Cosmic Rays High Energy Particles from the Universe

Thomas Hebbeker RWTH Aachen University

FZ Jülich 25 September 2009

http://www.physik.rwth-aachen.de/~hebbeker/

or: google

hebbeker

ASTRONOMY

1.1

Cosmic Rays

Discovery / Properties Influence on Earth / Life / Science High Energy Cosmic Rays Cosmic Sources and Propagation Auger-Observatory First Auger Results

Cosmic Particles ?

from within our galaxy ?

on earth: $\gamma: \quad 5 \cdot 10^{21} / m^2 / s$ $v: 6 \cdot 10^{14} / m^2 / s$ $p: 2 \cdot 10^{12} / m^2 / s$ low energy (< GeV)

sun

Cosmic Particles ?

Electrometer Measurements

Ionizing radiation discharges electrometer

(Charged) Cosmic Radiation

from all directons

no time dependence

Earth: mainly muons

Composition and Energy Spectrum of Cosmic Rays

<u>Composition</u> at low energies: 87% p, 12% He

<u>Origin ?:</u>

T.Hebbeker

Cosmic Rays and LHC

Scientific American, (c) 1998

Cosmic Rays

Discovery / Properties

Influence on Earth / Life / Science

- High Energy Cosmic Rays
- Cosmic Sources and Propagation
- Auger-Observatory
- First Auger Results

Discoveries in Cosmic Ray Experiments

Antimatter!

Cloud chambers

1932 Anderson

1937 Anderson, Neddermeyer

emulsion

T.Hebbeker

Muon

 $\rightarrow \mu \rightarrow e$ π

1937 Powell

Pion

Neutrino Oscillations

Atmosphere:

 $p + A \rightarrow \pi \rightarrow v_{\mu}$

Detection:

 $v_{\mu} + A \rightarrow \mu \rightarrow Cerenkov$

Result:

lack of μ , due to $V_{\mu} \rightarrow V_{\tau}$

Tests of Particle Detectors

μ μ .013 017 .02 .015 019 014 018 .02 .016 020 4 cm CMS muon M ... V 10 84 24 the on the · 11 14 chamber The state of the 2.2 at a the . the but Aachen 2002

Polar Light (Aurea Borealis)

Trapping of low energy particles from sun ("solar wind") by magnetic fields

Excitation of air molecules

Cloud Formation ?

cloud chamber / bubble chamber

Cosmics Leaving OUtdoor Droplets

Lightnings ?

Cosmic rays produce a line of free charges which might trigger / guide the lightning

Radiation Exposure of Humans

Natural sources:

Cosmic Rays

Discovery / Properties
Influence on Earth / Life / Science

High Energy Cosmic Rays

Cosmic Sources and Propagation

Auger-Observatory

First Auger Results

Pierre Auger Experiment

Cosmic Ray Detection Methods

Volcano Ranch Detector

Fly's Eye / HiRes Detectors

Discrepancies between Agasa and Hires

Results of air shower observatories

Cosmic Rays

Discovery / Properties Influence on Earth / Life / Science High Energy Cosmic Rays Cosmic Sources and Propagation Auger-Observatory First Auger Results

Questions Questions Questions ...

• Sources ?

• Acceleration Mechanism ?

• Deflection by magnetic fields ?

• Absorption ?

GZK Cutoff (Greisen-Zatsepin-Kuzmin)

Deflection in cosmic magnetic fields

Trajectories of 10¹⁸ eV protons in random nanogauss field with 1Mpc cell size

T.Hebbeker

Distance (Mpc)

T.Hebbeker Sources/Accelerators of charged cosmic rays

Scientific American, (c) 1998

Hypotheses:

Milky Way ?

Supernovae – cosmic rays up to the knee ?

Hypothesis supported by:

energy balance

Milky way: energy density 0.5 eV/cm³ need 3 SN per century

acceleration mechanism

shock wave + interstellar medium can explain E^{-x} , $E_{\text{max}}^{p} \sim 10^{15} eV$

HESS observations

of TeV gamma rays
confirm acceleration model

Supernovae and cosmic rays in milky way

T.Hebbeker

Highest Energies – from Active Galactic Nuclei ? (AGN)

center = massive black hole, feeds **,jets'**

Centaurus A radio galaxy with Active Galactic Nucleus

ESO

Cosmic Rays

Discovery / Properties Influence on Earth / Life / Science High Energy Cosmic Rays Cosmic Sources and Propagation Auger-Observatory First Auger Results

Auger Observatory

start data taking 2004 detector completed 2008

Fluorescence · Detectors (Telescopes)

Lach La Barrier

24 x

FD

3000 km² - biggest

two detection methods (hybrid)

1600 x 1500 m distance Surface Detectors (water tanks) SD

Auger-Observatory Argentina

Ultra high energy cosmic shower

Ultra high energy shower seen by Auger

Auger observatory Aerial View

AUGER – FD

(Fluorescence Detector)

TA CONSIDERATION OF THE FUEL OF TH

Jamo 30 El Chacay Chacay

Malargüe

Moline

Harinero

Ex Fortin

LEONES

Malarg

NRio

Measurements only in moonless nights !

13% duty cycle

Auger Fluorescence Telescope

Camera:

- 440 pixels (PM)
- 100 ns
- 1000000 ASA

energy meas. ~ 20%

mirror 3.4 m

Trace of a shower seen by camera

color code = arrival time

AUGER Collaboration

A. Watson

Cosmic Rays

Discovery / Properties Influence on Earth / Life / Science High Energy Cosmic Rays Cosmic Sources and Propagation Auger-Observatory First Auger Results

T.Hebbeker

Auger – energy spectrum

Auger – energy calibration

Auger - Chemical Composition

Auger – First Results – Arrival Directions

Auger Anisotropy Analysis - Statistics

Analysis of data collected till May 2006

- find maximum angular correlation events \leftarrow AGNs after tuning:
 - B fields - lower shower energy threshold = 55 EeV
- prescription - maximum AGN distance = 75 Mpc = 250 MLj **GZK**
 - maximum angular separation event AGN = 3.1° | B + resolution

out of 15 events 12 correlate

chance correlation 0.21 per event

Analysis of data collected June 2006 - August 2007

out of 13 NEW events 9 correlate

<u>Analysis of data collected September 2007 - March 2009</u> correlation weaker !

out of 31 NEW events 8 correlate

T.Hebbeker

Future of the Auger Observatory

• measurements during several years second site Colorado/USA PROW • new: radio detection Auger North Ninaview wo Butte 20000 km² northern hemisphere

antenna from Aachen

T.Hebbeker

Auger Team Aachen

SUMMARY

NGC 3190 (ESO)

<u>Ultra high energy cosmic rays:</u>

origin still not known

exciting new results
from AUGER:

- anisotropy
- GZK cutoff
- composition

A new window to the sky is opening Cosmic ray astronomy

http://www.physik.rwth-aachen.de/~hebbeker/

or: google

hebbeker

T.Hebbeker

APPENDIX

Prof. Dr. Thomas Hebbeker

(RWTH Aachen)

im Hörsaal des Forschungszentrums Jülich über das Thema

Kosmische Strahlung – Hochenergetische Teilchen aus dem Universum

In jeder Sekunde treffen mehrere Tausend geladene Teilchen mit Energien oberhalb von 1 GeV auf die obere Schicht der Erdatmosphäre und erzeugen dort sekundäre Teilchen- und Lichtschauer, die auf der Erdoberfläche nachgewiesen werden können. Einige wenige dieser primären Teilchen haben Energien von über 10²⁰ eV, weit mehr als an irgendeinem existierenden oder zukünftigen Beschleuniger machbar ist bzw. sein wird. Seit der Entdeckung dieser natürlichen, sog. *Kosmischen Strahlung* durch Victor Hess (Nobelpreis Physik 1936) versuchen Wissenschaftler, die Entstehung und die Wege dieser Strahlung zu verstehen:

- Was sind die kosmischen Beschleuniger?
- Wie erreichen sie die Erde?
- Was können sie uns über das Universum mitteilen?

Der Vortrag gibt eine allgemeine Einführung in die Geschichte und die Physik der Kosmischen Strahlung. Im weiteren Verlauf werden neueste Erkenntnisse zu ultra-hochenergetischen Teilchen diskutiert, die mit dem *Pierre Auger Observatorium* in Argentinien (3000 Quadratkilometer groß, Betrieb seit 2004) nachgewiesen worden sind.

Zwei Wissenschaftler der Auger-Kollaboration bei der Installation von Elektronik eines Detektors in der argentinischen Pampa.

> Ein Ereignis der Kosmischen Strahlung wie es mit dem Pierre Auger Observatorium nachgewiesen wird.

Auger – First Results – Arrival Directions

T.Hebbeker

correlation between arrival directions and nearby AGN's

not less and not more

Lateral shower profile

T.Hebbeker

Longitudinal shower profile

Auger - Chemical Composition

composition changing from proton to iron

Aachen activities – example 1 – radio detection

HEAT = High Elevation Auger Telescopes

extend energy range down to 10¹⁷ eV (from 10¹⁸ eV)

HEAT = High Elevation Auger Telescopes

extend energy range down to 10¹⁷ eV (from 10¹⁸ eV)

T.Hebbeker

Auger – Radio detection of cosmic rays

Aachen activities – example 2 – arrival directions

autocorrelation study

plot space angle α between all pairs of shower directions

Auger Observatory Aerial View

T.Hebbeker

LHC = Large Hadron Collider

1.4 10¹³ eV

protons (7 TeV) + protons (7 TeV) = 14 TeV

Start: September 2008

In earth's atmosphere:

T.Hebbeker

> 100,000 / sec

E LHCD

Atmosphere Studies and CLOUD Experiment

CCD cameras /droplet detectors

T.Hebbeker

Hillas Plot

