SUSY Searches at LEP

Thomas Hebbeker Humboldt University Berlin

Graduiertenkolleg-Seminar Berlin-Dresden October 1999

<u>Outline:</u>

- Introduction and MSSM Phenomenology
- MSSM Searches at LEP
- Alternative Models
 - SUSY with R parity violation
 - GMSB SUSY models

(Low Scale Quantum Gravity)

Bibliography - Review Articles

- MSSM
 - H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rep. 117 (1985) 75.
 - G. Altarelli et al, Physics at LEP 2, CERN yellow report, 1996
 - Stephen P. Martin, A Supersymmetry Primer, hepph/9709356
 - Summaries by H.E. Haber, M. Schmitt in "Review of Particle Properties", Eur. Phys. J. C 3 (1998) 1.
- Models with R-Parity Violation
 - H. Dreiner, An Introduction to Explicit R-Parity Violation, hep-ph/9707435
- Gauge Mediated SUSY Breaking
 - G.F. Guidice and R. Rattazzi, Theories with Gauge-Mediated Supersymmetry Breaking, hep-ph/9801271, to appear in Phys. Rep.

Introduction

- do we need SUSY ?
- SUSY particle spectrum and masses
- sparticle interactions
- cosmology and LSP
- experimental issues

SUSY - what for ?

Do we like it ?

Do we need it ?

Higgs hierarchy problem:

SM: Higgs mass must be smaller than $\approx 1 \,\mathrm{TeV}$.

 Λ is cutoff parameter, describing onset of new physics. If large ($m_P \approx 10^{19} \,\text{GeV}, m_{GUT} \approx 10^{16} \,\text{GeV}$) higgs mass becomes huge, too!

SUSY solution:

2 scalar bosons add compensating term SUSY exact: $\Delta m_h = 0$.

Note: SM great! But need higgs, higgs needs SUSY...

Supermultiplets

Supermultiplets contain 'normal' particles and their SUSY partners.

In each supermultiplet the number of fermionic and bosonic degrees of freedom is equal.

Examples:

- up-Quark: $u, \bar{u} \ (\times \ 3 \ \text{colours}) = 12 \ \text{dof}$ 'sup' (spin 0): $\tilde{u}_L, \tilde{u}_R, \overline{\tilde{u}}_L, \overline{\tilde{u}}_R \ (\times \ 3 \ \text{colours}) = 12 \ \text{dof}$
- τ neutrino: $\nu_{\tau}, \bar{\nu}_{\tau} = 2 \text{ dof (massless!)}$ 'stau' (spin 0): $\tilde{\nu}_{\tau}, \bar{\tilde{\nu}}_{\tau} = 2 \text{ dof}$
- gluon: $g (\times 8 \text{ colours}) = 16 \text{ dof (massless!)}$ 'gluino' (spin 1/2): $\tilde{g} (\times 8 \text{ colours}) = 16 \text{ dof (Majorana!)}$

There are two types of supermultiplets, matter (or chiral) and gauge supermultiplets.

Matter supermultiplets contain SM fermions and Higgses.

Gauge supermultiplets contain SM gauge bosons.

N=1 SUSY

Table 1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.

Names		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	0	$(\tilde{u}_L \tilde{d}_L)$	(nT dL)	$(3, 2, \frac{1}{6})$
(×3 families)	n	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
•	р	\widetilde{d}_R^*	d_R^{\dagger}	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	Г	$(\tilde{v} \ \tilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ω	en R	e_R^{\dagger}	(1, 1, 1)
Higgs, higgsinos	H_u	$(H_{u}^{+} \dot{H}_{u}^{0})$	$(\widetilde{H}^+_{n} \widetilde{H}^0_{n})$	$(1, 2, +\frac{1}{2})$
	H_d	$(H_{q}^{0}H_{-}^{0}H)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2})$

Table 2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

$SU(3)_C, SU(2)_L, U(1)_Y$	(8,1,0)	(1, 3, 0)	(1, 1, 0)
spin 1	g	$W^{\pm} W^{0}$	B ⁰
spin 1/2	ũ.	W± Wo	₿º
Names	gluino, gluon	winos, W bosons	bino, B boson

5.9.1

Sparticle masses ?

1. Guess

SUSY operators (transform bosons \leftrightarrow fermions) commute with mass operator: Sparticles have same mass as particles (selectron = 511 keV).

No.

2. Guess

SUSY broken, ansatz:

$$L_{SUSY} \rightarrow L_{SUSY} + L_{soft}$$

 L_{soft} contains mass terms for sfermions and gauginos, of order M_{soft} . (Soft: no quadratic divergences . . .)

A PRIORI MASS SCALE UNKNOWN!

Hierarchy problem: $\Delta m_h \sim M_{soft}$

OK if $M_{soft} < \mathcal{O}(1 \,\mathrm{TeV})$

Big hopes for experimentalists! Within LHC energy regime!

Note: Lagrangian contains explicit mass terms for sparticles, forbidden for SM fermions (chirality) and SM gauge bosons (gauge invariance). Might explain why sparticles are heavier.

SUSY breaking schemes

Assumption: spontaneously broken local symmetry (goldstino \rightarrow gravitino)

Phenomenology: most general renormalizable soft SUSY breaking terms in L_{soft} "parametrization of our ignorance"

SUSY breaking models:

Breaking occurs in hidden sector.

A) Gravity Mediated (SUGRA = Supergravity)

Messengers: Gravitons

Gravitino heavy, only gravitational strength \rightarrow MSSM phenomenology

B) Gauge Mediated (GMSB = Gauge Mediated SUSY Breaking)

Messengers: Gauge bosons (electroweak, strong)

Gravitino very light ($\leq \text{keV}$), decent coupling strength \rightarrow LSP = gravitino!

Two Higgs doublets

SUSY requires (at least) two higgs doublets (SM: one).

Therefore SUSY MORE than doubles the SM particle spectrum ... + hiddein sector ...

Reasons:

1) Adler anomaly for FERMIONS

Sum of charges of all dof must be zero. SM: ok (argument in favor of 3 colors!): $-1+3 \cdot (\frac{2}{3}-\frac{1}{3}) = 0$ SUSY: need two doublets, with Y = +1/2 and -1/2.

Note:

- NOT sum of particles + antiparticles!
- The higgses are not problematic, only the higgsinos!

2) Supersymmetry constraints

Not all terms in the Lagrangian are allowed:

 H_{ud} cannot couple to down type fermions $(T_3 = -1/2)$, H_{du} cannot couple to up type quarks $(T_3 = 1/2)$.

If all fermions are massive both doublets are required.

Out of 8 (SM: 4) degrees of freedom spontaneous symmetry breaking leaves 5 (1) massive scalar particles (and gives masses to W^{\pm}, Z). h, #, A

H*, H

Particle Spectrum

Assumption: Graviton and Gravitino (high mass, tiny coupling) not relevant for particle physics today!

Mass Eig.	$= \\ \widetilde{e}_1^-, \widetilde{e}_2^- \\ \widetilde{u}_1, \widetilde{u}_2 \\ \widetilde{d}_1, \widetilde{d}_2$	$ ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$	χ_1^\pm, χ_2^\pm	
Int Eig.	$ \begin{array}{c} \tilde{\nu}_e \\ \tilde{\mathrm{e}}_L^-, \tilde{\mathrm{e}}_R^- \\ \tilde{\mathrm{u}}_L, \tilde{\mathrm{u}}_R \\ \tilde{\mathrm{d}}_L, \tilde{\mathrm{d}}_R \end{array} $	$ ilde{B}^0, ilde{W}^0, ilde{H}^0_u, ilde{H}^0_d$	$\widetilde{\mathrm{W}}^+, \widetilde{\mathrm{W}}^-, \widetilde{H}^+_u, \widetilde{H}^d$	0 <i>d</i> {
Spin	0000	1/2	1/2	1/2
Spin	$1/2 \\ 1/2 \\ 1/2$	1, 0	1,0	
Int. Eig. Spin	$v_e = \frac{v_e}{e^-}$ u $\frac{1/2}{1/2}$ d' $\frac{1/2}{1/2}$	$B^{0}, W^{0}, H^{0}_{u}, H^{0}_{d}$ 1, 0	${ m W}^+, { m W}^-, { m H}^+_{u}, { m H}^{d}$ 1,0	g 1

Same for other families!

Assumption: Mixing in between families negligible.

If quantum numbers are the same, mixing is allowed . . .

R parity

The multiplicative quantum number

$$R = (-1)^{3B + L + 2s}$$

distinguishes between 'ordinary particles' (R = +1) and sparticles (R = -1).

In the minimal SUSY Lagrangian R is a conserved quantum number.

However, it is possible to add additional terms which violate R conservation.

Most dramatic consequence: Proton could decay via

B and L are violated, B - L not.

In the MSSM R is conserved.

Important phenomenological consequences:

sparticles can be produced only pairwise

• the lightest sparticle (=LSP) is stable

Interactions of sparticles

Recipe to generate possible vertices involving sparticles:

- Take any SM vertex with three or 4 particles
- Replace two legs by the corresponding sparticles (add)

Example:

The couplings are the same as for the ordinary particles, as required by Supersymmetry.

Note: The L_{soft} SUSY breaking term does NOT affect (dimensionless) coupling constants.

Examples:

- selectron coupling to photon = electron charge = -1
- squark coupling to gluon = color = same strength as quark-gluon
- smuon $\tilde{\mu}$ coupling to Z boson:
- $g_{L} = 0.5 (g_{V} + g_{A}) = -0.5 + \sin^{2} \theta_{W}$

Similar for fermion-gaugino couplings etc.

Important: interaction eigenstates \neq mass eigenstates!

Phenomenology:

production cross sections and lifetimes \sim as for SM particles \ldots modulo mass corrections \ldots

SUSY and cosmology

SUSY particles would be created in the early universe.

The LSP would have survived, only annihiliation processes can reduce their number.

The LSP would contribute to the <u>cold dark matter</u>: best candidate !?

IF the LSPs are charged and/or coloured, they would be bound to ordinary matter and detectable on earth.

Cosmology:

The relic density can be estimated, for all charged particles and the coloured gluino:

$$n > 10^{-10} n_B$$

(maybe except squarks . . .)

Terrestrial searches:

Searches for anomalous protons and heavy isotopes (charge/mass):

$$n < 10^{-17} n_B$$

\longrightarrow The LSP must be electrically neutral and 'white': $\tilde{\nu}~~{\rm or}~~\tilde{\chi}^0_1$

Note:

Requiring in addition (we do NOT) that the LSP accounts for most of the dark matter constraints SUSY parameter space . . .

GUT = Grand Unification and SUSY

Three gauge groups $U(1)_Y$, $SU(2)_L$ and $SU(3)_C$ have coupling constants

$$\alpha_1 = \frac{5}{3} \frac{\alpha}{\cos^2 \theta_W} \qquad \alpha_2 = \frac{\alpha}{\sin^2 \theta_W} \qquad \alpha_3 = \alpha_s$$

They evolve logarithmically with energy scale μ :

SM-Example:

$$\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} = \frac{1}{1 + \beta \cdot \alpha_s(\mu_0) \cdot \ln \mu^2 / \mu_0^2} \qquad \beta = \frac{33 - 2N_q}{12\pi}$$

The μ dependence is influenced by the number of species of particles and sparticles.

SM: Three couplings don't 'unify'!

SUSY: GUT possible at $\mu \sim 10^{16}\,{
m GeV!}$

excluded by cosmology

Experiments for SUSY Searches

below $m \sim 10 \, {
m GeV}$: covered by previous experiments

- LEP $(e^+e^- 200 \text{ GeV})$: ≤ 2000 lightest higgs h: $\leq 100 \text{ GeV}$ lightest neutralino χ_1^0 : $\leq 40 \text{ GeV}$ sleptons, charginos: $\leq 100 \text{ GeV}$
- Tevatron $(p\bar{p} \ 2 \ \text{TeV})$: ≤ 2004 squarks, gluinos: $\leq 300 \ \text{GeV}$
- LHC (pp 14 TeV): \geq 2005 higgs: \leq 500 GeV squarks, gluinos: \leq 1000 GeV
- Linear Collider (e^+e^- 500 GeV): > 2010
 - ? precision measurements ?

above $m \sim 1000 \, {\rm GeV}:$ EXCLUDED by theory

also: precision tests, cosmology . . .

SUSY spectrum and implications for experiments

No clear mass hierarchy SM - SUSY. Possibilities:

- lightest sparticle heavier or lighter than top
- stop heavier or lighter than top

A) HIGGS

Lightest higgs is ALWAYS relatively light, $M_h < 130 \,\text{GeV}$.

It has a fair chance to be found before any sparticle! But it is not a 'prove' of SUSY! LHC will discover it or rule it out.

B) SPARTICLES

LSP = sneutrino or neutralino Not necessarily found first (xsection, signature)!

Example: χ_1^0 pair production: invisible (if LSP) χ^{\pm} pair production: long or shortlived: easy to detect

Limits on other sparticles DO constrain also the LSP mass, since all masses are a function of a few parameters.

Example:

Experimental neutralino mass limit mainly from chargino and slepton searches!

Which experiments are best?

 $\mathsf{Tevatron}\,\leftrightarrow\,\mathsf{LEP}$

TEVATRON $par{p}$, $\sqrt{s}=~2000\,{
m GeV}$

- + energy high, but only $\sim 1/6$ in parton-parton collision, $\sim 400\,{\rm GeV}$
- + large xross section (strong interaction) for squark and gluino production

 \longrightarrow best for \tilde{q}, \tilde{g}

LEP e^+e^- , $\sqrt{s}=~200\,{
m GeV}$

+ low background, clear signatures

 \longrightarrow best for $\tilde{l}, \tilde{\chi}, \tilde{\chi}^{\pm}$, higgs

Squarks and Gluinos are heavier in most SUSY scenarios. Example in MSSM for large values of μ :

$$m_{\tilde{\chi}_1^0} \approx 0.5 \cdot M_2 \qquad m_{\tilde{g}} \approx 3 \cdot M_2$$

Ruling out a 50 GeV neutralino sets a bound of 300 GeV for the gluino!

LEP 1:

1989 - 1995 $\sqrt{s} \approx 91 \,\text{GeV}$ $L = 160 \,\text{pb}^{-1}$ / experiment

Limits at LEP II (200 GeV)

Theory

Electroweak Xsection for pair production (s channel)

Experiment

Typical parameters: integrated luminosity $\mathcal{L} = 200/\text{pb}$ acceptance and efficiency $\epsilon = 30\%$ SM background events after cuts $N_B = 5$

Measure $N = N_B = 5$ (\rightarrow upper limit $N_E = 6$ at 95% CL) cross section upper limit:

MSSM Phenomenology, Searches, Limits

- Constrained MSSM = MSSM-6
- LEP Searches
 - Higgses
 - Sneutrinos
 - Sleptons
 - Sbottom, Stop
 - Neutralinos
 - Charginos

SIGNATURE: missing E/P due to escapena LSP

Limits in MSSM parameter space and on sparticle masses

MSSM Terminology

WARNING: different definitions used, rather confusing . . .

The most general 'minimal' extension of the SM is defined by:

- SM gauge group SU(3)×SU(2)×U(1)
- Minimal particle content
- no R violating terms
- most general soft susy breaking terms (sparticle masses, higgs couplings)

Problems:

- predicts FCNC, additional CP violation . . . NOT SEEN!
- has 124 free parameters (compare: SM has 18 param.: α , m_Z , m_b , m_H , V_{ud} ...)

Here: 'Constrained MSSM' with 6 only additional free parameters = MSSM-6.

Parameters:

$$m_0, M_2, \mu, m_A, A_0, \tan \beta$$

Running Masses

Also masses are energy scale dependent.

Two energy scales:

- GUT scale $\sim 10^{16} \, {\rm GeV}$
- SUSY breaking scale \approx electroweak scale $\sim 100\,{\rm GeV}$

low tan β

Squark and gluino masses: 'strong' running \rightarrow heavy!

The six MSSM-6 parameters

Note: 5 more than in SM (higgs mass!)

Sfermion masses Assume all scalar fermion masses determined by universal

parameter m_0 at GUT scale. Formulae for masses at elw. scale: later . . .

Note: possible additional assumption: ALL scalar masses equal: $m_0 \longrightarrow m_A$.

• Gaugino masses

Assume a common gaugino mass of $m_{1/2}$ at the GUT scale. At elw. scale:

$$M_2 \approx 0.82 \, m_{1/2}$$

The three gaugino masses corresponding to $U(1)_Y$, $SU(2)_L$ and $SU(3)_C$ differ at the elw. scale:

$$M_1 = \frac{5}{3} \tan^2 \theta_W \cdot M_2 \approx 0.5 \cdot M_2$$
$$M_3 = \frac{\alpha_s}{\alpha} \sin^2 \theta_W \cdot M_2 \approx 3.5 \cdot M_2$$

• Higgsino masses

Assume a common higgsino (neutral, charged) mass parameter μ at the elw. scale.

It can be negative. $(M_2/\mu \text{ can have both signs}; M_2 \text{ is defined as positive.})$

Note: possible additional assumption: electroweak symmetry breaking occurs 'automatically' via radiative corrections: fixes μ^2 but not the sign

• Higgs mass parameter

There is only one scale determining all higgs masses. Choose the physical mass m_A of the CP-odd higgs A (at the elw. scale).

• ratio of vacuum expectation values

for the two higgs doublets $v_u/v_d = \tan \beta$ at the elw. scale influences higgs and gaugino masses as well as higgs couplings

formulae: below

• trilinear couplings

 \mathcal{L}_{soft} contains terms $\sim A_u \,\overline{\tilde{u}}_R \, \tilde{u}_L \, H_u + \ldots$ which introduce mixing for 'right' and 'left' sfermions. details: later

Here we assume a universal 'trilinear coupling' A_0 at the GUT scale.
MSSM-6 parameters

- m₀ = Universal scalar mass at GUT scale
 0 . . . ≈ 1000 GeV
- $M_2 = SU(2)$ Gaugino mass at electroweak scale 0 ... $\approx 1000 \,\text{GeV}$
- $\mu = \text{Higgsino mass parameter (elw)} \approx -1000 \dots \approx 1000 \text{ GeV}$
- $\tan \beta = \text{ratio of vacuum expectation values (elw)}$ 1 ... ≈ 50
- $A_0 = \text{Universal trilinear couplings (GUT)}$ 0 ... $\approx 1000 \,\text{GeV}$
- $m_A = \text{Physical mass of CP-odd Higgs}$ 0 ... $\approx 1000 \,\text{GeV}$

Mass ranges: determined by higgs hierarchy problem $\tan\beta$ range: see below . . .

Additional requirement: LSP has no electromagnetic or strong interaction (cosmology) $\longrightarrow \tilde{\chi}, \tilde{\nu}$

Sampling the parameter space

Total:

8,869,770 points

Positive sfermion masses + cosmology (LSP): 5,520,099 points $\equiv 100\%$

Reminder: SM Higgs mechanism

11

• Add to SM Lagrangian Higgs potential

$$V(|\phi|) = \lambda \left(\frac{1}{2}|\phi|^4 - v^2|\phi|^2\right)$$

 $(\lambda, v > 0).$

SU(2) doublet ϕ with 4 real components

- Spontaneous symmetry breaking Minimum: 3 components 0, fourth $= \phi^0 = v$. Expand around minimum: $\phi = v + h$
- Φ couples to bosons and fermions (Yukawa coupling).

Resulting new terms in \mathcal{L} :

$$\sim \lambda v^2 h^2$$
 massive particle scalar, neutral: Higgs
$$\sim g^2 v^2 Z_\mu Z^\mu + \dots W$$
 mass terms for $Z, W^+, W^-!$
$$\sim g^2 v h Z_\mu Z^\mu + \dots W$$
 Higgs Z coupling $\sim m_Z$
$$\sim \tilde{g}_f v \bar{\Psi} \Psi$$
 fermion mass term $m_f \sim \tilde{g}_f$

 $\sim { ilde g}_f h {ar \Psi} \Psi$ Higgs fermion interaction $\sim m_f$

 $v = 246 \, {
m GeV}$ fixed since $g^2 v^2 \sim m_Z^2$

 \tilde{g}_f fixed by measured fermion masses

 λ and higgs mass $m_h \sim \sqrt{\lambda} v$ unknown!

Coupling of higgs to particle \sim particle mass!

SM Higgs branching fractions

All higgs properties can be calculated as a function of the higgs mass = only free parameter!

$$H \rightarrow f \bar{f} \qquad H \rightarrow W^+ W^-, ZZ$$

Higgs decays preferentially into heavy particles!

MSSM: two Higgs Doublets

... couple to UP or DOWN type fermions

Vacuum expectation values

 $m_Z^2 \sim v_{SM}^2 = v_{MSSM}^2 = v_u^2 + v_d^2 \equiv (v \sin \beta)^2 + (v \cos \beta)^2$

 $\tan \beta = \frac{v_u}{v_d}$ influences all masses and Higgs couplings. Example: top and bottom:

$$m_t \sim \tilde{g}_t v_u = \tilde{g}_t v \sin \beta \qquad m_b \sim \tilde{g}_b v_d = \tilde{g}_b v \cos \beta$$

 $\tilde{g} =$ Yukawa couplings

Range of $\tan \beta$?

A) In SM differences in \tilde{g}_t and \tilde{g}_b cause mass difference for top and bottom.

 $\tan\beta \to 1$

B) In GUT models unification also of Yukawa couplings is likely. Mass difference then due to $\tan \beta$:

$$\tan\beta \sim \frac{m_t}{m_b} \sim \frac{175}{4.5} \sim 40$$

$$Assume: \quad 1 \le \tan\beta < 50$$

MSSM Higgs Sector

2 komplex Higgs doublets = 8 scalar degrees of freedom

$$\left(\begin{array}{c}H_{u}^{+}\\H_{u}^{0}\end{array}\right) \qquad \left(\begin{array}{c}H_{d}^{0}\\H_{d}^{-}\end{array}\right)$$

4 neutral (\rightarrow Z mass): 3 neutral Higgses, h, H, A [A = CP - odd] (CP = +, +, -)

4 charged ($\rightarrow W^+, W^-$ mass): 2 charged Higgses, H^+, H^-

These mass eigenstates are linear combinations of the weak isospin components H_u^0 , H_d^0 . . .

Born level:

Higgs sector determined by only two MSSM parameters

$$aneta m_A$$

Simple mass relations:

 $m_h < m_Z < m_H \qquad m_h < m_A \qquad \qquad m_{H^{\pm}} > m_W$

Radiative corrections $(m_t, m_{\tilde{t}})$: (!)

Large for m_h , can be as heavy as $\approx 130 \, {\rm GeV}$

Masses and couplings now depend also on the other MSSM parameters!

Neutral Higgses: Masses and Mixing

Born level:

MASSES:

$$m_h^2, m_H^2 = \frac{1}{2} \left[m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 + m_Z^2)^2 - 4m_Z^2 m_A^2 \cos^2 2\beta} \right]$$

$$m_A = m_A \qquad (!)$$

MIXING described by angle α :

$$\begin{pmatrix} h \\ H \end{pmatrix} \sim \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix}$$
$$\frac{\sin 2\alpha}{\sin 2\beta} = -\frac{m_A^2 + m_Z^2}{m_H^2 - m_h^2}$$

 α determines h,H couplings to Z and to fermions.

Rad. Corrections:

$$m_h \to m_h + \Delta m_h$$

$$(\Delta m_h)^2 \sim m_t^4 \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) \le (40 \,\mathrm{GeV})^2$$

Mass of lightest MSSM Higgs

Mass range of lightest MSSM Higgs

Born level

Mixing angle α

Mass range of lightest CP-even Higgs

rad. corr. incl. (approx.)

Neutral Higgs Production at LEP

Complementary!

Unlikely/not possible:

 $e^+e^- \rightarrow h, A$: electron coupling to higgses tiny $e^+e^- \rightarrow \gamma \rightarrow \text{higgses:}$ photon doesn't couple to h, A $e^+e^- \rightarrow Z \rightarrow AA$: Bose symmetry $e^+e^- \rightarrow Z \rightarrow hh$: Bose symmetry

Understanding xsection formula:

 $\begin{pmatrix} G_Z \\ A \end{pmatrix} \sim \begin{pmatrix} \sin \beta & -\cos \beta \\ \cos \beta & \sin \beta \end{pmatrix} \cdot \begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix}$ $Zh \text{ coupling } \sim \sin \beta \cos \alpha - \cos \beta \sin \alpha \sim \sin(\beta - \alpha)$ Similar for hA.

Cross section factor for hZ production

 $=\sin^2(\beta-\alpha)$

Neutral Higgses: Xsection

Neutral Higgs Decay

h

$$uuh \sim \tilde{g}_u h \sim \frac{m_u}{v \sin \beta} \qquad \qquad ddh \sim \tilde{g}_d h \sim \frac{m_d}{v \cos \beta}$$

A) $\tan \beta$ small: branching fractions as in SM; dominant for $m_h = 70 - 100 \,\text{GeV}$: $b \,\overline{b}$.

B) $\tan \beta$ large: relative to SM branching fractions to DOWN fermions enhanced by $|\tan^2 \beta \cdot \tan^2 \alpha|$ dominant for $m_h = 70 - 100 \,\text{GeV}$: b b !

Also possible:

 $h \rightarrow A A$ relevant for $m_A < 30 \,\mathrm{GeV}$, already excluded

 $h \rightarrow \tilde{\chi} \tilde{\chi}$ covered by searches for 'invisible' higgses

MSSM h search \approx SM higgs search !

A

dominant for $m_A = 70 - 100 \,\text{GeV}$: b \overline{b} .

Ratio of h couplings to up and down

Charged Higgses: Masses, Mixing, Production, Decay

MASSES (Born level):

$$m_{H^{\pm}}^2 = m_W^2 + m_A^2$$

MIXING described by β :

$$\left(\begin{array}{c}G_W\\H^+\end{array}\right) \sim \left(\begin{array}{c}\sin\beta & -\cos\beta\\\cos\beta & \sin\beta\end{array}\right) \cdot \left(\begin{array}{c}H_u^+\\H_d^{-\star}\end{array}\right)$$

PRODUCTION:

DECAY:

 $\begin{array}{ll} H^+ \to c \overline{s} & \sim & \tan^2 \beta \cdot m_s^2 + \cot^2 \beta \cdot m_c^2 \\ H^+ \to \nu_\tau \tau^+ & \sim & 0 + \tan^2 \beta \cdot m_\tau^2 \end{array}$

complementary!

MSSM higgs search guide

At LEP 2 ($\sqrt{s} \approx 200 \, {\rm GeV}$):

- h is lightest accessible higgs particle
 - xsection small: $< 1 \,\mathrm{pb}$ for $m_h = 90 \,\mathrm{GeV}$
 - + clear signature:2 b jets plus missing energy, 4 b jets
 - + good sensitivity to MSSM parameters: $m_A \leq 100 \,\text{GeV}$, $\tan \beta \approx 1$
- H^{\pm} = charged higgs particles:
 - xsection small
 - huge background: W^+W^- production
 - no MSSM sensitivity!

Neutral Higgs Search at LEP II

accessible mass range: $70 - 100 \,\mathrm{GeV}$

h, A decay preferentially into b, \overline{b} \rightarrow 2 b-Jets, with decay length of a few mm

'Simple':

Difficult (background!):

Higgs search: Background processes

2

$$\begin{array}{rccc} \mathrm{Z} & \to & \nu \bar{\nu} \\ \mathrm{H} & \to & \mathrm{q} \bar{\mathrm{q}} \to \mathrm{Jet} \ \mathrm{Jet} & m \approx 81 \, \mathrm{GeV} \end{array}$$

Higgs Candidate ($\sqrt{s} = 196$ GeV) L3 1999

Run # 685703 Event # 3598 Total Energy : 196.25 GeV

$$\begin{array}{rccc} \mathbf{Z} & \to & q\bar{q} \\ \\ \mathbf{H} & \to & \mathbf{b}\bar{\mathbf{b}} \to \mathbf{J}\mathbf{et} \ \mathbf{J}\mathbf{et} \end{array}$$

Higgs Candidate ($\sqrt{s} = 196$ GeV) L3 1999

Run # 754203 Event # 4501 Total Energy : 194.13 GeV

hA Candidate at $\sqrt{s} = 91$ GeV DELPHI 1992

Inside of vertex detector/beam pipe:

 $e^+e^- \rightarrow h \ A \rightarrow b\bar{b} \ b\bar{b}$

LEP neutral higgs limits $(\sqrt{s} \le 196 \, { m GeV})$

LEP neutral higgs limits $(\sqrt{s} \le 196 \, \text{GeV})$

 $m_h > 84.3 \,\mathrm{GeV} - 95\% CL$

Higgs Candidate ($\sqrt{s} = 161 \text{ GeV}$) OPAL 1996

 $e^+e^- \rightarrow H^-H^+ \rightarrow \tau \, \bar{\nu} \, c \, \bar{s}$

Charged Higgs Search ($\sqrt{s} = 189 \text{ GeV}$)

Assume 100% branching fraction $H \rightarrow cs$

LEP charged higgs limits $(\sqrt{s} \le 196 \, {
m GeV})$

 $m_{H^{\pm}} > 77.0 \,\mathrm{GeV} \quad 95\% CL \quad !!!$

Sfermion Masses I

Assumption:

Universal sfermion mass parameter m_0 at GUT scale No mixing between families (\leftrightarrow FCNC) (No mixing between L and R)

Sparticle masses at ELW scale, generic formula:

$$m^2(\tilde{f}) - m^2(f) = m_0^2 + \Delta_{HH} + \Delta_{gauge}$$

 Δ_{HH} is due to quartic 4-boson coupling $HH\tilde{f}\tilde{f}$:

 $\Delta_{HH} = (T_3 - Q \sin^2 \theta_W) \cos(2\beta) m_Z$

 Δ_{gauge} decribes the running from GUT to ELW scales, determined by the coupling to the different gauge fields:

$\Delta_{gauge} = \Delta_{SU(3)} + \Delta_{SU(2)} + \Delta_{U(1)}$

The individual terms are proportional to the corresponding gaugino mass squared and the sfermion-gaugino coupling²: With GUT:

 $\Delta_{SU(3)} \approx N_C^2 \cdot 0.91 M_2^2$ $\Delta_{SU(2)} \approx T^2 \cdot 2.96 M_2^2 \qquad \Delta_{U(1)} \approx Y^2 \cdot 0.22 M_2^2$

Sfermion Masses II

<u>First family:</u>

$m_0^2 + 8.95 M_2^2 {+} 0.35 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 8.95 M_2^2 {-} 0.42 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 0.80 M_2^2 {+} 0.50 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 0.80 M_2^2 {-} 0.27 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 8.30 M_2^2 {+} 0.15 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 8.22 M_2^2 {-} 0.08 \cos 2\beta \cdot m_Z^2$	$m_0^2 + 0.22 M_2^2 {-} 0.23 \cos 2\beta \cdot m_Z^2$
$m^2(\tilde{u}_L) - m^2(u)$	$m^2(\tilde{d}_L) - m^2(d)$	$m^2(ilde{ u})$	$m^2(\tilde{e}_L) - m^2(e)$	$m^2(\tilde{u}_R) - m^2(u)$	$m^2(\tilde{d}_R) - m^2(d)$	$m^2(\tilde{e}_R) - m^2(e)$

Note: $\cos 2\beta = -\frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} < 0$

Sfermion Masses III: Mixing!

In general \tilde{f}_R and \tilde{f}_L mix into the mass eigenstates $\tilde{f}_1 < \tilde{f}_2$:

$$\tilde{f}_1 = \tilde{f}_L \cos \theta + \tilde{f}_R \sin \theta \tilde{f}_2 = -\tilde{f}_L \sin \theta + \tilde{f}_R \cos \theta$$

Mass matrix 'up':

$$\left(\begin{array}{cc} m_L^2(\tilde{f}) & m_f \cdot (A - \mu \cot \beta) \\ m_f \cdot (A - \mu \cot \beta) & m_R^2(\tilde{f}) \end{array}\right)$$

Mass matrix 'down':

$$\begin{pmatrix} m_L^2(\tilde{f}) & m_f \cdot (A - \mu \tan \beta) \\ m_f \cdot (A - \mu \tan \beta) & m_R^2(\tilde{f}) \end{pmatrix}$$

The diagonal terms are given by the formulae shown before.

MIXING relevant only if m_f large!

$$m_{1,2}^2 = \frac{1}{2}(m_R^2 + m_L^2) \mp \sqrt{(m_L^2 - m_R^2)^2/4 + O^2}$$

with off diagonal terms O from mass matrix

$$-\cos 2\theta = \frac{m_L^2 - m_R^2}{m_2^2 - m_1^2}$$

Sfermion Masses IV

Consequences:

- Sfermion masses depend on $m_0, M_2, \tan\beta$ (and μ, A).
- Since $\Delta_{SU(3)}$ is large squarks are much heavier than sleptons \rightarrow Tevatron!.
- $m^2(\tilde{d}_L) m^2(\tilde{u}_L) = m^2(\tilde{e}_L) m^2(\tilde{\nu}) > 0$ due to HH term.
- The 'right' charged sleptons are a bit lighter than their 'left' sibblings; the left Z coupling $g_L = -0.27$ is slightly bigger than the right Z coupling $g_R = -0.23 \rightarrow \text{look for both!}$.
- Mixing can be important for the heavy sfermions, notably sbottom and stop $\rightarrow \text{LEP}!$.
- The sneutrino (LSP candidate!) can be lighter or heavier than \tilde{e}_R , depending on the relative size of $\Delta_{HH} < 0$ and Δ_{gauge}
- For certain combinations of MSSM parameters the square of the particle mass can be negative = unphysical: a priori excluded!

Sneutrino

3 families degenerate!

PRODUCTION:

Sneutrino can be stable or might DECAY:

a) Invisible! b) Ruled out for $m_{\tilde{\nu}} < m_Z/2$ (chargino mass)

Limit from invisible Z width measured at <u>LEP I</u>:

 $\Delta \Gamma_{\rm inv} < 2.0 \,{\rm MeV} \qquad 95\% \, CL$

$$\Delta \Gamma_{\rm inv}^{\tilde{\nu}} = 3 \cdot \frac{1}{2} \cdot \left[1 - \left(\frac{2m_{\tilde{\nu}}}{m_Z} \right)^2 \right]^{3/2} \cdot \Gamma_{\rm inv}^{\nu} \qquad \Gamma_{\rm inv}^{\nu} = 167 \, {\rm MeV}$$

RESULT ('indirect' limit): $m_{\tilde{\nu}} > 44.6 \, {
m GeV} - 95\% \, CL$

Limits from LEP I, Z lineshape

A) Γ_Z Determine total Z width from ANY decay channel:

B) Γ_i Measure pole cross sections for all 'visible' decay channels $(q\bar{q}, l^+l^-)$ and extract corresponding partial widths:

 $\Gamma_i \sim \sigma_i$

C) Γ_{inv} Assume $N_{\nu} = 3$ and partial widths into neutrinos as predicted by SM:

$$\Delta\Gamma_{\rm inv} = \Gamma_Z - \sum_i \Gamma_i - 3\,\Gamma_\nu$$

due to new particles which are not detected/selected.

$$\Delta \Gamma_{\rm inv} < 2.0 \,{\rm MeV} - 95\% \, CL$$

Sneutrino as LSP ?

LSP candidates: $\tilde{\nu}$, $\tilde{\chi}_1^0$

Only in certain regions of the (allowed!) MSSM parameter space is $m_{\tilde{\nu}} < m_{\tilde{\chi}_1^0}$ fulfilled.

Theoretical limit:

 $m_{\tilde{\nu}} < 44.2 \,\mathrm{GeV} - 95\% \, CL$

Experimental limit:

 $m_{\tilde{\nu}} > 44.6 \,\text{GeV} - 95\% \, CL$

LSP = LIGHTEST NEUTRALINO

Smuon

PRODUCTION and **DECAY**:

Xsection depends only on smuon mass and \sqrt{s} ($\sim \beta^3$) SIGNATURE:

Two acollinear muons

BACKGROUNDS:

'two photon': $e^+e^-\mu^+\mu^-$, W pairs: W^+W^- ...

REMARKS:

- Visible only if $\Delta m = m(\tilde{\mu}) m(\tilde{\chi}_1^0) > a$ few GeV.
- Righthanded sfermions are lighter than lefthanded ones!

Alternative decay: $\tilde{\mu} \rightarrow \nu_{\mu} \tilde{\chi}^{\pm}$ Branching fractions depend on $M_2, \mu, \tan \beta!$

Opal 183 GeV:

Smuon Candidate (ALEPH, $\sqrt{s} = 181 \text{ GeV}$)

Selectrons

Cross section bigger than for smuon pair production! Xsection depends also on μ and strongly on M_2 and $\tan \beta$ (neutralino mass and couplings).

SIGNATURE:

Two acollinear electrons

BACKGROUNDS:

'two photon': $e^+e^- e^+e^-$, W pairs: W^+W^- , radiative bhabhas $e^+e^-\gamma$...

REMARKS: $\widetilde{\ell} \rightarrow \ell \widetilde{\gamma}_1^\circ$

• Visible only if $\Delta m = m(\tilde{\boldsymbol{\mu}}) - m(\tilde{\chi}_1^0) > a$ few GeV.

DELPHI	Run:	103022	Evt:	3349		TI	D	TE	тs	тк	TV	ST	РА
🛃 Beam: 9	98.1 GeV	Pro	c : 26 - Jur	n - 1999	Act	¢		8	0	4	0	0	0
DAS: 17-J	Jun - 1999	Sca	n: 2 - Jul	- 1999		((УX	75 J	0)	5)	οχ	οĭ	0)
1	17:53:47		Та	n+DST	Deact	c	,	o	o	o	o	o	o
-					Deact	(() X	οĭ	0)	0)	οĭ	οĭ	0)

Stau

Similar to smuon but:

A) Stau mixing

How big can this effect be ?

Mass matrix, off diagonal: $m_{\tau} \mu \, \tan \beta \, \rightarrow \, (300 \, \text{GeV})^2 = \text{huge!}$

A priori: $\theta = 0 - 90^{0}$. Note: $\theta = 90^{0} =$ 'no mixing'!

Since $m_{\tilde{\tau}_R} < m_{\tilde{\tau}_L}$ here $\theta = 45^0 - 90^0$.

 $\tilde{\tau}_1$ coupling to Z:

$$g_1 = g_L \cdot \cos^2 \theta + g_R \cdot \sin^2 \theta = -\frac{1}{2} \cos^2 \theta - Q \sin^2 \theta_W$$

$$g_L = -\frac{1}{2} - Q\sin^2\theta_W \qquad g_R = -Q\sin^2\theta_W$$

$$g_1 \equiv 0 \quad \leftrightarrow \quad \cos \theta = 0.68 \quad \theta = 48^0$$

B) Tau decays!

Example:

$$e^+e^- \rightarrow \tilde{\tau}_1^- \tilde{\tau}_1^+ \rightarrow \tau^- \tau^+ + X_{inv} \rightarrow \mu^- e^+ + X'_{inv}$$

Stop (Sbottom)

PRODUCTION:

DECAY:

SIGNATURE: Two acollinear jets (+ leptons)

BACKGROUNDS:

'two photon': $e^+e^-q \bar{q}$, '4-fermion': $Z\gamma^*$...

REMARKS:

- Visible only if $\Delta m = m(\tilde{t}) m(\tilde{\chi}_1^0, \tilde{\nu}) > a$ few GeV.
- Mixing: $\tilde{t}_1 = \tilde{t}_L \cos \theta + \tilde{t}_R \sin \theta$ For $\cos \theta = 0.56$ $\theta = 56^0$ NO coupling to Z!

<u>Sbottom:</u> similar, but NO decay $\tilde{b} \rightarrow t + \tilde{\chi}^{\pm}$! Z coupling vanishes for $\cos \theta = 0.39$ $\theta = 67^{0}$

Stop Candidate (L3, $\sqrt{s} = 183$ GeV)

Run # 673109 Event # 3053 Total Energy : 30.64 GeV

Neutralinos: Masses and Mixing

Mass matrix from Lagrangian, here for basis

$$(-i\tilde{\gamma}, -i\tilde{Z}, \cos\beta\tilde{H}_u^0 - \sin\beta\tilde{H}_d^0, \sin\beta\tilde{H}_u^0 + \cos\beta\tilde{H}_d^0)$$

($M_1 \cos^2 \theta_w + M_2 \sin^2 \theta_w$	$(M_2 - M_1)\cos\theta_w\sin\theta_w$	0	0
	$(M_2 - M_1)\cos\theta_w\sin\theta_w$	$M_2 \cos^2 \theta_w + M_1 \sin^2 \theta_w$	m_Z	0
	0	m_Z	$\mu\sin 2eta$	$-\mu \cos 2 eta$
	0	0	$-\mu\cos 2eta$	$-\mu \sin 2\beta$ /

With GUT gaugino mass relations and $\sin^2 \theta_W = 0.23$:

$$\begin{pmatrix} 0.61 M_2 & 0.21 M_2 & 0 & 0\\ 0.21 M_2 & 0.88 M_2 & m_Z & 0\\ 0 & m_Z & \mu \sin 2\beta & -\mu \cos 2\beta\\ 0 & 0 & -\mu \cos 2\beta & -\mu \sin 2\beta \end{pmatrix}$$

After diagonalization: mass eigenstates $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$.

Special cases:

 $\begin{array}{l} \mbox{Gaugino region } |\mu| \gg M_2 \\ \chi_1^0 \mbox{ is dominantly 'gaugino' } (\tilde{\gamma}, \tilde{Z}) \\ m_{\tilde{\chi}_1^0} \approx 0.5 \cdot m_{\chi_1^\pm} \approx 0.5 \cdot M_2 \end{array}$

 $\begin{array}{l} \mbox{Higgsino region } |\mu| \ll M_2 \\ \chi_1^0 \mbox{ is dominantly 'higgsino' } (\tilde{H}_u^0, \tilde{H}_d^0) \\ m_{\tilde{\chi}_1^0} \approx m_{\chi_1^\pm} \approx |\mu| \end{array}$

Neutralinos: Couplings

Relevant: weak interaction eigenstates!

$$(\tilde{\chi}_i) = (f_{ij}) \cdot (\tilde{\chi}_j)$$

e

with $i=1,2,3,4,~j= ilde{\gamma}, ilde{Z}, ilde{H}_{m{y}}, ilde{H}_{m{d}}$

A) coupling to fermion + sfermion:

all eigenstates, higgsinos $\sim m_f$

Example: $e \tilde{e} \tilde{\chi}^0$

higgsino components: zero or negligible

B) coupling to gauge boson $\hat{f}(W^{\pm}, \gamma, Z)$ + gaugino $m(\tilde{\chi}_{m}^{0}, \tilde{\chi}_{m}^{\pm})$

zero for $\gamma \tilde{\gamma} \tilde{\gamma}, Z \tilde{Z} \tilde{Z}, Z \tilde{\gamma} \tilde{\gamma}, \gamma \tilde{H} \tilde{H}$ strength $\sim f_{lX} \cdot f_{mX}$

Example: $Z \chi_l^0 \chi_m^0$

photino/zino contribution: 0 strength $\sim f_{l3}f_{m3} + f_{l4}f_{m4}$ only common components!

C) coupling to gaugino + Higgs

$\tilde{\chi}^0$ Production and Decay at LEP PRODUCTION:

 $e^+e^- \rightarrow \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$ invisible!

Constructive interference.

Xsection depends on $M_2, \mu, \tan\beta$ and m_0 !

s channel: higgsino components

t channel: photino, zino components

In some regions of parameter space: Need also $\tilde{\chi}_1^0 \tilde{\chi}_3^0 \dots$

DECAY:

Lifetime and decay lengths short (invisible) unless mass difference $\Delta = m_{\tilde{\chi}_2} - m_{\tilde{\chi}_1} \ll 1 \,\text{GeV}$

$ilde{\chi}^0$ Search at LEP

Principal SIGNATURE:

Signature same/similar for other SUSY searches!

EXPERIMENTAL ISSUES:

- in 'mixed' region $(M_2 \approx -\mu \approx 50 \,\text{GeV})$: 'chaotic' MSSM parameter dependence
- in some regions: cascade decays, radiative decays.
- if mass difference Δ small: visible energy small!
- background: 'two photon': e⁺e⁻f f̄,
 '4-fermion': ZZ, W⁺W⁻...

L3 189 GeV:

DELPHI, $189 \, \text{GeV}$

assuming $ilde{\chi}^0_2
ightarrow ilde{\chi}^0_1 + q \, ar{q}$

Charginos: Masses, Mixing, Couplings

MASSES/MIXING:

COUPLINGS:

mass matrix from Lagrangian, here for basis

$$(-i\tilde{W}^+, \tilde{H}_d^+), (-i\tilde{W}^+, \tilde{H}_u^-)$$

$$\left(\begin{array}{cc} M_2 & \sqrt{2}m_W \sin\beta\\ \sqrt{2}m_W \cos\beta & \mu \end{array}\right)$$

After diagonalization: mass eigenstates $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ with

$$\begin{split} m_{\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{2}^{\pm}}^{2} &= 0.5 \cdot [M_{2}^{2} + \mu^{2} + 2m_{W}^{2} \\ \mp \sqrt{(M_{2}^{2} - \mu^{2})^{2} + 4m_{W}^{4} \cos^{2}(2\beta) + 4m_{W}^{2}(M_{2}^{2} + \mu^{2} + 2M_{2}\mu\sin(2\beta))}] \end{split}$$

