QCD studies at LEP

Thomas Hebbeker Phys. Inst. III A, RWTH Aachen

International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics Geneva, July-August 1991

QCD

- Interaction of colored quarks and gluons (spin 1)
- Nonabelian gauge theory → gluon self coupling:

- One free parameter: coupling constant α_s
- Decrease of α_s with increasing energy

LEP:
$$e^+e^- \rightarrow Z^0 \rightarrow \text{jets}$$

QCD at the Z^0 resonance

- high \sqrt{s} (new)
- fragmentation effects small (precision)
- cross section large (precision)
 - absolute: high statistics
 - relative: low background
- hard initial state radiation suppressed (precision)

3-jet event

OUTLINE

- Introduction
- Comparison to models
- Strong coupling constant α_s Measurements at LEP

 Dependence on flavor, energy
- Test of QCD matrix element

3-jet events: gluon spin

4-jet events: gluon self coupling

• 'Soft' hadron physics

Multiplicity

Particle spectra

String effect

Quark-jets versus gluon-jets

Intermittency

Bose-Einstein correlations

- Future QCD tests at LEP
- Summary

QCD studies at the Z⁰ Resonance

More than 1 million hadronic Z⁰ decays observed

About 40

Publications, preprints, contributed papers
on QCD studies at the Z⁰ resonance

Talks in parallel sessions:

• 'Tests of Perturbative QCD and Jet Fragmentation'

- David Salmon (ALEPH)

'Three Gluon Vertex'

- Elisabetta Gallo (L3)

' $\alpha_{s}(b)$ and Gluon-Spin'

- Miriam Turner (OPAL)

'Quark-Gluon Differences'

• 'Soft Hadron Phenomena'

- Alessandro De Angelis (DELPHI)

'Intermittency'

- Bengt Loerstad (DELPHI)

'Multiplicity Distributions'

- Dominique Boutigny (L3)

'Particle Spectra'

- Stefano Marcellini (OPAL)

'Bose-Einstein Correlations'

G. Martinelli Status of QCD

P. Roudeau: Heavy Flavour Physics at LEP

$e^+e^- \rightarrow hadrons and QCD$

- (i) 10^{-17} cm: electroweak
- (ii) 10^{-15} cm: perturbative QCD
 - matrix elements
 - parton shower evolution
- (iii) 10^{-13} cm: <u>hadronization</u> (models)
 - strings
 - clusters
- (iv) decays (experimental input)

→ Monte Carlo programs

$e^+e^- \rightarrow \text{hadrons} \text{ and QCD}$

Matrix Elements:

- $O(\alpha_s^2)$ exact
- max. 4 partons
- needed to extract α_s

Parton Showers:

- Leading log approximation
- cutoff at ≈ 1 GeV, on average 9 partons
- better description of data

9

Comparison to Models

= Monte Carlo generators for events $e^+e^- \rightarrow \text{hadrons}$

Needed:

• hadronization and decays

Procedure:

- Model parameters from a fit to selected distributions
- Comparison data ↔ Monte Carlo for many variables

Most popular generators:

- JETSET (Sjöstrand)
 - Parton Shower or Matrix Element
 - String Fragmentation
- <u>HERWIG</u> (Marchesini, Webber)
 - Parton Shower
 - Cluster Fragmentation

Comparison to Models

ALEPH, DELPHI, L3, OPAL, MK II

Example: Thrust

$$T = \max rac{\Sigma |ec{E_i}| ec{n}_{ ext{Thrust}}}{\Sigma |ec{E_i}|}$$

→ All models describe data well

Strong coupling constant α_s

• Measurements at LEP

- $-\alpha_s$ from hadronic width
- $-\alpha_s$ from event topology
- Comparison and combination of LEP results

• Testing QCD

- Comparison to measurements for other processes
- Flavour dependence
- Running of α_s

Measuring α_s from $e^+e^- \rightarrow Z \rightarrow \text{hadrons}$

- 1 QCD correction to total hadronic width $\sim 1 + \frac{\alpha_s}{\pi} + \dots \approx 1 + 4\%$ calculated to order $O(\alpha_s^3)$
 - → Event counting
- 2 Event topology: Jets, Energy correlations, ... probability for hard gluon radiation $\sim \alpha_s$ calculated to order $O(\alpha_s^2)$

 \rightarrow Jet counting, ...

• Precision of α_s measurements:

method	theoretical error		experim.	total
	higher O	fragm.	error	uncert.
1 hadr. width	2%	-	10-15%	10-15%
2 topology	5-10 %	3%	3%	5-10%

α_s from hadronic \mathbf{Z}^0 width

$$R_{\mathbf{Z}} \equiv \Gamma_{\mathrm{had}}/\Gamma_{\mathrm{lep}} = 19.97 \cdot (1 + \delta_{\mathrm{QCD}})$$

 $R \equiv \sigma_{\mathrm{had}}^{\mathrm{peak}}/\sigma_{\mathrm{lep}}^{\mathrm{peak}} = 19.77 \cdot (1 + \delta_{\mathrm{QCD}})$

 \uparrow depends little on top and higgs mass: ± 0.03

(Surguladze, Samuel) (Gorishny, Kataev, Lari

$$\delta_{\text{QCD}} = 1.05 \cdot \frac{\alpha_s}{\pi} + 0.9 \cdot (\frac{\alpha_s}{\pi})^2 - 13 \cdot (\frac{\alpha_s}{\pi})^3$$

$$\alpha_{\rm s}(M_{\rm Z}) = 0.141 \pm 0.017$$

(in second order: $\alpha_s(M_Z) = 0.137$)

Jets

JADE jet algorithm as function of y_{cut} :

- measure energy and direction of all particles
- calculate

$$y_{ij} = 2E_i E_j / E_{\text{vis}}^2 \cdot (1 - \cos \theta_{ij})$$

for all particles i and j

- find particle i and j for which y_{ij} is smallest
- recombine those into a new 'particle' k:

$$p_k = p_i + p_j$$

- ullet loop until all y_{ij} exceed invariant mass cutoff $y_{
 m cut}$
- call the remaining 'particles' jets

α_s from jet multiplicities

ALEPH, DELPHI, L3, OPAL, MK II

3-jet fraction at $y_{\text{cut}} = 0.08 \text{ (26 GeV)}$ (corrected for detector effects and photon radiation)

$$\sigma_{3-\mathrm{jets}}/\sigma_{\mathrm{tot}} = 18.4~\% \pm 0.9~\%$$

Comparison to analytical 2nd order QCD calculation (+ hadronization correction)

$$lpha_{
m s} \, (\sqrt{s} = M_{
m Z}) = 0.115 \pm 0.005 \, ({
m exp.}) \, {}^{+0.012}_{-0.010} \, ({
m theor.})$$

Theoretical error dominated by unknown higher order corrections, estimated by a variation of the renormalization scale μ in the range 3 – 91 GeV.

Jet rate becomes independent of the scale μ when calculated to all orders. Therefore the variation of α_s with μ is an estimate of uncalculated higher order corrections.

$\alpha_{\rm S}$ from jet multiplicities

ALEPH, DELPHI, L3, OPAL, MK II

$\alpha_{\rm S}$ from event topology (at ${\bf Z}^0$)

How to combine?

Comparison of experimental results

3-jet fraction, $y_{\text{cut}} = 0.08$

Asymmetry of energy energy correlations, integral between 36° and 90°

Uncertainties for α_s from event topology

Experimental (all exp. combined)

published experimental errors
spread of results from four LEP experiments

→ about 3%

Hadronization

variation of fragmentation parameters change of model

→ typically 3%

Missing higher order (> 2) corrections

renormalization scale dependence spread of α_s values for different variables effects of higher orders in parton shower

 \rightarrow about 5% - 10%

α_s from event topology

ALEPH, DELPHI, L3, OPAL, MK II

Average for two methods of hadronization correction:

$$\alpha_{\rm s}(M_{\rm Z}) = 0.111^{+0.007}_{-0.006}$$

2:

α_8 from event topology

(jets, energy correlations, thrust, ...)

'Average' or 'best' values for α_s :

Errors dominated by theoretical uncertainties due to higher order corrections

Unweighted mean (for central value and error):

$$\alpha_{\rm s}(M_{\rm Z}) = 0.115 \pm 0.008$$

 α_s from LEP

$$\alpha_{\rm s}(M_{\rm Z}) = 0.120 \pm 0.007$$

$$\Lambda_{\overline{MS}}^{(5)} = 250^{+110}_{-80}~\mathrm{MeV}$$

Errors for α_s from hadronic width dominated by

• experimental uncertainties

Errors for α_{\bullet} from event topology dominated by

• theoretical uncertainties (missing higher orders)

Comparison of α_s measurements

All values extrapolated to $\mu = M_{\rm Z}$

Testing flavor independence of α_s

 α_s for bottom quarks

L3

Method:

- Measure α_s from 3-jet fraction f_3
- Tagging of b quarks via decays $b \to \mu, e + X$

	\mathbf{sample}	events	bottom
<u>had</u>	all hadrons	110,000	22%
lep	incl. μ, e events	2,900	87%

Ratio of 3-jet rates f_3 with $y_{\text{cut}} = 0.05$:

$$\frac{f_3^{lep}}{f_3^{had}} = 1.00 \pm 0.03 \,(\text{stat}) \pm 0.04 \,(\text{syst})$$

Ratio of α_s values for bottom and light quarks:

$$\alpha_{\rm s}^{
m b}/\alpha_{
m s}^{
m udsc}=1.00\pm0.08$$

20

Running of α_s

3-jet rate
$$\sim \alpha_{\rm s} \propto \frac{1}{\ln \mu^2/\Lambda^2}$$

- \rightarrow 'running' of α_8
- → indirect evidence for gluon self coupling

Strong coupling constant α_s

Summary

- Measurements
 - a) from hadronic Z width
 - b) from event topology

$$\alpha_{\rm s}(M_{\rm Z}) = 0.120 \pm 0.007$$

- Flavor independence √
- Running \checkmark

Test of QCD matrix element

- 3-jet events
 - \rightarrow gluon spin

- 4-jet events
 - → gluon self coupling

3-Jet Events: Jet Energies

L3, OPAL

3-jet events selected with $y_{\text{cut}} = 0.02$:

- QCD to second order in α_s (gluon spin = 1) reproduces measurements
- gluon spin = 0 excluded

At $\sqrt{s} = 35$ GeV differences much smaller

3-Jet Events: Jet plane orientation

DELPHI, L3

Distribution of the polar polar angle $\bar{\theta}$ of the normal to the three jet plane depends on thrust T:

$$rac{\mathrm{d}\,\sigma}{\mathrm{d}\,\cosar{ heta}} \; \propto \; 1 + ar{lpha}(T) \cdot \cos^2ar{ heta}$$

QCD:
$$\bar{\alpha} = -1/3$$

• Only QCD (gluon spin = 1) describes data

Test of gluon self coupling

QCD is nonabelian → gluon self coupling

To demonstrate the sensitivity of measurements for 4-jet events one can compare to an alternative abelian model. Here only double Bremsstrahlung diagrams contribute to $e^+e^- \rightarrow q\bar{q}gg$.

Angular correlations in 4-jet events are different for QCD and the abelian model and allow to distinguish between them.

QCD versus Abelian Model

L3, OPAL

 $\chi_{\rm BZ}$ is the angle between the plane containing jets 1,2 and the plane containing jets 3,4.

• abelian model ruled out!

Test of gluon self coupling

4-jet cross section = sum of gauge invariant terms:

$$\sigma \sim \underline{C_F} \cdot \sigma_{ extsf{A}} + (C_F - N_C/2) \cdot \sigma_{ extsf{B}}$$
 $+ \underline{N_C} \cdot \sigma_{ extsf{C}}$
 $+ \underline{T_F} \cdot N_f \cdot \sigma_{ extsf{D}} + (C_F - N_C/2) \cdot \sigma_{ extsf{E}}$

'Color Factors':

	$\underline{C_F}$	N_C	T_F
\mathbf{QCD}	4/3	3	$\frac{1}{2}$
abelian	1	0	3

From a fit to the measured differential 4-jet cross sections one can determine N_C/C_F and T_F/C_F :

ALEPH: 5-dimensional, invariant masses y_{ij}

DELPHI: 2-dimensional, two angles between jets

$g \rightarrow gg$ and $g \rightarrow q\bar{q}$ couplings

ALEPH, DELPHI

Color Factors:

	$egin{bmatrix} N_C/C_F \ g o gg \end{bmatrix}$	$egin{aligned} T_F/C_F\ g o qar q \end{aligned}$
LEP	2.0 ± 0.3	0.3 ± 0.2
QCD abelian	2.25 0	0.3 7 5

Test of QCD matrix element

Summary

The second order QCD matrix element has been tested precisely for

- 3-jet events
- 4-jet events

LEP has provided experimental evidence for gluon self coupling

'Soft' hadron physics

For many 'soft' phenomena QCD predictions exist:

- Analytical (next to) Leading Log Calculations
- Parton Shower Monte Carlo Generators

Importance of hadronization and particle decays increased with respect to jet level!

- QCD: Soft Gluon Coherence
- Charged Particle Multiplicity
- Particle Identification (light flavors)
- Particle Spectra
- String Effect
- Quark-Jets versus Gluon-Jets
- Intermittency
- Bose-Einstein Correlations

QCD: Soft gluon coherence

Interference effects of soft gluons lead to:

• INTRA-jet effects:

In subsequent parton branchings the emission angles decrease: 'Angular ordering'

→ Reduction of available phase space for soft gluons (multiplicities, spectra)

• INTER-jet effects:

 \rightarrow Suppression of particles between q and \bar{q} jets in $q\bar{q}g$ events ('string effect')

Experimental tests:

Hypothesis of 'Local Parton Hadron Duality' (LPHD): The effects on partons are observable by measuring hadrons

Charged Particle Multiplicity

Measured distribution described by

- parton shower Monte Carlo programs
- phenomenological models

Detailed studies by DELPHI: Dependence on rapidity, jet-configuration, transverse momenta, ...

Mean Charged Multiplicity

LEP/SLC: $\langle N_{\rm ch} \rangle = 20.8 \pm 0.2$

Center of mass energy dependence:

QCD: $\langle n \rangle = N_{\text{Norm}} \cdot (\alpha_s(s))^b \cdot \exp(c/\sqrt{\alpha_s(s)})$

Particle Identification Neutral Pions

L3

Neutral Pions (135 MeV) are reconstructed from photon pairs:

$$\pi^0 \to \gamma \gamma$$

Number of π^0 's per hadron event:

$$\langle n_{\pi^0} \rangle = 9.8 \pm 0.7$$

Particle Identification Neutral Kaons

(ALEPH), DELPHI, OPAL

 K_s^0 mesons (498 MeV) are reconstructed from $\pi^+\pi^-$ pairs originating from a secondary vertex ($c\tau=2.7\mathrm{cm}$):

$$K^0_s \to \pi^+\pi^-$$

Number of $K^0 + \bar{K}^0$'s per hadron event (DELPHI+OPAL) $\langle n_{\bar{K}^0} \rangle = \underline{2.04 \pm 0.10}$

Particle Identification Lambdas

(ALEPH), DELPHI

 Λ baryons (1116 MeV) are reconstructed from $p\pi^-$ pairs originating from a secondary vertex ($c\tau = 7.9 \text{cm}$):

$$\Lambda \rightarrow p + \pi^-$$

Number of $\Lambda + \bar{\Lambda}$'s per hadron event:

$$\langle n_{\Lambda} \rangle = \underline{0.245 \pm 0.032}$$

Particle Spectra

 $\xi_p = \ln(1/x_p)$ $x_p = ext{particle mom.}$ / beam energy ALEPH, DELPHI, L3, OPAL

QCD = analytical calculation + LPHD :

(Dokshitzer, Khoze, Troyan)

- Spectra have 'humpbacked' shape
- Peak position ξ_p^* depends on particle mass and \sqrt{s}

Energy dep. of peak position ξ_p^*

Analytical QCD calculations including soft gluon interference effects together with Local Parton Hadron Duality hypothesis describe data well

'String Effect'

measures interjet interference effects

Less particles in between q and \bar{q} jet in comparison with the other two inter-jet regions

Possible explanations:

• string fragmentation

• leading log QCD calculations: destructive interference!

Can NOT be explained by

• Incoherent parton shower + 'independent jet fragmentation'

'String Effect'

DELPHI, OPAL

via quark tagging

- 1st jet: highest energy
- → quark jet
- 2nd jet: contains lepton
- → quark jet
- 3rd jet
- \rightarrow gluon jet (prob. $\approx 70\%$)

Model-independent confirmation of string effect!

No distinction between different possible interpretations!

Quark-jets versus Gluon-jets'

DELPHI, OPAL

via quark tagging

- hadrons in gluon jet core are softer than in quark jets
- gluon jets are broader than quark jets
- charged multiplicities are similar: DELPHI + OPAL:

$$\langle n_{
m gluon} \rangle / \langle n_{
m quark} \rangle = 1.06 \pm 0.05$$

Intermittency

local particle density fluctuations

ALEPH, DELPHI, OPAL

- Factorial moments do rise with increasing rapidity resolution
 - → there are local density fluctuations
- Measurements well described by JETSET Monte Carlo program
 - \rightarrow explained by known physics (hard gluon emission ...)

Similar results for different variables and also for analyses in more than one dimension

Bose-Einstein Correlations

ALEPH, DELPHI, OPAL

Identical Bosons (like sign charged pions) prefer to occupy the same quantum state:

Model:

Enhancement at low Q

$$R(Q) = 1 + \lambda \exp(-Q^2 \cdot r^2)$$

LEP:

Strength $\lambda = 0.5 \pm 0.2$ Source size $r = 0.8 \pm 0.1$ fm

'Soft' hadron physics

Summary

- A large number of distributions has been measured
- All of them can be reproduced by standard Monte Carlo programs based on QCD parton showers
- Analytical QCD calculations, together with LPHD, give a good description of
 - charged multiplicity (\sqrt{s})
 - particle spectra (form and \sqrt{s} dependence)

Particle yields per hadronic Z⁰ decay:

charged particles	20.8 ± 0.2
π^0	9.8 ± 0.7
K ⁰ K*±	2.04 ± 0.10 0.93 ± 0.25
Λ	0.25 ± 0.03

Future QCD studies at the Z⁰ resonance

Experimental improvements:

- $\Delta \alpha_s = 0.005$ from R_Z
- QCD tests with identified quark and gluon jets
- more detailed studies of 'soft' phenomena

Theoretical improvements:

- higher order corrections to jet rates etc.
 - \rightarrow reduction of $\Delta \alpha_s$ from jet fraction

Summary and Conclusions

52

• Strong coupling constant

$$-\alpha_{\rm s} = 0.120 \pm 0.007$$

- Precise tests of $O(\alpha_*^2)$ QCD matrix element
 - gluon self interaction $\sqrt{}$
- soft hadron physics
 - all distributions reproduced by QCD Monte
 Carlo programs or analytical calculations

LEP has increased our confidence in QCD significantly