrast, one can see that it rather follows a differ-

Figure 4.18: Parton level σ for Mmed = 3000 GeV. Left: ξ = +1. Right: ξ = −1

Figure 4.19: Comparison with ξEFT=+1 and ξsimplified model=-1. Left: Mmed = 70 GeV. Right:
Mmed = 400 GeV.

ent functional dependency on
√
ŝ. The simplified model is rather growing like a hyperbolic

function, especially at low mediator masses, what could indicate a dependency like σ ∝ ŝ
1
n ,

where n > 2, since there is
√
ŝ on the x-axis. This is some evidence for a fundamentally

different behavior of σ at high energies. Although there is a much stronger growth for lower
mediator masses (see fig. 4.16), it could therefore not diverge as strong as the EFT at very
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high energies. Additionally the growth always begins at the mass of the intermediate state
Mmed+mW , what particularly for high mediator masses leads to a different behavior at high
energies. Therefore the case ξ = −1 could still satisfy unitarity and gauge invariance for a
simplified model in general.
Fig. 4.19-4.20 show plots, where the EFT’s valid case ξ = +1 is compared to the simplified
model’s ξ = −1 case.
Especially for great Mmed one sees, that the EFT’s valid case is growing much stronger than
the simplified model’s ξ = −1 case (see figure 4.20). The different slope between the growth
can be seen in fig.4.19 on the right. These incidents are indications for the cases ξ 6= 1 to be
valid for sufficiently high mediator masses.
A justified question that could arise at this point is, why the simplified model shows such a
different behavior even for great masses, where it should rather match to the EFT’s results.
Although a mass of 3000 GeV was already enough to produce about the same results for the
EFT and the simplified model when the polarization was investigated, this value for Mmed

is not enough mass to produce comparable results in any account. Such a boundary on the
mass of the simplified models mediator was found in [21] to be at about 7000 GeV. This
nevertheless does not have to mean, that arbitrary high mediator masses will yield the same
results as an EFT, since this was only shown for the cross section in [21]. The plots that are
discussed here are directly connected to the intermediate state, whereas it would be more
intuitive to expect a different behavior compared to an EFT even for high mediator masses.

Figure 4.20: Comparison with ξEFT=+1, ξsimplified model = −1 and Mmed = 3000 GeV.

Since these results are not conclusive enough to declare the considered cases of the simplified
model to be valid, a further step was taken. In a discussion with Leila Ali Cavasonza, a PhD
student from the RWTH Aachen’s Department for Theoretical Particle Physics and Cos-
mology, it was learned, that there was a possibility to check gauge invariance in MadGraph.
She stated, that there was a command ”Set gauge unitary/Feynman”, which can be used in
order to switch between different gauges before generating the events. The best way to check
if the model is gauge invariant was using different gauges to calculate the cross section.
Such an investigation was done and the cross section for all three cases of ξ and Mmed ∈ {50
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GeV, 400 GeV, 1000 GeV, 5000 GeV, 15000 GeV5} was calculated by MadGraph for each
gauge with the Dirac model. The dark matter mass mχ again was put to 10 GeV. These runs
were made with 200000 Events, since it here is particularly important to merge out statistical
errors. Additionally, plots of the MT spectra were made for the purpose of comparison.
The following table, where the index U stands for unitary and F for Feynman gauge, shows
the results of the cross section calculations:

ξ = +1
Mmed/GeV σU/pb σF/pb σU/σF

50 289.97 ± 0.19 290.01 ± 0.19 0.99986 ± 0.00092
400 10.716 ± 0.006 10.724 ± 0.006 0.99925 ± 0.00082
1000 0.92303 ± 0.00051 0.92202 ± 0.00050 1.00110 ± 0.00078
5000 0.0002110 ± 0.0000001 0.0002103 ± 0.0000001 1.00086 ± 0.00079

ξ = 0
Mmed/GeV σU/pb σF/pb σU/σF

50 1304.9 ± 0.7 1613.7 ± 0.9 0.80864 ± 0.00063
400 29.761 ± 0.0202 29.804 ± 0.0202 0.99856 ± 0.00096
1000 3.1555 ± 0.0022 3.1544 ± 0.0022 1.00035 ± 0.00098
5000 0.000837 ± 0.000001 0.000836 ± 0.000001 1.00094 ± 0.00102
15000 (35.186 ± 0.011) ·10−7 (35.140 ± 0.012) ·10−7 1.00131 ± 0.00046

ξ = −1
Mmed/GeV σU/pb σF/pb σU/σF

50 4901.8 ± 2.8 6113.1 ± 3.6 0.80185 ± 0.00066
400 108.01 ± 0.07 108.24 ± 0.07 0.99788 ± 0.00095
1000 11.668 ± 0.008 11.684 ± 0.008 0.99863 ±0.00097
5000 0.003138 ± 0.000002 0.003135 ± 0.000002 1.00115 ± 0.00093
15000 (13.071 ± 0.006) ·10−6 (13.071 ± 0.006) ·10−6 1.00000 ± 0.00065

Table 4.2: comparison of the cross sections calculated in different gauges

These results match to the parton level cross section plots from above. As it was seen there,
the growth of the cross section was much greater for simplified models, when considering
small mediator masses like Mmed . 400 GeV and the cases ξ = −1, 0. The check of the gauge
invariance gives exactly the same. One sees, that for the case ξ = +1 the cross section and
therefore the theory itself, does not violate gauge invariance at all. Furthermore one finds,
that in the cases ξ = −1, 0 one gets problems for low mediator masses - in this particular
case at Mmed = 50 GeV. For this analysis this does not only mean more evidence for a -
restricted, since problems are faced at too low mediator masses - validity of ξ 6= 1, but does
also provide a confirmation for the previous analysis and argumentation.
A comparison of the differential cross sections for Mmed ∈ {50 GeV, 1000 GeV, 5000 GeV}
is depicted in fig.4.21 and 4.22. It can be seen, that there is a slight difference between the
different gauges for low mediator masses, when one has unequal couplings to up and down
quarks (see fig.4.21). For higher mediator masses one can barely discriminate between each
MT spectrum.

5To save calculation time the run with ξ = +1 and Mmed = 15000 GeV was skipped, since one nevertheless
does not expect violation of invariance for ξ = +1
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Figure 4.21: Differential cross section for different gauges. Left: ξ = −1. Right: ξ = 0

Figure 4.22: Differential cross section for different gauges and ξ = +1
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Outlook

5.1 Using Majorana Spinors for the Description of Dark

Matter

The most promising and motivating aspect about Majorana dark matter is still the fact, that
SUSY’s neutralino is a Majorana fermion. This neutralino is often considered as a bright
dark matter candidate. If one minds, that SUSY theories are seemingly the only ones that
can provide such an explanation for dark matter on particle level, it is much more intuitive
to even use Majorana approaches, when working with toy models, like simplified models
and EFTs are. Beside being better founded from a theoretical point of view, Majorana
dark matter brings along another advantage too. As it was found in this analysis, such
an approach supplies a better signal, due to its cross section being a factor of two greater
than the cross section of the usual Dirac dark matter approach. Especially when it comes
to the validity of ξ, this could be a very good alternative, too. If one considers the cases
of ξ = −1, 0 still as forbidden, Majorana dark matter’s greater cross section could maybe
already be enough of an increase for the signal not to disappear in the background.

5.2 Validity of the Cases ξ = −1, 0
In the beginning of the section for this parameters validity it was already stated, that one
can make a more general discussion about the violation of gauge invariance and unitarity for
toy models. Even after seeing this results, this is still an argument that can and will surely
be advanced.
Regarding this analysis, it was seen, that there are some important differences between an
EFT and a simplified model, that disable a simple application of results for an EFT on the
latter one. Although the analysis of the mono-lepton channel’s W boson’s polarization did
not give access to the problem that was investigated, it revealed some differences between
those two models. Summarized, these were differences one would necessarily expect, since
there is a different intermediate state in the simplified model.
The results of the parton level cross sections analysis and the latter check for gauge invariance
provided a strong indication for the validity of ξ = −1, 0 within a certain range. Especially
the check of the gauge invariance is very important here, since this is the main argument of
the paper, which restricts the mentioned cases for an EFT.
But nevertheless, the following point should not be neglected. To properly declare these
cases as valid, it is inevitable to make a proper theoretical derivation of the respective Ward
identity and check if it is satisfied and if the theory is therefore gauge invariant. Even if
this analysis provides an empirical evidence for the mentioned invariance to be existing for
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a certain range, this alone is not enough to accept the validity completely without doubt.
Hence it was decided not to perform a further analysis on the concrete range of the mentioned
cases’ validity but stay at the approximate range of 400 GeV ≤ Mmed ≤ 15000 GeV. This
nevertheless is already a useful range of validity. For a theorist these results should be enough
motivation to check the upper mentioned issue.
From a experimental physicists view this should nonetheless be enough evidence to use the
cases ξ = −1, 0, since these results are a much better basement then just assuming, that the
restriction for an EFT can simply be applied to a simplified model as well - at least until a
theorist attends to this matter and does the necessary clarification.
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Chapter 7

Appendix

7.1 Theory

7.1.1 Charge Conjugation

The theory of Majorana spinors belongs to relativistic quantum theory. The fundamen-
tal equations of this theory are the so called Klein-Gordon-Schrödinger1 equation and the
Dirac equation. The Klein-Gordon-Schrödinger equation describes spin 1 particles (bosons),
whereas the latter one describes particles with a spin of 1

2
(fermions). For Majorana spinors

the latter one is more relevant.
A Majorana spinor shall describe a fermion that is defined to be a self conjugated particle,
whereas conjugated concerns a charge conjugation. Thus such a particle can not have an
electrical charge.
The first attempts on the operation of a charge conjugation is due to Paul Dirac’s prediction
of the existence of a positron. Since the positron was claimed to have the same spin and
mass like the electron but another charge, it was obvious that such a particle should also
satisfy a respective Dirac equation in a electromagnetic field. Mathematically this means
that one searches for transformations

ψ(x)→ ψc(x) (7.1.1)

so, that if ψ(x) satisfies
(γµ (i∂µ + eAµ)−m)ψ(x) = 0 (7.1.2)

the transformed spinor ψc has to satisfy

(γµ (i∂µ − eAµ)−m)ψc(x) = 0. (7.1.3)

A possibility to change the sign between i∂µ and eAµ in equation 7.1.2 is to use complex
conjugation. One can write it as

(γµ (i∂µ + eAµ)−m) γ0γ0ψ(x) = 0, (7.1.4)

since γ0γ0 = 1. A way to complex conjugate a matrix or vector is to adjoin and then

transpose it (A†
T

= A∗). Adjoining the matrix equation leads to

ψ†γ0γ0
(
γµ†
(
−i
←
∂µ + eAµ

)
−m

)
= 0. (7.1.5)

1The most common name for this equation is just ”Klein-Gordon”. Schrödinger actually found this equa-
tion, which is derived by connecting the relativistic energy momentum relation and his famous Schrödinger
equation via the correspondence principle, at about the same time and it was therefore decided to also credit
him.
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The arrow above the derivative indicates that it operates to the left. For the gamma matrices
one can derive the relation γ0γµ†γ0 = γµ. When multiplying this equation with γ0 from the
right one can use this and hence gets

ψ†γ0
(
γµ
(
−i
←
∂µ + eAµ

)
−m

)
= 0

⇔ ψ̄
(
γµ
(
−i
←
∂µ + eAµ

)
−m

)
= 0,

(7.1.6)

where it was used that ψ̄ = ψ†γ0 is the adjoined spinor. The next step to do is transposing
the equation. This leads to (

γµT (−i∂µ + eAµ)−m
)
ψ̄T = 0

⇔
(
−γµT (i∂µ − eAµ)−m

)
ψ̄T = 0.

(7.1.7)

The last step to make the above equation equal equation 7.1.3 is finding a matrix that gives
CγµTC−1 = −γµ. This can be seen by multiplying the the equation with a matrix C from
left and inserting a C−1C = 1 between the operators and the spinor:

C
(
−γµT (i∂µ − eAµ)−m

)
C−1Cψ̄T = 0. (7.1.8)

Such a matrix is in the Dirac basis given by

C = iγ2γ0 = i

(
0 −σ2

−σ2 0

)
=


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , (7.1.9)

with the properties C−1 = C† = CT = −C. Using this matrix one can write

(γµ (i∂µ − eAµ)−m)Cψ̄T = 0 (7.1.10)

and find ψc to be defined as
ψc = Cψ̄T . (7.1.11)

7.1.2 Majorana Spinors

For the derivation of a Majorana spinor the Weyl basis will be used, which is often also
referred to as the chiral basis. The latter name is due to the fact, that in this basis a spinor
can be portrayed by its chiral amounts, like

χ =

(
χR
χL

)
. (7.1.12)

Performing a charge conjugation for this spinor gives

χc = iγ2γ0
(
χ†γ0

)T
= iγ2γ0γ0χ∗(

χcR
χcL

)
=

(
0 iσ2

−iσ2 0

)(
χ∗R
χ∗L

)
=

(
iσ2χ

∗
L

−iσ2χ
∗
R

)
!

=

(
χR
χL

)
(7.1.13)

Possible solutions of this equation are

χMR =

(
χR

−iσ2χ
∗
R

)
and χML =

(
iσ2χ

∗
L

χL

)
. (7.1.14)
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7.2 MT Spectra
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7.3 Polarization Plots

(a) Pol(u) = +100, Pol(d) = +100 (b) Pol(u) = +100, Pol(d) = -100

(a) Pol(u) = +100, Pol(d) = +100 (b) Pol(u) = +100, Pol(d) = -100
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7.4 Parton Level Cross Section
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7.5 Conventions

In this analysis natural units are used, where ~ = c = 1. For sums Einstein’s sum convention
is used with

xµxµ =
∑
µ

xµxµ =
∑
µν

xµxνg
µν ,

with the metric tensor gµν being defined as

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and gµν = gµν .
The greek symbol ψ is used for arbitrary solutions of the Dirac equation and χ for the spinors
of DM. Arbitrary axial vector quantities are labeled as Aµ.
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