2003-11-12

Exercises, part 8 - Xmas edition

Thursday 2003-12-04 - Thursday 2004-01-08 16:00!

1. 'New physics'?

Pythia was used to generate in total 397272 'LHC' events, stored on file pythia.root (on CD). The sample includes standard model processes and - maybe - in addition events corresponding to other processes have been included. On the file only final state particles as deliverd by Pythia are stored, and only those with $|\eta| < 3$ and $|\vec{p}| > 1$ GeV, corresponding to the capabilities of a typical pp detector. Detector effects as inefficiencies, resolution, are NOT simulated.

In order to preselect 'hard scattering' processes only events with the following kinematical constraints are written to pythia.root:

• at least one high energy lepton (electron or muon) or photon with $p_{\perp} > 25 \, \mathrm{GeV}$.

or

- missing transverse energy MET $\equiv |\sum \vec{p}_{\perp}^i| > 75 \, \mathrm{GeV}$ or
- scalar sum of transverse momenta plus missing transverse energy $\sum |\vec{p}_{\perp}^i| + \text{MET} > 300\,\text{GeV}$

These constraints simulate the trigger conditions of a real experiment.

The data set of ~ 400000 events corresponds to an effective run time (at full LHC luminosity of $10^{34}/\mathrm{cm}^2/\mathrm{s}$) of only 22 seconds!

The events are written to the file pythia.root in 'root tree' format. Example-program pythia_analysis.C (on CD) shows how to read the data. For each particle the following parameters are stored:

- p_x in GeV
- p_y in GeV
- p_z in GeV (z = beam)
- $q \cdot m$ in GeV, where q = charge in units of elementary charge
- ullet d_V in mm = distance collision point particle creation

<u>Task:</u> Please analyse the simulated data set and check for deviations from the SM sample.

Try to look at the events in an unbiased way - dont rely on specific models, dont trust calculated cross sections and dont believe limits from other experiments.