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Large Hadron Collider
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We are good…
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Electron (g-2)
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Electron in magnetic field: E = − ⃗μ ⋅ ⃗B
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Electron (g-2)

theory:  g = 2.002319304363…
experiment:  g = 2.002319304361…

⃗μ = g
e

2m
⃗S

Electron in magnetic field: E = − ⃗μ ⋅ ⃗B

Dirac (1928):  g = 2
Schwinger (1948):  g = 2.002
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What is Dark Matter? 
What is Dark Energy? 
Naturalness?
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Theoretical Particle Physics is complex.
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Classical Mechanics (i.e. pre-QM)

t=0: Particle at x with momentum p.
Question: where is the particle at t > 0?
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Classical Mechanics (i.e. pre-QM)

t=0: Particle at x with momentum p.

⃗F = m ⃗a =
d
dt

⃗p

Question: where is the particle at t > 0?

x

t
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Least-action principle
L(t) = Ekin(t) - Epot(t) =

1
2

mv2(t) −
1
2

kx2(t)

action: S[path] = ∫ dt L(t) ⇒ ⃗F = m ⃗a

x

t



 R. Harlander, Theoretical Particle Physics, May 2019

Quantum Mechanics



 R. Harlander, Theoretical Particle Physics, May 2019

Quantum Mechanics

Each path is weighted by exp(iS[path]).
L(t) = Ekin(t) - Epot(t)

S[path] = ∫ dt L(t) ∈ ℝ
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Quantum Mechanics

Each path is weighted by exp(iS[path]).
L(t) = Ekin(t) - Epot(t)

S[path] = ∫ dt L(t) ∈ ℝ

A(x,0; x′�, t) = ∫P: x(0)→x′�(t)
dP eiS[P] ∈ ℂ

probability amplitude “Path integral”
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Quantum Mechanics

Each path is weighted by exp(iS[path]).
L(t) = Ekin(t) - Epot(t)

S[path] = ∫ dt L(t) ∈ ℝ

probability:  A(x,0; x′�, t)
2

A(x,0; x′�, t) = ∫P: x(0)→x′�(t)
dP eiS[P] ∈ ℂ

probability amplitude “Path integral”
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Double slit experiment

eiS[P1]

eiS[P2]

probability:  eiS[P1] + eiS[P2]
2
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Double slit experiment

source: https://en.wikipedia.org/wiki/Double-slit_experiment

https://en.wikipedia.org/wiki/Double-slit_experiment
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Quantum Mechanics
Recall classical mechanics:
t=0: Particle at x with momentum p.
Question: where is the particle at t > 0?

Quantum Mechanics:
t=0: Particle at x with momentum p.
Question: what is the probability to 
find particle at x’ at t > 0?
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Wave function
Heisenberg uncertainty principle: (Δx)(Δp) > ℏ/2
Classical state cannot be sharply defined!
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Wave function
Heisenberg uncertainty principle: (Δx)(Δp) > ℏ/2
Classical state cannot be sharply defined!

Even classically only probability can be calculated, 
but this is systematics!

ψ(x,t=0)
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Evolution of ψ(x)
Evolve each x along all possible paths.

different x 
along 
classical path

one x along 
any path

ψ(x, t) = ∫ dx′�∫P: x′�(0)→x(t)
dP eiS[P] ψ(x′�, t = 0)
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Field theory
So far: one particle in one space dimension: 1 d.o.f.
Things may change with coupled (interacting) d.o.f.’s: 
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Field theory
So far: one particle in one space dimension: 1 d.o.f.
Things may change with coupled (interacting) d.o.f.’s: 

But: principles remain the same (with a few additions…).

action:
S[P1,P2] = S1[P1] + S2[P2] + Sint[P1,P2]

∫P1: x1(0)→x′�1(t)
∫P2: x2(0)→x′�2(t)

dP1dP2 eiS[P1,P2]
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Field theory
infinite d.o.f.

⋯∫ dP0 ∫ dP1 ∫ dP2⋯eiS[…,P0,P1,P2,…]

dislocations: ϕ(xi,0) → ϕ′�(xi, t)
x1 x2 x3
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Field theory
infinite d.o.f.

⋯∫ dP0 ∫ dP1 ∫ dP2⋯eiS[…,P0,P1,P2,…]

dislocations: ϕ(xi,0) → ϕ′�(xi, t)

Field theory: 
continuum limit
ϕ(x,0) → ϕ′�(x, t)

∫ 𝒟ϕ eiS[ϕ]

x1 x2 x3
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

Perturbation theory: S[ϕ] = Sfree[ϕ] + Sint[ϕ]

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

Perturbation theory: S[ϕ] = Sfree[ϕ] + Sint[ϕ]

Sfree[ϕ] = ∫x
ϕx Dx ϕx

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

Perturbation theory: S[ϕ] = Sfree[ϕ] + Sint[ϕ]

Sfree[ϕ] = ∫x
ϕx Dx ϕx Sint[ϕ] = ∫x

gϕ3
x

small

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

Perturbation theory: S[ϕ] = Sfree[ϕ] + Sint[ϕ]

Sfree[ϕ] = ∫x
ϕx Dx ϕx Sint[ϕ] = ∫x

gϕ3
x

small

free: no springs

how can we calculate that?
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Quantum Field Theory
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx e−ax2 =

π
a

Using

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx e−ax2 =

π
a

Using

∫ 𝒟ϕ eiSfree[ϕ] is calculable!

( π
Dx )Result:

how can we calculate that?

∞∞

… let’s say it’s 1.
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x2 e−ax2 ∼

π
a

⋅
1
a

Using

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x2 e−ax2 ∼

π
a

⋅
1
a

Using

∫ 𝒟ϕ ϕx ϕy eiSfree[ϕ] ∼
1

Dx−y

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x2 e−ax2 ∼

π
a

⋅
1
a

Using

∫ 𝒟ϕ ϕx ϕy eiSfree[ϕ] ∼
1

Dx−y

x y

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x4 e−ax2 ∼

π
a

⋅
1
a2Using

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x4 e−ax2 ∼

π
a

⋅
1
a2Using

∫ 𝒟ϕ ϕx ϕyϕyϕz eiSfree[ϕ] ∼
1

Dx−y

1
Dy−z

+
1

Dx−z

1
Dy−y

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]
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∞
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π
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⋅
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ]

∫
∞

−∞
dx x4 e−ax2 ∼

π
a

⋅
1
a2Using

∫ 𝒟ϕ ϕx ϕyϕyϕz eiSfree[ϕ] ∼
1

Dx−y

1
Dy−z

+
1

Dx−z

1
Dy−y

x y

z

x y

z

how can we calculate that?
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] = ∫ 𝒟ϕ eiSint[ϕ] eiSfree[ϕ]
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] = ∫ 𝒟ϕ eiSint[ϕ] eiSfree[ϕ]

Sint[ϕ] = g∫x
ϕ3

x
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] = ∫ 𝒟ϕ eiSint[ϕ] eiSfree[ϕ]

Sint[ϕ] = g∫x
ϕ3

x

= ∫ 𝒟ϕ[ 1 + +
1
2

+
1
3!

+ … ] eiSfree[ϕ]ϕ3
x ϕ3

x ϕ3
y ϕ3

zϕ3
yϕ3

x
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] = ∫ 𝒟ϕ eiSint[ϕ] eiSfree[ϕ]

Sint[ϕ] = g∫x
ϕ3

x

= ∫ 𝒟ϕ[ 1 + +
1
2

+
1
3!

+ … ] eiSfree[ϕ]ϕ3
x ϕ3

x ϕ3
y ϕ3

zϕ3
yϕ3

x

x y ϕxϕxϕxϕyϕyϕy
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Quantum Field Theory

∫ 𝒟ϕ eiS[ϕ] = ∫ 𝒟ϕ eiSint[ϕ] eiSfree[ϕ]

Sint[ϕ] = g∫x
ϕ3

x

= ∫ 𝒟ϕ[ 1 + +
1
2

+
1
3!

+ … ] eiSfree[ϕ]ϕ3
x ϕ3

x ϕ3
y ϕ3

zϕ3
yϕ3

x

x y ϕxϕxϕxϕyϕyϕy

x y ϕxϕxϕxϕyϕyϕy
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Scattering: external fields

∫ 𝒟ϕ ϕx1
ϕx2

ϕx3
ϕx4

eiS[ϕ]

x1

z∫z ∫z′�

z’

x2

x3

x4

x1

x2

x3

x4

~ g2
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Feynman rules

Forget all of the above!
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vertex: = g

propagator: = D̃−1(p) =
1

p2 − m2

p
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Connect initial and final state with these objects
⇒  probability amplitude

vertex: = g

propagator: = D̃−1(p) =
1

p2 − m2

p



 R. Harlander, Theoretical Particle Physics, May 2019

Feynman rules

Forget all of the above!

Connect initial and final state with these objects
⇒  probability amplitude

vertex: = g

propagator: = D̃−1(p) =
1

p2 − m2

p

p
∼

g2

p2 − m2
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−8πα
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Z-boson production

∼
g2

p2 − M2
Z
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Higgs discovery
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Higgs discovery
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Feynman rules

Forget all of the above!

vertex: = g

propagator: = D̃−1(p) =
1

p2 − m2

Connect initial and final state with these objects
⇒  probability amplitude

p

p
∼

g2

p2 − m2



 R. Harlander, Theoretical Particle Physics, May 2019

Feynman rules for QED
electron e- 

positron e+

photon γ

~ charge
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Feynman rules for QED
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positron e+
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Standard Model
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Easy to use.
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The virtues of Feynman diagrams

Easy to use.

Easy to talk about.

theory:    (g-2)/2 = 0.001159652181643(764)
experiment:    (g-2)/2 = 0.00115965218073(28)

Systematic and algorithmic:
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We love them…
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sunrise/ 
sunset
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We love them…

sunrise/ 
sunset
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We love them…

sunrise/ 
sunset

tennis court

watermellon

seagull
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We love them…
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We love them…

penguin
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We love them…

penguin
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Interpretation?

∫ 𝒟ϕ eiS[ϕ]

vs.
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Where the simplicity begins to end: 
higher orders
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Higher orders
electron e- 

positron e+

photon γ

~ e (charge)
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Higher orders
electron e- 

positron e+

photon γ

~ e (charge)
α =

e2

4π
=

1
137



 R. Harlander, Theoretical Particle Physics, May 2019

Higher orders
electron e- 

positron e+

photon γ

~ e (charge)
α =

e2

4π
=

1
137

α2



 R. Harlander, Theoretical Particle Physics, May 2019

Higher orders
electron e- 

positron e+

photon γ

~ e (charge)
α =

e2

4π
=

1
137

α2

∫ d4k
1

(k2 − m2)(k − p3)2[(k − p3 − p4)2 − m2](k − p1)2
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Higher orders

• many diagrams 
• complicated loop 

integrals 
• divergent integrals
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source: https://www.sciencedirect.com/science/article/pii/S0370269317305324

5-loop contributions 
to the anomalous 
magnetic moment 
of the electron

Today’s calculations: 
O(100.000) diagrams

Require high level 
of automation.
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Quark-quark scattering
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Quark-quark scattering



 R. Harlander, Theoretical Particle Physics, May 2019

Quark-quark scattering
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Quark-quark scattering
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Quark-quark scattering

Who ever looks at 134146 
Feynman diagrams?
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Surely you’re joking…


