Exercises, part 5

Thursday 2003-11-13 - Thursday 2003-11-20 16:00

1. $k T$ jet algorithm

Write an algorithm which clusters \boldsymbol{N} input 3-momentum vectors $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{i}}$ (we neglect masses) into \boldsymbol{n} jets $\overrightarrow{\boldsymbol{P}}_{\boldsymbol{k}}$ (4-momenta!) using the $\boldsymbol{k} \boldsymbol{T}$ algorithm (G.C. Blazey et al., Run II Jet Physics, hep-ex/0005012, siehe WWW) as described in the lectures. However, use as distance measure for pairs the following more general formula

$$
d_{i j}=\min \left(p_{T}^{i}, p_{T}^{j}\right)^{2} \frac{R_{i j}^{2}}{D^{2}} \quad R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(\eta_{i}-\eta_{j}\right)^{2}
$$

which depends on the dimensionless 'jet resolution parameter' \boldsymbol{D}.

2. $k T$ jets

The ASCII file 'hadrons.txt' (WWW!) contains 100 hadronic events generated with Pythia (2000 GeV , with cuts selecting high $\boldsymbol{p} \boldsymbol{T}$ events).
Format:

81
$-0.6 \quad 1.331 .52$
$-0.650 .152 .2$
$0.07-1.15 \quad 3.39$
$-0.42-0.41 \quad 5.77$
$1.12-0.7-0.74$
$0.66-0.75-6.32$

The file contains only particles with $\boldsymbol{E}>\mathbf{1 G e V}$ amd $|\boldsymbol{\eta}|<4$.
Apply the $\boldsymbol{k T}$ algorithm with $\boldsymbol{D}=\mathbf{1}$ and determine how many events/jets fulfill the selection used in the D0 publication Phys. Lett. B 525, 211 (2002) ($\boldsymbol{p}_{\boldsymbol{T}}>\mathbf{6 0 ~ G e V},|\boldsymbol{\eta}|<0.5$).

