Master Topics 2025

R. Harlander

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

DFG RTG

Welcome! (deutsche Version)

I am a professor for theoretical particle physics at <u>RWTH Aachen University</u>.

My main research field is to understand and predict phenomena at particle colliders. Within the last few years, I have been mostly interested in the physics of Higgs bosons in and beyond the Standard Model. Recently, I have also become interested in improving the connection between the perturbative and the lattice approach to quantum field theory through the gradient-flow formalism.

The menu on the left should help you navigate through this page. In particular, you can find a <u>Brief CV</u>, and details about my <u>Research</u> and <u>Teaching</u> activities.

It is important to try to convey some of our excitement about physics to the general public high-school students or

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

[detailed help] multi-search window

What's new? (older news)

- <u>Topics for Master Theses</u> in winter term 2025 02 Jul 2025
- <u>Another preprint</u> on *quark mass determination* 23 Jun 2025
- <u>New preprint</u> on *quark mass determination* 12 Jun 2025
- New <u>podcast</u> episode: <u>Siegen mit Exzellenz</u> 28 May 2025

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

Gradient Flow

flowed gauge field:

$$\mathcal{C} = -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu}$$
$$D_\mu = \partial_\mu - i T^a A^a_\mu(x)$$

$$B_{\mu}(t, x) = \mathcal{D}_{\nu}G_{\nu\mu}(t, x)$$
$$B_{\mu}(t = 0, x) = A_{\mu}(x)$$

Gradient Flow: Flavor Physics

 $M_W \to \infty$

divergences:

gradient flow:

Gradient Flow: Flavor Physics

S $C(M_W, m_t)$. \boldsymbol{S} perturbation lattice theory $\ln a$ $\boldsymbol{\epsilon}$ 1

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

 $\partial_t B_{\mu}(t) = D_{\nu} G_{\nu\mu}(t) = -\frac{\delta S}{\delta B_{\mu}(t)}$ QCD:

$\partial_t g_{\mu\nu}(t) = -2R_{\mu\nu}(t)$ gravity:

R. Harlander, Master Topics 2025

gradient flow

Ricci flow

QC	D:	$\partial_t B_j$	$u(t) = D_{\nu}G_{\nu\mu}(t) =$	=					
grav	/ity:	$\partial_t g_\mu$	$q_{\nu}(t) = -2R_{\mu\nu}(t)$						
The Entropy formula for the Ricci flow and its geometric application Grisha Perelman (Steklov Math. Inst., St. Petersburg) (Jul, 2006) e-Print: math/0211159 [math.DG]									
🔓 pdf	🖸 cite	🗟 claim	a reference sear	ch 🕣					
Ricci flow with surgery on three-manifolds Grisha Perelman (Steklov Math. Inst., St. Petersburg) (Aug, 2006) e-Print: math/0303109 [math.DG]									
🖾 pdf	🖸 cite	🗟 claim	C reference sear	ch 🕣					

gradient flow

Ricci flow

proof of Poincaré conjecture

 $\partial_t B_{\mu}(t) = D_{\nu} G_{\nu\mu}(t) = -\frac{\delta S}{\delta B_{\mu}(t)}$ QCD:

$\partial_t g_{\mu\nu}(t) = -2R_{\mu\nu}(t)$ gravity:

R. Harlander, Master Topics 2025

gradient flow

Ricci flow

 $\partial_t B_{\mu}(t) = D_{\nu} G_{\nu\mu}(t) = -\frac{\delta S}{\delta B_{\mu}(t)}$ QCD:

 $\partial_t g_{\mu\nu}(t) = -2R_{\mu\nu}(t)$ gravity:

here: perturbative solution

application to RG structure of gravity

R. Harlander, Master Topics 2025

gradient flow

Ricci flow

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

 $G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$

$$G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$$
$$\frac{t^{2}}{3} \langle G_{\mu\nu}G^{\mu\nu} \rangle(t) = \frac{\alpha_{s}(t)}{4\pi} \left[1 + \frac{\alpha_{s}(t)}{4\pi} \left(\frac{152}{9} + 22\ln 2 - 9\ln 3 \right) \right] \equiv \frac{\alpha_{s}^{\text{GF}}(t)}{4\pi}$$

$$G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$$
$$\frac{t^{2}}{3} \langle G_{\mu\nu}G^{\mu\nu}\rangle(t) = \frac{\alpha_{s}(t)}{4\pi} \left[1 + \frac{\alpha_{s}(t)}{4\pi} \left(\frac{152}{9} + 22\ln 2 - 9\ln 3 \right) \right] \equiv \frac{\alpha_{s}^{\text{GF}}(t)}{4\pi}$$

$$G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$$

$$\frac{t^{2}}{3} \langle G_{\mu\nu}G^{\mu\nu} \rangle(t) = \frac{\alpha_{s}(t)}{4\pi} \left[1 + \frac{\alpha_{s}(t)}{4\pi} \left(\frac{152}{9} + 22\ln 2 - 9\ln 3 \right) \right] \equiv \frac{\alpha_{s}^{\text{GF}}(t)}{4\pi}$$

$$G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t),$$

$$\frac{t^{2}}{3} \langle G_{\mu\nu}G^{\mu\nu} \rangle(t) = \frac{\alpha_{s}(t)}{4\pi} \left[1 + \frac{\alpha_{s}(t)}{4\pi} \left(\frac{152}{9} \right) \right]$$

R. Harlander, Master Topics 2025

 $B_{\nu}(t)$]

$$+22\ln 2 - 9\ln 3$$
 $\bigg] \equiv \frac{\alpha_s^{GF}(t)}{4\pi}$

+ O(100)

 $G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$ $\frac{t^2}{3} \langle G_{\mu\nu} G^{\mu\nu} \rangle(t) = \frac{\alpha_s(t)}{4\pi} \left[1 + \frac{\alpha_s(t)}{4\pi} \left(\frac{152}{9} \right) \right]$

$$+22\ln 2 - 9\ln 3$$
 $\bigg] \equiv \frac{\alpha_s^{GF}(t)}{4\pi}$

 $G_{\mu\nu}(t) = \partial_{\mu}B_{\nu}(t) - \partial_{\nu}B_{\mu}(t) + [B_{\mu}(t), B_{\nu}(t)]$ $\frac{t^2}{3} \langle G_{\mu\nu} G^{\mu\nu} \rangle(t) = \frac{\alpha_s(t)}{4\pi} \left[1 + \frac{\alpha_s(t)}{4\pi} \left(\frac{152}{9} \right) \right]$

$$+22\ln 2 - 9\ln 3$$
 $\bigg] \equiv \frac{\alpha_s^{GF}(t)}{4\pi}$

R. Harlander, Master Topics 2025

 $-9\ln 3$ $= \frac{\alpha_s^{\text{Or}(t)}}{4\pi}$

R. Harlander, Master Topics 2025

Published for SISSA by O Springer

RECEIVED: September 13, 2019 ACCEPTED: September 13, 2019 PUBLISHED: October 4, 2019

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

Effective Field Theories describe physics beyond the Standard Model in a generic way. Their construction is algorithmic, but very cumbersome. In the past, we have developed the program AutoEFT that generates an effe field theory for general chiral fields.

Examples for projects:

Flavor structures

A Rosetta stone for Effective Field Theories

last updated on Jul 02,

2
ective
2025 by RH

Standard Model:

Standard Model:

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \end{aligned}$ + X: Yij Xsp the $+ \left| \mathcal{D}_{\mathcal{B}} \right|^{2} - V(\phi)$

 Q_{ll} $Q^{(1)}_{qq} \ Q^{(3)}_{qq} \ Q^{(1)}_{lq} \ Q^{(3)}_{lq}$ $(ar{q}_p$

SMEFT

$1:X^3$		$2:H^6$		$3:H^4D^2$		$5:\psi^2H^3+{\rm h.c.}$		$8:(ar{L}R)(ar{R}L)+ ext{h.c.}$		$8:(ar{L}R)(ar{L}R)+ ext{h}.$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_H (2	$(H^{\dagger}H)^3 Q_{H\square}$	$(H^{\dagger}H)$	$)\Box(H^{\dagger}H$)	Q_{eH}	$(H^{\dagger}H)(ar{l}_{p}e_{r}H)$	Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) \epsilon_{jk} (ar{q}_s^k$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	·	Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)$	$\left(H^{\dagger}D\right)^{*}\left(H^{\dagger}D\right)$	$D_{\mu}H\bigr)$	Q_{uH}	$(H^{\dagger}H)(ar{q}_{p}u_{r}\widetilde{H})$			$Q_{quqd}^{(8)}$	$(ar{q}_p^j T^A u_r) \epsilon_{jk} (ar{q}_s^k$
Q_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$						Q_{dH}	$(H^\dagger H)(ar q_p d_r H)$			$Q_{lequ}^{\left(1 ight)}$	$(ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_s^k$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$										$Q_{lequ}^{(3)}$	$(ar{l}_p^j\sigma_{\mu u}e_r)\epsilon_{jk}(ar{q}_s^k$
	$4:X^2H^2$	$6:\psi^2 XH + ext{h.c.}$			$7:\psi^2 H^2 D$		D					
Q_{Ho}	$G \qquad H^{\dagger}H G^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$(ar{l}_p\sigma^{\mu u}e_r) au^I H^I$	$W^{I}_{\mu u}$ —	$Q_{Hl}^{\left(1 ight)}$		$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$				
$Q_{H c}$	$_{\widetilde{G}} \qquad H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}e_r)HE$	$B_{\mu u}$	$Q_{Hl}^{\left(3 ight) }$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(ar{l}_{p} au^{I}\gamma^{\mu}l_{r})$				
Q_{HV}	$_{V} \hspace{0.5cm} H^{\dagger}H \hspace{0.5cm} W^{I}_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{H}$	$^{T}G^{A}_{\mu u}$	Q_{He}		$(H^{\dagger}i\overleftarrow{L}$	${ angle}_{\mu} H) (ar{e}_p \gamma^{\mu} e_r)$				
$Q_{H \widetilde{b}}$	$_{\widetilde{V}} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{H}$	$W^{I}_{\mu u}$	$Q_{Hq}^{\left(1 ight)}$		$(H^{\dagger}i\overleftarrow{L}$	${\overrightarrow{ ho}}_{\mu} H) (ar{q}_p \gamma^{\mu} q_r)$				
Q_{HI}	$_{B} \qquad H^{\dagger}HB_{\mu u}B^{\mu u}$	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{H} l$	$B_{\mu u}$	$Q_{Hq}^{\left(3 ight) }$		$(H^{\dagger}i\overleftrightarrow{D})$	$(ar{q}_p au^I \gamma^\mu q_r)$				
Q_{HI}	$_{\widetilde{B}} \qquad H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) H$	$G^A_{\mu u}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$(ar{u}_p\gamma^\mu u_r)$				
Q_{HW}	$_{TB} ~~~ H^{\dagger} \tau^{I} H W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p\sigma^{\mu u}d_r) au^I H$	$W^{I}_{\mu u}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{D}$	$(ar{d}_p\gamma^\mu d_r)$				
$Q_{H \widetilde{W}}$	$\widetilde{\sigma}_B \mid H^{\dagger} \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) H I$	$B_{\mu u}$ ζ	$Q_{Hud} + 1$	h.c.	$i(\widetilde{H}^{\dagger}D)$	$(\bar{u}_p\gamma^\mu d_r)$				
$8:(\bar{L}L)(\bar{L}L)$			$8:(ar{R}R)(ar{R}R)$?)		8:	$(\bar{L}L)(\bar{R}L)$	R)				
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r)(ar{e}$	$(s_s \gamma^\mu e_t)$	Q_{le}	($(ar{l}_p\gamma_\mu l_r)(ar{d}_p\gamma_\mu l_r)$	$ar{e}_s \gamma^\mu e_t)$				
$Q_{qq}^{\left(1 ight)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p\gamma_\mu u_r)(ar{u}$	$(u_s \gamma^\mu u_t)$	Q_{lu}	($(ar{l}_p\gamma_\mu l_r)(ar{u})$	$ar{u}_s \gamma^\mu u_t)$				
$Q_{qq}^{\left(3 ight) }$	$\left((\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \right)$) Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_p\gamma_\mu d_r)$	$ar{l}_s \gamma^\mu d_t)$	Q_{ld}	($(ar{l}_p\gamma_\mu l_r)(ar{d}_p\gamma_\mu l_r))$	$ar{l}_s \gamma^\mu d_t)$				
$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r)(ar{u}$	$(s_s \gamma^\mu u_t)$	Q_{qe}	($ar{q}_p \gamma_\mu q_r) ($	$ar{e}_s \gamma^\mu e_t)$				
$Q_{lq}^{\left(3 ight) }$	$\left \begin{array}{c} (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \end{array} \right.$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r)(ar{a})$	$ar{l}_s \gamma^\mu d_t)$	$Q_{qu}^{\left(1 ight)}$	($ar{q}_p \gamma_\mu q_r)(ar{q}_p)$	$ar{u}_s \gamma^\mu u_t)$				
		$Q_{ud}^{\left(1 ight)}$	$(ar{u}_p\gamma_\mu u_r)(a)$	$ar{l}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p\gamma)$	$_{\mu}T^{A}q_{r})(q$	$ar{u}_s \gamma^\mu T^A u_t)$				
		$Q_{ud}^{\left(8 ight)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_p \gamma_\mu T^A u_r) (d$	$ar{l}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	($ar{q}_p \gamma_\mu q_r) (q_p \gamma_\mu q_r)$	$ar{d}_s \gamma^\mu d_t)$				
					$Q_{qd}^{(8)}$	$(ar{q}_p\gamma)$	$q_{\mu}T^{A}q_{r})(q_{r})$	$ar{d}_s \gamma^\mu T^A d_t)$				

Standard Model:

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \end{aligned}$ + X: Yij Xsp the $+ \left| \mathcal{D}_{\mathcal{B}} \right|^{2} - V(\phi)$

 Q_{ll} $Q^{(1)}_{qq} \ Q^{(3)}_{qq} \ Q^{(1)}_{lq} \ Q^{(3)}_{lq}$ $(\bar{q}_p$

SMEFT

$1:X^3$		2:1	H^{6} 3 : H	$3:H^4D^2$		$:\psi^2H^3+{ m h.c.}$	$8:(ar{L}R)(ar{R}L)+ ext{h.c.}$	$8:(\bar{L}R)(\bar{L}R)+\mathrm{h}.$		
Q_G .	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_H (1	$(H^{\dagger}H)^3 Q_{H\square} (H^{\dagger}L)^3$	$H)\square(H^{\dagger}H)$	$$) Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$Q_{ledq} \mid (ar{l}_p^j e_r)(ar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) \epsilon_{jk} (ar{q}_s^k$	
$Q_{\widetilde{G}}$.	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	·	Q_{HD} $(H^{\dagger}D_{\mu}$	$H ight)^* \left(H^{\dagger} D ight)$	$Q_{\mu}H\bigr) Q_{uH}$	$(H^{\dagger}H)(ar{q}_{p}u_{r}\widetilde{H})$		$Q_{quqd}^{(8)}$	$\left \ (ar{q}_p^j T^A u_r) \epsilon_{jk} (ar{q}_s^k) ight ^2$	
$Q_W \mid \epsilon$	$E^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$		·		Q_{dH}	$(H^{\dagger}H)(ar{q}_p d_r H)$		$Q_{lequ}^{\left(1 ight)}$	$(ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_s^k$	
$Q_{\widetilde{W}} \mid \epsilon$	$^{IJK}\widetilde{W}^{I u}_{\mu}V$							$Q_{lequ}^{\left(3 ight) }$	$(ar{l}_p^j \sigma_{\mu u} e_r) \epsilon_{jk} (ar{q}_s^k)$	
·	$4: X^2 H$	λ	$\mathbf{Q}\mathbf{Q}$ ng	rg	m	atore				
Q_{HG}	$H^{\dagger}H$									
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}e_r)HB_{\mu u}$	$Q_{Hl}^{\left(3 ight) }$	$(H^{\dagger}i)L$	${\cal J}^I_\mu H) (ar l_p au^I \gamma^\mu l_r)$				
Q_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{H} G^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overset{\bigstar}{I})$	$\overrightarrow{D}_{\mu}H)(ar{e}_p\gamma^{\mu}e_r)$				
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{H} W^I_{\mu u}$	$Q_{Hq}^{\left(1 ight)}$	$(H^{\dagger}i\overset{\bigstar}{I})$	$\overrightarrow{D}_{\mu}H)(ar{q}_p\gamma^{\mu}q_r)$				
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde H B_{\mu u}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftarrow{D}$	$(\bar{q}_p \tau^I \gamma^\mu q_r)$				
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{I}$	$ec{O}_{\mu}H)(ar{u}_p\gamma^{\mu}u_r)$				
Q_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I H W^I_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overset{{}}{I}$	$\overrightarrow{O}_{\mu}H)(ar{d}_p\gamma^{\mu}d_r)$				
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) H B_{\mu u}$	$Q_{Hud} + 1$	h.c. $i(\widetilde{H}^{\dagger})$	$(D_{\mu}H)(ar{u}_p\gamma^{\mu}d_r)$				
	$8:(ar{L}L)(ar{L}L)$		$8:(ar{R}R)(ar{R}R)$		$8:(ar{L}L)(ar{R}$	(R)				
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r)($	$(ar{e}_s\gamma^\mu e_t)$				
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)($	$ar{u}_s \gamma^\mu u_t)$				
$Q_{qq}^{\left(3 ight) }$	$(ar{q}_p\gamma_\mu au^I q_r)(ar{q}_s\gamma^\mu au^I q_t)$) Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)($	$(ar{d}_s\gamma^\mu d_t)$				
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r)$	$(ar{e}_s \gamma^\mu e_t)$				
$Q_{lq}^{(3)}$	$(ar{l}_p\gamma_\mu au^I l_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{\left(1 ight)}$	$(ar{q}_p\gamma_\mu q_r)$ ($(ar{u}_s \gamma^\mu u_t)$				
- 1		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r)$	$(ar{u}_s\gamma^\mu T^A u_t)$				
		$Q_{ud}^{\left(8 ight)}$	$\left(\left(ar{u}_p \gamma_\mu T^A u_r ight) (ar{d}_s \gamma^\mu T^A d_t ight)$) $Q_{qd}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)$	$(ar{d}_s\gamma^\mu d_t)$				
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r)$	$(ar{d_s}\gamma^\mu T^A d_t)$				

Standard Model:

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \end{aligned}$ + Ki Yij Kg\$ the $+ \left| \mathcal{D}_{\mathcal{B}} \right|^{2} - V(\phi)$

 Q_{ll} $Q_{qq}^{(1)} \ Q_{qq}^{(3)} \ Q_{lq}^{(3)} \ Q_{lq}^{(1)} \ Q_{lq}^{(3)}$ $(\bar{q}_p$

SMEFT

	$1:X^3$	2: H	H^6 3 : H	M^4D^2	$5:\psi^2 H^3$ –	+ h.c.	$8:(ar{L}R)(ar{R}L)+{ m h.c}$	c. 8	$:(ar{L}R)(ar{L}R)+\mathrm{h}$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_H (H	$(H^{\dagger}H)^3 = Q_{H\Box} = (H^{\dagger})^3$	$H)\square(H^{\dagger}H)$	$I) \qquad Q_{eH} (H^{\dagger}H)$	$)(ar{l}_p e_r H)$	$Q_{ledq} \mid (ar{l}_p^j e_r) (ar{d}_s q_{tj})$	$_{j}) \overline{Q_{quqd}^{(1)}}$	$(ar{q}_p^j u_r) \epsilon_{jk} (ar{q}$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$		$Q_{HD} ig \left(H^\dagger D_\mu ight)$	$\left(H ight) ^{st}\left(H^{\dagger}I ight) $	$\left(D_{\mu}H ight) = Q_{uH}\left[\left(H^{\dagger}H ight) ight)$	$)(ar{q}_p u_r \widetilde{H})$		$Q_{quqd}^{(8)}$	$(ar{q}_p^j T^A u_r) \epsilon_{jk} (ar{q}$
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$				$Q_{dH} \mid (H^{\dagger}H)$	$)(ar{q}_p d_r H)$		$Q_{lequ}^{\left(1 ight)}$	$(ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_k)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I u}_{\mu}V$				_			$Q_{lequ}^{\left(3 ight) }$	$(ar{l}_p^j \sigma_{\mu u} e_r) \epsilon_{jk} (ar{q}_s^j$
	$4:X^2H$	20	99 na	rs	met	orc			
Q_{HG}									
$Q_{H\tilde{G}}$	$H^{\dagger}H\widetilde{\widetilde{G}}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	$Q_{Hl}^{\left(3 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p} au$	$-^{I}\gamma^{\mu}l_{r})$			
Q_{HW}									
$Q_{H \widehat{W}}$									
Q_{HB}	24	52	relai	[()	τ ο τ	Iav	or!		
$Q_{H\widehat{E}}$									
Q_{HW}	$_B ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I H W^I_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{d}_{p}$	$_{0}\gamma^{\mu}d_{r})$			
$Q_{H\widetilde{W}}$	$_{B} \mid H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) H B_{\mu u}$	Q_{Hud} +	h.c. $i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_{p})$	$\gamma^\mu d_r)$			
	$8:(ar{L}L)(ar{L}L)$		$8:(ar{R}R)(ar{R}R)$		$8:(\bar{L}L)(\bar{R}R)$				
 Q_11	$\frac{(\bar{l}_{n}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{l}_{s}\gamma^{\mu}l_{t})}$	 	$(\bar{e}_n \gamma_{\mu} e_r) (\bar{e}_s \gamma^{\mu} e_t)$		$\frac{(\bar{l}_n\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)}{(\bar{l}_n\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)}$				
$Q_{aa}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$\left(egin{array}{c} (p_{\mu}\mu_{\mu})(u_{s}\gamma^{\mu}u_{t}) \ (ar{u}_{s}\gamma^{\mu}u_{t}) \end{array} ight)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$				
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$				
$Q_{la}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$				
$Q_{la}^{(3)}$	$\left(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t) ight)$) Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$				
- 4	1	$Q_{ud}^{\left(1 ight)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p\gamma_\mu T^A q_r)(ar{u}_s\gamma^\mu T^A)$	$u_t)$			
		$Q_{ud}^{(8)}$	$\left \ (ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t ight.$	$) Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$				
				$Q_{qd}^{(8)}$	$(ar{q}_p\gamma_\mu T^A q_r)(ar{d}_s\gamma^\mu T^A q_r)$	$d_t)$			

Effective Field Theories: Flavor Structures

Flavor hierarchies:

Reflected in SMEFT parameters? Minimal Flavor Violation? Froggatt-Nielsen?

Effective Field Theories: AutoEFT

$\mathcal{O}_{1}^{SO^{+}(1,3)} = + \epsilon^{\alpha_{1}\beta_{1}} \epsilon^{\alpha_{2}\gamma_{1}} G_{\mathrm{L}_{\alpha_{1},\alpha_{2}}} Q_{\mathrm{L}_{\beta_{1}}} u_{\mathrm{R}}^{\dagger}{}_{\gamma_{1}} H$

vs. G

R. Harlander, Master Topics 2025

$G^a_{\mu\nu}Q_L\sigma^{\mu\nu}t^a u_R\Phi$

Rosetta stone

Effective Field Theories: AutoEFT

PHYSICAL REVIEW D 108, 055020 (2023)

Standard model effective field theory up to mass dimension 12

R. V. Harlander, T. Kempkens, and M. C. Schaaf Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056 Aachen, Germany

We present a complete and nonredundant basis of effective operators for the Standard Model effective field theory up to mass dimension 12 with three generations of fermions. We also include operators

R. Harlander, Master Topics 2025

Rosetta stone

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

Institute for Theoretical Particle Physics and Cosmology Faculty of Mathematics, Computer Science and Natural Sciences **RWTH Aachen University** 52056 Aachen, Germany

Home

Brief CV

Research

Teaching

Outreach

Conferences

Software

Press

collaborations:

LHC and Philosophy

PTH

DFG RTG

Master Topics for winter term 2025/2026

Click on the topic titles below to see more details. To apply, follow the instructions here, where you can also find topics from the other members of our institute. The slides of that presentation can be found here. In order to discuss the topics in more detail, come to my office 28A 414 on Friday, 04 July 2025, 11:30h.

Gradient Flow

The gradient flow is a concept which provides a bridge between perturbative and non-perturbative physics. The crucial parameter switching between these two regimes is the flow time t.

Examples for projects:

- Flavor physics
- Gradient flow in gravity = Ricci flow
- The flowed QED beta function at four loops

Effective Field Theories

phone: +49-241-80-27045 fax: +49-241-80-22187 harlander(at)physik.rwth-aachen.de Office: 28A414, Campus Melaten

