The "Large Hadron Collider" LHC

1.0

Outline

Constant A The As on

Particle Physics

accelerator detectors

physics

• LHC

Conseil Européen pour la Recherche Nucléaire

European Center for Particle Physics

Sur le terrain du futur institut nucléaire

Sous la conduite de M. A. Picot, les membres du Conseil européen pour la recherche nucléaire se sont rendus hier à Meyrin pour reconnaître le terrain où s'élèvera le Centre nucléaire (voir en Dernière heure) (Photo Freddy Bertrand, Genève

Gargamelle bubble chamber 1970

inauguration ISR accelerator 1971

EIZO TEL

Tim Berners-Lee WWW 1991

Carlo Rubbia und Simon van der Meer Nobel prize 1984 (W, Z bosons)

Outline

- LHC
 - accelerator
 - detectors
 - physics

The Structure of Matter

The Standard Model of Particle Physics

matter: spin $\frac{1}{2}$ - fermions:

leptons:
$$\begin{pmatrix} \nu_{e} \\ e \end{pmatrix}$$
 $\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}$ $\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$ quarks: $\begin{pmatrix} u u u \\ d d d \end{pmatrix}$ $\begin{pmatrix} c c c \\ s s s \end{pmatrix}$ $\begin{pmatrix} t t t \\ b b b \end{pmatrix}$

interactions: spin 1 – gauge bosons:

electroweak:	photon	γ	massless
	Z boson	Z	91 GeV
	W boson	W+ W-	80 GeV
strong:	gluon	g	massless

Experimental data = well described!

particle physics and cosmology

dark matter = neutralino ? (supersymmetry)

particle accelerators investigate processes 10^{-10} s after the Big Bang(100 GeV)

matter – antimatter asymmetry ?

The Higgs particle

Model of electroweak interactions:

- describes experiments very well
- \cdot predicts all fermion and boson masses $\equiv 0$

Higgs model:

particle masses allowed, W/Z mass ratio calculable

 $\frac{M_W}{M_Z} = \frac{80.451 \pm 0.033}{91.188 \pm 0.002} = 0.8823 \pm 0.0004$ Measurement = 0.8812 \pm 0.0014 Calculation

new scalar particle, mass unknown

So far NOT discovered

Higgs search at LEP e⁺e⁻ accelerator

Beyond the Standard Model

Fundamental questions:

Unification of forces ? Why **3** fermion families ? Relation fermions – bosons ? - SUSY ? Dark matter = ? Gravity ? Why so weak ? <u>extra</u> dimensions

Supersymmetry

Prediction: each known particle has partner

particle	spin	SUSY- partner	spin
е	1/2	\widetilde{e}	0
q	1/2	\widetilde{q}	0
γ	1	$\widetilde{\chi}$	1/2

Expectation: m < TeV

Supersymmetry

- grand unification of forces possible
- neutralino $\widetilde{\chi}$ = stable
 - = dark matter candidate

- SUSY broken: no sparticle seen yet (mass limits ~50 GeV)

(Large) Extra Dimensions

Why is gravity so different from the other interactions ?mass scales: $M_{ew} \sim \frac{1}{\sqrt{G_F}} \sim 10^2 GeV$ $l_{ew} \sim 10^{-18} m$ $M_{Pl} \sim \frac{1}{\sqrt{G_N}} \sim 10^{19} GeV$ $l_g \sim 10^{-35} m$

Idea: only one fundamental scale M_S ~ 100-1000 GeV gravity **appears** weak since gravitons propagate in 4 + n dimensions ("dilution")

Arkani-Hamed, Dimopoulos, Dvali

Extra Dimensions: phenomenolgy

Gravity in classical mechanics:

n curled-up extra dimensions of space with size R:

"outside":

$$F \sim \frac{1}{M_{Pl}^2} \frac{m_1 m_2}{r^2} \implies F \sim \frac{1}{M_S^{2+n}} \frac{1}{R^n} \frac{m_1 m_2}{r^2}$$

$$R = \frac{1}{2\sqrt{\pi}M_{s}} \left(\frac{M_{Pl}}{M_{s}}\right)^{2/n} \propto \begin{cases} 8 \times 10^{12} m, \ n = 1\\ 0.7 \ mm, \ n = 2\\ 3 \ nm, \ n = 3\\ 6 \times 10^{-12} \ m, \ n = 4 \end{cases} \qquad M_{s} = 1 TeV$$

deviations from Newton/Einstein laws for r < R
 therefore n=1 and n=2 ruled out!

• gravitons G show up in high energy physics experiments as real or virtual particles **pp colliders!**

Outline

Particle Physics

• LHC

accelerator

requirements

options

Large Hadron Collider

- detectors
- physics

• (parton) energy:

center of mass energy
$$\sqrt{s} = 2E > m_{new}$$

• event rate:

$$N = \sigma \cdot L > 1/\text{hour}$$

Luminosity L large ! $\sim 10^{34} / cm^2 / s$

Accelerator options

Center of Mass Energy \sqrt{s}

Cross Section and Luminosity

Required:

 $N = \sigma \cdot L$ > 1/hour for

for signal events

Total inelastic cross section

strong $\sigma \approx 10 \, fm^2 \approx 10^{-25} \, cm^2$

electroweak

$$\sigma(Susy) \sim 10^{-37} cm^2$$

$$\implies L = 10^{34} / cm^2 / s$$
100 particles / collision

LHC superconducting magnets

LHC DIPOLE : STANDARD CROSS-SECTION

1.9 K NbTi 14.3 m 8.3 T

LHC: from simulation to reality

April 2004: about 300 dipoles (out of 1232) delivered

simulation

Outline

Particle Physics

• LHC

- accelerator
- detectors

working principle

Atlas, CMS, ...

CMS

physics

LHC + detectors

on Gollider

SPS = Super Pro

Particle detectors - principle

many particles are short-lived \rightarrow identification via decay products

Yoke: Installation of first wheel

CN

CMS silicon tracker

CMS electromagnetic calorimeter

X 100000

 $PbWO_4$

energy resolution 1% at 100 GeV

To Preamplifier Cascade of Scintiliating electrona Crystal and photons High energy photon

Signal ∝ light yield ∝ Energy

CMS detector: simulation

Radiation and data rate (per detector)

40 MHz bunch collision rate 10^{11} particles /s

500 GBit/s DAQ 100 events / s à 1 Mbyte 10000 PCs

 $10^5 Gy / year$

Outline

Particle Physics

• LHC

- accelerator
- detectors
- physics
 - Higgs
 - extra dimensions
 - mini black holes

Higgs (130-700 GeV) $\rightarrow ZZ$

Higgs event in CMS tracker (simulation)

Extra dimensions

Real Graviton Emission in p p

G = missing energy

Interesting parameter space accessible!

missing energy = escaping graviton

Mini Black Holes ?

predicted in large extra dimension models

production: mass 1 - 10 TeV,

decay:

Hawking radiation

All SM d.o.f.

Multiplicity up to 30

LHC: Status / Outlook

Accelerator Technology Department

2004

• accelerator parts:

~ 25% built

detector components
 ~ 35% built

2007 ? first (colliding) beams

- 2008 ? Susy discovery ?
- 2009 ? Higgs discovery ?

appendix

<u>The Livingston Plot: Past, Present & Future(?)</u>

How to design a TeV particle collider ?

 $m_{particle} \geq \sqrt{s}$ $\Delta x \sim \frac{0.0002 \, fm}{\sqrt{s} \, / \, TeV}$ $\sigma < \frac{\alpha^2}{s} \cdot f(m_{particle}) \quad \sigma < \frac{0.087 \, pb}{s / TeV^2}$

• $N = \sigma \cdot L$ $R = 3 \, km \cdot \frac{E \,/\, TeV}{B \,/\, T}$

CERN accelerator complex

Gravity at small distances – experimental constraints

Grand Unification of forces ?

timing

- Cern 10'
- Physics 15'
- accelerator 10'
- Detectors 10'
- LHC physics 10⁴