Feynman Diagrams

Prof. Dr. R. Harlander Sven Yannick Klein Magnus Schaaf

Tutorial at Diagrams 2024

27 September 2024

Problem 1 FeynGame

Visit the page

https:

//web.physik.rwth-aachen.de/user/harlander/software/feyngame/

and download *FeynGame*.

Then start *FeynGame* by a double clicking FeynGame.jar and select **Drawing mode**.

In the following problems, you can validate Feynman diagrams in *FeynGame* by pressing f.

Problem 2 Vertices

Feynman diagrams have to obey certain rules in order to describe physical scattering processes. The most important ones are:

- (i) **Charge conservation**: The charges at a vertex have to add up to zero. *Note:* The charges of particles are given in Table 1.
- (ii) **Fermion flow**: The arrows in a chain of fermons all have to point in the same direction.
- (iii) **Photon**: Photons only couple to electrically charged particles.
- (iv) **Gluon**: Gluons only couple to particles with a color charge.
- (v) **Higgs**: Higgs bosons only couple to massive particles.

Check these rules for the following vertices.

Try to draw other allowed vertices.

Problem 3 Diagrams

The following diagram is referred to as "penguin diagram" in the physics community:

Reproduce this diagram in *FeynGame*. By moving the vertices and curving the lines, try to morph this diagram in such a way that it resembles a penguin.

There are other diagrams that carry special names:

- sunrise/sunset
- tadpole
- ladder
- tennis court
- Mercedes

Draw a suitable diagram in each case with *FeynGame*.

Problem 4 Scattering processes

Draw a valid diagram for each of the following scattering processes and let *FeynGame* show the amplitude. In each case, add one more line to the diagram without changing the initial or the final state. How does the amplitude change?

- (i) $e^+e^- \to e^+e^-$
- (ii) $c\bar{c} \rightarrow ZH$
- (iii) $b\bar{b} \rightarrow b\bar{b}H$

(iv) $gg \to H$ (v) $\gamma\gamma \to \gamma\gamma$ (vi) $b \to s\gamma$

Problem 5 Scattering vs. Model Building

Choose one of the following tasks:

(i) Restart *FeynGame* and select **InFin mode**. Click **Start default level** and try to make as many points as possible by connecting the initial and final states in a suitable way and clicking **Finish** in the end.

If this is too difficult, you can download

and start InFin mode by specifying the first file as the Level File.

(ii) Start *FeynGame* and select **Drawing mode**. Select a tile in the lower part of the main window and open the EditFrame via View -> Open/Close EditFrame, or by pressing e. Modify the line properties (color, thickness, etc.) according to your taste. Then move on to the next line. Maybe you can create a theme? Halloween, Harry Potter, ...?

particle	electric	weak	color	massive
u, c, t	$\pm 2/3$	$\pm 1/2, 0$	\checkmark	\checkmark
d, s, b	$\mp 1/3$	$\mp 1/2, 0$	\checkmark	\checkmark
e, μ, τ	∓ 1	$\mp 1/2, 0$		\checkmark
$ u_e, \nu_\mu, \nu_ au$	0	$\pm 1/2$		(\checkmark)
γ	0	0		
Z	0	0		\checkmark
W	± 1	± 1		\checkmark
g	0	0	\checkmark	
Н	0	$\pm 1/2$		\checkmark

Table 1: Charges of the Standard Model particles/antiparticles (upper/lower sign).

