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Kapitel 1

Allgemeine Wellenlehre/
mechanische Wellen

1.1 Einleitung

In den vorangehenden Semestern wurden bereits Schwingungen eingefiihrt.

Mechanische Schwingungen | Elektromagnetische Schwingungen
Federschwingungen Elektrischer Schwingkreis
Mathematisches Pendel Ostzillierendes Elektron

Physikalisches Pendel

Torsionspendel

Unsere bisherigen Kenntnisse lassen sich in folgenden Punkten grob zusammenfassen:

— Voraussetzung fiir die Schwingung ist das Vorliegen eines schwingungsfihigen Sy-
stems, eines Oszillators.

— Bei den mechanischen Schwingungen findet ein periodischer Austausch zwischen ki-
netischer und potentieller Energie statt, bei den elektromagnetischen Schwingungs-
vorgidngen werden periodisch elektrische und magnetische Energie ineinander um-
gewandelt.

— Jede Schwingung 148t sich formal durch eine Differentialgleichung beschreiben.

— Man unterscheidet harmonische und anharmonische, freie und erzwungene sowie
geddmpfte und ungeddmpfte Schwingungen.

Wir werden uns nun mit Wellen beschéftigen.

1
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1.1.1 Wellen

Von besonderer Bedeutung in allen Bereichen der Physik sind die Wellen.

In der Mechanik und Akustik spielen die mechanischen Wellen eine wesentliche Rolle.
Dazu zihlen die in Festkorpern auftretenden elastischen Wellen (Bsp.: Stabwelle, Seilwel-
le), die Druck- bzw. Dichtewellen in Fliissigkeiten und Gasen (Bsp.: Schallwellen), sowie
die Oberflichenwellen von Fliissigkeiten (Bsp.: Wasserwellen).

Die elektromagnetischen Wellen kommen unter anderem in der Optik und Atom-
physik wesentlich zum Tragen. Ihr Frequenzspektrum reicht von etwa 10 Hz (technische
Wechselstréme) bis zu 10?° Hz (7 - Strahlung) und mehr. Als bekannteste Beispiele sind
hier die Radiowellen und Lichtwellen zu nennen.

Dieses Kapitel beschéftigt sich mit den mechanischen Wellen. Anhand mechanischer Mo-
delle werden Eigenschaften und Erscheinungen aufgefiihrt, welche fiir alle Wellenbewe-
gungen charakteristisch sind und allgemeine Giiltigkeit besitzen.

1.2 Allgemeine Wellenlehre

Wie entsteht eine Welle ?

Zur Untersuchung der Entstehung einer Welle dient die Pendelkette als Modell (Abb. 1.1).

/ ,

SChwingungs-  £orrnfianzun :richfun
richtung p der We%e 9

Abbildung 1.1: Pendelkette (aus [2])

Dabei handelt es sich um eine Reihe gleichartiger Fadenpendel, welche iiber Schrauben-
federn miteinander verbunden sind. Die Pendel seien so aufgehéngt, dafi sie senkrecht zu
ihrer Verbindungslinie schwingen koénnen.

Wird das erste Pendel in Schwingungen versetzt, so wird infolge der Pendelbewegung die
erste Schraubenfeder periodisch gedehnt und gestaucht, so dal diese das zweite Pendel
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ebenfalls zu Schwingungen senkrecht zur Verbindungslinie anregt. Dessen Schwingung
iibertrégt sich iiber die Kopplung auf das dritte Pendel und so fort. Man beobachtet also,
da nacheinander alle Pendel dieselbe Schwingung ausfiihren, zu der das erste Pendel
angeregt wurde.

Was breitet sich bei der Wellenbewegung aus?

Da sich jedes Pendel nur um seine Ruhelage bewegt, d.h. ortsfest schwingt, pflanzen sich
lediglich der Schwingungszustand sowie die zur Anregung der Oszillatoren nétige Ener-
gie fort. Dabei beginnt jedes Pendel etwas spiter als das vor ihm befindliche mit dieser
Schwingung. Der Schwingungszustand breitet sich also nicht sofort {iber die ganze Kette
aus, sondern wird mit einer endlichen, von der Kopplung abhéngigen Fortpflanzungsge-
schwindigkeit v weitergetragen.

Periodizitat in Raum und Zeit

Verbindet man bei einer Momentaufnahme der Pendelkette die Auslenkungen sidmtlicher
Pendel mit einem Linienzug, so erhélt man eine rdumlich periodische Schwingung, deren

Lage sich mit jedem Zeitmoment in Fortpflanzungsrichtung der Welle verschiebt (siehe
Abb. 1.2).

Die Beobachtung eines einzelnen Pendels der Kette liefert eine zeitlich periodische Schwin-
gung.

Insgesamt ist der an allen Pendeln zu allen Zeiten zu beobachtende Vorgang raumlich und
zeitlich periodisch.

Zusammenfassung:

Die Betrachtung der Pendelkette als Modell einer Welle fiihrt zu folgender Verallgemei-
nerung:

Voraussetzung fiir die Erzeugung einer mechanischen Welle ist das Vorhandensein vie-
ler schwingungsfihiger Systeme, welche rdumlich miteinander gekoppelt sind. Durch die
Kopplung kann sich die Schwingung eines Oszillators auf die benachbarten Oszillato-
ren iibertragen. Infolgedessen pflanzen sich der Schwingungszustand und die erforderliche
Energie mit der charakteristischen Geschwindigkeit v im betreffenden Medium fort.

Beispiele:

‘ Wellenart ‘ Ostzillator ‘ Kopplung ‘

Wasserwellen | Wassermolekiil | Oberflichenspannung
Schallwelle Gasmolekiil Druckausgleich
Seilwelle Gitteratome Elastizitat
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Abbildung 1.2: Ausbildung einer fortschreitenden Transversalwelle an der Pendelkette

(aus [2])
Transversale Wellen - Longitudinale Wellen

Bisher wurde an der Pendelkette der Fall betrachtet, dafl alle Oszillatoren senkrecht zur
Ausbreitungsrichtung der Welle schwingen. Man spricht in diesem Fall von einer Trans-
versalwelle (Bsp.: Seilwelle, Torsionswelle).

Bei einer Longitudinalwelle sind Schwingungsrichtung und Ausbreitungsrichtung der
Welle parallel.

Sie 148t sich an der Pendelkette erzeugen, indem man das erste Pendel in Richtung der
Verbindungslinie auslenkt. Die Schwingung iibertragt sich auch hier durch die Kopplung
auf die anderen Pendel, wodurch es zu einer Folge von Verdichtungen und Verdiinnungen
kommt, welche sich in voneinander gleichbleibenden Abstdnden iiber die Pendelkette aus-
breiten (Abb. 1.3 und Abb. 1.5).

Harmonische Wellen

Man spricht von harmonischen Wellen, wenn die einzelnen Oszillatoren harmonische
Schwingungen ausfiihren.
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Abbildung 1.4: Erzeugung einer

Abbildung 1.3: Ausbildung einer Longitudinalwel- Torsionswelle (aus [2])
le an der Pendelkette (aus [2])

=2 fortpflanzungsrichtung der Welle

Wellenlinge
A .
—
L o © o000 0 ¢ O ® ® o o © 00000 O O L
) .
Verdichtung Verdiinnung Verdichtung

Abbildung 1.5: Momentbild einer fortschreitenden Longitudinalwelle (aus [2])

1.3 Mathematische Darstellung eindimensionaler
Wellen

Wir leiten nun den mathematischen Zusammenhang zwischen Elongation u, Ort z und
Zeit t fiir harmonische sowie allgemeine Wellen her. Dabei betrachten wir eindimen-
sionale Wellen, bei denen die von der Stérung erfalten Raumpunkte auf einer Gerade
liegen.

a.) Harmonische Wellen

Wir betrachten zunéichst Abb. 1.6 die Schwingung des harmonischen Oszillators an der
Stelle zo = 0.
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Die Auslenkung des Oszillators wird beschrieben durch die Funktion

A((X(f) 1 ° e 3’.‘@

Abbildung 1.6: Eindimensionale harmonische Welle erfafit eine Reihe gekoppelter Oszil-
latoren

u(zo,t) = u(0,t) = ug cos(wt + ¢)

Wir setzen ¢ = 0 und erhalten

u(zo,t) = u(0,t) = ug cos wt

Der Schwingungszustand, den der betrachtete Oszillator zur Zeit ¢y besitzt
U(O, t()) = Ug COS U)t()

pflanzt sich — wie in den vorangehenden Abschnitten erldutert — mit der Geschwindigkeit
v fort und erreicht den Oszillator an der Stelle z,, zur Zeit t,, wobei

x
tn =to + —
v

gilt.
Man erhilt also

x
U(Tp, tn) = u(0,ty) = ug coswty = ug cosw(t, — 7")

Dies ist giiltig in einem Medium mit diskreten Oszillatoren.
In einem Kontinuum lautet die Abhéngigkeit der Auslenkungen von Ort und Zeit

u(z,t) = ugcosw(t — E) = ug cos(wt — wz)
v v

Siehe dazu Abbildung 1.7! Mit w = 27v = 27/T 148t sich die Wellenfunktion umformu-
lieren zu

T
t) = 2 (vt — —
u(z,t) = ugcos 2w (v Tv)
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Def. : Die Wellenlidnge A = T'v stellt die rdumliche Periode
der harmonischen Welle dar. Sie ist definiert iiber die Strecke,
welche ein bestimmter Schwingungszustand wihrend einer
Schwingungsdauer 7" zuriicklegt.

Mit v =1/T =wv/X 148t sich u(x,t) weiter umschreiben zu

t x
‘[,‘ = 2 _— - —
u(z,t) = ug cos 7r(T )\)
oder, falls die Welle in negative x - Richtung lauft, zu
t x
t) = 21 (= + <
u(x,t) = ug cos 7T(T + )\)

Def. : Die Grofle k = 27 /) wird als Wellenzahl bezeichnet.

Damit erhilt man eine weitere Formulierung der Wellenfunktion:

u(z,t) = ug cos(wt F kx)

Die harmonische Welle wird also durch folgende charakteristische Groflen beschrieben:

\VAR

Abbildung 1.7: Ubergang von diskreten Oszillatoren zum Kontinuum

/u——(xhlf) 4 ,LLCX,(';,_)

AR VAY Y/
/X,

i — 7.,
VA VAL

Abbildung 1.8: Ortliche und zeitliche Periode




8 KAPITEL 1. ALLGEMEINE WELLENLEHRE/ MECHANISCHE WELLEN

Amplitude U
Kreisfrequenz w= ZTW
Wellenzahl k=2L
zeitliche Periode T
ortliche Periode A

Ausbeitungs - bzw.

Phasengeschwindigkeit

Weitere Moglichkeit der formalen Darstellung harmonischer Wellen

Das Rechnen mit sin — und cos — Funktionen ist hiufig umstindlich (Additionstheoreme),
wodurch die Erkenntnis physikalischer Zusammenhénge erschwert wird.

Daher geht man zu einer Darstellung im Komplexen iiber, welche im folgenden erldutert
wird:

Eine komplexe Zahl z € C 148t sich darstellen als

1: imaginédre Einheit

z=x+iy mit [i2=-1 .y R

Fiir Addition und Multiplikation komplexer Zahlen ergeben sich folgende Rechenregeln:

21+ 29 = $1+$2+i(y1+y2)

Z120 = T1Ta— Y1 Yo +1(T1Y2+ T2y1)

Welche Bedeutung hat dies bei der mathematischen Beschreibung von Schwingungen und
Wellen?

Um diese Frage beantworten zu kénnen, betrachte man zunéchst die Reihenentwicklung
der trigonometrischen Funktionen sowie der e — Funktion:

o2 ot
cosO = 1—54—?—---
. CRENRCE
sin® = @_§+i_
x = "

e = —_—



1.3. MATHEMATISCHE DARSTELLUNG EINDIMENSIONALER WELLEN 9

Verwendet man diese Reihenentwicklungen zur Darstellung der Funktion et © ,

2 o4
10 i(m)n 140 i 63+@4+ 65+ <1_% +3(?1' _5
€ = = 16— — — I N
~  n 21 31 4 5 Z-<@_(g_!+%_!_...>

so fiihrt dies zu der EULERschen Relation
ez’ (C)

=c0os® + 7 sin®

Zeigerdarstellung im AGAND — Diagramm:

Aei(9 =Acos®©+17AsinO®

1© rotiert auf einem Kreis mit dem Radius A. Dabei ist © der Phasenwinkel

Der Zeiger Ae

;mﬂf:lft-"rﬂ-ﬂ A . ;S

T Reatveld

Abbildung 1.9: Darstellung im Zeigerdiagramm

und A der Betrag des komplexen Ausdruckes.

Uber die EULERsche Relation 1Bt sich die mathematische Beschreibung einer harmoni-
schen Welle ins Komplexe fortsetzen:

u(zr,t) = ug cos(wt F kx) — u(z,t) = A€ i (wt F kx)
Die Darstellung u(z,t) = Ae’ i (WEFRT) 156t die Wellengleichung mit v = w/k (s.S.11):

ou _ TikAéel i (wt F k) %%—zwAe i (wt F kz)

ou —
2 2
%_ 12 Aot (Wt F k) %T%L W2 A el (Wt F k)

Einsetzen in die Wellengleichung ergibt:
_ 2 At (WtFkr) -2 ( W2 Al (wt:Fkac))

v =

N

vo=

=S ?§|€

Die analytische Fortsetzung der physikalischen Lésung ins Komplexe hat rechnerische
Vorteile. Es kommt jedoch nur dem Realteil der komplexen Losung physikalische Bedeu-
tung zu.
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b.) Allgemeine Wellen

Zur Herleitung der mathematischen Darstellung einer allgemeinen Welle betrachten wir
als anschauliches Beispiel die transversale Seilwelle.

Versuch: Zwischen zwei festen Punkten sei ein Seil gespannt. In der N&he eines der
beiden Aufhingepunkte wird ein “Buckel” in das Seil geschlagen. Dieser
pflanzt sich in Richtung der zweiten Aufhéngung fort, wird dort reflektiert
und lduft solange auf dem Seil hin und her, bis die mechanische Energie
durch Reibungsverluste etc. aufgebraucht ist (Abb. 1.10).

Zur Zeit to = 0 werde der “Berg” dargestellt durch u(zo, %o = 0) = u(zo). Er pflanze sich
mit der Geschwindigkeit v in  — Richtung fort, dann befindet er sich zur Zeit ¢t am Ort
x = xo + vt, und seine Darstellung lautet

u(z,t) = u(z) = u'(z — vt)

Lauft der Wellenberg in negative z — Richtung, dann wird mit x = z¢ — vt die Auslenkung

Jhﬂ{iﬁcf} X= E,r‘E_L
|
e : pa Gy )

; 1 |

£=£, 4 | . : e (X, ()

¢ Sty £0) aeli)
i{—-f-::: ii_ -'xx
x., -x-f xi "

Abbildung 1.10: Fortpflanzung eines Wellenberges entlang eines Seiles
zur Zeit t beschrieben durch
u(z,t) = u(zg) = u'(x + vt)

Es ist also

u(z,t) = u'(x F vt)

die allgemeinste Form einer Welle, welche sich mit der Geschwindigkeit v in +z —
Richtung ausbreitet.
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1.3.1 Eindimensionale Wellengleichung

Um iiberpriifen zu kénnen, ob es sich bei einem gegebenen Phinomen um die Fortpflan-
zung einer Welle handelt, suchen wir eine Differentialgleichung, welche auf alle Arten der
Wellenausbreitung anwendbar ist.

Dazu betrachten wir die allgemeine Form einer Welle wu(z,t) = u(z F vt). Wir setzen

y = F vt. Dann folgt
oy dy
—:]_ —_— =
Ox ot T
und weiter
%_%@—%1 %_B_u@_@( v)
9r oydr by ot oyot oy
u __ ou
at_“am

Partielles Ableiten nach x und ¢ ergibt

0%u 0%u 0%u 0%u
wor - oz Y =T O

Nach dem Satz von SCHWARTZ gilt fiir eine Funktion u(z,t), welche stetig in x und ¢ ist

Pu  %u
ordt  Otox

Damit folgt aus (1) und (2)

Pu 0%

5 = v E) Eindimensionale Wellengleichung

Nach D’ALEMBERT lautet die allgemeine Lésung dieser Gleichung
u(z,t) = ui(z — vt) + ug(x + vt)

Die Wellengleichung wird also allgemein gelést durch die Uberlagerung zweier Wellenbe-
wegungen, die sich in entgegengesetzte Richtungen ausbreiten.

1.3.2 Die Bedeutung der Fortpflanzungsgeschwindigkeit v

Unter der Fortpflanzungsgeschwindigkeit einer Welle versteht man im engeren Sinne die
sogenannte Phasengeschwindigkeit v,;,, welche von der spéter zu definierenden Grup-
pengeschwindigkeit v, zu unterscheiden ist.

Ein bestimmter Schwingungszustand einer allgemeinen Welle ist durch konstante Phase
gekennzeichnet:

T 0z
x—wvt=constant = ——v=0 & v=

ot ot
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Die Phasengeschwindigkeit v gibt an, wie schnell sich ein bestimmter Schwingungszustand
in x — Richtung ausbreitet.

Bei einer harmonischen Welle wu(z,t) = ug cos(wt F kx) wird ein Zustand konstanter
Phase festgelegt durch wt  kz = constant. Orte konstanter Phase sind

+wt — constant
k

Tr =

Der Betrag der Phasengeschwindigkeit einer harmonischen Welle lautet daher mit v = ‘fi—f

Zu diesem Ergebnis gelangt man auch durch Einsetzen von u(z,t) = ug cos(wt F kx) in
die Wellengleichung.

a_u(g?_t) = tug k sin(wt F k) a—u(aa;’—t) = —uyw sin(wt F k)
2 2
% = —ug k? cos(wt F kx) % = —ugw? cos(wt F kx)
. . %u _ 2 0% .
Einsetzen in o2 =V 552 ergibt
—uyw? cos(wt F kx) = v? (—ugk? cos(wt F kx))
W = 2 k2
2
v? = ‘]%2
- W
YTk

Dieses Ergebnis stimmt iiberein mit der auf S.8 definierten Fortpflanzungsgeschwindigkeit
v=Av=M\/T.

1.4 Elastische Wellen in FestkOrpern

1.4.1 Die Seilwelle als Beispiel fiir eine mechanische Transver-
salwelle

Das Demonstrationsexperiment zur Entstehung einer Seilwelle wurde im Abschnitt 1.3
b.) bereits beschrieben. Nun soll eine mathematische Analyse der Seilwelle durchgefiihrt
werden.

Dazu werden einige vereinfachende Annahmen gemacht:

a.) Das Seil soll ideal flexibel sein, d.h. es soll einer Biegung keinen Widerstand entge-
gensetzen.
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\/

+dx

Abbildung 1.11: Zur mathematischen Diskussion der Seilwelle (aus [15])

b.) Der Berg soll sehr flach sein.

c.) Die Gravitationskréfte sollen vernachlissigt werden.

Wir betrachten die Abbildung 1.11: Die das Seil spannende Kraft sei Fy = o - A. Dabei
bezeichnet o die Seilspannung, A den Querschnitt des Seils.

Vernachléssigt man aufgrund der Annahme b.) die Bewegungskomponente der Massen-
elemente in x - Richtung sowie die entsprechende Beschleunigungskomponente, so kann
man setzen

F(z) = F(z + dz) = F,

d. h. die das Seil spannende Kraft dndert sich entlang des Seilstiickes dx nicht wesentlich.
Die an beiden Seiten des Seilstiickes dx angreifenden Kraftkomponenten in Richtung der
Auslenkung u(z,t) bilden eine riicktreibende Kraft F,,. Diese bewirkt eine Bewegung des
Volumenelementes A dz des Seils in die Ruhelage v = 0.

F,, berechnet sich zu

F, = _(Fu(x)_Fu(x+d$))
= F,(z+dz)— F,(z)
= F(r+dz) sin(a + da) — F(z) sina
= Fysin(a+da) — Fy sina

Bei nur geringen Auslenkungen lassen sich folgende Néherungen vornehmen:

. ou Oo o*u
cosa=1 = sina~cax~tana = — und do= —dr = —~dzx

0z 0x oz
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Damit betrégt die riicktreibende Kraft

ou 0%u ou
0%u
0*u

F, fiihrt zu einer Beschleunigung des Seilstiickes dz mit der Masse p - Adz. Nach dem
NEwTONschen Grundgesetz gilt:

2 2
Fu:dm-a:dm-@:Q-A-%

Y2 dx

Die Bewegungsgleichung fiir das Massenelement dm des Seils lautet also

2*u 0*u

Damit erhélt man die Beziehung

2 2
% -7, % Wellengleichung der Seilwelle
o Oz

Daraus 148t sich die Ausbreitungsgeschwindigkeit v ablesen:

Versuch: Die Abhéngigkeit der Ausbreitungsgeschwindigkeit v von der Seilspannung
o bei anndhernd konstanter Dichte ¢ wird experimentell nachgewiesen:

Ein Gummiseil wird an einem Ende mit einem Wellenerreger, an dem
anderen Ende iiber eine Umlenkrolle mit einem Kraftmesser verbunden.
Wegen o = F/A a8t sich innerhalb eines kleinen Bereiches, in dem die
Querschnittsfliche A als konstant angenommen werden darf, die Seilspan-
nung iiber die Zugkraft variieren und messen. Fiir verschiedene Betrige
der Zugkraft F' wird die halbe Wellenléinge der auf dem Seil erzeugten
Wellen ermittelt.

Aus den MeBwerten o ~ F und v ~ A/2 erhilt man durch Quotien-
tenbildung

= konstant

=L
3%
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1.4.2 Die Stabwelle als Beispiel fiir Longitudinalwellen in festen
Korpern

Eine elastische Longitudinalwelle 148t sich anndhernd erzeugen, indem man mit einem
Hammer auf die Stirnfliche eines langen, geraden, elastischen Stabes schligt.

Dabei entsteht nur anndhernd eine Longitudinalwelle, da sich lediglich fiir diejenigen
Teilchen eine rein longitudinale Auslenkung ergibt, welche auf der Stabachse liegen. Alle
Punkte auflerhalb der Achse erfahren zusétzlich eine transversale Bewegung, d.h. es tritt
Querkontraktion bzw. Querdilatation auf.

Im folgenden wird ein Stab betrachtet, dessen Durchmesser klein gegeniiber der Wel-
lenlédnge ist, so dal transversale Effekte vernachlissigt werden kénnen.

Um zu einem besseren Verstindnis der Vorginge im Stab zu gelangen, sei zunéchst ein
Modellversuch (Abb. 1.12) betrachtet:

Staucht man eine Seite einer Pendelkette, bei der die Pendelkérper in Reihe iiber Schrau-
benfedern verbunden sind, so pflanzt sich die Stauchung iiber die gesamte Kette fort. Die
Ubertragung der Stérung erfolgt iiber die Kopplungskrifte zwischen den einzelnen Pen-
delkorpern, in diesem Fall iiber die Riickstellkréfte der Schraubenfedern.

— { W W WY

Abbildung 1.12: Modellversuch zur Stabwelle

Man stelle sich nun den Stab aus Molekiilen bestehend vor, welche in Analogie zu Schrau-
benfedern iiber elastische Krifte verbunden sind. Ein Schlag auf die Stirnseite des Stabes
bewirkt eine Deformation des angrenzenden Volumenelementes, welche sich infolge der
Kopplung, hier der Elastizitét, iiber den gesamten Stab fortsetzt. Entspannt sich das durch
den Schlag komprimierte Stirnseitenelement, so wird das sich anschlieBende Volumenele-
ment zusammengedriickt. Die Riickbildung dieser Verformung bewirkt die Deformation
des nichsten Volumenelementes und sofort. Auf diese Weise lduft die Verdichtungswelle
durch den Stab.

Dabei ist vorausgesetzt, dafl die Verformungen nach dem HOOKEschen Gesetz erfolgen,
d.h. nicht {iber den linearen elastischen Bereich hinausgehen. Die an einem Volumenele-
ment des Stabes angreifende Schubspannung 148t sich also beschreiben durch

c=FE-¢ mit &= — : relative Lingendnderung
E : Elastizitdtsmodul
Um einen Eindruck davon zu vermitteln, in welcher Grofenordnung die Verformung ei-

nes Stabes bei dem vorangehend diskutierten Experiment liegt, sei hier ein quantitatives
Beispiel angefiihrt:
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Auf einen Stahlstab der Querschnittsfliche A = 1cm? = 107* m? werde ein Schlag mit
der Kraft F' = 100 N ausgeiibt, wodurch eine Spannung o = 10 N/m? erzeugt wird. Nach
dem HooKEschen Gesetz ergibt sich mit Fgzp = 2- 10! N/m? eine relative Lingeninde-
rung von £ = 10% /2- 10" = 5-107%. Bei einem Stab der Linge [ = 1 m betrigt dann die
durch den Schlag hervorgerufene absolute Lingendnderung Al = 5 ym.

Herleitung der Wellengleichung fiir die longitudinale Stabwelle Gegeben sei ein
Stab mit der Querschnittsfliche A, der Dichte p und dem Elastizitdtsmodul E.

Betrachte das Volumenelement A dz (Abb. 1.13) zunéchst (a) im undeformierten Stab,
dann (b) zum Zeitpunkt ¢ unter dem Einfluf} einer elastischen Longitudinalwelle (Verdich-
tungswelle). Die das betrachtete Volumenelement seitlich begrenzenden Ebenen werden

xl
o) =
‘-___Y—N_J
olx
AL /A':LL#(CL
— =
I
6) 66 :I ‘ : d, .__ﬁ,a(xltq
!
olx + ol

Abbildung 1.13: Zur mathematischen Diskussion der Stabwelle (aus [15])

durch die Verdichtungswelle verschoben, die erste Ebene um u, die zweite um den Be-
trag u'. Dabei ist die Lingeninderung du = u — v’ des Volumenelementes negativ, das
Volumenelement wird gestaucht.

Die auf den Stab ausgeiibte Kraft berechnet sich zu
F,=A-0=A-FE-¢

ou ou
Mit & = 22 folgt F, = A-E- -~
it € e olg 5

xr
Durch partielle Differentiation erhélt man die auf das Volumenelement wirkende Kraft
0*u
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Das Massenelement dm = p- Adz erfihrt die beschleunigende Kraft

2
dFa:dm-azg-A-%dx
Aufstellen der Bewegungsgleichung
0%u 0*u

liefert die Wellengleichung fiir die longitudinale Stabwelle

o*u . E d*u

FT " o9a2 Wellengleichung

fiir die
longitudinale Stabwelle

Daraus ergibt sich die Fortpflanzungsgeschwindigkeit (elastischer Longitudinalwellen) zu

“Schallgeschwindigkeit” im Festkorper

E
v=4/—
0

Uber eine analoge Herleitung 18t sich die Ausbreitungsgeschwindigkeit von Longitudi-
nalwellen in Fliissigkeiten ermitteln

v=y/— “Schallgeschwindigkeit” in Fliissigkeiten

mit K : Kompressionsmodul

1.4.3 Druck- bzw. Dichtewellen in Gasen

Bei den elastischen Wellen in Gasen handelt es sich um reine Longitudinalwellen. Sie
tragen die Bezeichnung Druckwellen oder Dichtewellen, da sie auf Druck- und damit
verbundenen Dichteschwankungen der Gasmolekiile beruhen.

Die bekannteste Art von Druckwellen sind die Schallwellen, welche in der Akustik von
grofler Bedeutung sind.

Im folgenden sei eine Druckwelle betrachtet, welche sich in einem gasgefiillten Raum in x
- Richtung ausbreite. In Analogie zur Diskussion der Stabwelle sehen wir uns den Zustand
eines Massenelementes des Gases vor und wihrend der Wirkung der Welle an und leiten
daraus die Wellengleichung her.

Dabei ist die Abgrenzung eines Volumenelementes im Gas berechtigt, wenn wir das Gas
als elastisches Kontinuum approximieren. D.h. die linearen Ausmafle des Volumenelemen-
tes sollen grof} sein im Vergleich zur mittleren, freien Weglénge der Gasmolekiile.

Im Unterschied zur Betrachtung von Wellen in Festkérpern, kann bei der Diskussion einer
Druckwelle in einem Gas aufgrund der guten Komprimierbarkeit (hohen Kompressibilitit)
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des Gases die Dichte nicht mehr als konstant angenommen werden.

Wir betrachten im Gleichgewichtszustand das Volumen Adx (siehe Abb. 1.14). Im un-
gestorten Gas herrsche der Druck py und die Dichte sei gy. Die Druckwelle bewirkt eine
Verschiebung sowie Liéngenidnderung des Elementes ldngs der x - Richtung. Dichte und
Druck verindern sich zu ¢ und p. Beide Volumina Adx und A (dz + du) enthalten die

fwchcwg'c,AAWbéhoé

l 2o oandl crfer E‘”w"’/“;’[
:o_(m H : \?/f’ o(e)- Dm%wc(&

— — — -

Abbildung 1.14: Zur mathematischen Diskussion von Druck— bzw. Dichtewellen in Gasen

(aus [15])

gleiche Masse dm. Es gilt also:

dm =gy Adz =g A(dz +d 2 _ 1+
m = 0o r=p-A(dzr+du) = o~ do o du o +8x

An die Stelle der Spannung o im Festkorper tritt hier der Druck p(z,t) = F/A.

Kompression bzw. Dilatation eines thermisch isolierten Gases fiihrt zu Erwdrmung bzw. Ab-
kiihlung. Bei der Druckwelle erfolgen die Druckéinderungen dp = (9p(z, t)/0x) dx so schnell,
dal kein Wiarmeaustausch mit der Umgebung stattfindet. Es handelt sich also um einen
adiabatischen Prozef.

Fiir adiabatische Zustandséinderungen gilt die PoissoNsche Gleichung

0 dx dimy 0 _ ( 8u>_1

p-V* =py-Vy = constant Kk : Adiabatenkoeffizient

- =(2) = R=(e3)
s = - — il JL— +_
Do V 0 Do Oz

Fiir kleine g_u gilt die Ndherung
x

Damit folgt nun
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Damit erhalt man

Partielles Differenzieren nach x ergibt

o_ _Pu
or Po or?

Damit wird die Druckénderung beschrieben durch

0*u
dp:—m-po-ﬁdx

Auf das Volumenelement A dz wirkt die Kraft df' = F — F'. Fiir g% > 0ist F' > F und

Abbildung 1.15: Am Volumenelement angreifende Kriéfte

der Betrag der Druckkraft lautet

0 0*
dF = —Adp=—-A- Ldr=+A-k-py- =y dz (1)
ox Ox
2
Diese Druckkraft erzeugt eine Beschleunigung a = %Tg des zugehorigen Massenelementes.
82
dFa:dm-a:A-QO-a—tgdac (2)

Durch Gleichsetzen von (1) und (2) erhélt man

0*u Dok 0*u

ot* oo 0z Wellengleichung fiir Druckwellen

Daraus liest man v? = % ab. Allgemein gilt (mit p, o beliebig):

v=,/— Schallgeschwindigkeit in Gasen
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Dabei ist zu beachten, dafl die Schallgeschwindigkeit v bei anndhernd idealen Gasen nicht
von der Dichte p, sondern von der Temperatur T abhingt!

Dies wird deutlich, wenn man die Formel v = \/p'—g’ﬁ mit Hilfe der Idealgasgleichung

umschreibt:

p-Vem = R-T
Vo _ R-T
P, T M,
p _ R-T
e m
== |v= KJ\I;J mit 7 : absolute Temperatur [T] = 1K
o R : allg. Gaskonstante R = 8.31—3J
mol - K
M,, : Molmasse [M,,] = 1-5+
mol
Vi @ Molvolumen

Beispielsweise kann Luft ndherungsweise als ideales Gasgemisch angesehen werden. Fiir
die Temperaturabhingigkeit von v, gilt: Avpy /AT ~ 0.6% JK .

Die aus der Wellengleichung erhaltenen Formeln

p-K k-R-T
v=,/— und v=4/——
0 M

dienen zur rechnerischen Bestimmung der Schallgeschwindigkeit.

Beispiel: ~ Berechnung der Schallgeschwindigkeit in Luft :

kK = 14
0 = 1.293kg/m® ¢ = Upup =331m/s (bei 0°C baw. T =273,15K)
Po = 105Pa (OOC)

= VUupt = 331? +0,6- AT (bei beliebiger Temperatur T)
Die theoretisch hergeleiteten Ausdriicke sollen nun experimentell {iberpriift werden:

Versuch: Mit einer Schreckschufipistole wird auf zwei im Abstand As befindliche
Mikrofone ein Schufl abgegeben. Beide Mikrofone sind mit einer Stoppuhr
verbunden. Die Zeitzdhlung wird aktiviert, sobald die Schallwelle das erste
Mikrofon erreicht. Das zweite Mikrofon sendet entsprechend den Stoppim-
puls aus.

Das Versuchsergebnis vg,; = As/At wird mit dem rechnerisch gefunde-
nen Wert v =331m/s+0,6m/s- AT verglichen.

Zusitzlich liefert die Formel v = (/p-k/o eine wichtige Methode zur Messung des
Adiabatenkoeffizienten x, der in der Warmelehre von Bedeutung ist.
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1.5 Wasserwellen als Beispiel fiir Oberflichenwellen
von Fliissigkeiten

Die Entstehung von Wasserwellen ist auf ein kompliziertes Wechselspiel verschiedener
Krifte zuriickzufiihren. Dabei sind als Antriebskraft die Schwerkraft und als Kopplungs-
kraft die Oberflichenspannung zu nennen. Oberflichenwellen sind transversal und longi-
tudinal, da sich die einzelnen Fliissigkeitsteilchen sowohl parallel als auch senkrecht zur
Ausbreitungsrichtung der Wellen bewegen. Bei nicht zu groflen Wellenamplituden fiihren
sie annéhernd Kreisbewegungen mit vertikaler Bahnebene aus (Abb. 1.16).

Gestorte Flussigkeits- |-

Ungestorte
—_— Flussigkeitsoberflache -

oberfliche v

Abbildung 1.16: Oberflichenwelle auf einer Fliissigkeit (aus [1])

Versuch: In einem Wasserbecken wird eine an der Oberfliche schwimmende Holzku-
gel beobachtet, welche kreisformige Bewegungen um ihre Ruhelage ausfiihrt.

Die Holzkugel stellt dabei ein stark vergroflertes Oberflichenmolekiil dar.

Da die mathematische Behandlung der Oberflichenwellen in Fliissigkeiten sehr kompliziert
ist, wird hier auf die Herleitung der Wellengleichung verzichtet. Stattdessen erfolgt eine
Diskussion des Ergebnisses

9 g-A 2m-0 2w - h
S . tanh
v (27r+g-)\) tan ( h\

wobei g : Erdbeschleunigung g =9, 81?7
A 1 Wellenldnge
. s _J _N
o : Oberflichenspannung [o] = o2 =
o : Dichte
h : Wassertiefe

Im folgenden werden die beiden wichtigen Grenzfille hoher und geringer Wassertiefe be-
trachtet:
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1.5.1 Tiefes Wasser

Es gilt &> A und damit tanh (27r - %) Sl

In diesem Fall lautet also die Wellengleichung

s gA 2m-0
v 27 * 0-A

Hier wird nun eine Fallunterscheidung beziiglich der Wellenlénge vorgenommen:

a.) A sei so grof}, dafi der zweite Term vernachlissigt werden kann. Dann gilt

2= A

2m
Man bezeichnet die Wellen in diesem Fall als Schwerewellen. Sie treten unabhéngig
von der Natur der Fliissigkeit durch den Einflufl der Schwerkraft auf. Sie werden

angeregt durch starke, stetige Winde.
b.) A sei so klein, dafl der erste Term vernachlissigt werden kann. Dann gilt

g 2m-0
VT =
0- A

Bei den sogenannten Rippelwellen iiberwiegt die Wirkung der Oberflichenspan-
nung. Sie treten bei kleinen Windstarken auf.

In den beiden genannten Fillen ist die Ausbreitungsgeschwindigkeit v nicht mehr kon-
stant, sondern hingt von der Wellenléinge ab: v = v(A). Ein solches Verhalten wird als
Dispersion bezeichnet.

Die Dispersion macht unter anderem die bereits erwéhnte Unterscheidung zwischen Phasen
und Gruppengeschwindigkeit notwendig. Tritt nur eine Wellenléinge auf, so ist die Betrach-
tung der Phasengeschwindigkeit sinnvoll. Liegt jedoch eine Wellengruppe (verschiedene
Wellenléingen) vor, so ist die Gruppengeschwindigkeit mafgebend. Wir werden spiter ge-
nauer auf die Dispersion eingehen.

1.5.2 Seichtes Wasser

Hier gilt A < A und damit die Niherung tanh (277/\' h ) ~ 27T/\' b Daraus folgt fiir die

Wellengleichung

9 g-\ 2m-0\ 2mw-h (2m)? -0 -h
- : —qg-hy 2 O R
v (27r +Q-A> 9T TR

Vernachldssigt man den zweiten Ausdruck in der Summe, so ergibt sich

v=1/g-h
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Hier tritt keine Dispersion auf, die Ausbreitungsgeschwindigkeit v ist unabhéingig von der
Wellenlidnge A. Aufgrund dieser Tatsache verwendet man solche Wellen bei Wellenversu-
chen.

Eine Bestitigung des theoretisch gefundenen Zusammenhangs zwischen Wassertiefe h und
Phasengeschwindigkeit v in seichtem Wasser liefert der folgende Versuch:

Versuch: In der Wellenwanne werden ebene Wellenfronten erzeugt, welche im hin-
teren Viertel der Wellenwanne auf einen Keil auflaufen. Die Projektion
ergibt folgendes Bild: Auf dem Keil wird die Wassertiefe stindig gerin-

o Smmomee— A b)

Abbildung 1.17: Welleniibergang in ein Medium mit kleinerer Phasengeschwindigkeit: (a)
Seitenansicht (aus [10]), (b) Projektion (aus [9])

ger, die Wellenfronten riicken niher aneinander, d.h. die Wellenlinge wird
kleiner. Dies entspricht bei gleichbleibender Frequenz einer Verringerung
der Geschwindigkeit.

1.6 Was breitet sich bei der Bewegung einer elasti-
schen Welle aus?

Zur Losung dieser Fragestellung betrachte man noch einmal die in den vorangehenden Ab-
schnitten behandelten Wellenarten. Mit Ausnahme der Oberflichenwellen handelt es sich
dabei um elastische Wellen. Diese sind dadurch gekennnzeichnet, daf} sich eine Storung
— sei es eine Belastung, ein Druck oder eine makroskopische Verschiebung einer Vielzahl
von Atomen — mit einer Geschwindigkeit ausbreitet, welche von den elastischen Eigen-
schaften des Mediums abhéngt.

Allen gemeinsam ist die Tatsache, daf sich die Atome oder Molekiile des Mediums, durch
das sich die Welle fortpflanzt, in bestimmter Weise bewegen (Schwingung um Geich-
gewichtslage, Kreisbewegung), aber im Mittel in ihrer Gleichgewichtslage verweilen. Es
pflanzt sich also nicht die Materie, sondern der Bewegungszustand der Materie fort. Dieser
wird beschrieben durch Energie und Impuls. Wir konnen daher festhalten:

Bei der Wellenbewegung werden Energie und Impuls transportiert.

Folgende Experimente bestétigen dieses Ergebnis:
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Versuch: Ein fest eingespannter Holzstab wird an seinem freien Ende mit einem
Hammer angeschlagen. = Ein am anderen Ende aufgehédngter Tischten-
nisball schwingt aus.

Abbildung 1.18: Druckwelle durchliuft Holzstab und regt Schwingung des Balles an. (aus

[7])

Versuch: Am freien Ende eines beidseitig offenen Rohres (Gasvolumen) wird ein
Schufl abgegeben. = Dadurch wird eine am anderen Ende an das Rohr
angrenzende Membran in Schwingungen versetzt. Ein dicht daneben auf-
gehéngter Tischtennisball springt kurz von der Membran weg.

Quantitative Analyse am Beispiel einer elastischen Welle in einem
Stab:

Wir betrachten eine rein longitudinale, elastische Welle in einem Stab mit dem Elasti-
zitdtsmodul E, der Dichte p und der Querschnittsfliche A. Durch den Stab pflanzt sich
eine Storung mit der Phasengeschwindigkeit v fort. Wir berechnen nun die Energie, welche

- -~
AL lTomenr Alh éc(o(
/é’\ X >

alx
Abbildung 1.19:

Abbildung 1.19:

in einem infinitesimal kleinen Stiick dz enthalten ist. Infolge der Wellenbewegung besitzt
jedes Stiick dx eine bestimmte kinetische sowie potentielle Energie.
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Kinetische Energie: Das Massenelement p - Adx an der Stelle x bewegt sich zur Zeit
t mit der Geschwindigkeit v = Qu(z,t)/0t. Es besitzt damit die kinetische Energie

1 1 ?
Whin(z,1) = 5 dm - v*(z,t) = 5 dm - (%)

Die Dichte der kinetischen Energie, die kinetische Energie pro Volumen, ergibt sich zu

~ Whiin(z,t) 1 dm (Ou(z,?) 2_1 ou(z, ) 2
wkm(ﬂv,t)_T_E.W.<T =50 —

Potentielle Energie: Beim Durchgang der Welle werden die Volumenelemente gedehnt
oder gestaucht. Wir berechnen die entsprechende Deformationsenergie mit Hilfe einer
statischen Betrachtung:

Um ein Volumenelement, welches im undeformierten Zustand die Linge [ besitzt, um die
kleine Strecke s elastisch zu dehnen, mufl die Kraft

F=0c-A
aufgewendet werden. Mit dem HOOKEschen Gesetz
oco=F-¢ und €= ;
folgt fiir die Kraft

F(s):E-A-?

Die Verldngerungsarbeit leistet einen Beitrag zur potentiellen Energie.

s s S 1 s 1 9
Wpot:/F(s)ds=/E-A-—ds=—-E-A-—=—-E-A-l-s
0 0 l 2 l 2

Die potentielle Energiedichte betrigt damit

Wpot 1 2
=_.F.
v 2 7

Wpot =

Wendet man dieses Ergebnis nun an auf die elastische Dehnung des Stabstiickes A dx um
die Lénge du, so erhilt man mit s = du(z,t) und | = dz (mit 0 fiir partielle Ableitung)

1 Ou(x,t) 2
Wpor =5 B (7)

Gesamtenergie: Die gesamte Energiedichte ergibt sich dann zu

1 ou\? 1 ou\’
w:wkin+wpot:§'g' E +§E %
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Dies 148t sich mit v% = % umschreiben zu

1 ou\? , (ou)?]| Dhersiedichte
w(x,t):i-g- e + - e einer
* elastischen Welle

Dies am Beispiel der Stabwelle hergeleitete Ergebnis gilt allgemein fiir elastische Wellen!
Bei der elastischen Wellenbewegung pflanzt sich w(z,t) mit der Geschwindigkeit v fort.

Die Bedeutung des Ausdruckes erkennt man am einfachsten am Beispiel einer harmonischen
Welle. Setzt man die Gleichung einer harmonischen Welle u(z,t) = ugcos(wt — kx) in die
Ausdriicke fiir die kinetische und potentielle Energiedichte ein, so erhélt man

ou

o= "Uow- sin(wt — kx) Whin (T,1) = % -0~ uf - W - sin®(wt — kx)
OU _ . k- sin(wt — ka) Wpor(,8) = 5 00} - §2 v sin?(wt — k)

w2

Weiter gilt
W, t) = Win(2, 1) + Wpor(2, 1) = 0 ud - w? - sin®(wt — kx)

Es ergibt sich also

- w

DN | =

Whin = Wpot =

Kinetische und potentielle Energiedichte stimmen iiberein und sind gleich der Hélfte der
Gesamtenergiedichte an jedem Ort und zu jeder Zeit. Dies ist in Abbildung 1.20 graphisch
veranschaulicht.

wlx,t) t=congd
'\ /
NS

Mix, ) wix,t)
3

4/k=l‘/,,=_-2in’4/

Abbildung 1.20: Energiedichte einer elastischen Welle
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Zusammenfassung der Ergebnisse: Bei einer elastischen Welle sind die kinetische,
die potentielle und die gesamte Energiedichte in Phase und pflanzen sich mit v fort. Die
kinetische Energiedichte wy;, besitzt bei einer Welle die gleiche Phase wie bei einer Schwin-
gung. Im Gegensatz zur Schwingung, bei welcher wy;, und wp,; um 90° phasenverschoben
sind, besitzen wy;, und wp, jedoch bei einer Wellenbewegung gleiche Phase. Anschaulich
bedeutet dies, dal das elastische Medium am Nulldurchgang die stirkste Deformation
aufweist.

1.7 Die Intensitat einer Welle

Wir stellen uns eine Fléche vor, durch die senkrecht zur Ausbreitungsrichtung eine har-
monische Welle hindurchlauft. Aus dem vorangehenden Abschnitt wissen wir, dal mit der
Wellenbewegung ein Energieflufl durch die Fliche verbunden ist.

Durch die Fliche A wird wiahrend der Zeit dt = %—x die Energie dW transportiert. Dies
fiihrt zu der Leistung

_dW_de_w-Adm

dt di o CwA

P

Die Leistung pro Fliche, d. h. diejenige Energie, welche im Zeitmittel senkrecht durch die
Einheitsfliche hindurchtritt, nennt man die Intensitit I der Welle.

P Pl W

I = — = - I = — = —F

A w-v [ ] [A] m2
Energie

I= Fliche und Zeit — Energiedichte x Geschwindigkeit

_ 1 +7
Die mittlere Intensitiat berechnet sich zu I = o Idt
mw J—7

Fiir die harmonische Welle u(z,t) = u, cos(wt — kz) erhidlt man die Intensitét
I=w-v=p-v- uj- w-sin’(wt — kz)

Die Berechnung der mittleren Intensitit ergibt

— 1 +m
I = g-v-ug-w2-2—/ sin?(wt — kx) dt
mw J—7

~ >

1/2

1
— §Q/ngw2

Mit w = 27w folgt T=1/2-g-v - (2m)* - u? - v2. Es gilt also T ~ u? - 2.
Die mittlere Intensitdt einer harmonischen Welle ist proportional zu dem Quadrat von
Frequenz und Amplitude.
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1.8 Intensitit des Schalls

Wir wollen nun die in den vorangehenden Abschnitten hergeleiteten Beziehungen fiir
Energiedichte und Intensitéit auf die Schallwellen in Gasen anwenden:

Es gilt
2 2
. w [(a), L (o
I(z,t) =v-w(z,t) und w(z,t)= : <8t> + o <3x> ]
mit der Schallgeschwindigkeit v = /ﬂ;p 0
0

Fiir harmonische Wellen u(x,t) = g cos(wt — kz) ergibt sich
I(x,t) = 0o - v-w?-u-sin®(wt — kx)

Wir wollen nun versuchen, diese Beziehung unter Verwendung des Druckes umzuformu-
lieren, d.h. eine Beschreibung der Intensitédt mittels des Druckes abzuleiten. Es war

I I
b = Do Oz

ou
P—Po = Ap=-po-k- o
X

Mit Ou/0x = k-ug-sin(wt—kz) wird der Druckunterschied beschrieben durch die Funktion
Ap = —po- k- k- ug-sin(wt — kz)
Der maximale Druckunterschied betrigt
APmaz =po - k- k - ug
Mit v?2 = k- po/o0 & K- -py=v%-00 und k = w/v 1aBt sich dies weiter umformen zu
APmaz =V 00 =W+ Uy ~ U

Bei der Schallwelle sind also Druckamplitude und Wellenamplitude proportional.

Die Intensitét 148t sich nun folgendermafien beschreiben

I(z,t) = - (APmaz)” - sin?(wt — kz)

Qo

Fiir die mittlere Intensitéit gilt dann

1 1
2 Qo VU

) (Apmaac)2

Wir werden im folgenden hiufig die mittlere Intensitit kurz als Intensitét bezeichnen.
I=1 ~ (Apmas)’

Die Intensitét einer Schallwelle ist proportional zum Quadrat der Druckamplitude.
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Schallpegel Die auftretenden Schallintensitiiten liegen zwischen 10712 W/m?, der soge-
nannten Horschwelle, und der Schmerzgrenze 10 W/m?.

Beispiele fiir Leistungen von Schallquellen:

Unterhaltungssprache 107°W

Geige 1073W
Lautes Schreien 1073W
Lautsprecher 102 W

Beispiele fiir Schallintensititen:

Unterhaltung 10~"W/m?
Motorrad ~ 1072W/m?

Zum Vergleich von Leistungen und Intensitdten gebraucht man in der Mefltechnik hiufig
den Begriff Pegel.

1
Pegel = 1g A [Pegel] = 1Bel = 1B
0

Im Fall der Schallintensititen fiihrt man als objektives Vergleichsmafl den Schallpegel
ein

I
Schallpegel L =10 - 1g A [L] = 1dB (“dezibel”)
0

Iy = 107 W/m? wird als Bezugsschallintensitiit bezeichnet. Der Faktor 10 dehnt die
Skala des Schallpegels so, dafl man zu seiner Beschreibung nur ganze Zahlen benotigt.

Lautstirke

Versuch: Mit einem Generator wird die Tonfrequenz von 20 Hz bis ca. 20 kHz hoch-
gefahren, dann wird die Lautstirke nachgeregelt. Es wird deutlich, daf
die Empfindlichkeit des menschlichen Gehors stark frequenzabhingig ist.
Die obere Horgrenze ist individuell verschieden und liegt meist zwischen
12kHz und 20 kHz.

Wie der Versuch zeigt, gibt der Schallpegel nicht die vom Menschen subjektiv empfun-
dene Lautstérke wieder. Diese richtet sich nidmlich nicht allein nach der physikalischen
Schallintensitét, sondern auch nach dem Frequenzspektrum des Schalls.

Bei gleichem Frequenzspektrum gilt in grober Niherung fiir den Zusammenhang zwischen
der subjektiv empfundenen Lautstirke und der physikalisch gemessenen Schallintensitét
das WEBER — FECHNERsche Gesetz:

Die Stirke der Empfindung wdchst proportional zu dem Logarithmus des phy-
stkalischen Reizes.
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Das menschliche Gehor besitzt also ein logarithmisches Schallempfinden.

Man setzt den Schallpegel L und den Lautstirkepegel A definitionsgeméif bei der Fre-
quenz f = 1kHz gleich.
A(1kHz) = L(1kHz)

Da die beiden Groflen fiir andere Frequenzen verschiedene Werte annehmen, fithrt man
fiir den Lautstiarkepegel A eine neue Dimension ein.

[A] = 1phon mit 1phon=1dB fiir f =1kHz

Einige Lautstirkewerte: Ophon Horschwelle

20 phon Blétterrauschen, Fliistern
40 — 50 phon Unterhaltungssprache
100 phon Motorrad

130 phon  Schmerzgrenze

Schmerzgrenze
140 — 130 phon \
OIS ERNT
1005 100] .= fand
‘Q \\ 90 _:. / N
80 NN 80l "IN /N,
<& NN ol / \/
E N 60| AN
%60 N ‘\\\\\‘_ = ‘\_//“\\I/
Q N
3 40 \\\\ \%l'tt// y
: NS
3 20 \\\\? 70 /f\\{
3 ] o] S0~/
Horschwelle T P Yy ~_,
0 =
-10
16 31,5 63 125250500 1 2 4 8 16

Hz kHz
Schalifrequenz

Abbildung 1.21: Kurven gleicher Lautstéirke A (aus [14])



Kapitel 2

Uberlagerung von Schwingungen
und Wellen

Laufen mehrere Wellen durch ein gemeinsames Ubertragungszentrum, so kann es an be-
stimmten Stellen des Raumes zu Superposition der Wellen kommen. Uberschreitet die
Deformation des Mediums den linearen elastischen Bereich nicht, so gilt das Prinzip der
ungestdrten Uberlagerung:

Jedes Wellensystem breitet sich so aus, als ob die anderen Wellensysteme nicht
vorhanden wdren. Die Auslenkungen der Wellenziige addieren sich vektoriell.

Die durch die Uberlagerung von Wellen hervorgerufenen Erscheinungen werden als In-
terferenz bezeichnet und spielen in der Physik eine sehr wichtige Rolle. So beruht der
Nachweis von Wellenphdnomenen auf der Interferenz, dem entscheidenden Merkmal von
Wellen. Die Interferenz ist letztlich verantwortlich fiir die Reichhaltigkeit der Phinomene
in sehr vielen Bereichen der Physik wie Akustik, Optik, Elektrodynamik und Quanten-
physik.

2.1 Uberlagerung von Wellen gleicher Frequenz und
Amplitude
Wir betrachten zwei in dieselbe Richtung laufende Wellen, welche in Frequenz und Am-

plitude iibereinstimmen, jedoch relativ zueinander die Phasenverschiebung ¢ bzw. den
Gangunterschied A = ¢ - A/27 aufweisen.
u; = ugcos(wt — kx)
27

us = ugcos(wt—kx — @) bzw. wuy = ugcos (wt — kx — 5% A)

Superposition ergibt

U = uy + ug = ug [cos (wt — kx) + cos (wt — kx — )]

31
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Setzen wir wt—kx = 6 und wenden das Additionstheorem cos a+cos 5 = 2-cos ((« + 3) /2)-
cos ((aw — B) /2) an, so erhalten wir

20 —
U = Ug -2+ COS (p-cos£:2-uo-cos£-cos (5—£
2 2 2

2
Also
u(z,t) = 2-uo-cosg - COS (wt— kx — g)
bzw.
U(.T,t):2-uo.cos<§.A) COS(Wt-k.fE—%A)

Die resultierende Welle besitzt die gleiche Frequenz und Wellenlénge wie die {iberlagerten
Wellen, aber eine andere Amplitude und Phasenlage bzw. einen anderen Gangunterschied.

2.1.1 Sonderfille:

1. ¢ = 0 oder allgemein ¢ =2n7 (n=...—2,-1,0,1,2,...)

In diesem Fall betriigt die Phase ¢/2 = nm und mit cosnm = +1 ergibt sich die
resultierende Welle
u(z,t) =2 - ug - cos (wt — kx)

Die resultierende Amplitude ist doppelt so groff wie die der Ausgangswellen, die
Nulldurchgénge bleiben unveréindert. Die Uberlagerung ist in Abbildung 2.1 darge-
stellt.

Man nennt die vorliegende Verstirkung der Wellen konstruktive Interferenz.
Sie tritt auf bei einer Phasenverschiebung ¢ = 2nm bzw. einem Gangunterschied
A =n- . Beziiglich der Zeit ¢t bedeutet dies eine Verschiebung um At = n-T', denn

w-t+n-T)=w-t+n-w-T=w-t+2n7

2. ¢ = 180° oder allgemein p = 2n+1)-7 (n=...—-2,-1,0,1,2,...)

Bei ¢ = (2n+1) -7 und cos(p/2) = cos(2n+ 1) -7/2 =0 ist das Ergebnis der
Uberlagerung die Ausléschung beider Wellen

u(z,t) =0,

wie Abbildung 2.2 zeigt.

Man spricht von destruktiver Interferenz. Beziiglich der Zeit ¢ bzw. dem Ort z
lauten die Bedingungen fiir Ausléschung

At=%-(2n+1)-T baw. A=3%-(@2n+1)-
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i) b t) |

Abbildung 2.1: Konstruktive Interfe- Abbildung 2.2: Destruktive Interferenz
renz

Bemerkung:

Wie in diesem Abschnitt geschehen, kann man die Uberlagerung von Wellen sowohl
beziiglich der Ortskoordinate x, als auch beziiglich der Zeit ¢ diskutieren. Dies ist moglich,
da eine Welle mathematisch durch einen Ausdruck, z.B. cos(wt — kz), beschrieben wird,
in dem x und ¢ gleichberechtigt nebeneinander vorkommen. Jede Welle verhilt sich also
— abgesehen vom Vorzeichen — zu einer festen Zeit als Funktion von x genauso wie an
einem festen Ort als Funktion von ¢.

Die Superposition zweier Wellen 1i8t sich einfacher in der komplexen Schreibweise berech-
nen und als Vektoraddition im Zeigerdiagramm veranschaulichen (Abb. 2.3):

u = Ug- ei'5+ei'(5_90)
| |

— . 2‘6 . _ . £ . SQ
th to e' = = Ug- elL (5 32[2) . [6Z ’ 2 -+ e_z ) 2‘|
/U,Q = uo.el‘(é_gp) 1,

~

—~
2 cos %
Der physikalische Anteil des resultierenden Ausdruckes lautet

u:2-u0-cos(5—§)-cosg

Solche Interferenzen treten in der Natur sehr hiufig auf. Auflerdem sind ihre Anwendungen
in der praktischen Physik von grofler Bedeutung, wie das folgende Beispiel verdeutlichen
soll:

Die Interferenz von Schallwellen im sogenannten QUINKschen Rohr liefert eine Méglich-
keit, die Schallgeschwindigkeit zu bestimmen.

Versuch: Wie bei der Posaune durchlduft der Schall im QUINKschen Rohr zwei ge-
bogene Rohren und interferiert an ihrem Ende (siehe Abb. 2.4). Wird nun
einer der beiden Laufwege verlingert, so entstehen bei E abwechselnd In-
terferenzmaxima und — minima. Man mif3t die Strecke s, um die das Rohr
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TIm s = 0 A= 7£0°
Al # ALy = AL

B

A= Ly

Abbildung 2.3: Veranschaulichung als Vektoraddition

ls

Abbildung 2.4: QUiNKsches Rohr

zwischen dem Auftreten zweier Minima verschoben wird. Dabei entspricht
eine Wellenléinge A einem Laufwegunterschied von 2s. Die Schallgeschwin-
digkeit ergibt sich als Produkt aus Wellenldnge und gewihlter Frequenz.

MefBbeispiel:
v = 1600 Hz

s = 10cm = A= 20cm

1 m
= v=A-v=0,2m-1600 - = 320 —
S S

2.2 Uberlagerung von Wellen verschiedener Frequenz

Gegeben seien zwei Wellen mit gleicher Amplitude und Phasenlage, welche sich aber in
der Frequenz unterscheiden. Wir untersuchen deren Uberlagerung am festen Ort x.

ui(t) = wgcos(wit — kix) 0 = wit — kix
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us(t) = wgcos(wot — kox) 09 = wot — kox

Uberlagerung ergibt

u(t) = ui(t) +uzt) = wup-[cosd; + cosds)

= 2-u0-005@-605w

35

Um den fiir die resultierende Welle erhaltenen Ausdruck interpretieren zu kénnen, disku-
tieren wir zunichst den einfacheren Fall der Uberlagerung zweier harmonischer Schwin-
gungen verschiedener Frequenz. Gegeben seien also zwei ortsfeste Schwingungen, z.B. am
Ort z = 0, welche in die gleiche Raumrichtung erfolgen. Dann gilt fiir die resultierende

Schwingung:
u(t) =uq (t) +ug (t)

@ =
P '
2k .

£ DALMY
R TT T TR

i
-2F Zett t
3

Abbildung 2.5: GroBle Frequenzunterschie-

de (aus [14]) Abbildung 2.6: Schwebungsfall (aus [14])

(a) 1. Fall: Grofie Frequenzunterschiede w; > ws
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Die Uberlagerung ergibt eine Schwingung, die nicht mehr harmonisch ist (Abb. 2.5):
Die schnellere Ausgangsschwingung (hohere Frequenz) schwingt um eine periodische
Achse, welche durch die langsamere Ausgangsschwingung gegeben ist.

2. Fall: Nahe beieinander liegende Frequenzen w; =~ ws (Schwebungsfall)

Der Ausdruck der Uberlagerung der harmonischen Schwingungen
u(t) =2 - ug - cos <w1;w2 -t) - COS (wl—;wz -t)

148t sich in diesem Sonderfall vereinfachen durch folgende N&hrungen:

w = w N Aw:wg—w1<<w
wy = w+Aw wl;w2=2'w;AWZW+%%w

Der resultierende Ausdruck
Aw
u(t) =2-u,- COSTt-COSLut

beschreibt eine Schwingung mit periodisch schwankender Amplitude (siehe Abb. 2.6).
Die Uberlagerung ergibt also eine Gesamtschwingung, welche sich darstellen 148t als
eine Grundschwingung der Frequenz w = (w; + we)/2 mit einer Amplitudenmodu-
lation, die mit der sogenannten Schwebungsfrequenz Aw = wy; —w; erfolgt. Man
nennt diese Erscheinung Schwebung.

Versuch: Gezeigt wird die Schwebung, die bei Uberlagerung der Schwingun-
gen zweier Fadenpendel unterschiedlicher Lénge entsteht. Zunéchst
wird der Verlauf der beiden Einzelschwingungen, dann deren Super-
position mit Hilfe eines Kathodenstrahloszillographen gezeigt.

Ein weiteres Beispiel fiir das Auftreten von Schwebungen bilden

Gekoppelte Schwingungssysteme

Wir betrachten zwei Fadenpendel gleicher Linge und Masse, welche wegen wy =
\/97/1 die gleiche Schwingungsfrequenz besitzen. Sie seien iiber eine Feder gekoppelt.
Die Pendel stellen zwei gleich grofie Energiespeicher dar, zwischen denen periodisch
Energie ausgetauscht werden kann. Wird z.B. eines der beiden Pendel ausgelenkt,
dann gibt es seine Energie allméhlich an das andere Pendel ab, bis dieses die gesamte
Energie besitzt und der Vorgang in umgekehrter Richtung ablauft.

Es gibt lediglich zwei Schwingungszustinde, bei denen keine Energieiibertragung
stattfindet. Sie werden Fundamentalschwingungen genannt.

A. Symmetrische Fundamentalschwingung
Beide Pendel werden gleichméflig zur selben Seite hin ausgelenkt und schwin-
gen daher gleichphasig (Abb. 2.7). Die Kopplungsfeder ist immer entspannt,
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die Kopplung daher unwirksam. Das gesamte System schwingt, wie auch die
einzelnen Pendel, mit der Frequenz

=7
0 I

B. Antisymmetrische Fundamentalschwingung
Die Pendel werden in entgegengesetzte Richtungen ausgelenkt, sie schwingen
gegenphasig (Abb. 2.8). Die Kopplungsfeder wird abwechselnd gedehnt und
gestaucht, wobei jedoch ihre Mitte in Ruhe bleibt. Daher wird fiir die Schwin-
gungsfrequenz der einzelnen Pendel die Federkonstante der halben Kopplungs-
feder wirksam. Die Frequenz dieser Fundamentalschwingung ist also ungleich
wp- Sie betragt

Abbildung 2.7: Symmetrische Abbildung 2.8: Antisymmetrische
Fundamentalschwingung (aus [6]) Fundamentalschwingung (aus [6])

Versuch: Vorfithrung der beiden Fundamentalschwingungen gekoppelter Pen-
del unter Herausstellung des Frequenzunterschiedes.

Im Allgemeinen schwingen gekoppelte Oszillatoren nicht genau in einem der beiden
Fundamentalmoden. So verursachen schon kleine Abweichungen bei der gleichmafi-
gen bzw. entgegengesetzten Auslenkung eine Uberlagerung der Moden. Dann ent-
steht eine Schwebung mit der Schwebungsfrequenz

Wg = W1 — Wy
Zur mathematischen Analyse solcher gekoppelter Schwingungssysteme wihlen wir

ein dquivalentes, aber einfacheres Modell: elastisch gekoppelte Feder — Masse —
Schwinger.
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a)
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Abbildung 2.9: Elastisch gekoppelte Feder—Masse-Schwinger (aus [14])

Dabei handelt es sich um zwei gleiche Massen m, welche an Federn mit der Federkon-
stante D schwingen. Thre Schwingungen wu;(t), us(t) sind iiber eine Kopplungsfeder
verbunden, welche die wesentlich kleinere Federkonstante Dq5 besitzt. Um zu einer
mathematischen Beschreibung des Systems zu gelangen, stellen wir die Bewegungs-
gleichungen auf:
m'?j1+D'U1+D12'(U1—U2) = 0
m-ij2+D-u2+D12-(u2—u1) =0

Das vorliegende System gekoppelter Differentialgleichungen wird durch Addition
und Subtraktion der Gleichungen entkoppelt. Es entsteht jeweils eine Differential-
gleichung fiir v, = u; +uy und u_ = u; — us.

m-(il1+?l2)+D-(u1+u2):0
m'(1.:61—712)+D'(U1—U2)+2D12'(U1—U2):0

2
W(’Uq'f"dg)'f‘%(ul'i‘?@) 0
2
%(ul—UQ)—FD_FW%DH (Ul UQ)—O
gtg +wiuy = 0 mit wy = \/%
dt + %'Uf == 0 w; = wliD +77'2LD12

Die Gleichungen werden gelost durch

uq () =g (t) + ug (t) = uo, cos (wot + @)
_(t) = uy () — ug (t) = ug_ cos (wit + ¢_)
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Fiir die gleichphasige Schwingung (u;(t) = us(t)) entféllt die zweite Gleichung und
es gilt

U
uy (8) = us () = % cos (wot + ¢4

Es findet eine Schwingung mit der ersten Fundamentalfrequenz wy = /D /m statt.

Fiir die gegenphasige Schwingung (u;(t) = —uy(t)) verschwindet die erste Gleichung.
Die Schwingungen

u u
uy (t) = % cos (wit+¢_) ux(t) = —% cos (wit + ¢_)

erfolgen mit der zweiten Fundamentalfrequenz w, = \/ (D + 2Dq3)/m.

Die Lésungen sind also genau die Fundamentalschwingungen. Man bezeichnet u
und u_ auch als Normalkoordinaten.

Im folgenden wollen wir den allgemeinen Schwingungsfall, bei dem Schwebungen
auftreten, genauer untersuchen.

Wir setzen hier folgende Anfangsbedingungen: Zu Beginn der Schwingung (¢ = 0)
ist der erste Schwinger maximal ausgelenkt, der zweite befindet sich in der Nullage.
Beide sind in Rubhe.

U1 (0) = Uy 1:L1 (0) =0 - U4 (0) = (0) = U

u (0) = 0 i (0) = 0 i (0) = @ (0) = 0

Die Losungen des Differentialgleichungssystems fiir diese speziellen Anfangsbedin-
gungen lauten:

uy (t) = wugcoswpt

u_(t) = wgcoswt

Fiir die Elongation der beiden Massen erhilt man daraus:
u (t) = uy (1) ‘5 u_(t)
up (t) = u (1) 5 u_ (t)

- [cos wopt + cos wi t]

S NS

[
- [cos wyt — cos wyt]

Unter Anwendung der Additionstheoreme 148t sich dies umformen zu

up (t) = uo-cos%t-coswt ) Aw = w; —ws

mit
up () = - sin St - sinwt w o= Witws

Die beiden Schwinger fiihren also Schwebungen aus. Die Schwebungen sind phasen-
verschoben
— um 7/2 beziiglich der Frequenz w der Grundschwingung

— um 7 in der Schwebungsfrequenz Aw.

Beachte: Mit der Definition der Schwebungsfrequenz Aw = w; — wy betrigt die
Schwebungsdauer 7y = 27/Aw nur die halbe Schwingungsdauer von
cos(Aw/2)t und sin(Aw/2)t.
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Abbildung 2.10: Schwebungen zweier gekoppelter Feder-Masse—Schwinger (aus [14])

Versuch: Gezeigt wird die Schwebung gekoppelter Pendel unter den im vor-
angehenden Abschnitt genannten Anfangsbedingungen.

Im allgemeinen Fall sind in einem gekoppelten Schwingungssystem nicht nur zwei,
sondern N Oszillatoren miteinander gekoppelt. Dieses System besitzt dann N Fundamental-
schwingungen wy, ..., wy. Solche Systeme sind in der Molekiil — und Festkérperphy-

sik von Bedeutung.

Zuriick zu Wellen: Mit den iiber die Superposition von Schwingungen erworbenen
Kenntnissen sind wir nun in der Lage, die Uberlagerung von Wellen verschiedener Fre-
quenzen zu diskutieren:

durch

mit

u(t):ul(t)+u2(t):2'“0'C0551_52-cos(51+52

2 2
Dabei war 6; = wit—k;z und d9 = wyt—koz. Die resultierende Welle wird also beschrieben
A A
u(t) =2 - ug - cos (th - Tk:z:) - cos (wt — kx)
Aw = W1 — Wo Ak = kl—kg
W W;‘Qi‘ﬂ = K -5 ko

Analog zur Uberlagerung von Schwingungen entsteht auch hier bei geringen Frequenzun-
terschieden (w; & wy, bzw. Aw < w) eine Schwebung.

Da bei einer Welle Orts — und Zeitkoordinate bis auf konstante Phasen symmetrisch sind,
tritt hier die Schwebung sowohl beziiglich x, als auch beziiglich ¢ auf.

Versuch: Mit Hilfe zweier leicht gegeneinander verstimmter Stimmgabeln wird eine

Schwebung erzeugt.
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Abbildung 2.11: Schwebung beziiglich « und t bei Uberlagerung zweier Wellen geringfiigig
verschiedener Frequenzen

2.3 Die Gruppengeschwindigkeit

Die aus der Uberlagerung entstandene Welle

A A
u(t) =2 - ug - cos (%t - Tka:> - cos (wt — kx)

kann als Cosinuswelle mit der variablen Amplitude 2 - uq - cos (%ﬁt — %Lc) angesehen

werden.

Die Cosinuswelle cos (wt — kz) pflanzt sich mit der Geschwindigkeit vy, = w/k fort, welche
im Abschnitt 1.3.2 als Phasengeschwindigkeit bezeichnet und von der noch zu definieren-
den Gruppengeschwindigkeit streng unterschieden wurde. In der Abbildung 2.12 bewegt
sich der kleine Kreis mit vy, .

Was ist die Gruppengeschwindigkeit ?

Zur Beantwortung dieser Frage untersuchen wir die Amplitudenmodulation der Cosinus-
welle. Die Modulation, auch Schwebungsgruppe genannt, kann ebenfalls als harmoni-
sche Welle aufgefafit werden, welche sich mit der Geschwindigkeit

Aw
o Aw
Ak T Ak
2

Ugr

ausbreitet.

Die Momentaufnahmen der Auslenkung v zu zwei aufeinanderfolgenden Zeitpunkten ¢,
und t, verdeutlichen dies: Die Geschwindigkeit, mit welcher sich die Umbhiillende der
schnell oszillierenden Cosinuswelle bewegt, bezeichnet man als Gruppengeschwindig-
keit. In Abbildung 2.12 ist dies die Geschwindigkeit, mit welcher der Pfeil seine Position
andert.
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Abbildung 2.12: Zustédnde einer Schwebungsgruppe. Der Pfeil kennzeichnet das Maximum
der Gruppe, der kleine Kreis einen Zustand konstanter Phase. (aus [14])

_Aw

Vor = A oder

Diese betrégt bei Vorliegen diskreter Frequenzen

_dw
Vor =
Die Schwebungsgruppe stellt eine periodische Zu — und Abnahme von Schwingungsenergie
dar, daher gilt:

im allgemeinen Fall einer kontinuierlichen Frequenzverteilung

Bei der Superposition von Wellen erfolgt der Energietransport mit der Ge-
schwindigkeit der Schwebungsgruppe, d.h. mit der Gruppengeschwindigkeit
vgr der resultierenden Welle.

Welcher Zusammenhang besteht zwischen Phasen — und Gruppengeschwin-
digkeit?

) w
Mit vy = T & w =k - vp, erhdlt man

d
Vgr = ?Ji—% = Uph-i-k-%

d
Aus A = 27/k folgt d\/dk = —27/k? und damit ergibt sich

dup, 2T 21 duy

Also

Zusammenhang zwischen
dvp, | Phasengeschwindigkeit vy,
Yor = Uph = A 70N | und
Gruppengeschwindigkeit vy,
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Nach dieser Gleichung stimmen Gruppen — und Phasengeschwindigkeit nur dann {iberein,
wenn die Phasengeschwindigkeit vy, nicht von der Wellenldnge A abhéngt, d.h. wenn
dvpn/d\ =0 ist.

Sowohl in der Natur, als auch bei vielen praktischen Anwendungen der Physik tritt jedoch
héufig eine Abhingigkeit der Phasengeschwindigkeit von der Wellenldnge auf. Es findet
Dispersion statt.

Zu unterscheiden sind also die drei folgenden Félle:

(1) vpn ist unabhéngig von A

duph _

T 0 = vg =up keine Dispersion
(ii) vpn = vpn(A)
dUph . .
Y >0 = v < Upy normale Dispersion
(111) 'Uph = Uph(/\)
dUph . .
) <0 = vg >uvp anomale Dispersion

2.4 Reflexion und stehende Wellen

Bisher bezogen sich unsere Betrachtungen auf das Verhalten von Wellen in ein und dem-
selben Medium. Wir kénnen nun weiter fragen:

Wie verhilt sich eine elastische Welle an der Grenzfliche zwischen zwei Me-
dien?

Trifft eine Welle auf die Grenze eines zweiten Mediums, so wird sie dort ganz oder teil-
weise reflektiert. Je nach dem Dichteverhéltnis der beiden Medien unterscheidet man die
Reflexion am festen und am losen Ende. Bei der Reflexion am festen Ende, d.h. wenn das
zweite Medium dichter ist, erfahrt die Welle einen Phasensprung um 7. Bei der Reflexion
am losen Ende, d.h. am diinneren Medium, tritt kein Phasensprung auf.

Versuch: Die Reflexion am festen und am losen Ende wird am Beispiel der Seilwelle
demonstriert.

Qualitativ 148t sich das Verhalten folgendermaflen erkléren:

Die Seilwelle tréigt als elastische Welle die Energiedichte

=2 @Q—FE 8_u2 mitw—w—lw
“2 \ot 2 \oz FTTP T

/ ~ /

Wy, Wy
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Abbildung 2.13: Reflexion am festen und am losen Ende (aus [2])

Reflexion am festen Ende

Aufgrund der Befestigung kann das Seilende
keine Schwingung senkrecht zur Seilrichtung
ausfiithren und besitzt daher keine kinetische
Energie. Aus der Gleichverteilung der Ge-
samtenergie folgt, dafl am Seilende die zwei-
fache potentielle Energie gespeichert wird.
Diese bewirkt die Auslenkung der vorletzten
Seilstiicke in entgegengesetzte Richtung. Die
Welle 1auft gegenphasig zuriick.

wpy,=0 = w=2-w,

Reflexion am losen Ende

Das frei bewegliche Seilende besitzt keine po-
tentielle Energie. Da keine Kopplung vor-
handen ist, erhilt das Seilende die zweifa-
che kinetische Energie und schwingt mit dop-
pelter Amplitude aus. Die Welle lduft in
gleicher Phase zuriick.

w, =0 = w=2 wy

Das Verhalten einer elastischen Welle an der Grenzflache zweier verschiedener Medien soll

nun quantitativ diskutiert werden.

Wir betrachten zwei isotrope, elastische Medien, die durch ihre Dichte (g1, 02) und durch
ihren Elastizitdtsmodul (E;, Ey) charakterisiert seien. Sie treffen an der ebenen Grenz-

flache z = 0 zusammen.

Vom Medium 1 kommend falle eine harmonische Welle der Frequenz w senkrecht auf die
Grenzfliache. Ein Teil dieser Welle wird dort in das Medium 1 zuriickreflektiert, ein ande-
rer Teil tritt durch die Grenzfliche hindurch in das Medium 2.

Die reflektierte wie auch die transmittierte Welle besitzen — falls der lineare elasti-
sche Bereich nicht iiberschritten wird — die Frequenz w der einfallenden Welle. Mit

Vo=

\/E /o unterscheiden sich jedoch die Fortpflanzungsgeschwindigkeiten in den ver-

schiedenen Medien und damit auch die Wellenzahlen £k = w/v.
Bei der Aufstellung der Wellenausdriicke miissen ferner Unterschiede in den Amplituden
und Phasen beriicksichtigt werden. Die Phase der einfallenden Welle 64 kann willkiirlich

festgelegt und somit 64 = 0 gesetzt werden.
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Abbildung 2.14: Verhalten einer elastischen Welle an der Grenzfldche zweier verschiedener
Medien

Einfallende Welle

up = A-cos(wt —kiz) bzw. uy=A- el (Wt — k1)

Reflektierte Welle

up = R-cos (wt + kiz + dr) bzw. ug = R-é (Wt + k2 + Or)

Transmittierte Welle

up =T - cos (wt — kex + 07) bzw. ur =T - ¢l (wt — kox + 67)

Die Grenzbedingungen bei z =0:

1. Die Auslenkung an der Grenzfliche ist stetig. Zu jeder Zeit gilt bei =0

|ua +up = ur|

2. Die Normalspannung 19, die an der Grenzfliche vom Medium 1 auf das Medium 2
ausgelibt wird, ist gleich der in die umgekehrte Richtung wirkenden Normalspannung
091. Es gilt also zu jeder Zeit bei z = 0

ou ou ou
‘UA‘FUR:UT‘ = a—;'El'i‘a—;'El:a—;'Ez
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Aus Bedingung 1 folgt durch Einsetzen der Wellenausdriicke

A_eiwt+R.ei(wt+5R) — Tez(wt—i-(ST)

A.eiwt — _Rez(wt+53)+Tez(wt+5T)
A = —R-eiéR_FT.eiéT
A = —R-cosdp+T-cosdr+i-(—R-sindg+7T -sindr)

Aus Bedingung 2 folgt
El'kl'A:El'kl'R'COS5R+E2'kQ'T'COS(ST-FZ"(E1'kl'R'Sin(sR+E2'k2'T'Sin5T)

Da die Amplituden A, R und 7T sowie die Phasen 6z und ér reell sind, miissen die Ima-
ginérteile verschwinden.

Es ist also folgendes Gleichungssystem zu l6sen:

I — R-sindrp+T -sinér = 0
IT FE, -k -R-sindg+ Fy-ko-T-sindp = 0

Multiplikation von I mit Ej - k; und Addition der beiden Gleichungen ergibt fiir II:

I —R-sindgp+7T-sindr =0
II (El-k1+E2-k2)-T-sin5T=0 = (a) El'lﬁ:—Eg'kQ V (b)T'SiIléT:O

Da F,, E, fest vorgegeben und mit der Wahl der Frequenz w auch die Wellenzahlen £,
und k, festgelegt sind, liefert (a) keine Losung.
Das Gleichungssystem ist also nur trivial 16sbar durch

sin6R = SiIléT =0

Damit ergibt sich
1) R = 0, ™
und 07 = 0,7
Die Losung dr = m muf} aus Griinden der Kontinuitét ausgeschlossen werden. Betrachtet
man namlich den Grenzfall R — 0, in dem sich die beiden Medien wenig unterscheiden,
so wird die Welle fast ungestoért durch die Grenzfliche hindurchtreten und damit é; =0

sein. Also

0g = 0,7 Phase der reflektierten Welle
or = 0 Phase der transmittierten Welle
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2.5 Stehende Wellen

Wir untersuchen nun die Uberlagerung der einfallenden und der reflektierten Welle im
Medium 1 fiir den Fall gleicher Amplituden A = R.

Addition der Auslenkungen ergibt
u=us+ur=A-[cos (wt— kx) + cos (wt + kx + 0r)]

Als resultierende Welle erhilt man

e bei Reflexion am losen Ende (6z = 0)

u = A-[cos(wt — kz) + cos(wt + kx)]

lu=2A - coskz - coswt|

e bei Reflexion am festen Ende (6 = )

u=A-[cos (wt — kz) + cos (wt + kz + 7)]

= A [cos (wt — kz) — cos (wt + kx)]

‘uz 2A-sinkx-sinwt‘

Das Ergebnis der Uberlagerung ist eine stehende Welle, bei der 6rtliche und zeitliche
Anderung der Elongation entkoppelt sind:

u(z,t) = uy (x) - ug (¢)

Der Wellenvorgang stellt eine ortsfeste harmonische Schwingung (~ cos wt[sin wt]) dar, de-
ren Amplitude sich im Raum von Punkt zu Punkt (~ cos kz[sin kx]) dndert. Das Schwin-
gungsbild steht fest, es findet keine Wellenausbreitung statt.

Man bezeichnet die Raumpunkte, an denen die ortsfesten Schwingungen mit maximaler
Amplitude vorliegen, als Béduche. Die Orte, an denen die Amplitude Null ist, heiflen
Knoten.

Stehende Wellen treten in der Praxis bei der Reflexion von Wellen auf. Theoretisch bilden
sie die Interferenzerscheinungen zweier Wellen gleicher Frequenz und Amplitude, welche
entgegengesetzte Laufrichtung besitzen.
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Abbildung 2.15: Ausbildung einer stehenden Welle

Die Verteilung der Energie in einer stehenden Welle

Wie auf S.23ff. hergeleitet wurde, gilt fiir die kinetische und potentielle Energiedichte

einer elastischen Welle
_o (o) _E (ou)’
WE=9 ot =9 "\ br

Fiir die stehende Welle v = 2A - sin kz - sinwt erhilt man

wr=2-0-A%-w?-sin? kz - cos® wt
w,=2-0-A%-w? - cos? kx - sin® wt

Das Ergebnis fiir w, ergibt sich aus w, = 2- E- A?-k?-cos? kx-sin® wt mit k? = w?/v?

und v =FE/p.
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Interpretation der erhaltenen Ausdriicke: Bei der stehenden Welle findet im Ge-
gensatz zur laufenden Welle kein Energietransport statt! Ahnlich wie bei einer harmoni-

K//Loa/eh Bawuch

£ (x) /

>X

>X

MA\VAVAVAVIE

Abbildung 2.16: Verteilung der Energie bei der stehenden Welle (aus [15])

schen Schwingung erfolgt ein periodischer Austausch zwischen kinetischer und potenti-
eller Energie (sieche Abb. 2.16). Die Verteilung der Energiedichten ist periodisch in der
Ortskoordinate x. Die kinetische Energiedichte wy(z) ist an den Schwingungsbduchen
konzentriert, da sich dort die Oszillatoren des Mediums mit der gréfiten Geschwindig-
keit bewegen. Die maximale potentielle bzw. elastische Energiedichte w,(x) liegt an den
Schwingungsknoten vor. Dort ist die Deformation des Mediums am gréfiten. Die Ener-
giedichten sind also nicht wie bei der laufenden Welle zu jedem Ort und zu jeder Zeit
gleich.

Merke:| Stehende Wellen haben die chakteristischen Eigenschaften von Schwingungen

In vielen Bereichen der Physik treten stehende Wellen auf. Einige Beispiele werden im
folgenden beschrieben.

Eigenschwingungen
1.Beispiel: Transversale stehende Wellen einer Saite

Eine Saite wird an beiden Enden eingespannt und zu transversalen Schwingungen an-
geregt. Aufgrund der beidseitigen Reflexion am festen Ende bilden sich je nach der Er-
regerfrequenz verschiedene stehende Wellen aus. Die Randbedingungen, hier Knoten an
beiden Einspannstellen, erlauben nur bestimmte harmonische Wellen, welche man als Ei-
genschwingungen der Saite bezeichnet.



50 KAPITEL 2. UBERLAGERUNG VON SCHWINGUNGEN UND WELLEN

Grundschwingung 4 = \__, Ao Y0

1. Oberschwingung 0 {__}«\/5. =424 2%

2. Oberschwingung Ae=g 4o RE7

3. Oberschwingung Az =11 4w

- 4. Oberschwingung ¢ D da=1417o 5w

- 1 '
k.Oberschwingung | .. ... ... ... ... ... ... ... A = P 20 k+ 1y,

Abbildung 2.17: Eigenschwingung einer Saite (aus [2))

Aus Abbildung 2.17 geht hervor, daf fiir die n — te Oberschwingung allgemein [ =
(n+1)-A/2 (n=0,1,2...) gilt.

Daraus folgt fiir die Eigenschwingungen der Saite

2-1 Wellenlédngen der moglichen
A= =0,1,2,...
ntl 0o stehenden Wellen

2.Beispiel: Longitudinale stehende Wellen in Orgelpfeifen

Die Klangerzeugung bei Blasinstrumenten beruht auf longitudinalen stehenden Wellen.
Wir wollen exemplarisch die Eigenschwingungen der offenen und der gedackten Pfeife be-
handeln.

In eine Orgelpfeife wird am vorderen Ende iiber eine Schneide Luft eingeblasen und auf-
gewirbelt, so dafl die innen befindliche Luftsiule zu Schwingungen angeregt wird.

(a) Bei der gedackten Pfeife — gezeigt in Abbildung 2.18 — ist das hintere Ende ge-
schlossen. Dementsprechend verschwindet dort die longitudinale Auslenkung der
Gasmolekiile (Schwingungsknoten), wihrend sie am offenen vorderen Ende maxi-
mal ist (Schwingungsbauch). Es findet also Reflexion am festen und am losen Ende
statt.

Fiir die n — te Oberschwingung gilt [ = (2n+1)-A/4 (n=10,1,2,...). Es sind also

4.1
2n+1

A= n=0,1,2,...

die Wellenldngen der Eigenschwingungen der gedackten Pfeife.
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a) b) c)
a) b) c)
Abbildung 2.18: Figenschwingungen Abbildung 2.19: Figenschwingungen
der gedackten Pfeife (aus [14]) der offenen Pfeife (aus [14])

(b) Bei der offenen Pfeife — gezeigt in Abbildung 2.19 — sind beide Enden offen, so
daB sich an den Enden jeweils Schwingungsbiduche ausbilden. Die Bewegung der
Luftmolekiile ist dort maximal. Es findet beidseitig Reflexion am losen Ende statt.

Hier gilt allgemein fiir die n — te Oberschwingung I = (n+1)-\/2 (n=1,2,...).
Es sind also

2.1
A=
n+1

n=20,1,2,...

die Wellenldngen der Eigenschwingungen der offenen Pfeife.

Bemerkung zu den Abbildungen: Beiden Eigenschwingungen einer Pfeife erfolgt die
Auslenkung der Gasmolekiile u(z,t) longitudinal, sie wird lediglich der Anschaulichkeit
halber als Transversalwelle dargestellt.

Versuch: 1.Teil: Die Eigenschwingungen zweier offener Holzlippenpfeifen unterschied-
licher Lénge werden demonstriert.

2.Teil: Gezeigt wird die Abhéngigkeit der Eigenschwingungsfrequenz vom
verwendeten Gas. Dazu wird eine der Pfeifen zunichst mit Prefiluft, dann
mit Helium angeblasen. Da die Schallgeschwindigkeit v in den beiden Ga-
sen unterschiedlich ist, &ndert sich mit v = v/A auch die Frequenz der
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Eigenschwingung, was einer Anderung der Tonhéhe entspricht. Im vor-
gefiihrten Fall verdreifacht sich die Tonhohe anniahernd, da die Phasenge-
schwindigkeit des Schalls in Helium vz, = 965 m/s etwa das Dreifache des
Wertes in Luft betrigt.

Einen anschaulichen Nachweis longitudinaler stehender Wellen in einer Luftsdule liefern
die KunDTschen Staubfiguren.

Versuch: Mit Hilfe einer Galton — Pfeife wird im sogenannten KUNDTschen Rohr
(siehe Abb. 2.20), welches eine diinne Schicht Bérlappstaub enthélt, eine
stehende Welle erzeugt. An den Bauchen der Welle wird der Staub aufge-
wirbelt, wéhrend er sich an deren Schwingungsknoten ansammelt. Dieser

: 5 s
%IH!IIUI”“'\__/'”“\_/"H“\-J'Il S ’
2

Abbildung 2.20: Kundtsches Staubrohr(aus [2])

Versuch kann zur Bestimmung der Schallgeschwindigkeit verwendet wer-
den.

MeBbeispiel: Aus dem Abstand zweier Knoten A/2 = 1,35cm und der
Erregerfrequenz v = 12,6 kHz erhdlt man mit v = A - v fiir die
Schallgeschwindigkeit den Wert v = 340 m/s.

Wir haben bisher die stehende Schallwelle durch die raumlich veréinderliche Amplitude
der Bewegung der Gasmolekiile beschrieben. Es besteht zusédtzlich die Moglichkeit, die
Welle durch die auftretenden Druckdifferenzen Ap = —pg - £ - Ou/0x zu beschreiben.
Fiir den ortsabhéngigen Term u(x) der stehenden Schallwelle, welcher die Amplitude der
Molekiilbewegung angibt, gilt

u(z) ~ coskz [sinkz]
Daraus folgt fiir die Druckdifferenz

Ap(z) ~ Oul)

~ sinkx [cos k]

Druck und longitudinale Auslenkung sind also um 7/2 phasenverschoben, wie in Abbil-
dung 2.21 graphisch veranschaulicht ist.
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Abbildung 2.21: Phasenverschiebung von 7 /2 zwischen Druck und longitudinaler Auslen-
kung bei einer Schallwelle

2.6 Fourieranalyse

Wie wir in den vorangehenden Abschnitten gesehen haben, liefert die Uberlagerung har-
monischer Wellen neue, meist kompliziertere Wellen: Schwebung, Amplitudenmodulation,
stehende Wellen. Hier stellt sich die Frage, ob auf diese Weise beliebige, auch nicht har-
monische Wellen erzeugt werden konnen.

Zur Beantwortung dieser Frage betrachten wir den umgekehrten Vorgang, d.h. die Zer-
legung einer beliebigen Welle in die zur Uberlagerung beitragenden Teilwellen. Man be-
zeichnet die mathematische Formulierung eines solchen Vorganges als Fourieranalyse.

Wegen der besseren Ubersichtlichkeit der Formeln und der leichteren Verstindlichkeit
befassen wir uns zunéchst mit der Fourieranalyse von Schwingungen.

Fourieranalyse von Schwingungen
Fourieranalyse periodischer Schwingungen

Eine beliebige, periodische Schwingung werde beschrieben durch die stiickweise stetige,
periodische Funktion u(t) der reellen Variable ¢ mit der zeitlichen Periode T'. D.h. fiir alle
t gilt

u(t+T) = u(t)

FOURIER zeigte 1822, daf sich u(t) darstellen 148t als

ap+ Y an cosnwt + ¥ _ by, sinnwt mit w = T

Dabei gilt fiir die Fourierkoeffizienten
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T
a, = / u(t) - cos nwt dt
0

b, =

N o N

T
/ u(t) - sin nwt dt
0

Die Kombination aus Sinus — und Kosinusschwingungen gleicher Frequenz ergibt dabei
jeweils eine Kosinusschwingung mit bestimmter Phase ¢,,:

ay €os nwt + by, sin nwt = u, cos(nwt — )

Damit erhilt man die Fourierreihe

> 2
u(t) = uy cos(nwt — ¢p,) , w= %

n=0

Amplitude u,, und Phase ¢, werden durch die Fourierkoeffizienten festgelegt. Aus dem
Additionstheorem cos(a — f5) = cosa - cos f + sina - sin 5 folgt

U cOS(NWt — ) = Uy COS P, €OS NWt + Uy, Sin @, sin nwt
S— S—

Qp bn

Man erhélt also folgenden Zusammenhang

a, = Uy COS P, _ U, = /a2 +b2

b, = wu,sinyp, tanp, = &

Zusammenfassung: Jede beliebige periodische Schwingung 148t sich eindeutig zerle-
gen in eine Reihe von elementaren Cosinus — und Sinusschwingungen (Fourieranalse). Die
dabei auftretenden Kreisfrequenzen sind Vielfache der Grundkreisfrequenz w = 27/T |
durch welche die analysierte Schwingung beschrieben wird.

Umgekehrt ist es also moglich, jeden periodischen Vorgang, beschrieben durch eine Funk-
tion u(t) = u(t+7T) , aus einer Grundschwingung der Frequenz w = 27 /T und ihren
Oberschwingungen der Frequenzen nw aufzubauen (Fourierentwicklung).

Aufschluf dariiber, welche Grundschwingung und Oberschwingungen mit welchen Ampli-
tuden am Zustandekommen des resultierenden periodischen Vorganges beteiligt sind, gibt
das sogenannte Amplitudenspektrum. Dabei handelt es sich um ein Diagramm, in dem
die Amplituden gegen die Kreisfrequenzen aufgetragen sind. Diese spektrale Darstellung
enthélt jedoch keine Information iiber die Phasenlage der Ausgangsschwingungen.

Komplexe Darstellung der Fourierreihe

Es war -
u(t) =Y un cos(nwt — @y,)

n=0
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Abbildung 2.22: Uberlagerung harmonischer Schwingungen und Amplitudenspektrum

(aus [14])

Mit cosa =1/2- (e'® + e *®) ergibt sich fiir u(t)

o0 1 . o o .
ult) = Z§un (6znwt 2 znwt-i-upn)

n=0
o0 1 . . o0 . .

_ z_uneznwt Z(p"—kz—une 1wt + 1 oy,
n:O2 n:O B

_ il znwt—zgpn+2 inwt-ﬁ-igo,n
— 2

nO
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Mit w, =u_, und ¢_, = —p, liBt sich dies zusammenfassen zu

u(t) = Jio lu o1 Pn lnwt
= 5 Un
n:_oo%/_/

Ay,
Man erhilt

_ f A ei nwt| Fourierreihe
B " A, komplex

n=—oo

Welcher Zusammenhang besteht nun zwischen den Fourierkoeffizienten a,,, b, und A,, der
reellen und der komplexen Darstellung der Fourierreihe ?

Fiir n =0 erh&lt man durch Vergleich der beiden Darstellungen
n=0: Qg = AO

Im Fall n # 0 gilt fiir jede harmonische Welle mit « = nwt

At A et = 4, (cosa+isina)+ A, (cosa — i sin a)
= (A, +A_,) cosa+i(4,—A_,) sina

Damit 148t sich die komplexe Darstellung umformen zu

+00 . 00 . 0 .
Z Aneznwt _ A0+2An€znwt+ZA_ne—2nwt

n=—0o n=1 n=1
= Ao+ ) (4, + A, cosa—i—z (A, — A_,) sina
n=1

Vergleich mit der reellen Fourierreihe ergibt
an = A+ A,
by, = —An+A,

Daraus ergeben sich folgende Beziehungen zwischen den reellen und komplexen Fourier-
koeffizienten

Ay = ag
Av = (a0 —ibn)
Ay = S(an+iby)

Fiir A, folgt also

A, =

—//
N o

T
/ u(t) cosnwtdt — i — / ) sin nwt dt)
0

N = ol

S~
3

u(t) (cosnwt — i sin nwt) dt
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1 /T .
A, = T / u(t) e ™" dt| Komplexer Fourierkoeffizient
0

Beispiele fiir die Anwendung der Fourieranalyse

Beispiel 1: Das menschliche Gehor fiihrt auf mechanischem Wege eine Fourierzerlegung
der wahrgenommenen Laute durch. Wahrend ein Ton eine rein sinusférmige
Schwingung der Luftteilchen darstellt, handelt es sich bei einem Klang meist
um eine komplizierte periodische Schwingung. Das Ohr registriert beim Emp-
finden eines Klanges die Grundschwingung, welche die Tonhéhe bestimmt,
sowie die zugehorigen Oberschwingungen, welche die Klangfarbe ausmachen.

[ v {
i v Kiang
i To,n {a’ cis"e” t
| (@) ¢ Dreiklang)
| % d fhf

Abbildung 2.23: Fourierzerlegung von Lauten durch das menschliche Gehdr (aus [14))

Beispiel 2: Bei einem Verstédrker werden je nach Bandbreite die Oberschwingungen be-
schnitten. Umgekehrt fithren Verzerrungen (Nichtlinearititen) zu zusitzli-

chen Oberschwingungen. In beiden Fillen kommt es zu einer Anderung der
Klangfarbe.

LN N, N N
N NN

Abbildung 2.24: Beschneidung der Oberschwingungen

Versuch: Mit Hilfe des sogenannten Fouriergerites wird eine periodische Schwin-
gung in ihre Grund — und Oberschwingungen zerlegt.
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Danach erfolgt die Demonstration des umgekehrten Vorganges: Durch
Uberlagerung der ermittelten Teilschwingungen wird die Ausgangsschwin-
gung aufgebaut.

Als Ausgangsschwingungen werden die Rechteck —, die Dreieck — sowie die
Sagezahnschwingung gewéhlt.

N A
N

v =T

Abbildung 2.25: Fourierzerlegung einer Abbildung 2.26: Fourierzerlegung einer
periodischen Dreieckskurve (aus [2]) Ségezahnschwingung (aus )

Mathemathische Fourieranalyse am Beispiel der Rechteckfunktion

w = 77— ,
c I T
2
= -Mo

Abbildung 2.27: Rechteckschwingung
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Eine zeitliche Periode der Rechteckfunktion 148t sich wie folgt beschreiben:

up fiir 0 <t <T/2

u(t)

—uy fir T/2<t<T

Der komplexe Fourierkoeffizient A, berechnet sich zu

1

T ot
A, / u(t) e~ dt
0

[_“o e nwt] T/
1 nw 0

e e [ |

1w
Up _i
- Tin2r (26 “”WT_Q)
_ _ Yo (_—inm _q) _ 0
inm (6 1) 2ug/inm

Die komplexe Fourierreihe berechnet sich zu

n [+uo e—i nwt

T/2 . T .
(/ g e LIt dt+/ (—up) e " nwt dt)
0 T/2

)

(6—72 n2mw e—z’ nw))

fiir n gerade

fiir n ungerade

+0o0 . . +oo .
U _ 2u
u(t) = Z 2 (6 zmr_l) el Tt _ z : 0 Jnwt
N ¥ (411 e tnm
n ungerade
_ i 2u, <ez' nwt _ i nwt) _ i dug 1 (eq; nwt _ —i nwt)
= TN 1 nmw 21
n ungerade n ungerade
> 4U0 .
= Z — sin nwt
n=1 nmw
n ungerade

1 1
0 (sinwt+ — sin 3wt + — sin5wt+--->
T 3 5

Die Fourierreihe einer Rechteckkurve lautet also:

ad dug . 4y
ult) = ) — sinnwt = —>
= nm 7
n ungerade

1 1
(sin wt + 3 sin 3wt + R sin bwt + - - )

Die Abbildung 2.28 zeigt den Verlauf der Grundschwingung (erste Harmonische) und der
beiden ersten Oberschwingungen (zweite und dritte Harmonische) sowie deren Uberla-
gerung. Zum Aufbau der Rechteckfunktion sind unendlich viele Oberschwingungen der
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Abbildung 2.28: Fourierentwicklung der Abbildung 2.29: Amplitudenspektrum der
Rechteckschwingung (aus [14)) Uberlagerung (aus [14])

Form 4ug/nm sinnwt (n = 1,3,5,...) erforderlich, aber — wie die Abbildung zeigt
— ergeben schon wenige eine gute Naherung. Das Amplitudenspektrum der dargestellten
Uberlagerung ist in der Abbildung 2.29 zu sehen.

Bei den vorangehenden Erlduterungen zur Fourieranalyse periodischer Schwingungen wur-
de nur auf zeitlich periodische Funktionen eingegangen. Ortlich periodische Funktionen
u(z) = u(x + A) mit der Periode A werden véllig analog behandelt. Im Amplituden-
spektrum werden dann entsprechend die Amplituden gegen die Wellenzahlen k£ = 27/
aufgetragen.

Merke: Zur Entwicklung periodischer Funktionen sind unendlich viele Oberschwingun-
gen erforderlich, das Spektrum der Kreisfrequenzen nw bzw. Wellenzahlen nk
bleibt jedoch diskret.

Fourieranalyse nicht—periodischer Schwingungen

Eine nicht—periodische Funktion (siehe Abb. 2.30) kann aufgefafit werden als periodische
Funktion mit unendlich grofler Periode. Fiir eine zeitabhingige Funktion wiirde dies be-
deuten, daB sich die Periode 7" von ¢ = —oo bis ¢ = +oo erstreckt. Der Ubergang
T — oo wird zu einer unendlich kleinen Grundfrequenz w = 27 /T fiihren, so dafl
die Spektrallinien nw des Amplitudenspektrums immer dichter zusammenriicken werden.
SchlieBlich wird das diskrete in ein kontinuierliches Spektrum iibergehen, das alle Fre-
quenzen enthélt: nw — [0, co].
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Analog wird bei einer ortsabhéingigen, aperiodischen Funktion mit A — oo das Ampli-

w &) |
ooles
(%)

& ooles x

Abbildung 2.30: Nicht—periodische Funktion

tudenspektrum sdmtliche Wellenzahlen umfassen: nk — [0, oc].

Fiir die mathematische Formulierung der Fourieranalyse bedeutet dies, dafl an die Stel-
le der Fourierreihe das Fourierintegral tritt. Weiter werden die Fourierkoeffizienten A,
durch stetige Amplitudenfunktionen A(w) bzw. A(k) ersetzt. Dabei gibt A(w) das Fre-
quenzspektrum und A(k) das Wellenlédngenspektrum an.

Fiir beliebige aperiodische Funktionen gelten die Fouriertransformationen:

_ 1 oo 1wt : _ 1 oo —tw
u(t) = T /_oo Alw)e'* dw mit A(w) = T /_oo u(t) e bt

_ L e ikz : _ L e —ikz
u(z) = Ner /oo A(k) e’ dk mit A(k) = Ner /oo u(zr)e dx

Der Faktor 1/+/27 ist reine Konvention und hebt die Symmetrie zwischen den Ausdriik-
ken fiir v und A hervor.

Beispiel: Fourieranalyse eines Rechteckimpulses

Gegeben sei eine nicht-periodische Funktion u(x), welche beschrieben wird durch
uo fir |z| < L/2
0 fir |z| > L/2

Wir berechnen zunéchst das Wellenldngenspektrum A(k)

+oo s 1 +§ s
/_ u(z) e ZImda@:\/ﬁ/L up e kT gy
o -3
[_Uo e—ikmr _ ! (_?{_ze—ik§+9_oeik§>
- i

ﬁ V2T 1k

A(k) =

Nl

Sl 8-
3 3

sl
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_ V2u 1 (eikg B e—z’k%)

Tk 2i
\/5 w . L uoL sinkL/2
— — sink— = ———7—
T k 2 V2 kL/Q
. Wellenlédngenspektrum
L L/2
A(k) = uol sinkL/ eines

V2r  kL/2 Rechteckimpulses

Die reelle Darstellung der Funktion u(x) erhalten wir, indem wir im Fourierintegral fiir
u(z) die Glieder mit entgegengesetzt gleichen Wellenzahlen zusammenfassen.

_ 1 oo 1kx
u(z) = \/—Q_W/oo A(k) R g

\/%7 /0+°° (A(—k) e kT L A(k) el ’“‘) dk

WILS'D)

) Loz

Abbildung 2.31: Rechteckimpuls

A(k)

VIV AL
2

Abbildung 2.32: Wellenldngenspektrum eines Rechteckimpulses
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Mit
uoL sinkL/2

A = A(-k) = Z= =T

ergibt sich

_ Ul /+°° sinkL/2 ( —ikx zkx)
u(z) = 5 | kL2 e +e dk

ugL [toosinkL/2

—_ kx dk
T Jo kL/2 COSIE

u(z) =

Mit den gewonnenen Kenntnissen 148t sich nun die Fourierzerlegung bzw. — entwicklung
einer Welle ohne Schwierigkeiten bewéltigen.

Fourieranalyse einer Welle

Da eine Welle u(z,t) sowohl orts — als auch zeitabhingig ist, 148t sie sich entweder in
der Orts — oder Zeitkoordinate nach Fourier entwickeln. Entsprechend erhélt man ein
Wellenléingen — A(k) oder Frequenzspektrum A(w).

Die Entwicklung nach x ergibt

u(z) = \/LQ_W / T Ak ¢t (k= w(k)t) g

D.h. zu einem beliebigen Zeitpunkt ¢ liBt sich die Welle als Uberlagerung harmonischer
Wellen mit der Phasengeschwindigkeit v(\) = w(k)/k darstellen.

2.7 Mehrdimensionale Wellen

Wir haben bisher zur Einfiihrung und Beschreibung des Phinomens Welle eindimensio-
nale Wellen angenommen, deren Ausbreitung mit der Phasengeschwindigkeit v im dreidi-
mensionalen Raum auf die z — Richtung beschrinkt war. Diese haben wir mathematisch
beschrieben durch die Ausdriicke

o u(z,t) =u(z Fovt) im Fall der allgemeinen Welle
e u(x,t) = u, cos(wt F kx) im Fall der harmonischen Welle

Dabei war eine eindimensionale Welle definiert als Ubertragung eines Schwingungszustan-
des entlang einer Gerade im Raum.

Erweitern wir nun unser Blickfeld auf den gesamten dreidimensionalen Raum und be-
trachten alle Raumpunkte, welche beziiglich der obenstehenden Wellenausdriicke gleiche
Phase besitzen, d.h. in denen zu einem gegebenen Zeitpunkt ¢ die Auslenkungen wu(t)
iibereinstimmen, so sind dies Ebenen senkrecht zur x — Achse, welche voneinander den
Abstand A haben (sieche Abb. 2.33 und Abb. 2.34).
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Abbildung 2.33: Ebene Wellenfronten im
Abstand A Abbildung 2.34: Ebene Welle (aus [1])

Def.: Man nennt die Flichen, welche von Raumpunkten gleicher Phase gebildet werden,
Wellenflichen (— fronten).

Mehrdimensionale Wellen werden nach der Form ihrer Wellenflichen bezeichnet.

Die obenstehenden Ausdriicke beschreiben also nicht nur — wie der Einfachheit halber
angenommen wurde — eindimensionale Wellen, sondern auch ebene Wellen, welche sich
in x — Richtung ausbreiten.

Erinnern wir uns an die im Unterkapitel 1.4 vorgestellten Wellenarten! Eine Seilwelle
kann als eindimensional bezeichnet werden. Im Gegensatz dazu handelt es sich bei einer
Druckwelle im gasgefiillten Rohr und einer Stabwelle um ebene Wellen, da hier die Wel-
lenbewegung eine Fliche von Raumpunkten (Querschnittsfliche des Gasvolumens bzw.
des Stabes) erfafit.

Wir wollen nun eine ebene Welle mathematisch formulieren, welche sich in eine beliebige
Raumrichtung fortpflanzt (siehe Abb. 2.36).

Ebene Welle mit beliebiger Fortplanzungsrichtung

Die Ausbreitungsrichtung der Welle sei durch den Einheitsvektor ¢ mit den Richtungs-
winkeln «, 8,7 festgelegt. Die Wellenflichen, d.h. die Ebenen gleicher Phase bzw. Aus-
lenkung, stehen senkrecht auf der Fortpflanzungsrichtung. Sie haben die Gleichung €7 =
s = const. (siehe Abb.). Dabei ist

der Ortsvektor eines beliebigen Punktes P der Wellenfléche.
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Ausbreitungsrichtung
/

L x = Konst\

Ausbreitungsrichtung

Abbildung 2.36: Ebene Welle, die sich in
Abbildung 2.35: Ebene Welle, die sich in eine beliebige Richtung ausbreitet. (aus
x—Richtung ausbreitet. (aus [1]) [1])

Wir betrachten eine harmonische Welle.

Es war u(z,t) = ug cos(wtFkz) mit k =27/X der Wellenausdruck fiir die Ausbreitung
in  — Richtung. Dann beschreibt u(s,t) = ug cos(wt F ks) die Fortpflanzung lings einer
beliebigen Achse s . Mit s = €7 148}t sich dies umformen zu

u(7,t) = uy cos(wt F k€T

Man definiert nun den Wellenvektor

Er zeigt in Ausbreitungsrichtung und seine Liinge ist gleich der Wellenzahl |k| = k =
21/

Damit erhélt man die mathematische Konstruktion einer ebenen, harmonischen Welle
mit allgemeiner Fortpflanzungsrichtung

i (wtF k7

u(7,t) = ug cos(wt F k)| oder komplex |u(7,t) = uge

u(7,t) ist periodisch in 7, wenn man in Richtung k um ) fortschreitet:
(. Lk o kk . o o
cosk |TF A % | = cos k7 F ?)\ = cos(k7 F kX)) = cos(k7 F 2m) = cos(kT)

Dabei ist k /k = € der Einheitsvektor in Fortpflanzungsrichtung.
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Allgemeine ebene Wellen werden beschrieben durch

) ko
u(fyt) =u (Er:th)

Ebene Wellen werden theoretisch erzeugt durch eine unendlich ausgedehnte Ebene, welche
parallel zu sich selbst schwingt. Sie stellen daher eine mathematische Abstraktion dar.
In der Praxis werden ebene Wellen anndhernd durch flichenhafte Quellen erzeugt. Ein
Beispiel fiir eine solche Quelle wiire beim Schall eine vibrierende ebene Metallplatte. Hiufig
bilden ebene Wellen aber auch eine gute Ndherung fiir Wellen, welche von weit entfernten
Quellen ausgehen. So sind z.B. Lichtwellen, welche von der Sonne oder von weit entfernten
Lichtquellen ausgesandt werden, als ebene Wellen zu behandeln.

Kugelwellen

Neben den ebenen Wellen sind die Kugelwellen, welche von einer punktférmigen Quelle
erzeugt werden, von grofler Bedeutung. Die Wellenfliichen sind hier Kugelschalen um die
Punktquelle (siche Abb. 2.37c).

Die Leistung P der Quelle wird isotrop auf die Kugeloberflichen A = 47r? ~ 72 verteilt.
Die Intensitit der Kugelwelle nimmt mit dem Quadrat des Abstandes von der Quelle ab:
I = P/A ~ 1/r% Da die Intensitéit einer Welle proportional dem Amplitudenquadrat ist,
I ~ u?, folgt fiir die Amplitude einer Kugelwelle ug ~ 1/r , d.h. die Amplitude nimmt
wie 1/r mit dem Abstand ab.

Diese Uberlegungen fiihren zu

Allgemeine Form
einer Kugelwelle

u(rt) = = f(r F vt)

Die harmonische Kugelwelle hat folgende Form

u(r,t) = %o cos(kr — wt) | oder komplex |u(r,t) = Yo i (kr — wt)
r r

Hier noch einige Bemerkungen:

e Bei Kugelwellen geht in den Wellenausdruck nur das Produkt der Betrdge kr von k
und 7 ein.

e Die allgemeine Form der Kugelwelle 148t sich rein mathematisch aus der auf den
dreidimensionalen Raum erweiterten Wellengleichung herleiten.
Genauere Angaben siehe E.Hecht
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Abbildung 2.37: (b) Zylinderwelle und (c) Kugelwelle (aus [1])

Kreis — und Zylinderwellen

Versuch: In der Wellenwanne werden durch einen punktférmigen Erreger Kreiswel-
len an der Wasseroberflache erzeugt.

Kreiswellen oder allgemein Zylinderwellen, bei welchen theoretisch eine unendlich lange
Gerade das Erregungszentrum bildet (siehe Abb. 2.37b), haben kompliziertere mathema-

tische Formulierungen.
Fiir grofle Absténde r von der linearen Quelle lautet die harmonische Zylinderwelle

u(r,t) = o cos(kr — wt) | oder komplex |u(r,t) = u_\/o_ et (kr — wt)
T

N

Da die Wellenflichen hier Zylinderméntel darstellen, deren Fléche proportional zum Kreis-
umfang ist, gilt fiir die Intensitéit I ~ 1/r. Daraus ergibt sich fiir die Amplitude eine
Abhéngigkeit von 1/4/r.

Wir wollen nun noch die Interferenz von Kreiswellen untersuchen.

Versuch: Interferenz von Wasserwellen
Durch zwei nahe beieinanderliegende punktférmige Erreger wird in der
Wellenwanne die Interferenzfigur zweier Kreiswellensysteme erzeugt. Die
Erregung beider Systeme erfolgt in gleicher Phase und mit derselben Fre-
quenz.
Anschlieflend wird der Abstand der beiden Punktquellen vergréfiert.

Die Uberlagerung der beiden Kreiswellen

uy(ry,t) = o cos(kyry — wt) up(re,t) = o cos(kory — wt)

VT VT2
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ergibt die resultierende Welle

Ug Ug . 1=k —wt
U = —— COS Y1 + —— COS Yo mit

\/ﬁ \/6 (PQZkQTQ_wt

Wir betrachten im Interferenzbild einen beliebigen Punkt P, welcher von Quelle Q; den
Abstand 7y, von der Quelle QQ, die Entfernung ry besitzt. Dann betrégt die Phasendifferenz
der im Punkt P iiberlagerten Wellenziige

Ap=¢1—¢pa=k(ra —m)
Es kommt also in P zu

e maximaler Verstirkung fiir

‘m—rlzn}\ nEZ‘

e Ausloschung fiir

A
r2—r1:(2n+1)§ nez

Die Kurven, welche sich durch Verbindung der Ortspunkte maximaler Wellenerzeugung
sowie vollstdndiger Ausloschung ergeben, sind konfokale Hyperbeln. Die beiden Wellen-
zentren bilden deren gemeinsame Brennpunkte. Die fiir die Interferenz von Kreiswellen in

Abbildung 2.38: Interferenz zweier kreisférmiger Wellensysteme (aus [2])

der Ebene gefundenen Ergebnisse lassen sich auf die Ausbreitung zweier Kugelwellensyste-
me im Raum iibertragen. Dazu denke man sich die obenstehende Zeichnung (Abb. 2.38)
um die Verbindungslinie der beiden Punktquellen in Rotation versetzt. Dann gehen die
Hyperbeln in Rotationshyperboloide iiber, welche wiederum die beiden Erregungszentren
zu gemeinsamen Brennpunkten haben.
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2.8 Die Wellengleichung im Dreidimensionalen

Wir haben gezeigt, dafl eine eindimensionale Welle, welche mit der Geschwindigkeit v
lings der x — Achse fortschreitet, als solche identifiziert werden kann, wenn sie der eindi-
mensionalen Wellengleichung

Pu 0%

o~ " a2
geniigt.

Die im letzten Abschnitt eingefiihrten mehrdimensionalen Wellen miissen also entspre-
chend eine auf mehrere Dimensionen erweiterte Wellengleichung erfiillen.
Die dreidimensionale Erweiterung der Wellengleichung lautet

Pu , (0Pu  OPu  O*u
= + o+
ot? 0x?  0y> 022

Der Klammerausdruck 148t sich mit Hilfe des LAPLACE — Operators

Pu  Pu  Pu
+

A = div grad = 97 + a2 92
kiirzer schreiben als

Pu A dreidimensionale

oz~ Y =Y Wellengleichung

2.9 Schwingungen und stehende Wellen in mehreren
Dimensionen

Mehrdimensionale Schwingungen

Wir wollen uns in diesem Abschnitt mit zweidimensionalen Schwingungen beschéftigen.

Dazu sei als einfaches Beispiel ein Koérper der Masse m betrachtet, der an Federn mit
unterschiedlichen Federkonstanten D, D, in der x,y — Ebene frei beweglich aufgehéngt
ist (siehe Abb. 2.39). Die Bewegung des Korpers in der Aufhéingungsebene ergibt sich aus
der Uberlagerung der Schwingungen in z — und y — Richtung.

z(t) = A coswit

y(t) = A cos(wat — )

Die Bahnkurve, welche der Massenmittelpunkt des Korpers beschreibt, ist

)= " mit |7(t)] = \/22(t) + y2(t)
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1,y

Abbildung 2.39: Feder—Masse—Modell fiir eine zweidimensionale Schwingung

Dabei ist 7 = (‘;) der Ortsvektor des Massenmittelpunktes.

Wihlt man die Frequenzen w; und wy so, dal der Korper gleichzeitig n Schwingungen
der Frequenz w; in z — Richtung und m Schwingungen der Frequenz w, in y — Richtung
ausfiihrt, wobei n und m ganze Zahlen sind, so kehrt das System jeweils nach Beendigung
dieser Schwingungen in den Ausgangszustand zuriick, und der Vorgang beginnt von neu-
em.

Bei einem ganzzahligen bzw. rationalen Frequenzverhéltnis w;/wy; = n/m < nw; =
mwo erhdlt man also ein stationéres Bild, d.h. die Bahnkurve #(¢) dndert sich nicht und
wird periodisch durchlaufen.

Lissajous — Figuren

Die sich bei der Uberlagerung zweier senkrecht zueinander verlaufender Schwingungen mit
ganzzahligem Frequenzverhéltnis ergebenden Bahnkurven heiflen Lissajous — Figuren.
Sie sind benannt nach dem franz. Physiker J.LiSSAJOUS, der als erster die zweidimensio-
nale Schwingung eines Korpers untersuchte.

Versuch: Mechanische Erzeugung von LiSSAJOUS — Figuren mit Hilfe zweier Pendel
Die Uberlagerung zweier Pendelschwingungen wird auf einem Oszilloskop
dargestellt. Dabei verursacht die Schwingung jeweils eines Pendels die z —
bzw. y — Ablenkung des Kathodenstrahls.

a) Fiir (@7 =03),
d.h. bei Verwendung gleich langer Pendel, entstehen elliptische Figuren:

Wir wollen hier je nach der Phase der Pendelanregung sowie nach dem Amplituden-
verhéltnis auf folgende Unterfille ndher eingehen:

A=DHB:
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p=0%
rz = A coswt Gerade
: —
y = Acoswt y=7
= 180°:
z = A coswt
Gerade
y = A cos(wt—m) :y:—x
= —A coswt
@ =90°
r = Acoswt
Kreis
y = Acos(wt—7/2) ¢ = W2+ 122 = A2
= A sinwt
AN
Y TY Y%
X} X / \ X
5 S %
2R <A
€= = - - - —— > S —=== >
A#B
p=0°
r = Acoswt Geradg
= _
y = B coswt y=+77
p = 180°:
T = A coswt Gerade
=, __DB T
y = —B coswt 4 A
@ = 90%:
rz = Acoswt & 733[ = coswt Ellipse
= g2 y?
y = Bsinwt & § = sinwt A2 T B?
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Uberlagert man also zueinander senkrecht verlaufende Schwingungen, deren Fre-
quenzen iibereinstimmen, so entstehen Ellipsen einschliefllich deren Entartungen in
Kreise und Geraden.

b) Im Fall [w; # w,)

hier bei Verwendung verschieden langer Pendel, tritt nur dann eine geschlossene
Bahnkurve, d.h. ein stationdres Bild auf, wenn das Frequenzverhiltnis w;/wo
rational ist. Die entstehenden Figuren sind von wesentlich komplizierterer Struktur
als im obigen Fall.

Versuch: Elektrische Erzeugung von LissAJOuUS — Figuren mit Hilfe
zweier Frequenzgeneratoren
Je ein Frequenzgenerator wird mit der horizontalen bzw. vertikalen Ab-
lenkung des Kathodenstrahloszillographen verbunden. Durch Einstellung
ganzzahliger Frequenzverhéltnisse sowie Regelung der Amplituden (Span-
nung) lassen sich Li1SSAJOUS — Figuren herstellen.

Stehende Wellen in mehreren Dimensionen
Eindimensionale stehende Wellen

Als Beispiel fiir eindimensionale transversale stehende Wellen haben wir die Eigenschwin-
gungen einer Saite besprochen.

Zweidimensionale stehende Wellen

Das zweidimensionale Analogon zur Saite ist die eingespannte Membran, welche zu Ei-
genschwingungen angeregt wird. Ein Anwendungsbeispiel ist die Trommel.

Die Eigenschwingungen sind auch hier Vorgéinge mit Knoten und Bauchen der Bewegung,
wobei die Knoten sogenannte Knotenlinien bilden, welche die Zonen der Bewegung von-
einander trennen.
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Abbildung 2.40: Lissajous—Figuren unterschiedlicher Phasenlage fiir die Frequenzverhalt-
nisse 1:1, 1:2, 1:3 und 2:3. (aus [14])

Der Physiker E.F.F.CHLADNI (1756 — 1827) hat in dem im folgenden beschriebenen
Versuch die Knotenlinien sichtbar gemacht. Die resultierenden Figuren werden nach ihm
als Chladnische Klangfiguren bezeichnet.

Versuch: CHLADNIsche Klangfiguren
Eine im Zentrum eingespannte Metallplatte mit aufgestreutem Schwefel-
staub wird durch Anstreichen mit einem Cellobogen zu Eigenschwingun-
gen angeregt. Durch die starke Vibration wird der Schwefelstaub von den
Schwingungsbauchflichen weggetrieben und sammelt sich an den Kno-
tenlinien an. Je nach Ordnung der Eigenschwingung und Geometrie der
Platte entstehen verschiedene Staubkurven (sieche Abb. 2.41).

Stehende Wellen im Dreidimensionalen

Auch ein Raum besitzt Eigenfrequenzen. Beispielsweise versucht man in Konzertsélen das
Auftreten von stehenden Wellen zu vermeiden, indem man die Reflexion an den Winden
moglichst gering hélt. Dies wurde beim Bau des neuen Plenarsaales des Deutschen Bun-
destages in Bonn versdumt!
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Abbildung 2.41: Chladnische Klangfiguren (aus [2])

2.10 Doppler — Effekt

Bewegen sich der Sender einer Welle sowie ein Beobachter relativ zueinander, so registriert
der Beobachter eine Frequenz vg, welche sich von der Schwingungsfrequenz der Quelle vq
unterscheidet. Diese Frequenzverschiebung kann man z.B. im Straflenverkehr beobachten,
wenn ein Wagen mit Alarmsignal vorbeifdhrt. Nahert sich der Wagen einem Beobachter,
so nimmt dieser eine hohere Frequenz wahr, die Tonhdhe des Signals erniedrigt sich, sobald
sich der Wagen vom Beobachter entfernt. Die Originalfrequenz wird nur in dem Moment
wahrgenommen, in dem sich Beobachter und Sender auf gleicher Héhe befinden.

Versuch: Eine Schallquelle (Summer) wird an einem Faden befestigt und im Kreis
herumgeschleudert. Der Beobachter hort einen auf — oder abschwellenden
Ton, je nach dem, ob die Bewegung des Summers in Richtung auf ihn zu
oder von ihm weg erfolgt.

Dieser Effekt wurde fiir Schallwellen erstmals im Jahre 1842 von CH.DOPPLER beschrie-
ben und heif3t daher Doppler — Effekt.

Zur Erkldrung betrachten wir eine punktformige Schallquelle, welche Kugelwellen
aussendet oder einen punktférmigen Erreger, welcher auf einer Wasseroberfliche Kreis-
wellen erzeugt. SchlieBen wir das Auftreten von Dispersion aus, so pflanzen sich die
Wellen im jeweiligen Medium mit v, = vy, = vw = Av  fort (siehe Abb. 2.42).
Wir unterscheiden nun drei Félle der Bewegung von Quelle und Beobachter

relativ zum Ubertragungsmedium, in dem sich die Wellen ausbreiten:

(1) Die Quelle bewegt sich mit vq, der Beobachter ruht:

Die Quelle bewegt sich mit vg, d.h. wihrend einer Periode T = 1/v der Welle legt sie
die Strecke s =wvqT = vq/v zuriick. Die Wellenfronten bewegen sich in derselben
Zeit um A = vw T = vw/v.




2.10. DOPPLER — EFFEKT 75

Abbildung 2.42: Fall 2: Ruhende Schall- Abbildung 2.43: Fall 1: Bewegte Schall-
quelle, bewegter Beobachter. (aus [14)) quelle, ruhender Beobachter. (aus [14))

Den Beobachter B, auf den sich der Sender zubewegt, erreichen die Wellenfronten
im Abstand
)\B:)\—S:UV\/T—UQT <~ )\B:(Uw—UQ)T

Beim Beobachter B, von dem sich die Quelle entfernt, treffen die Wellenfronten im
Abstand

)‘B’ = (UW + UQ) T

ein.
Die Anzahl der Wellenfronten, die pro Sekunde auf ihn zulaufen, bestimmt die vom
jeweiligen Beobachter wahrgenommene Frequenz.

Vw VW 1 VW Vw 1

mp=—— = Un! — [
B )\B UYw — VQ T B /\B’ Uw+UQ T

Bezeichnet v die Qriginalfrequenz, so ergeben sich folgende

Doppler — Frequenzen fiir die Bewegung der Quelle mit vq

auf den vom Beobachter
Beobachter zu weg
Uw Uw
vp = —V l/B/ = — U
Vw — VQ Vw + vQ

(2) Der Beobachter bewegt sich mit vg, die Quelle ruht:

Bewegt sich der Beobachter mit vg auf die Quelle zu (sieche Abb. 2.42), so registriert
er die Wellenfronten in schnellerer Folge als beim Stillstand. Die Wellenfliichen schei-
nen mit der Geschwindigkeit wvw + vg auf ihn zu zu kommen, d.h. er hort die

Frequenz

- Uw + UB
VBzf
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Analog nimmt er bei Bewegung von der Quelle weg die Frequenz

Uw — U

A

gy =
wahr. Mit vw = Av & 1/X =v/vw erhilt man die

Doppler — Frequenzen fiir die Bewegung des Beobachters mit vg

auf die Quelle von der Quelle

zu weg

. (Uw—l-UB) - (UW—UB)

mg=v | —— g =v [ —
Vw Uw

(3) Beobachter und Quelle bewegen sich:

Falls sich sowohl der Beobachter als auch die Quelle relativ zum Ubertragungs-
medium bewegen, treten je nach Bewegungsrichtung unterschiedliche Frequenzver-
schiebungen auf. Die moglichen Félle sind in der folgenden Tabelle schematisch

dargestellt:
Bewegungsrichtungen | Doppler — Frequenz

Qe — <+— B vy = LW VB,

Uw — VQ

_ Vw + VR
+— o) <+— B VB =y Fug Y
Qe — Ble — VBIZHV
e Be— | = tutas

(4) Allgemeiner Fall: Bewegung von Quelle und Beobachter in beliebige Richtungen:

Bewegen sich Quelle und Beobachter mit @i und 7z relativ zueinander in beliebige
Richtungen, so hingt die beobachtete Frequenz vg nur von den Geschwindigkeits-
komponenten ldngs des Verbindungsvektors i = Q@ ab. Die Doppler — Frequenz
ist hier gegeben durch (vergl. Abb. 2.44)

Uw — U vw — U cosUp

Vg =V

1

S Iy

vw — Vg cosUq

S
=
|
<
O

Der an Schallwellen beobachtete Effekt wird auch als nicht—relativistischer Doppler-
effekt bezeichnet.

Die Fortpflanzungsgeschwindigkeit der Schallwellen ist auf das als ruhend definierte Ubert-
ragungsmedium bezogen. Es besteht daher die Moglichkeit, aus der bloflen Kenntnis der
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Relativgeschwindigkeit von Sender und Empfinger iiber die Messung der Dopplerfrequenz
vg zu entscheiden, ob sich die Quelle Q oder der Beobachter B bewegt.

Dies soll an einem Beispiel nachgewiesen werden:

Die Relativgeschwindigkeit zwischen Sender und Empfianger sei vye.
Bewegt sich die Quelle auf den ruhenden Beobachter zu, so betrigt die Frequenzverschie-

bung
Uw ( 1 ) < Urel (vl‘(al)2 )
vp=V—— =V |——— | =v [1+ + 4.
VW — Urel 1 — Vper/vw vw vw

Néhert sich der Beobachter der ruhenden Quelle, dann mifit man die Dopplerfrequenz

Ur
Z~/B =V (1 + el)
Uw

Die bei Bewegung der Quelle beobachtete Frequenz vg stimmt nur bis zur ersten Ordnung
mit dem Ergebnis g bei Bewegung des Beobachters iiberein. Daher kann man bei be-
kannter Relativgeschwindigkeit von der gemessenen Frequenzéinderung auf die vorliegende
Bewegung schlieflen.

Machscher Kegel (E.MAcCH 1838 — 1916)

Was passiert, wenn sich die Quelle mit Uberschallgeschwindigkeit v > vw bewegt?

Die folgende Abbildung zeigt das Wellenfeld, das um eine bewegte Quelle entsteht: Mit
zunehmender Geschwindigkeit der Quelle riicken die Wellenflichen in Bewegungsrichtung
der Quelle immer dichter zusammen, bis sie schliellich fiir vg = vw alle durch einen
Punkt verlaufen und die Einhiillende wie eine ebene Wand aussieht (siehe [b]). Durchst68t
der Sender diese “Schallmauer” und fliegt mit Uberschallgeschwindigkeit, dann interferie-
ren die Wellenflichen konstruktiv auf einem Kegelmantel. Es bildet sich eine Kopfwelle

Abbildung 2.44: Bewegung von Quelle und Beobachter in beliebige Richtungen
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Abbildung 2.45: Ausbildung eines Machschen Kegels (aus [1])

mit kegelformiger Wellenfront aus, welche als Machsche Welle oder Machscher Kegel
bezeichnet wird.

Die Offnung des Kegels ist dabei gegeben durch

t .
sina = W° a: halber Offnungswinkel

vQ

Dabei ist vgt der Weg der Quelle und vwt die Strecke, die der Schall in der Zeit ¢
zuriicklegt.

VW Offnungswinkel des

sinq = %
YQ MAcHschen Kegels

Man fiihrt die Machsche Zahl als vergleichende Geschwindigkeitsangabe ein:

M—_L _

- Bsp.: Mach 2 = zweifache Schallgeschwindigkeit
sina vy

Da sich auf dem Kegelmantel die Druckerh6hungen der Luftmolekiile addieren, hort ein
Beobachter, iiber den diese Druckiront hinwegzieht, einen explosionsartigen Knall. Dieser
sogenannte Uberschallknall tritt auf bei schnelleren Geschossen und Uberschallflugzeugen.

Bei Wasserwellen 148t sich ebenfalls eine Kopfwelle erzeugen, indem das Erregungszentrum
mit vq > vw bewegt wird. Man spricht hier von einer Bugwelle. Diese bildet sich auch
dann aus, wenn sich ein Hindernis an der Wasseroberfliche bewegt (Bsp.: Entstehung
einer Bugwelle an einem Schiff).

Versuch: Ein punktférmiger Erreger wird schnell durch die Wellenwanne gezogen.
Der Vorgang wird gefilmt und anschlieflend der M ACcHsche Kegel im Stand-
bild gezeigt.
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Zusammenfassung: Die Storungsfronten bauen einen M ACHschen Kegel auf, wenn ein
Koérper mit vg > vw durch ein beliebiges Medium fortschreitet. Diese Tatsache nutzt
man u.a. bei der CERENKOV — Strahlung aus, wie wir spéiter sehen werden.

2.11 Doppler — Effekt fiir Lichtwellen im Vakuum

Anders als bei den Schallwellen ist die Ausbreitung von Licht nicht an ein Ubertragungs-
medium (Ather) gebunden. Es ist hier kein ruhendes Bezugssystem ausgezeichnet, relativ
zu dem die Lichtwellen eine bestimmte Geschwindigkeit besitzen. Die Doppler — Verschie-
bung der Frequenz héngt daher nur von der Relativgeschwindigkeit v von Sender und
Empfénger zueinander ab.

Die Lichtquelle L ruhe im Ursprung des Systems S. Der Beobachter B ruhe im Ursprung
des Systems S', welches sich mit v relativ zu S lings der z — Richtung bewege. Zum
Zeitpunkt ¢ = 0 fallen beide Systeme zusammen. Wir betrachten nun zwei Lichtsignale,

.Y

Y/r\)’l | ¢y d l
f: 6 /= O S N S
v,
; 8 B8’ X
3 8 )j((/ / /X'
7 Kz! Z z/

Abbildung 2.47: Die Bezugssysteme be-
Abbildung 2.46: Zur Zeit t = 0 fal- wegen sich lings der x—Achse relativ
len die Bezugssysteme zusammen. (aus zueinander mit der Geschwindigkeit v.

[15]) (aus [15])

harmonische Schwingungen, welche im Abstand einer Schwingungsdauer 7" von L emittiert
werden:

Zum Zeitpunkt ¢t =1 =0 wird das erste Signal ausgesendet und gleichzeitig empfangen.
Quelle und Beobachter befinden sich am selben Ort z=2'=0.

Bei t =T wird das zweite Signal emittiert, also im System S’ zur Zeit

T v
r_ : _
Die Quelle L, die beziiglich des Systems S die Ortskoordinate x = 0 besitzt, hat im
Augenblick der Aussendung des zweiten Signals vom Beobachter B beziiglich des Systems
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S' die Entfernung
z—vt z=0,t=T |, vT

TEVitE o TR

Die Laufzeit des Signals betrigt demnach At' = —z'/c , so dafl es den Beobachter B in

S" zur Zeit
_ _ '
T'=t+ At =1 - ¢
VI—E oI E T VI= R VI
erreicht. Der Empfanger nimmt also eine harmonische Schwingung der Schwingungsdauer
T" wahr. Mit v = 1/T erhélt man die entsprechenden

Doppler — Frequenzen fiir die Bewegung von Lichtquelle L und Beobachter B

mit der Relativgeschwindigkeit v

voneinander weg aufeinander zu
1-5 1+ 5

" ies -5




Kapitel 3

Elektromagnetische Wellen

Die seit Ende des 19.Jahrhunderts entdeckten und weiterentwickelten Kenntnisse iiber
elektromagnetische Wellen bilden u.a. die Grundlage fiir die Entstehung und den Fort-
schritt des Kommunikationswesens. Die Forschungen iiber die Erzeugung, Ausbreitung
und Absorption elektromagnetischer Wellen sind daher von groer Wichtigkeit.

Der Formulierung der Wellengleichung fiir elektromagnetische Wellen sei zum besseren
Versténdnis eine kurze Wiederholung der MAXWELL — Theorie vorangestellt, welche be-
reits im vorigen Semester behandelt wurde.

3.1 Die Maxwell — Gleichungen

Zu der Erschlieflung des sehr weitreichenden Gebietes der elektromagnetischen Erschei-
nungen hat J.C.MAXWELL (1857 — 1894) in besonderem Mafle beigetragen.

Lange Zeit wurde kein Zusammenhang zwischen den Gebieten Elektrizitdt, Magnetis-
mus und der klassischen Optik gesehen. Erst 1819/20 entdeckte der dénische Physiker
H.C.OERSTEDT (1777 —1851) die Beeinflussung eines Magneten durch elektrischen Strom
und wurde damit zum Begriinder des Elektromagnetismus. Weitergehende Erkenntnis-
se lieferten spiater A.M.AMPERE (1775 — 1836) und M.FARADAY (1791 — 1879) durch
zahlreiche Experimente. AMPERE stellte das Durchflutungsgesetz auf, welches besagt,
daf alle magnetischen Krifte ihren Ursprung in bewegten Ladungen haben. Umgekehrt
formulierte FARADAY in seinem Induktionsgesetz, daf§ die zeitliche Anderung eines ma-
gnetischen Feldes eine elektrische Spannung hervorruft. FARADAY war es auch, der 1845
einen Zusammenhang zwischen Elektromagnetismus und Licht fand. Er beobachte in ei-
nem Experiment eine Drehung der Polaristionsrichtung von Licht, hervorgerufen durch
ein starkes Magnetfeld. MAXWELLS groflartige Leistung besteht darin, dafl es ihm gelang,
alle damaligen auf empirischer Basis gewonnenen Kenntnisse iiber den Elektromagnetis-
mus in nur vier Gleichungen formal zusammenzufassen. Aus diesen Gleichungen folgerte
er 1861/62 rein theoretisch die Existenz elektromagnetischer Wellen! Er zeigte die Trans-
versalitit dieser Wellen. Dariiberhinaus zog er aus den empirischen Untersuchungen seiner
Zeit und seinen eigenen theoretischen Berechnungen die Schlufifolgerung, dafl “Licht” ei-
ne elektromagnetische Wellenerscheinung darstellt! Dies war zugleich die Erkenntnis, dafl

81
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die Elektrodynamik das Gebiet der klassischen Optik mit umfafit. Maxwell wurde zum
Begriinder der elektromagnetischen Lichttheorie. Er starb acht Jahre bevor seine theore-
tischen Uberlegungen experimentell bestétigt wurden.

Die Maxwellschen Gleichungen, welche das gesamte Gebiet der elektromagnetischen
Vorgéinge vollstindig beschreiben, seien hier noch einmal in ihrer differentiellen und inte-
gralen Form aufgefiihrt:

Maxwellsche Gleichungen

differentiell integral
(1) div 5 = Ofrei .‘fD_’dA’ = erei
(2) divB=0 §BdA=0
(3) rotE=-98 §Edr=-Z [BdA
(@) rotH =jpe+ 92 | fHdF =10+ 8 [ DdA

mit den Materialgleichungen

Wir wollen nun die Gleichungen nur mit den Gréfien E und B formulieren und jeweils die
zugehorige Interpretation angeben:

Maxwellgleichung Bedeutung
Alle Ladungen, d.h. freie und gebundene La-
(1) div E = % dungen (0 = 0frei + 0gep.) sind Quellen des E
— Feldes.

Das B - Feld ist quellenfrei. Es existieren

(2) divB=0 keine magnetischen Monopole.

. Verallgemeinerung des Faradayschen Induk-
(3) rot E=_0B tionsgesetzes: Jedes zeitlich sich dndernde B
— Feld erzeugt ein £ — Wirbelfeld.

Allgemeine Formulierung des Ampéreschen
. ' OF Gesetzes: Alle Strome und die zgitliche Ande-
(4) rot B = i j + poco Ot rung des elektrischen Feldes (Anderung des
Verschiebungsstromes) erzeugen ein magne-
tisches Wirbelfeld.
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Wie gelangte MAXWELL zu der Erkenntnis, daf} sich E —und B - Felder in Form von
Wellen im Raum ausbreiten konnen?

Wir betrachten den Fall, daf§ keine Ladungen oder Strome auftreten: ¢ = 5 = 0. Dann
gilt

L, 9B _ OE
rotE:—E rotB:,uosoa

my

Abbildung 3.1: Gegenseitige Erzeugung von elektrischen und magnetischen Wirbelfeldern

Aufgrund der Existenz des Verschiebungsstromes bilden sich in diesem Fall elektromagne-
tische Wellen aus! Anderungen des Verschiebungsstromes OE /0t fiithren zur Entstehung
eines magnetischen Wirbelfeldes. Das sich aufbauende Magnetfeld 0B /Ot erzeugt umge-
kehrt ein elektrisches Wirbelfeld und der Vorgang wiederholt sich (siehe Abb. 3.1). Die
sich gegenseitig erzeugenden Felder breiten sich im Raum aus. Dabei wird die Ausbrei-
tungsgeschwindigkeit bestimmt durch die elektrischen und magnetischen Eigenschaften
des Mediums:

1
oo ==  (im Vakuum)
c

3.2 Wellengleichung fiir elektromagnetische Wellen

Wir nehmen an, daf§ auf irgendeine Weise, z.B. durch Bewegung von Ladungen oder
Anderung von Stromen schnell versinderliche E — oder B — Felder entstehen. Nach den
MAXWELL — Gleichungen werden sich dann gegenseitig abwechselnd E — und B - Felder
erzeugen. Wir wollen nun ein solches elektromagnetisches Feld weit entfernt von seiner
Quelle im Vakuum untersuchen, d.h. in dem betrachteten Bereich soll gelten:

divE = 0 divB =0

rotE = —%% rotB = €0 Mo %%
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Zur Vereinfachung fiihren wir den Differentialoperator “Nabla” ein.

5o (9 9 9

VEVE G oy’ 0z
Der Nablaoperator ist ein Vektor; der Vektorpfeil wird jedoch oft, wie auch hier, zur
Vereinfachung weggelassen.

Die Differentialoperatoren div, rot und grad lassen sich mit 57 einfacher schreiben (zur
Verdeutlichung wird das Skalarprodukt mit * bezeichnet):

grad ¢: gmdso=<3%so,g%w,%<p>
_ (0 0 0
_(8x’8y’6z)(‘0
‘gmdgpzvgo‘
o o 0 0 0
_(0 0 0
_(%7@7%)*<E$7E’y7EZ)
dszEv*E
5 F_ (0 g, 0 9 0 9 g 0
rotE: rotf = (£ Bz~ L By, & o - £ Be, & By - & Ex)
_(0 o0 20
_(%56@’82>X(E$1EyaEZ)
rotﬁzvxﬁ

LAPLACE — Operator:

Fiir ein skalares Feld ¢ gilt:

Ap =divgradp =<7 x (V)

Damit erhélt man fiir den LAPLACE — Operator “Delta”:

Ap =7+ (Vp) = Vi
2 2 2
. 9 0 0 0
AY=VrV =V _8x2+8y2+8z2

Der LAPLACE — Operator kann auch auf ein Vektorfeld A (z.B. E- B- Feld) angewendet
werden. Dann gilt
0?4 9?4  9°A

+—a +
872 8y2 822

AA =
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Mit den Methoden der Vektoranalysis 148t sich dies umschreiben zu

AA = grad divA — rotrotA
A=y (vxAd) -vx(vxA4)| (¥

Mit diesen Operatoren lauten die MAXWELL — Gleichungen fiir das Vakuum

V*EZO

Wir leiten nun aus den MAXWELL — Gleichungen die dreidimensionale Wellengleichung
fiir den Vektor E her, indem wir B eliminieren:

. O

X B = —

\Y% €o o 5,

Partielles Differenzieren nach ¢ ergibt

2 —
0 = 0°FE
ot (VXB) :Eolﬁo?
OB 0°E
— =€ N
v 8t 0 I'LO atQ

In diese Gleichung setzen wir \7 x E = —%é—g ein und erhalten

, 0’ E
—VX(VXE)st,uOW

Mit Hilfe der fiir die Anwendung des LAPLACE — Operators auf ein Vektorfeld gefundenen
Beziehung (x) wird dies umgewandelt in

O°E

AE—V(V*E’):%MO@?

Im Vakuum gilt 7 * E =0 . Damit ergibt sich

AF - 0%E dreidimensionale Wellengleichung
— coto o2 fiir das £ — Feld
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Jede einzelne Komponente des E — Vektors erfiillt die Wellengleichung

2
0“Eq
AEy = &opo
ot2
2
0“E
AEy = &opo Y
Y ot2
2
0°E,
AE; = ¢gomo
ot2

Ebenso hitte man aus den MAXWELL — Gleichungen auch die Gréfie E eliminieren konnen.
Insgesamt erhilt man also

o2 Wellengleichungen fiir die
92F E —und B - Felder

Aus oo

1 0%E [B]

w2 ot

folgt fiir die Phasengeschwindigkeit, mit der sich elektromagnetische Wellen im Vakuum
ausbreiten

AE B =

1 Phasengeschwindigkeit
einer elektromagnetischen Welle
im Vakuum

v =

€0 Mo

; — .10-12 As.
Nun ist gg = 8,8542-10 Vm

po = dr-1077 Y5

1 km km
= v = =299700 — ~ 300000 — ~ ¢!
€0 Mo 5 S

Die Phasengeschwindigkeit einer elektromagnetischen Welle im Vakuum stimmt iiber-
ein mit der Geschwindigkeit ¢ von Licht im Vakuum, die in zahlreichen Experimenten
ermittelt wurde!

Bei der Erscheinung “Licht” handelt es sich also um elektromagnetische
Wellen !

Der Zusammenhang

Vakuumlichtgeschwindigkeit
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zwischen elektrischer und magnetischer Feldkonstante und der Vakuumlichtgeschwindig-
keit wurde rein empirisch (als “Zahlenspiel”) bereits im Jahre 1856 von W.WEBER und
R.KOHLRAUSCH festgestellt. Spater, im Jahre 1871, deutete J.C.MAXWELL das Licht als
elektromagnetische Wellenerscheinung!

3.3 Nachweis elektromagnetischer Wellen

1888, erst nach dem Tode MAXWELLS, wurden von H.HERTZ (1857 — 1894) zum ersten
Mal elektromagnetische Wellen experimentell nachgewiesen.

Dem von H.HERTZ durchgefiihrten Experiment &dhnlich ist folgender

Versuch: Elektromagnetische Wellen werden in einem Schwingkreis erzeugt und
iiber eine Antenne (HERTZscher Dipol) abgestrahlt. Eine zweite Antenne
gleicher Grofle fingt die Wellen auf und bringt dadurch eine Gliithlampe
zum Leuchten.

Variiert man den Abstand des Empfangsdipols zum Sendedipol, so leuch-
tet die Lampe heller, je ndher man kommt.

Dreht man den Empfénger langsam in eine zur Sendeantenne senkrechte
Position, so erlischt die Lampe.

Sie bleibt auch dunkel, wenn der Empfangsdipol in der Verléingerung der
Achse des Sendedipols steht.

3.4 Messung der Lichtgeschwindigkeit

Durch Vergleich des Ausdrucks fiir die Phasengeschwindigkeit in der elektromagnetischen
Wellengleichung mit dem experimentell bestimmten Wert der Vakuumlichtgeschwindigkeit
sind wir zu der wichtigen Erkenntnis gekommen, dafl die Fortpflanzung des elektroma-
gnetischen Feldes im Vakuum, d.h. die Ubertragung elektromagnetischer Signale mit der
Vakuumlichtgeschwindigkeit erfolgt.

Interessant ist hier die Frage, mit welchen Methoden es gelungen ist, die Lichtgeschwin-
digkeit ¢ experimentell zu bestimmen.

Noch bis ins 17.Jahrhundert wurde angenommen, daf sich das Licht instantan ausbreitet,
d.h. ¢ = o0 ist (z.B. DESCARTES 1596 — 1650).

Daf} die Ausbreitung des Lichtes mit einer endlichen Geschwindigkeit erfolgt, wurde erst-
mals von OLAF ROMER (1644 — 1710) im Jahre 1673 bewiesen. Seine Forschungsergebnisse
fanden jedoch keine allgemeine Anerkennung.

ROMER beobachtete, wann die Jupitermonde, insbesondere der erste Mond Ganymed, in
den Schatten des Jupiter eintraten, und bestimmte deren Umlaufzeiten als die Zeit zwi-
schen zwei Verfinsterungen (siehe Abb. 3.2). Dabei fand er heraus, daf sich die Umlaufzeit
des Ganymed mit dem Ort der Erde in ihrer Bahn zu #ndern schien.
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Jupiter-
bahn

Abbildung 3.2: Messung der Lichtgeschwindigkeit nach dem Verfahren von Rémer durch
Beobachtung der Verfinsterung der Jupitermonde (aus [4])

In der Position I bei kleinster Entfernung Erde <> Jupiter trat die Verfinsterung friiher ein
als an allen anderen Punkten der Erdbahn. Die gegeniiber Position I gemessene Verzoge-
rung war maximal in der ein halbes Jahr spiter vorhandenen Position III bei der grofiten
Entfernung Erde <+ Jupiter.(Der Abstand Erde <+ Jupiter kann in den genannten Positio-
nen wihrend der Zeit zwischen zwei Verfinsterungen als konstant angenommen werden.)
OLAF ROMER erklirte die Verspdtungen durch die lingeren Laufzeiten des Lichtes, wel-
che bei einer endlichen Lichtgeschwindigkeit zu beriicksichtigen sind: Von Position III
kommend mufl das Licht gegeniiber Position I zusitzlich den Durchmesser der Erdbahn
durchlaufen. Die von ROMER gemessene Verzogerung des Lichtes betrug etwa 1450, er
nahm fiir den Erdbahndurchmesser 311 - 10° km an.

ROMERs Ergebnis im Jahr 1673:

_ 311-10%km
- 1450s
Der berechnete Wert besitzt die richtige Grolenordnung, der auftretende Fehler beruht

auf der damals ungenauen Kenntnis des Erdbahndurchmessers sowie der Ungenauigkeit
der Messungen.

K
c = 214000~ endliche Lichtgeschwindigkeit
S

Ergebnis nach der ROMER — Methode heute:

6
299 - 107 km km
=——— =299000 —
1000 s S

Die erste direkte Messung der Lichtgeschwindigkeit im Labor (terrestrische Methode)
gelang 1849 dem franzosischen Physiker H.L.F1zEAU (1819 — 1896).

Er benutzte dazu die in Abb. 3.3 gezeigte Versuchsanordnung:
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Abbildung 3.3: Fizeausche Anordnung zur Messung der Lichtgeschwindigkeit (aus [4])

Die Lichtquelle L wird iiber einen halbdurchléssigen Spiegel G in die gegenstandsseitige
Brennebene des Fernrohrobjektivs O und von diesem ins Unendliche abgebildet. Die
Objektivlinse O9 bildet die Lichtquelle in ihre bildseitige Brennebene ab, in der sich ein
Planspiegel S befindet. Das an S reflektierte Licht lduft den gleichen Weg zuriick, wobei
ein Teil durch den halbdurchléssigen Spiegel G hindurchtritt und mittels der Okularlinse
C beobachtet werden kann.

In die Brennebene der Linse Oq setzte F1IZEAU — wie es bei Mefimethoden von Teilchen-
geschwindigkeiten allgemein {iblich ist — ein rotierendes Zahnrad, um den Strahlengang
zu unterbrechen. Bei einer bestimmten Drehzahl trifft das durch eine Liicke des Zahnra-
des hindurchgegangene Licht nach seiner Reflexion gerade auf den folgenden Zahn und
wird ausgeblendet. Helligkeit wird bei C beobachtet, falls wihrend der Laufzeit des Lich-
tes At = 2l/c das Rad gerade um einen Zahn weitergedreht wird. Dies ist der Fall fiir
At=T/N.

Aus den Groflen [': Abstand Zahnrad <+ Planspiegel Mo
T : Umlaufzeit des Rades
N : Anzahl der Zihne

148t sich die Lichtgeschwindigkeit ermitteln:
1
c=2IN 7= 2INv

F1zeAau wéahlte [ = 8633km, N = 720 und beobachtete das erste Helligkeitsminimum
bei einer Drehzahl v = 12,6 Hz .

Fi1zeAus Ergebnis:

c=4INv ~ 3130002
S

Ein Jahr spéter, 1850, erzielte der franzosische Mediziner FOUCAULT genauere Mef3ergeb-
nisse mittels der von ihm entwickelten Drehspiegelmethode.

Zur Erlduterung bauen wir den FoucAuLTschen Drehspiegelversuch in vereinfachter Form
nach:
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Versuch: Die Versuchsanordnung ist in Abbildung 3.4 skizziert. Das von der Quelle

Glasplatte (P %’LESH

e e Mattscheite

D N /\) .......... S i M
Drehspiegel  Ligse Spiegei
5Sm af 10m

Abbildung 3.4: Aufbau des Drehspiegelversuches (aus [9])

ausgehende Licht trifft nach Durchgang durch eine um 45° geneigte halb-
durchlissige Platte P auf den Drehspiegel D, von wo aus es iiber die Linse
L zum Planspiegel M liuft. Dort wird das Licht in sich zuriickgeworfen
und durch Reflexion an D und P auf den Schirm S gelenkt.

Alle Hauptstrahlen verlaufen zwischen Linse und Planspiegel parallel und treffen sich
nach Reflexion an M wieder auf dem Drehspiegel D. Dies ist durch die Position des
Drehspiegels im Brennpunkt der Linse garantiert. Ebenso ist dadurch sichergestellt, dafl
bei einer Bewegung des Spiegels, welche langsam gegen die Laufzeit des Lichtes ist, das auf
dem Schirm S erzeugte Bild der Lichtquelle fest steht. Bei schnellerer Rotation dagegen
hat sich D um den Winkel ¥} gedreht, wenn das bei M reflektierte Licht erneut auftrifft.
Daraus resultiert eine Verschiebung des Bildes auf dem Schirm um die Strecke As (siehe
Abb. 3.5).

Abbildung 3.5: Verschiebung des Bildes auf dem Schirm

Mit zunehmender Rotationsfrequenz kann also eine Verschiebung des Bildes auf dem
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Schirm gemessen werden. Sind Rotationsfrequenz und Lichtweg bekannt, dann 148t sich
die Lichtgeschwindigkeit berechnen:

Laufzeit des Lichtes At = M

Drehwinkel ¥ = wAt
_ 200
Ablenkung auf dem Schirm As = rtan2¢ = 2rp
As = 2rw72(b2_f)
8mr(b+ fv

—>  Lichtgeschwindigkeit ¢ = A
s

Wir wihlen fiir die Demonstration im Horsaal

b+ f = 156m
r = 5m

Mit » =470Hz und As =3 + 0,3mm erhalten wir als Resultat des Demonstrations-
versuches:

c=(2,95 + 0,3)108 2
S

FoucAuLTs Messung im Jahr 1850 lieferte als Ergebnis:

Kk
¢ = (298000 + 500) ?m

Mit Beginn des 20.Jahrhunderts wurden weitere zahlreiche Messungen durchgefiihrt. Durch
Abwandlung der dlteren Methoden erreichte man eine wesentlich héhere Zuverléssigkeit
der Messungen. Zusitzlich wurden aber auch neue Verfahren entwickelt.

Das FoucauLrrsche Verfahren wurde 1927 von A.MICHELSON wesentlich verbessert. Er
ersetzte den Drehspiegel durch ein rotierendes, achtflichiges, verspiegeltes Prisma. Es ge-
lang ihm, Ruhe und Helligkeit des Bildes so zu steigern, dafi ein Laufweg des Lichtes von
etwa 70 km moglich wurde.

MICHELSONs Messungen ergaben:

km

¢ = (299796 + 4) ~—

1928/29 haben A.KAROLUS und O.MITTELSTAEDT das Zahnrad der Anordnung von
F1zEAU durch eine Kerrzelle (siehe unter Abschnitt 7. Doppelbrechung ) ersetzt. Dadurch
wurde eine exakte Steuerung der Lichtunterbrechung auf elektrischem Wege moglich.

Den bisher genauesten Wert der Vakuumlichtgeschwindigkeit erzielte man im
Jahre 1972 durch Interferenzmessungen. Dabei handelt es sich um Prizisionsmessungen
der Wellenldnge und Frequenz einer Lichtwelle mit Hilfe eines Interferometers und durch
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Vergleich mit einer Standardfrequenz. Das Produkt von Wellenléinge und Frequenz der
86Ky — Linie liefert

= (299792458 + 1,2) —
S

Auf der Festlegung dieses Wertes als Lichtgeschwindigkeit beruht die seit 1983 giiltige
Definition der Basiseinheit “Meter”:

1 Meter ist die Ldinge der Strecke, die Licht im Vakuum wdhrend des Zeit-
intervalls 1/299 792 458 s zuriicklegt.

Der Vorteil dieser Definition liegt in der héheren Genauigkeit von Frequenzmessungen
und Messungen kurzer Strecken gegeniiber Messungen langer Strecken.

Auf die modernen Interferenzmessungen, die zur Festlegung der Grofle der Lichtgeschwin-
digkeit fiihrten, wird hier nicht genauer eingegangen. Stattdessen wird ein einfaches Bei-
spiel einer Lichtgeschwindigkeitsmessung durch Interferenz vorgestellt:

J,‘,/cﬁcéﬁos ition ‘2 1

L ® Quelle
\jt___ O Dedektor
g\,\y_/

AS

Versuch:

Ein mit 50 MHz moduliertes Lichtsignal wird iiber zwei um 45° gegen den
Strahlengang geneigte Spiegel zu einer Photodiode geleitet.

Ausgangs — und Endsignal werden auf einem Kathodenstrahloszillographen
sichtbar gemacht. Die Ausgangsposition (Position 1) der Spiegel wird da-
durch bestimmt, dafl die beiden Signale deckungsgleich sind.

— Hus gen jJ‘J‘fyha ( W/\
L

'-‘ " L4 ]
-—- Eho(.rfyha_ ( vy
: \ e

() \,.7

.
¢ N\
/ [}
! .
¢

4
HE
[] 4

(-_J

Abbildung 3.6: Interferenzmessung der Lichtgeschwindigkeit: Spiegelposition 1
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Anschlieflend werden die Spiegel um die Strecke As verschoben, so daf
zwischen den Signalen ein Phasenunterschied A¢ = 90° vorliegt.

Abbildung 3.7: Spiegelposition 2

Fiir den Laufzeitunterschied gilt At = 2 As/c. Die Phasenverschiebung
betréigt 90°, dies ist gleichbedeutend mit At =7/4. Daraus folgt fiir die
Lichtgeschwindigkeit

c=8As/T =8vAs

MefBbeispiel: Die Versuchsdurchfiihrung ergab eine Verschiebung der Spie-
gel um As = 78 cm

km

= c:8-50MHz-78cm:312000T

3.5 Transversalitit freier elektromagnetischer Wel-
len

Wir befassen uns zunichst mit freien, ebenen elm. Wellen, die sich lings der x — Achse
ausbreiten. Wie lassen sich solche Wellen durch £ — und B — Felder beschreiben?

Betrachten wir das E — Feld
E(z,t) = E(x — ct) = [Eg(z — ct), Ey(z — ct), Ez(z — ct)]

Welche Funktionen sind fiir £y, Ey und E; erlaubt?

—

E(z — ct) mufl die MAXWELL — Gleichungen erfiillen, insbesondere muf also gelten

divE:v*Ezo
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Da sich nach Voraussetzung die Komponenten des betrachteten E — Feldes nur mit der z
— Koordinate &ndern sollen, gilt 0Ey/0y =0 und 0FE;/0z =0 und es folgt

0FEy

—— =0 = Eg = constant
or

Die x — Komponente des E — Feldes mu8 also konstant sein, sie liefert daher keinen Beitrag
zur Welle E(z — ct). Es ergibt sich eine transversale Welle

E(z —ct) = [O, Ey(z —ct), Ez(z — ct)]

Zur Vereinfachung nehmen wir an, dal E; = 0 ist:

—

E(x —ct) = [0, Ey(z —ct), ()]

Wie verhilt sich das zugehdorige B — Feld?

Die Relation zwischen E und B ist gegeben durch die MAXWELL — Gleichung rot E =
—0B/0t :

v X ot ) o5 T or ot

In diesem Gleichungssystem verschwinden alle partiellen Ableitungenvon E; i=1x,y, 2
mit Ausnahme von 0Fy/0x # 0. Man erhilt daher

OBy _ 9By _
ot = 0 or = Y 0B, _ 0By
= By = const. = By = const. ot Oz

Die x — und y — Komponenten des B — Feldes tragen wie die z — Komponente des E -
Feldes nicht zur Welle bei.

Die ebene, elektromagnetische Welle, die sich in x — Richtung fortpflanzt, wird also be-
schrieben durch

E@—ct) = [0, By(z—ct), 0] . 0By _ 9B
mit —* = ———
Bx—ct) = [0,0, By(x — ct)] ks ot

Allgemein ldf3t sich also festhalten: Ebene, elektromagnetische Wellen sind trans-
versal, wobei £ — und B — Feld senkrecht zueinander sowie senkrecht zur Ausbreitungs-
richtung stehen.
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Um den Zusammenhang von E —und B - Feld genauer zu untersuchen, betrachten wir
jetzt harmonische Wellen:

E(x,t) = E(x —ct) = [0, By, 0]
mit
Ey(x —ct) = Eycosk(r — ct) = Ey cos(kx — kct)
= FEy cos(kx — wt) = Ey cos(wt — kx)

Aus Ey berechnen wir Bz und erhalten damit B(z,t)=10,0, By(z — ct)] :

0By _ 9B,
oxr ~— Ot

= FEyk sin(wt — kz) = __6_6%

= By =—[Eyk sin(wt — kx)dt
= By = %—k cos(wt — kx) + const.

Mit dem schon bei Ey = const. angefiihrten Argument kénnen wir die Konstante gleich

Null setzen. Bk k .
B, =" t—kr)=—Fy=-F
2 " cos(w x) ~ By =By

Zwischen E und B besteht also die Beziehung

Ey = CBZ

Ey und By unterscheiden sich nur um den konstanten Faktor c. Sie sind in gleicher Phase,
d.h. sie nehmen gleichzeitig ihre Null — und Maximalwerte an.
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Zusammenfassung: FEine harmonische, elektromagnetische Welle 148t sich beschreiben
als Kopplung zweier gleichphasiger, harmonischer Transversalwellen, einer elektrischen
und einer magnetischen Welle. Dabei schwingen das E —und das B — Feld in zueinander
senkrechten Ebenen, wie Abb. 3.8 zeigt.

Abbildung 3.8: Elektrisches und magnetisches Feld in einer harmonischen, ebenen Welle

(aus [1])

Die fiir die spezielle Ausbreitungsrichtung x ausgefiihrten Untersuchungen sollen nun auf
eine beliebige Richtung k verallgemeinert werden.

Betrachten wir also eine ebene, harmonische Welle, welche sich in beliebige Richtung k
fortpflanzt:

E(7 1) = By et (W= k7)
Die Anwendung eines Differentialoperators fiihrt bei diesem Wellenausdruck jeweils nur
zu einem zusatzlichen Faktor vor dem Exponentialterm.

8 — — Y _-) —
= (7,1) = Byiwe! WE—KT) — 40, B(7 1)
v * B(7,t) = —i k E(7,1)

Bei harmonischen Wellen lassen sich die Operatoren d/0t und 57 also einfach durch be-
stimmte Faktoren ersetzen:

%:>iw

v — —tik

Damit lassen sich die MAXWELL — Gleichungen fiir harmonische Wellen folgendermaflen
umformulieren:

VxE=0 = —ikE=0
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— g - — —
vxE——aa—t — —tkxFEF=—1iwB
VXB—é‘O,LLOE —— —lkXB:C—Qle
Man erhilt
FE =0 ixE=wB MAXWELL — Gleichungen
o . . fiir
kB =0 kxB= _20_2 E harmonische Wellen

Allgemein gilt:

k: E B bzw. E B k bilden ein rechthéndiges, rechtwinkliges System. D.h. eine ebene,
harmonische Welle breitet sich lidngs der Richtung E X B aus, wobei E und B stets

senkrecht aufeinander stehen.

AN D

v

E
B k

Insbesondere liefert

folgende Informationen:

e B und E sind in gleicher Phase.
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3.6 Das elektromagnetische Spektrum

Ausgehend von den vier Grundgleichungen, die alle elektromagnetischen Vorgénge erfas-
sen, stellte MAXWELL die Theorie auf, daf} es sich bei der Erscheinung “Licht” um freie
elektromagnetische Transversalwellen handelt. Damit brachte er physikalische Gebiete in
Verbindung, die bis dahin als getrennt erschienen:

Elektrizitdt <— Magnetismus <— Licht
1

€o : Ho = 2
Heute wissen wir, dafl ein weites Spektrum von Erscheinungen unter dem Begriff elektro-
magnetischer Wellen vereinigt ist. Das Licht, welches unser Auge als solches wahrnimmt,
ist dabei nur ein sehr kleiner, durch die Empfindlichkeit des Auges begrenzter Ausschnitt
aus dem gesamten elektromagnetischen Spektrum.

Man klassifiziert die elektromagnetischen Wellen nach ihrer Wellenlénge bzw. Frequenz
(sieche Abb. 3.9).

hv hv
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1° —10°"? — : ' nuclei and Accelerators
— % scintillation
. B I Mevi0® T-RAYS counters
7 7 tnner lonization X-ray
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electrons
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. 7 - vibrations Lamps
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i lem—{10~2 - Electron spin Klystron
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Abbildung 3.9: Elektromagnetisches Spektrum (aus [13))
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3.7 Elektromagnetische Wellen in Materie

Nach den fiir das Vakuum durchgefiihrten Uberlegungen wollen wir nun die Ausbreitung
elm. Wellen in Materie studieren. Dazu seien noch einmal die MAXWELL — Gleichungen
in ihrer allgemeinen Form aufgefiihrt:

div D = Ofrei rot E = —%—?
divB =0 rotﬁ:jfrei—i-%lt—)

Herleitung der Wellengleichung

Wir betrachten zunidchst Materie ohne freie Strome und Ladungen, d.h. es sollen nur
gebundene Strome und Ladungen, also Magnetisierung und Polarisation vorhanden sein.
Mit

—

. D e E
Ofrei = Jfrei = 0 und D_, €r€o i
B = pruH
lauten dann die MAXWELL — Gleichungen
divﬁzdivsrsoﬁzo rotE:_%lti . )
divB =0 TOtﬁ:TOturluoéz%—?zfrfo%—?
In Nabla — Operator — Schreibweise erhélt man
ETEOV*EZO VXE:_%%
vrB=0 VX B= e ncoa B

Vollig analog zu der fiir das Vakuum durchgefiihrten Herleitung ergibt sich

2E [ B‘] Wellengleichung
v fiir elektromagnetische Wellen
in Materie

AE [E] = & [br €0 Po

Daraus folgt fiir die Lichtgeschwindigkeit in Materie

2 _ 1 1 1 2
‘M= Er Ur €0 o~ Er Ur ¢
Crr = 1 c Lichtgeschwindigkeit
M Er U in Materie

Def.: Man definiert das Verhiltnis des Wertes der Lichtgeschwindigkeit im Vakuum zum
Wert der Lichtgeschwindigkeit in Materie als den Brechungsindex des betreffenden
Materials.

_c Brechungsindex
n=—= Er Hr .
CM einer Substanz
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Dabei ist zu beachten, dafl ¢, und pu, i.a. frequenzabhingig sind! (Siehe dazu den
nachfolgenden Demonstrationsversuch!)

Héufig tritt der Fall u, ~ 1,e > 1 auf, z.B. bei Isolatoren (Glas, Wasser, Gase etc.).
Speziell fir p, =1 gilt

c .
n=—=,/& MAXWELLsche Beziehung
Cm

Sehr hiufig liegt daher der Fall ‘n > 1, cpy < c|vor.

Versuch: Am Beispiel Wasser wird die Frequenzabhéngigkeit der Dielektrizitatszahl
¢, demonstriert.

Dazu wird die Dielektrizitdtszahl von Wasser fiir verschiedene Frequenzen
gemessen:

a) Kleine Frequenzen (Statischer Fall)
Mit Hilfe eines Kapazititsmessungsgerites bestimmen wir die Ka-
pazitit eines Plattenkondensators. Der Abstand der Platten wird
moglichst klein gewidhlt und zwischen den Platten eine Plastiktiite
so angebracht, dafl bei Auffiillen derselben mit Wasser der Platten-
zwischenraum gefiillt ist.
Die Kapazitdtsmessung wird zunéchst mit leerer Tiite, dann mit Was-
serfiillung vorgenommen.

Eine der Messungen ergab bei 4 mm Plattenabstand
co ~ 100 pF ca,0 &~ 7,5nF

Damit lautet das Versuchsresultat fiir den statischen Fall:

C 7,5 10°°F
er(H20) = =12% = {5070 7F = 8

’I’L(HQO) = ST(HQO) = 8, 66

Sollwert fiir den statischen Fall: £,(H,O) = 81 = n(H,0)=9.

b) Dezimeterwellenbereich

Uber eine \/2 — Antenne werden von einem Sender Dezimeterwellen
der Frequenz v = 433 MHz bzw. der Wellenlinge A = 69 cm abge-
strahlt. Als Empfianger dienen zwei Dipole der Lingen [; = 31 cm =
A/2 und Iy = 6 cm, welche sich in einem Wassertank befinden.

Bei leerem Wassertank wird der \/2 — Dipol angeregt. Die in sei-
ner Mitte befindliche Gliihlampe leuchtet auf. Fiillt man destilliertes
Wasser in den Tank, so erlischt diese Lampe. Jetzt wird die kurze
Antenne angeregt, wie das Aufleuchten der zugehorigen Glithlampe
anzeigt.
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Fiir den Dezimeterwellenbereich ergibt sich also ein Brechungsindex
der Grofe

_ Co _l/)\()_)\() _31N
Cu,o VAmo  Amo0 6

n(H,0)

llo

Fiir die Dielektrizitatskonstante erhalten wir den Wert

&,(Hy0) = n?(H,0) = 2

Im Bereich der Dezimeterwellen ist ¢, bereits erheblich kleiner als im
statischen Fall.
c) Optischer Bereich

Der Versuchsaufbau zur Interferenzmessung der Lichtgeschwindigkeit
(s.S. 87ff.) wird tibernommen. Zusitzlich wird in den Strahlengang
eine 1m lange, mit Wasser gefiillte Rohre eingebaut (siehe Abb. 3.10).

S/, /'ej e (/: o.r;o//.'o ~

2 7,
': «—/—>
Ne — — —
< y)
oS>

Abbildung 3.10: Messung des Brechungsindexes von Wasser fiir Licht des optischen Be-
reiches

Zunéchst wird der Phasenunterschied zwischen Ausgangs — und End-
signal bei gefiillter Rohre bestimmt. Dann wird die Réhre aus dem
Strahlengang entfernt und durch Verschiebung des Spiegelpaares die
zuvor ermittelte Phasenlage wiederhergestellt.

Im MefBbeispiel ergibt sich beim Phasenabgleich ein Wegunterschied
von As = 17,5 cm.

Der Laufzeitunterschied beim Durchgang des Lichtes durch die H,O
— Rohre der Lénge L berechnet sich zu

L L

At =

CHgO C

Der durch Anderung des Wegunterschiedes hergestellte Laufzeitun-

terschied ergibt sich zu
_2As

Cc

At




102 KAPITEL 3. ELEKTROMAGNETISCHE WELLEN

Phasenabgleich bedeutet

L L _ 2As |- <
CHQO C_ C L
c 1_2As
& 0 1= T
_ 2As

Mit As =17,5c¢cm und L = 1m ist der gemessene Brechungsindex

_2-17,5cm
N 1m

+

1=1,35

Dies entspricht einer Dielektrizitédtszahl von

87-(HQO) = 1, 8

Tabellenwerte (optischer Bereich): n(H,O) = 1,33

Fiir Frequenzen des sichtbaren Bereiches unterscheidet sich die Griofe
der Dielektrizitéits — sowie der Brechzahl noch stérker von dem fiir
sehr kleine Frequenzen erhaltenen Wert.

Zusammenfassung: Der Brechungsindex n = /¢, ist sehr stark frequenzabhéngig. Der
Brechungsindex von HyO variiert von n = 9 im statischen Fall bis n = 1, 33 bei Frequen-
zen des optischen Bereiches (siche Abb. 3.11). Ahnlich gravierend ist die Anderung der
Brechzahl bei Glas.

0

rent k
®
:\

»,
o

Brechzahl n und Absorptionskoefs
*

w |

: S

}{ — \\%‘\04 i
0[ PN T UR U1 E a llii‘l Y
Jmm g5 Icm 5 10cm X

Abbildung 3.11: Dispersion von Wasser fiir elektromagnetische Wellen (aus [17])
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Eine sehr geringe Frequenzabhéngigkeit des Brechungsindexes weisen dagegen Gase auf.
Hier ist die MAXWELLsche Relation sehr gut erfiillt. Eine Ubersicht gibt die folgende
Tabelle (aus [3]):

Stoff n \/5_r
Luft 1,000294 1,000295

Kohlendioxid 1,000449 1,000473
Kohlenmonoxid 1,000346 1,000345

Wasserstoff 1,000138 1,000132
Distickstoffoxid 1,000503 1,000497
Methan 1,000443 1,000472

Wir sehen also, dafi sich eine elm. Welle, deren Fortpflanzungsgeschwindigkeit im Va-
kuum gleich der Lichtgeschwindigkeit c ist, in Materie mit verdnderter Geschwindigkeit
¢y ausbreitet. Dabei erweist sich die Anderung der Phasengeschwindigkeit als frequenz
— bzw. wellenldngenabhéngig. Beim Eintritt einer elm. Welle in Materie tritt also ein
Phénomen auf, das bereits in Abschnitt 2.3 erwdhnt wurde: die Dispersion.

Die Variation des Brechungsindexes n(v) = c¢/cy bzw. der Dielektrizitétszahl e, (v) =
n?(v) mit dem Frequenzspektrum (Wellenléingenspektrum) beschreibt die Dispersion des
betreffenden Materials.

Wie kommt die Dispersion elektromagnetischer Wellen in Materie zustande?

FaBt man Licht nach der MAXWELLschen Theorie als elektromagnetische Wellenerschei-
nung auf, so wird eine in einen Stoff eindringende Lichtwelle E (7, ¢) auf die elektrischen
Ladungen der Molekiile Krifte ausiiben. Durch Verschiebung dieser Ladungen aus ihrer
Ruhelage wird eine Polarisation P(7,¢) erzeugt. Da aufgrund der Periodizitit der Licht-
welle die Ladungen periodisch aus ihrer Ruhelage verschoben werden, handelt es sich bei
der Polarisation um erzwungene Schwingungen der geladenen Teilchen.

Die von der einfallenden Welle, der Primérwelle, zu Schwingungen angeregten Ladungs-
teilchen strahlen ihrerseits Sekundirwellen ab, welche sich mit der Primérwelle iiberlagern.
Die erzwungenen Sekundéirwellen weisen i.allg. gegen die Primérwelle eine Phasenverschie-
bung auf.

Abhiingig von der Frequenz v der einfallenden Welle sind folgende Ergebnisse der Uber-
lagerung moglich (sieche Abbildungen 3.13 und 3.14):

e Die resultierende Welle eilt der Primérwelle voraus. = ¢y >c¢

e Die resultierende Welle hinkt der Primérwelle nach. = ¢ <c

Dementsprechend variiert der Brechungsindex mit der Frequenz der eindringenden Welle:
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(a)

Abbildung 3.12: (a) Forménderung einer Elektronenwolke unter dem FEinfluf} eines E-
Feldes, (b) mechanisches Oszillatormodell im isotropen Medium. (aus [13])

/
/
Secondary
/,‘ /
[ '
Primary
Resuitant \ \z Lead

Abbildung 3.13: Die Sekundirwelle besitzt eine positive Phasenverschiebung gegeniiber
der Primérwelle. (aus [13])

en(v)>1 = cy<c

en(v)<l = cy>c

Steht c); > ¢ im Widerspruch zur Relativititstheorie?

Nach der Relativitidtstheorie existiert in der Natur keine grofere Geschwindigkeit zur
Ubertragung von Signalen als die Vakuumlichtgeschwindigkeit c. Dieses Postulat bezieht
sich auf die Gruppengeschwindigkeit; denn, wie bereits in Abschnitt 2.3 erldutert wurde,
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Abbildung 3.14: Die Sekundirwelle besitzt eine negative Phasenverschiebung gegeniiber
der Primérwelle. (aus [13])
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Abbildung 3.15: Phasendifferenz <> Frequenz der erzwungenen Oszillatorschwingung (aus

[13])

erfolgt der Energietransport einer Welle mit vg,.. Daher ist die Signalgeschwindigkeit mit
der Gruppengeschwindigkeit gleichzusetzen.

Es war
dUph
dA

der Zusammenhang zwischen Gruppen — und Phasengeschwindigkeit.

Vgr = Upp — A

Der Brechungsindex nimmt in fast allen Medien fiir gewisse Frequenzen der einfallenden
Wellen einen Wert n(A) < 1 an. In diesen Féllen wird die Phasengeschwindigkeit der
Welle grofier als die Lichtgeschwindigkeit: cpr = vpn, > c.
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Dies ist fiir normale Dispersion dc—i"" = % > (0 erlaubt, denn dann gilt
dCM
C> Vg =Cpm— A e

d.h. vg < c¢ kann auch fiir ¢)r > c erfiillt werden.

Mathematische Diskussion der Dispersion

Wir wollen im folgenden die Anderung der Dielektrizitits — und der Brechzahl mathema-
tisch formulieren.

Der Eintritt einer elm. Welle in ein dielektrisches Medium bewirkt eine periodische Pola-
risation P, indem die elektrischen Ladungen des Mediums zu erzwungenen Schwingungen
angeregt werden. Wie 148t sich P mathematisch beschreiben?

Die verschiedenartigen Ladungsteilchen seien durch den Index n gekennzeichnet. Bezeich-
nen wir die Anzahl der jeweiligen geladenen Teilchen pro Volumeneinheit mit N, ihre
Ladung mit ¢, sowie ihre Verschiebung aus der Ruhelage mit z,, so lautet die gesamte
Polarisation

P:ZPn:Zqun:rn .

P ist das auf eine Volumeneinheit bezogene Dipolmoment, das von dem elektrischen Feld
FE der Primérwelle induziert wird.

Die auf eine Ladung wirkende anregende Kraft hat den Betrag
Fg, = an E

Die nahezu elastische Bindung des Ladungsteilchens an seine Ruhelage kann analog zur
Mechanik durch die Hooksche Kraft

Fg=—-k,x, k,: Federkonstante

beschrieben werden.

Die Bewegung wird gehemmt durch die der Geschwindigkeit proportionale Reibungskraft

dz,,
Fr=—-03,—
rR=—0n
Auflerdem unterliegt das Teilchen mit der Masse m,, der Trigheitskraft

d*z,

Fr=—mn =3
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Ganz analog zu den mechanischen Schwingungen kénnen wir nun die Differentialgleichung
aufstellen, welche die erzwungene Schwingung des Ladungsteilchens mathematisch erfafit:

d*z,
dt’
—_——— ————
Tragheitskraft Reibungskraft

dzy,
— My _ﬁn i + —kn Tn, + qn E =0
dt S—— N——

Hooksche Kraft Anregung
durch Licht

(treibende
Kraft)
Umstellen und Division durch m,, ergibt
Fxn | Bn dzn | ke Gn
Pn Zon oy =20 g
@ Tmn @t me T m

Wir setzen nﬂl—’; =20, und % =w?.

Dabei ist 6, ein Maf fiir die Ddmpfung der erzwungenen Schwingung. Die Grofle w,, =
27 v, bezeichnet die Frequenz der Eigenschwingung eines Ladungsteilchens (BROWNsche
Molekularbewegung).

Die anregende Welle sei von der Form
E = Eyet¥t |

wobei w die Kreisfrequenz der einfallenden Welle ist.

Damit lautet die Differentialgleichung

d’z, dz, 2 an 1wt
g T 20 gy Tt = Foe

Wir machen den komplexen Lésungsansatz
_ 1wt
xn(t) = g, €

Einsetzen in die Differentialgleichung fiihrt unmittelbar zu

(—w2 +2iwb, +w2) Xo, = :l—nnEo

und damit zu der speziellen Losung
1 Gn
- w2) + 21w, m—n

zn(t) = (w2

n

Diese komplexe Darstellung der erzwungenen Teilchenschwingung enthélt deren Phasen-
verschiebung ¢ gegeniiber dem anregenden F — Feld:

Aus der Zerlegung der komplexen Gréfie o, in Betrag und Phase

To, = |To,| '
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ergibt sich
1 Gn

[(wQ — w2)2 +44?2 wQ] V2 m,

n

\$0n| = 0

als Amplitude der erzwungenen Schwingung sowie

20, w
s
n

als Phasendifferenz zwischen erzwungener Schwingung und anregender Welle. Hier ist er-
sichtlich, daf} die Phasenverschiebung zwischen Primér — und Sekundérwelle von der Fre-
quenz der Primérwelle abhéngt.

Multiplizieren wir die Schwingungsgleichung

1 qn
z,(t) = —F
() (wi—uﬂ)—l—?iwén Mp
auf beiden Seiten mit N, ¢, , so erhalten wir, da N, q, z, = P, ist,
1 N, ¢
P, = nthp

(w2 —w2) +2iwd, Mn

n

Die gesamte Polarisation wird dann beschrieben durch

G g

P=%:Pn=z(2 : Mo

n (W, —w2) +2iwd, Mn
Uber die Beziehung
P = (ér - 1) o E

gelangt man nun zu dem Ausdruck fiir die Dielektrizitédtszahl, der die Reaktion des Me-
diums auf die externe elm. Welle angibt:

) 1 N, ¢,
& =1+ = n
’ ;(wi—wQ)—inwdn €9 My

£, ist hier eine komplexe Grofle, da auch die Polarisation P komplex ist. Da fiir die reelle
Dielektrizititszahl e, = n? gilt, setzen wir

& =n%(1—ik)? (%)

Man nennt # =n (1 —ix) den komplexen Brechungsindex. Dabei bezeichnet n den
reellen Brechungsindex des Mediums, die physikalische Bedeutung der Gréfle « ist noch
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zu kldren. Setzt man (*) in den obigen Ausdruck fiir die komplexe Dielektrizitdtszahl ein,
so erhilt man

n? (1-2ik—k%) = 1+3,

Wir spalten nun diesen Ausdruck in Real — und Imaginérteil auf.

2 2 2
Reé&, =n?(1-k%) = 1+3%, P é\g"ng"
(wi—uﬂ) + 4w 82 "

2

Imé, =-2n’k = %, —2woy No

<w,2L - w2)2 +4w?o? 0 MM

Zur Verkiirzung der Schreibweise sei an dieser Stelle eine weitere Bezeichnung eingefiihrt:
Die Konstante

(qui)w
wy = | —=

Eg My

gibt die sogenannte Plasmafrequenz an, mit der ein Gas freier Ladungstriager der La-
dung ¢,, der Masse m,, und der Teilchenzahldichte N,, gegen den Rest des Gases sowie
gegen eine Hintergrundladungsverteilung entgegengesetzten Vorzeichens schwingt.

Damit lauten die Gleichungen

2 2\ 2
(wn—w ) Wy

(wfb — w2)2 +4w? 2

n? (1-k%) = 1+3%,

w Oy, wﬁl
2
(w2 wQ) +4w?s?

n_

nk = %,

Aus diesen Gleichungen lassen sich der reelle Brechungsindex und die Grofle £ berechnen.
Sind die Eigenfrequenzen w,, und die Ddmpfung ¢,, bekannt, so erhélt man n = n(w) und
k = k(w) . Man kann also den Verlauf der beiden Gré8en mit dem Frequenzspektrum der
Primérwelle angeben.

Welche physikalische Bedeutung haben 7 und x ? Zur Beantwortung dieser Frage betrach-
ten wir die elektrische Feldstiarke E einer in Materie fortschreitenden, ebenen, elektroma-
gnetischen Welle.

E

Eoei(wt—k’f‘) :Eoei(Wt_k%F)

By

Einheitsvektor

D
I

Eoe’(Wt_kng) :Eoeiw(t_gé'k?)

iw(t— o & 7)

in Richtung k
EO €
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Wir beschreiben nun die Geschwindigkeitsinderung c¢/cy, formal durch den komplexen
Brechungsindex.

L h=n(l—ik)

Cm
Dann folgt
E:_%Jw@—%uwmaﬂ
- o g nz 2
P - Eoe_wg,{ W7 LW (t—Eekr)

L iw (t— a7 . . :
Der komplexe Anteil e ¢ des resultierenden Wellenausdruckes liefert die

Information, dafl sich die ebene Welle mit der Phasengeschwindigkeit ¢y = ¢/n in
Richtung £ fortpflanzt. Dabei beschreibt die reelle Brechzahl die Dispersion.

Zusétzlich zur Dispersion liegt hier ein weiteres Phiinomen vor, welches durch den reellen

WNK 7 = -
Faktor e~ ¢ ©" ausgedriickt wird: Die Welle wird lings der Richtung k gedimpft,
d.h. es findet Absorption statt.

Da die Intensitét einer Welle proportional zum Quadrat der Amplitude ist, folgt fiir die
Intensitédt einer elektromagnetischen Welle in Materie eine Gleichung der Form

WnNnK z =
I:I()e 2 C ekr

WnkK
D.h. die Absoption ist proportional zu e 257 Die GroBe 2wnk/c wird als Ab-

sorptionskoeffizient bezeichnet, die Grofle x heifit Absorptionsindex.

Die Strecke o = ¢/wn k , nach der die Amplitude der Welle im Medium auf 1/e ~ 37%
abgesunken ist, nennt man Absorptionslinge.

. — G g (wt— LR, )
E=FEe «e¢ c k

Damit lautet die Antwort auf die oben gestellte Frage: Der komplexe Brechungsindex 7
sowie der Absorptionsindex k beschreiben die selektive (frequenzabhéngige) Absorption,
welche eine elm. Welle in Materie erfihrt.

Wir wollen nun den frequenzabhéngigen Verlauf der Brechzahl n = n(w) sowie des
Absorptionsindexes k = k(w) diskutieren:

Dabei beschrinken wir uns zunéchst auf den Spezialfall n = 1, d.h. in dem betrachteten
Medium wird nur eine Art von Ladungsteilchen zu Schwingungen angeregt. Folglich tritt
nur eine Resonanzfrequenz w; auf.

Es ergeben sich die in Abbildung 3.16 dargestellten Kurven:

Man unterscheidet

normale Dispersion: do > 0, d.h. < 0

: oo dn dn
anomale Dispersion: 4o < 0, d.h. > 0
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Abbildung 3.16: Anderung des Brechungsindexes sowie des Absorptionskoeffizienten mit
der Erregerfrequenz w.

Im Resonanzgebiet w = w; tritt maximale Absorption auf, da die Ladungstriager in die-
sem Frequenzbereich mit grofiter Amplitude schwingen. Bei genauer Untersuchung stellt
man fest, dafl das Maximum der Absorption nicht exakt an der Stelle w = w; liegt,
sondern aufgrund der Ddmpfung etwas verschoben ist.

Im allgemeinen Fall verschiedener Ladungsteilchen, n = 1,2,3... , d.h. mehrerer Reso-
nanzen wi , Wo , ws ... iberlagern sich die Resonanzkurven. Fiir fehlende Ddmpfung 6 = 0
erhiilt man den in Abbildung 3.17 gezeigten Verlauf von n?:

Charakteristische Merkmale des Verlaufes:

e Fiir sehr kleine Frequenzen nimmt der Brechungsindex n den statisch gemessenen

Wert n = .,/e, an.

e Fiir sehr hohe Frequenzen (ab dem Bereich der Rontgenstrahlung) oberhalb des
letzten Resonanzgebietes gilt limy, o n(w) = 1.
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n

Infrared Visible Ultraviolet

Abbildung 3.17: Verlauf des Brechungsindexes mit der Erregerfrequenz. (aus [13])

e Die Resonanzgebiete w &~ w; (abgedunkelte Bereiche im Bild) heilen Absorptions-
bande. Hier findet anomale Dispersion statt. Die Absorption ist maximal.

Wir haben die Erlduterungen zur Dispersion allgemein unter Voraussetzung verschiedener
Ladungsteilchen vorgenommen. Welche Schwingungsvorgénge werden nun konkret ange-
regt?

Im Bereich zwischen Infrarot — und Rontgenlicht sind dies hauptséichlich zwei Vorgénge:

1. Jonenschwingung
Falls im Medium die Bildung von Ionen vorliegt, schwingen diese gegeneinander.

Bsp.: NaCl = Na' < CI”

Aufgrund der Grofle der lonenmassen ist die Resonanzfrequenz niedrig, sie liegt im
infraroten Bereich.

2. Elektronenresonanzen
Elektronen besitzen eine geringe Masse, hier treten Resonanzen im Gebiet zwischen
sichtbarem Licht und Rontgenstrahlung auf. Dabei regt das sichtbare Licht nur die
dufleren Elektronen der Atomhiille an. Die Resonanzen der weiter innen liegenden,
stiarker gebundenen Elektronen liegen im hoherfrequenten Bereich (Rontgenlicht).
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3.8 Energiedichte einer elektromagnetischen Welle

Zum Aufbau von elektrischen sowie magnetischen Feldern wird Energie benotigt. Im ver-
gangenen Semester wurde bereits folgendes hergeleitet:

elektrische Energiedichte in Materie: w¢ =

ml w1
ml bl

Dol DOl

magnetische Energiedichte in Materie: w,,

Fiir isotrope Stoffe gilt D = Er €0 E

B = prpoH
Damit lauten die Energiedichten einer elm. Welle in isotroper Materie

Wy = % er 0 E?
_ 1 1 2
Wy = 3 Ty o B
Die gesamte Energiedichte berechnet sich zu
W = We + Wpy
w o= %anEQ + % ,Urluo B?
Wir betrachten nun ebene Wellen mit
0 0
E=| Ey und B= 0
0 B,

Fiir harmonische, ebene Wellen hatten wir die Giiltigkeit der Beziehung E = ¢ B nach-
gewiesen. Mit ¢ =1/,/g,€g it pto lassen sich folgende Umformungen vornehmen:

1 2
/’LT/J/OB
1 1 1 g2
7:LL'/"/«LOEZEJ

= %ﬁ&goﬂrﬂoEQ

wm =

= %er go E?
= We

Dies gilt allgemein fiir beliebige elm. Wellen!
Damit ergibt sich fiir die Energiedichte einer elm. Welle in isotroper Materie

1
Wy = Wel = 5 W

_ 1 2 _ 2
w_,ur,uoB =g, e0

Speziell fiir harmonische, ebene Wellen 148t sich dies mit E = ¢ B umformen zu

w=¢,c0cEB|.




114 KAPITEL 3. ELEKTROMAGNETISCHE WELLEN

Die Intensitit einer elektromagnetischen Welle

Wir haben die Intensitét bereits bei der Behandlung mechanischer Wellen definiert:

Intensitit einer Welle: I = we

_ Energie .
W = Volumen _ Energie

Linge "~ Fliiche - Zeit

¢ Zeit

Wendet man diese Definition auf die elm. Wellen an, so folgt

EB=FH

I=¢¢0’EB=
My fho

Um den Energietransport einer elm. Welle vektoriell beschreiben zu kénnen, fithrt man
den sogenannten Poynting — Vektor ein,

iV

i f Sh

S =FE x H| POYNTING — Vektor

benannt nach dem Physiker J.H.POYNTING (1852 — 1914).
Er gibt die Grofle der Energiestromdichte sowie die Richtung des Energiestromes einer
elektromagnetischen Welle an.

In welche Richtung weist S bei einer ebenen Welle?

Fiir eine ebene elm. Welle gilt ELH1EK , daher zeigt Smit E 1L H 1S in die
Richtung k der Wellenausbreitung. Die Energie fliefit also lings der Fortpflanzungsrich-
tung der Welle.

Der Betrag des POYNTING — Vektors liefert die Intensitdt der Welle:

Joule

S|=S=EH=I=wc Einheit: [S] = 1 —
mes

Der POYNTING — Vektor S ist eine sehr wichtige Grofe in der Elektrodynamik und Elek-
trotechnik.

Der Strahlungsdruck

Im Jahre 1619 erkennt der Physiker KEPLER, daf} die Kriimmung eines Kometenschweifes
(von der Sonne weg) zuriickzufiihren ist auf den Strahlungsdruck, welcher durch die von
der Sonne ausgehende elektromagnetische Strahlung entsteht.

Diese mit der elektromagnetischen Strahlung assoziierte Grofle ist verantworlich fiir ver-
schiedene weitere Phénomene der Physik. So ist der Strahlungsdruck auch von Bedeutung
fiir die Stabilitét grofler Sterne gegen den Gravitationsdruck.
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Der Strahlungsdruck wurde von mehreren Wissenschaftlern experimentell nachgewiesen
und von MAXWELL qualitativ formuliert.

Wie 1483t sich der Strahlungsdruck formal beschreiben?

Allgemein gilt:

Druck P = = =w Energiedichte

%

Px W
V

|

£
H

> = e B - eme

Dies gilt auch fiir den von elm. Wellen erzeugten Stahlungsdruck P unter der Vor-
aussetzung, dafl die Strahlung senkrecht auf die Grenzfiche des Mediums auftrifft und
vollstdndig absorbiert wird:

I S
P === —
c c
In vektorieller Schreibweise erhilt man
L g
P=— Strahlungsdruck
c

Als Beispiel berechnen wir den Strahlungsdruck der Sonnenstrahlung auf der Erdober-
fliche. Die Intensitéit der Sonnenstrahlung an der Erdoberfliche betrigt I = 1330 W/m?
(Solarkonstante). Wir nehmen nun an, der Strahlungseinfall sei senkrecht und es finde
totale Absorption statt. Dann ergibt sich der Strahlungsdruck zu

I 1330 W/m’

N
P=-="""C1" —44.10°—,
c 3-10°m/s m

Man vergleiche dieses Ergebnis mit dem Atmosphérendruck, der etwa 10° % betrégt!

Der Strahlungsimpuls

Die Kraft, die von der Strahlung auf die Oberfliche A ausgeiibt wird, betragt

FeAp=AS_®
c dt



116 KAPITEL 3. ELEKTROMAGNETISCHE WELLEN

Dabei ist p der Impuls, den die auf A auftreffenden elm. Wellen tragen. Betrachtet man
den Impuls pro Volumeneinheit py = p/V , so ergibt sich

deCtiV:pVAd—ff:pVAc:A%
S S _ p . _w Impuls
- v = ¢l PVTC einer elm. Welle

Eine elm. Welle trigt also einen Impuls, dessen Dichte mit der Energiedichte direkt iiber
die Beziehung

bv = —
C

verkniipft ist. Wie wir spéter sehen werden, fand EINSTEIN zwischen Energie und Impuls
folgenden Zusammenhang:

E? = (cp)® + (my c?)? mo: Ruhemasse

Er interpretierte die Erscheinung “Licht” nicht als elm. Welle, sondern als Strom von
Energiepaketen, den Photonen, welche korpuskulare Eigenschaften besitzen. Nach seiner
Theorie besitzen die Photonen die Ruhemasse my = 0, was zu der Beziehung

fiihrt. Die dualistischen Modelle von MAXWELL und EINSTEIN liefern also fiir den Zu-
sammenhang zwischen Energie und Impuls von Licht iibereinstimmende Ergebnisse.



Kapitel 4

Wechselstrom und
elektromagnetische Schwingungen

4.1 Wechselstrom und Wechselstromwiderstiande

Der Inhalt dieses ersten Unterkapitels ist bereits im vorigen Semester (siehe Skript II 5.7
Wechselstrom) behandelt worden. Wir werden daher hier die in der Vorlesung Physik 1T
gewonnenen Ergebnisse nur kurz wiederholen.

Erzeugung von Wechselstrom

Versuch: Durch Drehung einer Leiterschleife (Spule) im annihernd homogenen Ma-
gnetfeld eines Permanentmagneten wird eine Wechselspannung induziert
(siehe Abb. 4.1). Ihr zeitlicher Verlauf wird auf einem Kathodenstrahlos-
zillographen aufgezeichnet. Es ergibt sich eine Sinuskurve.

Die Leiterschleife mit der Fliche A rotiert mit konstanter Winkelgeschwindigkeit w im
Magnetfeld B. Die induzierte Spannung berechnet sich zu

A, d(BA) _ d(BA coswt)
Gl =-"@"=—"a =~ @

U;(t) = B Aw sinwt = Uy, sinwt

Dabei bezeichnet U,, den Scheitelwert der erzeugten Sinusspannung, welcher zu unter-
scheiden ist von Uy = U(t = 0) , dem Anfangswert der Spannung.

Bei Vorliegen eines geschlossenen Stromkreises mit rein OHMschem Widerstand wird nach
dem OHMschen Gesetz U = R I ein Wechselstrom der Form

Un . :
I(t) = — sinwt = I, sinwt

117
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Abbildung 4.1: Erzeugung einer Wechselspannung durch Drehung einer Leiterschleife im
homogenen magnetischen Feld. (aus [3])

erzeugt. Bei rein OHMschem Widerstand sind also Strom und Spannung des Wechsel-
stromkreises in Phase.

Enthélt der Wechselstromkreis kapazitive sowie induktive Widersténde, so tritt abhingig
von deren Grofle eine Phasenverschiebung ¢ zwischen der angelegten Wechselspannung
und dem durch die Bauelemente flieBenden Wechselstrom auf. Dieser hat die allgemeine
Form

I(t) = I, sin(wt + @)

U(t) und I(t) sind sogenannte Momentanwerte der sich periodisch in Stirke und Richtung
dndernden Gréflen Wechselspannung und Wechselstrom. Die Wechselstromgrofien sind
bestimmt durch Scheitelwert und Phasenlage.

Um solche Gréflen messen und miteinander vergleichen zu kénnen, fithrt man sogenannte
Effektivwerte ein. Dabei handelt es sich um die zeitlich quadratischen Mittelwerte der
entsprechenden elektrischen Gréfien.
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Wir berechnen die Effektivwerte von Wechselstrom und — spannung, I.;; und Uy, bei
rein OHMschem Widerstand:

legy = %foTp(t)dt

= \/% JJ 12 sin? wt dt

= Im\/% i sin? wt dt

T
= Imy/37
I
= In ~ 07071,
2 b)

Analog erhalten wir

. Usn
Usss = T/o UAe)dt == 0,707 Uy

Diese Effektivwerte entsprechen der anliegenden Spannung und der Stromstédrke eines
Gleichstromes, dessen Leistung gleich der mittleren Leistung des Wechselstromes bei rein
OnmMschem Widerstand ist. Es gilt ndmlich:

Die Leistung P(t) = U(t) I(t) des Wechselstromes lautet bei rein OHMschem Widerstand
P(t) = Uy, Iy, sin® wt

Wir bilden den zeitlich quadratischen Mittelwert

P =U,I,sin®wt

Folgende Uberlegungen ersetzen die Berechnung des Integrals:
Es gilt sin®wt = cosZwt .

Wt

Aus cos2a = cos?a —sin?a = 2 cos?a — 1 folgt cos?a = 1/2(cos2a + 1) . Also gilt
sin? wt = cos2wt = 1/2 (cos 2wt + 1) = 1/2 (cos 2wt + 1) .
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Mit cos 2wt = 0 lautet das Ergebnis

5 _ 1 Uu., I

P=2iuU,I,="Ymin
2 V2 V2
P =Ues Ity

Zum besseren Verstindnis des Wechselstromkreises sowie zur Vereinfachung der Rechnun-
gen werden wir im folgenden Wechselstrom und — spannung sowie die Wechselstromwi-
dersténde als komplexe Groflen ausdriicken und in Form von Zeigern in der GAuUssschen
Zahlenebene veranschaulichen. Dies hat aulerdem den Vorteil, daf§ gleichzeitig Betrag und
Phase der komplexen Grofle dargestellt werden konnen. Wir kennzeichnen die komplexen

Groflen mit einer Schlangenlinie.

Die komplexe Wechselstromgrofie Z
Z=|Z|e“0 bzw. mit |Z| = Z Z=2¢%
hat nach der EULERschen Formel
Ze"P = Z (cosp + i sin )

folgende Darstellung in der GAUSSschen Zahlenebene:

Imaginérteil ~.

Realteil

Abbildung 4.2: Darstellung komplexer Grofien im Zeigerdiagramm. (aus [14])

Diese Darstellungsweise soll nun am Beispiel des Wechselstroms erldutert werden. Es ist
I(t) = I,, sin(wt + @)
Die Fortsetzung ins Komplexe lautet

it =1, o (Wt + ) _ I, el®eiwt

Mit I, e!? = I, wird dies zu
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Der vorangehend definierte Strom I,,, e ¥ = I, wird im Zeigerdiagramm in Betrag und
Phase dargestellt, d.h. als Pfeil der Lange I,,,, welcher mit der reellen Achse den Winkel
© einschlief3t. ' o
Der Wechselstrom [ = I, e'@! = I, ¢' ? ¢! W! wird daher durch einen Zeiger der Linge
1., ausgedriickt, welcher mit der konstanten Winkelgeschwindigkeit w rotiert, wobei der
Start zur Zeit ¢ = 0 mit der Phase ¢ erfolgt.

(Cl) AT (é)

Abbildung 4.3: (a) Darstellung eines Stromes mit konstanter Phase, (b) Darstellung eines
Wechselstromes im Zeigerdiagramm. (aus [7])

Nur der Realteil einer komplexen Wechselstromgrofie ist physikalisch sinnvoll. Man be-
zeichnet den Realteil daher auch als Wirkanteil, den Imaginérteil als Blindanteil der
elektrischen Grofle. Die Summe beider Anteile im Zeigerdiagramm ergibt als komplexen
Zeiger die Scheingréfle (siche Abb. 4.4).

Die Darstellung im Zeigerdiagramm bietet die Moglichkeit, Wechselstromgrofien vektoriell
zu addieren. Wie sehr dies das Verstédndnis der Zusammenhinge im Wechselstromkreis
erleichtert, wird deutlich am Beispiel der

Sternschaltung des Drehstroms

Im offentlichen Stromnetz fliet ein sogenannter Dreiphasenstrom oder Drehstrom
(siehe Abb. 4.5(b)). Dieser wird verursacht durch drei Wechselspannungen U (¢), Ux(t) und
Us(t), die jeweils um 120° (27 /3) phasenverschoben sind. Sie werden im Wechselstromge-
nerator erzeugt durch drei Spulen, welche sternférmig angeordnet sind (siche Abb. 4.5(a)).
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Blind-
?fg Q(‘)Y’L anterd
X L2
>3 \<\
.G;_) C)o
=
@ Witkauwteid >
Realdeil

Abbildung 4.4: Bezeichnung elektrischer Wechselstromgréfen im Zeigerdiagramm. (aus

[14])

Abbildung 4.5: (a) Drehstrom—Sternschaltung, (b) Dreiphasenstrom (aus [3])
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Die durch die Spulen fliefenden Strome sind
Li(t) = I, sinwt
L(t) = I, sin(wt+ 27/3)
I(t) = I, sin(wt+47/3)

Fir |I,(t)| = |I2(t)| = |I5(t)| verschwindet der Mittelpunktsstrom: Iy = 0. Dies 148t sich
mit Hilfe des Zeigerdiagramms leicht einsehen:

Esgilt h+Iy=—1 ,also I; + Ib+I3=1I,=0.

4.2 Komplexe Widerstinde

Es wurde bereits erwiahnt, dafi Induktivitdt und Kapazitit im Wechselstromkreis eine
Phasenverschiebung zwischen Strom und Spannung hervorrufen. Das Verhalten dieser
beiden Wechselstromwiderstinde soll nun genauer untersucht werden.

4.2.1 Kapazitiver Widerstand (Kondensator)

C

Abbildung 4.6: Kondensator im Wechselstromkreis

Der Zusammenhang zwischen Ladung und Spannung am Kondensator ist gegeben durch
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Mit I(t) = %}gt) =C dl{igt) und U = U, ! @t folgt
~ d(ﬁmez’wt
It)=C 7 =iwCUpye™t

Aus U = Z 1 folgt der komplexe kapazitive Widerstand

= 1
T wC

Der kapazitive Widerstand Z¢ ist frequenzabhéngig, er nimmt mit steigender Frequenz
proportional zu 1/w ab.

Abbildung 4.7:

Welche Phasendifferenz besteht zwischen Strom und Spannung?

- ~ T
Esist [ =iwCU.Mit i=¢ 2 zcos% +i sin% folgt
~ i I -
I=¢e2wCU |,
d.h. der Strom ist gegeniiber der Spannung um ¢ =+ % phasenverschoben.

Der Strom eilt der Spannung um 7/2 voraus (s. Abb. 4.8).

4.2.2 Induktiver Widerstand (Spule)

Nach dem Induktionsgesetz gilt
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.....

Abbildung 4.8:

—9

=R

L

Abbildung 4.9: Spule im Wechselstromkreis

Mit Uspg(t) = —U und U(t) = Uy, Wt wird daraus

dit) _ 7 iwt
L T = [{m e
dt L

Integration ergibt

T4y — L = wt_ 1 5
I(t)_+iwLUme _iwLU(t)

Aus U =1iwlLI ergibt sich der komplexe induktive Widerstand

ZL:'iwL

Der induktive Widerstand Z; wéchst proportional zur Frequenz w.

Phasenverschiebung zwischen Wechselstrom und — spannung bei der Induktivitit:

Es ist

I(t) = - !

—U()= (i)~ U()
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Abbildung 4.10:

_ .,
Mit —i=e ‘2 = cos% — sin% 148t sich dies umschreiben zu

I(t) L ~i5yp (t)
=—e
wlL ’
d.h. der Strom ist gegeniiber der Spannung um ¢ = — % phasenverschoben.
A @)
Ueder Tt 777 , T(#)
. ‘\‘ ll' . {

Abbildung 4.11:

Der Strom hinkt um 7/2 hinter der Spannung her.

Die Phasenunterschiede lassen sich experimentell beobachten:

Versuch: Generator fiir den langsamen Wechselstrom

Kondensator und Spule werden einzeln an den langsamen Generator (Auf-
bau siehe Abb. 4.12) angeschlossen. Strom — und Spannungsmessung fiir
den jeweiligen Verbraucher kénnen gleichzeitig in der Projektion beobach-
tet werden:

a) Beim Kondensator eilt der Strom der Spannung voraus.
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b) Bei der Spule hinkt der Strom der Spannung hinterher.
Die komplexen Widerstinde Z¢ und Z; sind rein imaginér. Man bezeichnet sie als Blind-

widerstinde. Im Gegensatz zum reellen, ohmschen Widerstand R, dem Wirkwider-
stand, wird in ihnen keine Stromwirme erzeugt (siehe spiter).

Kombination von Wechselstromwiderstinden

Schaltet man einen kapazitiven, induktiven und ohmschen Widerstand in Reihe, so 148t
sich der resultierende Scheinwiderstand, auch Impedanz genannt, durch vektorielle
Addition im Zeigerdiagramm ermitteln (siehe Abb. 4.14).

j@”}v -

o -
C

,
o T

Qo

a) b
JQ—GVTE_} Abbildung 4.12: Generator fir langsamen Wechselstrom

V_LJGG
~

Uy

Abbildung 4.12: Generator fiir langsamen Wechselstrom

R

O~ °
u

Abbildung 4.13: Reihenschaltung von Widerstinden im Wechselstromkreis
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mA
e
W e i ~
"7 L 2
llog )jl— *_ﬂ
-f-&‘ R ’f ‘

Abbildung 4.14: Vektorielle Addition im Zeigerdiagramm

4.3 Schwingkreise

4.3.1 Der ungedidmpfte Schwingkreis (R = 0)

Abbildung 4.15: Ungeddmpfter Schwingkreis

Wir betrachten die in Abbildung 4.15 gezeigte Schaltung. Zur Zeit ¢t = 0 sei der Konden-
sator geladen und der Schalter S werde geschlossen. Dann gilt

U +Uc=0 .
Am Kondensator féllt die Spannung Uo = Q/C ab, die Spannung an der Spule ist
U, = LdIl/dt. Es gilt also
dI  Q

o=

Differenzieren wir nach ¢ und setzen d@Q/dt = I, so erhalten wir fiir das Verhalten des
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Wechselstromes die folgende homogene Differentialgleichung 2. Ordnung

21 -
— +—1=0
@ "TC
Dies ist eine Schwingungsgleichung, wie wir sie in dhnlicher Form
d*z
W + wg =0

bereits in der Mechanik kennengelernt haben. Der Vergleich der beiden Gleichungen ergibt

Wy =

1
VvVLC

als Kreisfrequenz des Wechselstromes I, der nach SchlieBen des Schalters im Schaltkreis
schwingt. Da w =27v =27 1/T ist, gilt fiir die Frequenz bzw. fiir die Schwingungsdauer

1

1
V= — = —
T 27

i
Q

Mit I(t) = I, el Wl folgt aus — Ue = Uy, = LdI/dt fiir die an den Bauelementen
abfallenden Spannungen

I

~ ; TC ~
Ul(t) =  iwoLI(t) e 2wy LI(t)

~ _, -
Uc(t) = —iweLI(t) = € "2wyLI(t)

Uy ist gegeniiber I um ¢ = +m/2 phasenverschoben, Uc besitzt gegeniiber I die
Phasenverschiebung ¢ = —7/2 .

Bei der betrachteten Serienschaltung von Spule und Kondensator, dem einfachsten Fall
eines Schwingkeises, entstehen freie, elektromagnetische Schwingungen.

Um die Analogie zu mechanischen Schwingungen zu verdeutlichen, werden wir nun ener-
getische Betrachtungen durchfithren, wobei wir auf aus dem zweiten Semester bekannte
Formeln zuriickgreifen.

Energie der Spule: Energie des Kondensators:
W, = SLP We = $0U%=1C[Re (T0)]
1 #\12 2
3 L [Re (7)] - jo L]

= 5 LI}, cos®wpt
= % C L? I, w? sin® wit
= % CL? (%) I2 sin® wot = % L I sin® wyt
Aus dem Vergleich der Formeln erkennt man, dafl zwischen der Energie der Spule (ma-

gnetische Energie!) und der Energie des Kondensators (elektrische Energie!) eine Phasen-
differenz von % besteht.
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Upeg = b, * W,
Enefjle A ’; “ ll \‘ ’r \\ je—r L C
LAY P Y LR
I ;o ;o oy
/ \ ! \ I \ ! \
\ | \ ! \ I \
d “/c \’UL ,’ v v ! \
/ vy, v v ! \
I’ ‘\ ! “ ’l \\ 0' \1_.

Abbildung 4.16: Elektrische und magnetische Energie schwingen im Gegentakt

Zect ¢

Wges =Wy, +We

Analog zu den mechanischen Schwingungen, wo kinetische und potentielle Energie im Ge-
gentakt schwingen und ineinander umgewandelt werden, findet bei den elektromagnetischen
Schwingungen ein periodischer Austausch zwischen elektrischer und magnetischer Feldenergie
statt (siehe Abb. 4.16). Fiir die zeitlichen Mittelwerte gilt

— 1 — 1
W =We = 3 Wyes in Analogie zu Wiy, = Wyer = 3 Wes

4.3.2 Der gedamfte Schwingkreis (R # 0)

R
S

Abbildung 4.17: Geddmpfter Schwingkreis

||
o

Der Schaltkreis unter 4.3.1 wird um einen ohmschen Widerstand erweitert. Nach dem
Schlieflen des Schalters gilt dann

U, +Ur+Uc=0
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Driickt man die Spannung nach den jeweils geltenden Gesetzen durch den Strom oder die
Ladung aus, so erhilt man

dl - Q
LY L RI+X =0
a T Te

Wir gehen weiter vor wie unter 4.3.1 und erhalten die Schwingungsgleichung
a1 LB dI L L
dt2 " Ldt  LC

Der Vergleich mit der Differentialgleichung fiir die mechanische geddmpfte Schwingung

=0

d? d
il ey d_:; +wiz=0
liefert 26 = R/L , also
R "
0= Y7 Dampfungskonstante

Die allgemeine Losung der Gleichung fiir die gedampfte elektromagnetische Schwingung
lautet 3

I(t) = Ay et 1 4, et it e =—0 £ /02 — wj
Hier lassen sich drei verschiedene Fille je nach Art der Ddmpfung diskutieren:

(i) d >wp Starke Dadmpfung = nicht — periodisches Verhalten des Stromes
(ii) 6 =wy Aperiodischer Grenzfall
(iii) 6 <wy Schwache Dimpfung = geddmpfte harmonische elm. Schwingung

Wir wollen nur auf den dritten Fall nidher eingehen. Sei also § < wy . Dies ist erfiillt,
wenn die Groflen R, C' und L der Ungleichung

R 1 [ L
— —_ bzw. R < 24/—=

geniigen. Definieren wir ws; = y/w , so gilt

Q

al/g = —5 + iw(s
2
041/2 = QRL + 1 %2-

Wir erhalten als Lésung eine geddmpfte, harmonische Schwingung der Kreisfrequenz wy ,

deren Amplitude exponentiell mit e 2L t abnimmt (sieche Abb. 4.18).

Das Einfiigen eines ohmschen Widerstandes in den Schwingkreis aus Spule und Konden-
sator bewirkt also sowohl eine Dampfung, als auch eine Frequenzverschiebung der freien,
elm. Schwingungen. Aus der Definition w? = w? — 6% geht hervor, daf die Kreisfre-
quenz w; der geddmpften Schwingung kleiner ist als die Frequenz wy der ungeddmpften
Eigenschwingung.
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Im

~Jm

Abbildung 4.18: Geddmpfte harmonische Schwingung
4.4 Erzwungene Schwingungen

4.4.1 Parallel — Schwingkreis

=

O

Abbildung 4.19: Parallel-Schwingkreis

Eine Spule und ein Kondensator werden parallel geschaltet (siche Abb. 4.19). An diese
Schaltung wird von auBen eine Wechselspannung U (t) = U, e wi angelegt. Es gilt

wobei sich der Kehrwert des komplexen Gesamtwiderstandes bei einer Parallelschaltung
durch Addition der Kehrwerte der komplexen Einzelwiderstinde berechnet. Es addieren
sich also die komplexen Leitwerte. Aus dem komplexen Gesamtleitwert

1 1 1 1 1 1
Loyl e L i(uon )
Z 7. Zo 7. iwl wl
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ergibt sich der gesamte Wechselstromwiderstand Z zu

7 1 ) 1 , wlL
= =1 =
T R e B
Aus Z = Ze'¥P7Z folgt
L
Z:]_—L:)iQLC Impedanz

Die Veranschaulichung der Impedanz in der GAuUsSschen Zahlenebene ist in Abbildung
4.20 zu sehen.

sehen.

ImZ
wl
ML

e ¥

Abbildung 4.20: Addition der Wechselstromwiderstéinde

Wir untersuchen im folgenden den im Parallelschwingkreis oszillierenden Strom I. Es gilt

3 1 1wt . ) . .
)= YW _ Une PV Un iy — pz) yiwt _ Un g iwt

7  Zelyz 7 7 ’

d.h. der Strom ist gegen die duflere Wechselspannung um die Phase ¢ = gy — ¢z
verschoben. Mit I(t) = I, etWt = I, et ¥ et W folgt fiir den Scheitelwert I,

Eswar Z = Z(w) =w L /(1—w?LC) . Daher hat der Scheitelwert den frequenzabh#ngi-
gen Betrag

1

In Abbildung 4.21(a) ist der Betrag des Scheitelwertes gegen die Frequenz w graphisch
aufgetragen.

Bei der Resonanzfrequenz wy =1/ LC verschwindet der Strom trotz von auflen ange-
legter Spannung, da die Impedanz der Schaltung beliebig hoch wird.
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A A
Im ' o (4
: / M*ZE- JHrom € ror
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f
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o= / @w 2 | Sron Acndd pac

Vie'

Abbildung 4.21: (a) Stromscheitelwert < Erregerfrequenz, (b) Phasenverschiebung zwi-
schen Strom und Spannung < FErregerfrequenz

Auch die Phasenbeziehung zwischen Strom und Spannung ist abhéngig von der Erreger-
frequenz, d.h. der Frequenz der von auflen angelegten Spannung. Aus

148t sich die Phasenverschiebung ermitteln:
w klein (w < wp):

—1

bl

Z| ()= —iU@t) =¢ "200) = ¢= —g
Fiir sehr kleine Frequenzen sperrt der Kon-
densator, so dal der Strom praktisch iiber
die Spule flieft. Der Spulenstrom hinkt der
Spannung hinterher.

w grof (w > wp):

- - iT - T
|1Z|-I(t)=iU(t)=e 2U(t) = ¢ = +§
Fiir sehr grofle Frequenzen wichst der Leit-
wert des Kondensators stark an, der Spulen-
strom wird vernachléssigbar. Der Kondensa-
torstrom eilt der Spannung voraus.
W = Wy:

It)=0

In diesem Fall heben sich der voreilende Kon-
densatorstrom und der nachhinkende Spulen-
strom gerade auf!
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4.4.2 Reihenschaltung (Serien — Schwingkreis)

o

Abbildung 4.22: Serien—Schwingkreis

Wir betrachten nun die in Abb. 4.22 skizzierte Serienschaltung eines OHMschen Wider-
standes, einer Spule und eines Kondensators, an die von auflen eine Spannung

U(t) = U, e @1

angelegt ist.

Es gilt I(t) = % ,

wobei sich der komplexe Gesamtwiderstand Z im Falle der Serienschaltung durch Addition
der einzelnen Wechselstromsténde berechnet.

) L 1 1
7=R+47,4+Zc=R+iwlL+—— =R+i @L——)
1w C wC

Die Impedanz ergibt sich zu

Wir gehen weiter vor wie unter 4.4.1 und diskutieren die Frequenzabhiingigkeit des Schei-
telwertes I,,, sowie der Phasenverschiebung ¢ zwischen Strom und Spannung (Abb. 4.24).

Aus dem Verlauf des Stromscheitelwertes

%: 1
7 e -0y

ist ersichtlich, da} Resonanz vorliegt, wenn die Frequenz der anregenden Spannung den
Wert w = wy annimmt. Dann gilt Z = R. Der Scheitelwert I,,,(w) hat bei der Frequenz wy

In(w) = Un
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lm ? g Darstellung im Zeigerdiagramm
|
1L
- s T \
L = N
w 2 | {m 2
: LP 1
T = >
v 2 Re
A R Z
wC

Abbildung 4.23: Ermittlung des Gesamtwiderstandes im Zeigerdiagramm

Ny S

~Z .
<

e d /LY Has

Abbildung 4.24: Frequenzabhingiger Verlauf (a) des Stromscheitelwertes und (b) der Pha-
senverschiebung zwischen Strom und Spannung

ein Maximum, welches umso grofler ausfillt, je geringer die OHMschen Verluste sind. Bei
R =0 und w = wy verschwindet die Impedanz, so dal der Strom unendlich grof§ wird.

Bevor wir den Verlauf der Phasenverschiebung interpretieren, werden wir den Ausdruck
¢(w) mathematisch herleiten.
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Dazu nehmen wir an, die duflere Spannung besitze den Phasenwinkel Null, es sei also

U(t) = Uy, e' @1

oo U@) 1 : it
Aus I(t) 7 R (wL ﬁ) Un, I, Wt folgt
A (ot
R+ (wL w—) R2 +<wL %)
U R +i zo =l

O AT

Da fiir die Phase ¢z einer komplexen Grofie 7 =797 die Beziehung tanyy; =
ImZ/ReZ gilt, erhalten wir

tanyp = S0 = R

1
—wl
< @ = arctan [%

Die Phase éndert sich mit wachsender Erregerfrequenz w von ¢ = +7/2 zu ¢ = —7/2. Bei
kleinen Frequenzen (w < wy) eilt der Strom der Spannung voraus, bei grofien Frequenzen
(w > wp) hinkt er hinterher. Der Ubergang von positiver zu negativer Phasenverschiebung
bei w = wy geschieht umso abrupter, je schwicher die Ddmpfung ist. Bei w = wy schwingen
Strom und Spannung gleichphasig!

Frequenzfilter

Bei dem zuletzt besprochenen Reihen — Schwingkreis ist die Stirke des schwingenden
Stromes maximal, wenn die von auflen angelegte Spannung die Resonanzfrequenz wqy be-
sitzt. Greift man eine Spannung am OHMschen Widerstand ab, so bleibt diese bevorzugt
erhalten, da im Resonanzfall die gesamte duflere Spannung am OHMschen Widerstand
abfallt ( Z=R ). Alle Spannungen mit anderen Frequenzen werden dagegen unterdriickt.
Dies legt die Moglichkeit nahe, die Kombination von OHMschem Widerstand R, Konden-
sator C und Spule L als Frequenzfilter zu nutzen.

a) Tiefpafy
Als Tiefpafl dient die Reihenschaltung von L und C' , das sogenannte LC' — Glied
(siehe Abb. 4.25). Die Eingangsspannung, die am gesamten LC—-Glied anliegt, be-
tragt
UE:I LC‘:I(ZL'i'ZC)
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> —9
N

C( = un

E L
709090

Abbildung 4.25: Schaltskizze eines Tiefpasses

Die Ausgangsspannung wird am Kondensator abgegriffen.

0A:I~ZC’

Der Tiefpafl ist ein frequenzabhéingiger Spannungsteiler. Es gilt

= _ = Zo A 1/iwC
Ua = UEZL+ZC B UEiwL+1/z’wC
Us = UEl—ngC

Die Ausgangsspannung ist umso grofler, je niedrigerfrequent die Eingangsspannung
ist.
Der Tiefpa$ ist also fiir kleine Frequenzen durchléissig.

Hochpafl
Der Hochpaf} ist analog zum Tiefpafl aufgebaut mit dem Unterschied, dafl die Aus-
gangsspannung an der Spule abgegriffen wird (sieche Abb. 4.26).

UA:jZL

Dann gilt fiir das Spannungsverhéltnis

- ~ 7 7 iwl
Ua UEZL+ZC - UEz’wLJrl/iwC

T 1
Us = Usiz 1/’ LC
Der Hochpaf ist fiir hohe Frequenzen durchlissig.

Bandpa$l
Den Aufbau des Bandpasses zeigt die Abbildung 4.27.
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®

Abbildung 4.26: Schaltskizze eines Hochpasses

——)0900— | y
~
~ L, Cq S
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Abbildung 4.27: Schaltskizze eines Bandpasses
Hier gilt
- 7 7 1
=17 Z
v ( b Cl+1/ZL2+1/ZC2>
4=

Damit berechnet sich das Spannungsverhéltnis zu
~ 1 ~
Ur = Ug Z +;/Zi2 +1/2c,
b 7, + 1) Ze,
= Ug 1 .
1+ (ZLI + ZCI) (I/ZLz + 1/Z02)
= Uo—p—
14+ S S0 4 20 4 S
ZL2 ZCz ZL2 ZC2
T 1
UA—UE1+Q+C2_ 1
L2 UI W LQ 01

Der Bandpa$ filtert ein bestimmtes Band des mittleren Frequenzbereiches heraus.
Er “sperrt” sowohl fiir sehr niedrige, als auch fiir sehr hohe Frequenzen.

— w2 L1 02
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4.5 Leistung im Wechselstromkreis

Die Leistung eines Gleichstromes ist P = U I. Im Wechselstromkreis sind Strom und
Spannung zeitlich verdnderlich und besitzen eine Phasendifferenz (. Seien Wechselstrom
und — spannung beschrieben durch

U(t) = Unm coswt I(t) = Iy, cos(wt — )
dann ist die momentane Leistung des Wechselstromes
P(t) = U@)I()

Upn I, coswt (coswt cos ¢ + sin wt sin )
Uy I, cos ¢ cos? wt + Uy, I, sin ¢ coswt sinwt

= % UnIn| cose(1+cos2wt) + sin ¢ sin 2wt ]
N - 2 —r.
momentane momentane

Wirkleistung Py (t)  Blindleistung Pp(t)

Je nach Richtung und Grofle des Wechselstromes bzw. der Wechselspannung besitzt die
Momentanleistung positive und negative Energiefliisse. D.h. es wird einerseits Energie
von der Spannungsquelle an die Bauelemente abgegeben, andererseits fliefit Energie in
das Netz zuriick (siehe Abb. 4.28).

Abbildung 4.28: Zeitlicher Verlauf der Augenblicksleistung (aus [3])

Die mittlere Leistung P entspricht derjenigen Fliche, die man erhilt, wenn man den
Betrag der von Leistungskurve und Zeitachse eingeschlossenen negativen Fldchen von den
positiven Flidchen subtrahiert.
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Rechnerisch findet man den Mittelwert P der Leistung durch Mittelung der Momentan-
leistung iiber eine Periodendauer 7'

P = 4 [ P(t)dt

1 L 1 N
= §Umlm cosgp—/ (1+cos?wt)dt+§Umlm s1n<p—/ sin 2wt dt

-~ ~~

/

= % Un Iy, cosp
= Uefffeff Cos @
Die Blindleistung des Wechselstromes in den Blindwiderstinden X verschwindet im zeit-

lichen Mittelwert. Die im Mittel beobachtete Leistung entspricht daher der Wirkleistung
Py .

Py = Uy lopr cosp| Wirkleistung eines Wechselstromes

Die Wirkleistung ist umso gréfler, je grofler cosg , d.h. je kleiner der Phasenwinkel
zwischen Strom und Spannung ist. Man nennt cos¢ den Leistungsfaktor.

a) p=0°,cosp =1 = Py maximal

Abbildung 4.29: Leistungskurve U - I eines Wechselstromes bei der Phasenverschiebung
Null zwischen Strom und Spannung (aus [3])

Ihren Maximalwert erreicht die Wirkleistung, wenn Strom und Spannung in Phase
schwingen (siehe Abb. 4.29). Die Momentanleistung ist dann zu jeder Zeit positiv.
Dieser Fall tritt fiir Z = R ein, d.h., wenn entweder ein reiner Wirkwiderstand oder
Resonanz vorliegt.

b) 0<p<90°, 0<cosp <1
Die Wirkleistung ist hier kleiner als im Fall a) (sieche Abb. 4.28).
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Abbildung 4.30: Leistungskurve U - I eines Wechselstromes bei einer Phasenverschiebung
von 90° zwischen Strom und Spannung (aus [3])

c) p=90°,cosp =0 = Py =0
Dieser Fall tritt auf, wenn der Wirkwiderstand verschwindend klein gegeniiber dem
Blindwiderstand wird. Dann gibt der Strom gerade so viel positive Energie an die
Bauelemente ab, wie negative Energie zur Stromquelle zuriickgeliefert wird (siehe
Abb. 4.30). Der in der Leitung flieBende Strom leistet also keine Arbeit (wattloser
Strom)!

In der Praxis ist es wichtig, den Leistungsfaktor moglichst gro8 (cos¢ =~ 1) und damit
die Blindleistung gering zu halten, um zu gewéhrleisten, daf} die elektrischen Geréte und
deren Zuleitungen fiir die zusétzlich zu den Wirkstromen flielenden Blindstréme dimen-
sioniert sind! Hinsichtlich der Energieversorgung des Verbrauchers bedeutet ein schlechter
Leistungsfaktor , dafl das Elektrizitdtswerk eine Scheinleistung zur Verfiigung stellen mu$,
die wesentlich grofler ist als die vom Verbraucher tatséchlich abgenommene Nutz — (Wirk
—) Leistung. Der Leistungsfaktor wirkt sich also in hohem Mafle auf die Wirtschaftlichkeit
der Elektrizitdtsversorgung aus.

Zur Messung der Arbeit im Wechselstromkreis dient ein Wechselstromzéhler.

Versuch: Gezeigt wird ein Modell eines Wechselstromzéhlers, wie er in jedem Haus-
halt zu finden ist. Der Aufbau ist in Abbildung 4.31 gezeigt.

(a) Eichung des Wechselstromzihlers

Nacheinander werden die Gliihlampen als Verbraucher eingedreht
und mit Hilfe einer Stoppuhr die Umlaufzeit der Z&hlscheibe er-
mittelt. Bei jedem Versuchsdurchgang mit unterschiedlicher Anzahl
eingedrehter Lampchen werden Strom und Spannung der Gliihlam-
penschaltung gemessen und die Leistung berechnet. Bildung des Pro-
duktes aus Leistung und Umlaufzeit der Z&hlscheibe sowie Mittelung
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@ Loy
(4)

Abbildung 4.31: Modell eines Wechselstromzéhlers (aus [9))

iiber alle Versuchsdurchgéinge (n = 1,...4) ergibt schliefllich die

Yin Ui i T,

pro Umdrehung geleistete Arbeit A= 1

(b) Wattloser Strom

Man schlieft nun anstelle der Gliihlampenschaltung eine Spule als
Verbraucher an den Zahler an. Schiebt man einen Weicheisenkern
in die Spule ein, so nimmt mit steigender Induktivitit die Wirklei-
stung ab. Ist die Induktivitéit so hoch, dal man als Verbraucher einen
reinen Blindwiderstand hat, so stoppt der Zahler, die Wirkleistung
verschwindet. Es liegt der Fall eines “wattlosen Stromes” vor.

4.6 Wellenleiter

Wir haben bisher die Ausbreitung elm. Wellen im Vakuum sowie in Materie besprochen.
Elm. Wellen kénnen sich auch in sogenannten Doppelleitern, d.h. zwischen zwei paral-
lelen Dréhten oder Platten fortpflanzen (beliebig langer Plattenkondensator). Auflerdem
kommt es in einem Koaxialkabel (Aufbau vergleichbar mit einem Zylinderkondensator)
zur Ausbreitung elm. Wellen.

4.6.1 Doppelleiter

Wir betrachten zwei parallele Drihte, welche an ihrem einen Ende iiber eine Leiterschlei-
fe gekoppelt sind. In dieser Leiteranordung, welche man nach E.LECHER, der sich 1890
als erster damit befafite, als Lecherleitung bzw. Lechersystem bezeichnet, wird durch
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einen Schwingkreis eine Wechselspannung induziert (sieche Abb. 4.33).

Dies ist moglich, da das Lechersystem selbst einen LC' — Schwingkreis darstellt. Dabei
ist die Kapazitit C gleich der Kapazitéit der beiden Drihte gegeneinander; die Leiter-
schleife kann als Spule mit einer einzigen Wicklung angesehen werden, sie bildet daher
die Induktivitit L.

Die Lénge [ des Lechersystems sei so gewihlt, dafl Resonanz mit dem Schwingkreis eintritt.
Da sowohl Kapazitit, als auch Induktivitdt der Lecherleitung sehr klein sind, ist mit
wo =1/vLC die induzierte Spannung sehr hochfrequent.

Wir denken uns an die Anordung ein Koordinatensystem so angelegt, daf§ die Drihte in =
— Richtung verlaufen und die Uberbriickung an der Stelle z = 0 gelegen ist. Die bei x = 0
induzierte Spannung breitet sich in Form einer Spannungswelle

U(z,t) = Uy sin(wt — kx)

entlang der Paralleldridhte aus.

Durch Reflexion am offenen Ende der Paralleldrahtleitung und Uberlagerung von ein-
fallender und reflektierter Welle bildet sich zwischen den Drihten eine stehende Welle

A st B

Abbildung 4.32: Verschiedene Wellenleiterausfiihrungen

0=

Abbildung 4.33: Lechersystem
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aus. An dem durch die Leiterschleife geschlossenen Ende des Doppelleiters liegt ein Span-
nungsknoten vor, am offenen Ende befindet sich ein Spannungsbauch,auf der gesamten
Leiterléinge wechseln sich Knoten und Béiuche in Abstéinden von \/4 ab.

Wie sieht die Stromverteilung lings der Drihte aus?

Die zwischen den Leitern herrschende Spannung ist zuriickzufiihren auf die Ladungsver-
teilung ldngs der Dréahte. Die Verschiebung dieser Ladungen ruft einen Strom hervor, so
dal mit der Spannungswelle eine Stromwelle gleicher Geschwindigkeit verkniipft ist. Die
sich analog ausbildende stehende Stromwelle ist gegeniiber der Spannungswelle um \/4
verschoben.

Abbildung 4.34: Strom— und Spannungsverteilung (1) auf einem (a) beidseitig geschlos-
senen, (b) beidseitig offenen und (c) einseitig geschlossenen Lechersystem, (2) auf einem
einseitig geschlossenen Lechersystem zu vier um T /4 auseinanderliegenden Zeiten (aus

[3])

Stehende Wellen bilden sich auf einem einseitig offenen Lechersystem nur dann aus, wenn
die Lénge [ der Leitung ein ungerades Vielfaches einer Viertelwellenlénge | = (2k+1) A/4
betréigt (siehe Abb. 4.34)!

Versuch: Die stehenden Wellen zwischen den Paralleldrdhten eines Lechersystems
werden mit Hilfe zweier Indikatorlampen nachgewiesen.
Fahrt man mit einer Drahtbriicke, welche als Stromanzeiger eine Gliithlam-
pe enthélt (siehe Abb. 4.35), an den Driihten entlang, so zeigt das Auf-
leuchten und Erlischen der Gliithlampe die Lage der Strombduche und —
knoten an. Spannungsbiuche und — knoten werden auf die gleiche Weise
mit Hilfe einer Glimmlampe nachgewiesen.

Strom — und Spannungswelle bei einer einseitig offenen Lecherleitung verhalten sich wie
Geschwindigkeits — und Druckwelle bei einer gedackten Pfeife.
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Mit der Strom — und Spannungswelle, die sich entlang des Lechersystems ausbreiten, ist ein
sich periodisch &nderndes elektromagnetisches Feld verkniipft. Die elektrische Spannung
ruft ein elektrisches Feld hervor, dessen Feldlinien zwischen den Drihten verlaufen. Der im

Leitungsdraht flieBende Strom erzeugt ein den Draht umschlieBendes Magnetfeld (siehe
Abb. 4.36).

Liangs der Drihte bewegt sich also eine elektromagnetische Welle fort, deren Energie in
dem die Drihte umgebenden Feldraum gespeichert ist.

Bei einer storungsfreien, unendlich langen Leitung breitet sich die Welle wie im freien
Raum aus. Dabei sind £ und B , d.h. Strom — und Spannungspulse in Phase (siehe

a b c d G
S - - 4
0 /——1/2—%—2./2—7%—*2./2"—-’,&
7 7 7 Vd

{a)

Abbildung 4.35: Nachweis der Strom— und Spannungsbduche auf einem Lechersystem (aus

[3])
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Abbildung 4.36: (1) Verlauf der elektrischen (— — —) und magnetischen (——) Feldlinien
um eine Paralleldrahtleitung (aus [3]), (2) Feldlinienverlauf zwischen zwei reflektierenden
Ebenen (E-Feld: senkrechte Linien, B-Feld: Punkte und Kreuze) (aus [1])
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Abb. 4.37).

AN
U ooler I

\/x

Abbildung 4.37: Ausbreitung auf einer storungsfreien Leitung

An Stérstellen wie z.B. an Uberbriickungen oder an den Enden einer endlich langen Lei-
tung treten Reflexionen auf, es kommt zur Ausbildung stehender Wellen, die Fortbewe-
gung wird behindert. In der Praxis ist man bestrebt, Reflexionen zu vermeiden, um die
schnelle Ausbreitung der Welle zu gewihrleisten.

Paralleldrahtleitungen werden in der Praxis verwendet, um elektrische Schwingungen vom
Generator zum Verbraucher zu leiten. Auch Fernsprech — oder Telegraphenleitungen sind
vergleichbar aufgebaut. Die Geschwindigkeit, mit der die Ubertragung erfolgt, ist dabei
von groflem Interesse:

Mit welcher Geschwindigkeit erfolgt die Wellenausbreitung auf einem Wel-
lenleiter? Zur Kldrung dieser Frage betrachten wir ein Stiick dz eines Doppelleiters mit
Leiterabstand a.

Fiir Strom — und Spannungswelle gilt
U="U(x,t) I=1I(zt)

Die Induktionsspannung betrigt U = %ﬁ_tM =L % .
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Fiir die folgenden Uberlegungen ist es giinstiger, Induktivitit, Kapazitit und ohmschen
Widerstand pro Lingeneinheit anzugeben:
L
L = 7 C* = % (R* = ?, zunachst = O)
Das Stiick dz des Doppelleiters hat dann die Induktivitit L* dz und die Kapazitat C* dzx.
Damit lautet die Induktionsspannung dU fiir den Leiterabschnitt dx

dU = L'de9L

oU 1.0l
o = Lo (1)

Der Strom auf dem Stiick dx dndert sich durch Zuflu} des Verschiebungsstromes

ol
dl = —
ox de
woraus mit [ = 0Q/dt folgt
’Q ol
otor  Ox
Fiir die Kapazitat gilt allgemein @Q = C U , speziell fiir unsere Betrachtungen findet man
dQ =C*dx U
Partielle Ableitung nach ¢ ergibt
82
Q _ 00U
ot 0z ot
Driicken wir die Ladung durch den Strom aus, so erhalten wir
ol oUu
- = 2
ox ot )

Wir leiten nun Gleichung (1) partiell nach ¢ und Gleichung (2) partiell nach x ab. Dies
fiihrt zu
02U , 0T 0?1 , 0°U
=L"— und 5 =
ot Ox ot ox Ox Ot
Wir erhalten also fiir die Stromwelle auf einem Doppelleiter im speziellen Fall einer ver-
lustlosen Leitung (R* = 0) die Wellengleichung

Wellengleichun
0°1 021 8 &
92 =L*C* % fiir die Stromwelle

L bei R* =0

Analog ergibt sich fiir die Spannungswelle

Wellengleichun
92U 02U g g
i Lc* FTa fiir die Spannungswelle
x

bei R* =0
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Abbildung 4.38: Ersatzschaltbild fiir einen Doppelleiter

Fiir die Phasengeschwindigkeit, mit der sich eine elektromagnetische Welle entlang einer
Paralleldrahtleitung fortbewegt, liest man ab

s 1 Phasengeschwindigkeit einer elm. Welle
— C* L*| auf einem Doppelleiter

C

Ein anschauliches Ersatzschaltbild fiir einen Doppelleiter zeigt die Abbildung 4.38:

In der Realitét liegt jedoch eine kontinuierliche Verteilung von Kapazitit und Induktivitét
VOr.

Die Energie eines Doppelleiters setzt sich zusammen aus der

— Energie der Kapazitit: W =1/2CU?
— Energie der Induktivitit: W, = 1/2 L I*

Damit folgt fiir die Energiedichte, hier fiir die Energie pro Léinge

Die Energie einer elektromagnetischen Welle besteht zu gleichen Teilen aus elektrischer
und magnetischer Feldenergie. Daher kann

1/2C*U? =1/2L* I?

gesetzt werden. Daraus ergibt sich fiir das Strom — Spannungs — Verhéltnis an einer
verlustlosen Paralleldrahtleitung die Beziehung

L*
=\=1
U VC*

Es gilt also U = Z 1 analogzu U = RI . Die Grofle

L*
Z=1/=
C*
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ist kennzeichnend fiir eine Stromleitung. Sie besitzt die Dimension eines Widerstandes
und heiflt daher Impedanz oder Wellenwiderstand der Leitung. Es handelt sich jedoch
nicht um einen ohmschen Widerstand; im vorliegenden Fall widerstandsloser Dréihte (R* =
0) wird keine Energie in Wirme umgewandelt.

Der Wellenwiderstand ist zu beachten, wenn Reflexionen in Kabeln vermieden werden sol-
len. Dazu sollten nur Kabel gleichen Wellenwiderstandes aneinander angeschlossen wer-
den. Verbindet man zwei Leitungen verschiedener Impedanzen Z; und Z, miteinander, so
gilt (ohne Beweis)

Zy— 7y
Zl + Z2

Reflexionen koénnen auch verhindert werden, indem man ein Kabel mit einem ohmschen
Widerstand abschlie3t, dessen Grofle dem Wellenwiderstand des Kabels entspricht. Dann
wird die gesamte Energie der Welle in Warmeenergie umgesetzt.

Urefl. = Ueinf.

4.6.2 Koaxiales Kabel

Eine weitere Form eines Wellenleiters ist das Koaxialkabel, das besonders in der Hochfre-
quenztechnik bei der Fortleitung hochfrequenter Energien seine Anwendung findet.

Das Koaxialkabel besteht aus einem Leitungsdraht (Innenleiter), der axial in einem diinn-
wandigen Metallrohr (Auflenleiter) verlduft. Im Innenraum des Leiters baut sich ein elek-
tromagnetisches Feld auf, die elektrischen Feldlinien verlaufen radial, die magnetischen
Feldlinien kreisférmig um den Innenleiter (siehe Abb. 4.39). Der Auflenraum bleibt feld-
frei.

Die Phasengeschwindigkeit ¢, mit der sich eine elm. Welle im Koaxialkabel fortbewegt
sowie der Wellenwiderstand Z sind abhéngig von

— der Geometrie des Kabels (Abstand Innenleiter «+— Auflenleiter)

— dem im Innenraum befindlichen Dielektrikum

Sehr gebrauchlich sind Kabel mit Z =509 und ¢ &~ 1m/5ns = 200.000 km/s .

Wir leiten hier die Ausdriicke fiir Phasengeschwindigkeit und Wellenwiderstand nicht
theoretisch her. Stattdessen untersuchen wir den Einflul der Impedanz auf die Wellen-
ausbreitung im Koaxialkabel experimentell.

Versuch: Gezeigt wird das Verhalten einer elektromagnetischen Welle in einem Ko-
axialkabel je nach Abschlufl des Kabels.

a) Im ersten Versuchsteil werden ein kurzes und ein langes Kabel glei-
chen Wellenwiderstandes Z; = Z5 = 502 miteinander verbunden.
Das kurze Kabel verbindet den Ausgang eines Pulsgenerators mit
dem Kanal 1 eines Oszillographen. Von da aus wird das lange Kabel
an den zweiten Kanal angeschlossen.
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b) Man 16st den Anschluf§ des langen Kabels, so daf

151

der zweite Kanal

kein Signal mehr zeigt. Das lange Kabel besitzt nun ein offenes Ende
R = o0, an dem der ankommende Spannungspuls reflektiert wird
und zum ersten Eingang des KO zuriicklduft. = Auf Kanal 1 sieht
man das Eingangssignal und mit doppelter Laufzeitverschiebung das
abgeschwichte reflektierte Signal aus dem langen Kabel.

c¢) An das lange Kabel wird ein variabler Widerstand angeschlossen und
auf R = Z = 50Q. Er bewirkt die vollstindige Umwandlung der

Energie des ankommenden Signals in Warme, das

Signal wird nicht

mehr reflektiert. = Auf dem KO ist nur das Eingangssignal sichtbar.

d) Reguliert man den Widerstand auf R = 0, so wirkt er bei der Re-

flektion wie ein festes Ende, es kommt zum Phasen

sprung.

e) Stellt man ihn beliebig hoch ein (R — oc0), dann entspricht er einem

offenen Ende, es ergibt sich kein Phasensprung. =
Bild wie unter b).

Der KO zeigt ein

Die zu den einzelnen Fillen gehorigen KO-Bilder zeigt die Figur 4.40.

/

.
a) —“—/
T

A

2*s

b)
TS c) /\
%
d)
)

e

VA YAV

Abbildung 4.39: Verlauf der elektri- Abbildung 4.40: Auf dem KO erscheinende

schen (— — —) und magnetischen (——) Signale (aus [9])
Feldlinien in einem Koaxialkabel (aus

[3])
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4.7 Hohlleiter

Zur Fortleitung von Zentimeter — und Millimeterwellen (z.B. bei Radaranlagen) wer-
den Hohlleiter verwendet. Dies sind diinnwandige Rohre, meist mit rechteckigem Quer-
schnitt, deren Innenseiten zur Erhohung der Leitfahigkeit versilbert sind.

Die Entwicklung des Hohlleiters beruht auf der Idee, dafl die Wellenleitereigenschaft er-
halten bleibt, wenn in einem Koaxialkabel der Innenleiter weggelassen wird.

Wir betrachten einen Hohlleiter mit rechteckigem Querschitt und definieren ein Koor-
dinatensystem so, dafl die Wellenausbreitung in z — Richtung erfolgt (siche Abb. 4.41).

-

z z
2=a I

A4

A 4

------

Abbildung 4.41: Hohlleiter mit rechtecki- Abbildung 4.42: Finfachste Wellenform im
gem Querschnitt der Breite a betrachteten Hohlleiter

Welche Wellenformen (Moden) sind moglich? Wie verlaufen bei den verschie-
denen Moden die E — und B — Felder?

Folgende Randbedingungen miissen erfiillt sein: Da an den Winden des Hohlleiters wegen
der sehr hohen elektrischen Leitfdhigkeit kein elektrisches Feld bestehen kann, muf} die
elektrische Feldstirke dort verschwinden.

Fiir die einfachste Mode, die diese Bedingung erfiillt (sieche Abb. 4.42), kénnen wir anset-
zen .
Ey = Ej sin — cos(wt — kzx) Eyr=E;=0

Eine Momentanbetrachtung dieser Wellenform aus verschiedenen Perspektiven ergibt den
in Abbildung 4.43 dargestellten Feldlinienverlauf. Wir setzen nun unseren Ansatz
0 Tz
E=| Ey mit Ey = Ej sin — cos(wt — ky2)
0 a
in die Wellengleichung AE = 1/c2 82E/dt* ein
0*Ey n 0*Ey n 0%Ey _ 1 0°Ey
0x? oy? 022 2 ot?
Ausfithrung der partiellen Ableitungen liefert

2
1
KBy~ %5 By = 5w’ By
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<
M

N
QN

Abbildung 4.43: Feldlinienverlauf im Hohlleiter: (a) Draufsicht, (b) Seitansicht, (c) Fron-
tansicht. (aus [7])

Wir erhalten fiir den Betrag des Wellenvektors der im Hohlleiter fortschreitenden Welle
die Beziehung

N
N

ks =

x

®M| IS
@w| 3

Damit Wellenausbreitung stattfinden kann, muf} die Gréfle &, reell sein.

2 3
Die Bedingung %5 > %7 liefert w > Zc.

Es existiert also eine Grenzfrequenz wy = %c , die eine Welle zur Fortbewegung in
einem Hohlleiter mindestens besitzen mufl. Unterhalb dieser Mindestfrequenz ist keine

Fortpflanzung moglich. Hohlleiter wirken daher als Frequenzfilter.

Eine Welle, deren Frequenz der obigen Bedingung geniigt, lduft mit der Phasengeschwin-
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digkeit

w w c
’Uph = — = s
ky w2 _ w2 wo\?
V- - (%)
durch den Hohlleiter. Dabei gilt v,, # ¢, d.h. es findet Dispersion statt! Fiir die Grup-
pengeschwindigkeit der Hohlleiterwelle findet man mit

2
WZJCZ <k§+%>

Pk ke
T dk, w w

Wir gelangen also zu der Beziehung

den Ausdruck

2
Uph VUgr = C

Wegen w > wy ist wp, > ¢ . Die obige Formel liefert daher
Vgr < C .

Das Postulat der Relativititstheorie, daf die Gruppengeschwindigkeit, welche zur Uber-
mittlung von Signalen dient, die Lichtgeschwindigkeit nicht iiberschreiten darf, ist erfiillt.
Die Phasengeschwindigkeit darf, wie der vorliegende Fall zeigt, grofler als die Vakuum-
lichtgeschwindigkeit werden.

Aus der vorangehenden Diskussion geht hervor, dafl sich selbst ein Hohlleiter, in dessen
Innenraum Vekuum herrscht, wie ein dispergierendes Medium mit einem Brechungsindex
n < 1 verhalt!

Wir betrachten nun noch den Fall, dafl der Hohlraum mit einem Dielektrikum gefiillt ist.
Hier ergibt sich analog der Zusammenhang

_ 2
Uph Ugr = Cpr |

wobei cj; die Geschwindigkeit bezeichnet, mit der sich die elektromagnetische Welle frei
im entsprechenden Dielektrikum ausbreiten wiirde.



Kapitel 5

Ausstrahlung elektromagnetischer
Wellen

Wir wollen uns in diesem Kapitel damit beschéftigen, wie freie elektromagnetische Wellen
im Raum erzeugt werden konnen.

Nach den MAXWELL — Gleichungen sind die Quellen elektrischer Felder raumfeste La-
dungen. Magnetische Felder werden durch stationdre Strome, d.h. gleichférmig bewegte
Ladungen erzeugt. Anschaulich 148t sich daraus der Schluf} ziehen, dafl die Quellen elek-
tromagnetischer Wellen beschleunigte Ladungen sein miissen.

Im folgenden Abschnitt wollen wir eine Anordnung zur Abstrahlung elektromagnetischer
Wellen diskutieren, welche einfach, aber zugleich die wichtigste iiberhaupt ist.

5.1 Der schwingende elektrische Dipol

Unsere Uberlegungen gehen vom LECHERsystem aus. Wir hatten gesehen, daf auf einer
einseitig offenen LECHERleitung die Ausbildung stehender Wellen nur dann mdoglich ist,
wenn die Drahtlinge [ ein ungerades Vielfaches einer Viertelwellenldnge betragt. Zwischen
[ und £ muf} also die Beziehung

| >

I=(2k+1) (k=0,1,2...)
bestehen. Fiir den Fall £ =0, = \A/4 sehen Strom — und Spannungsverteilung auf der
LECHERleitung wie in Abb. 5.1 aus.

Biegt man die LECHERIeitung zu einem geraden Leiter der Linge [ = A/2 auf (Abb. 5.2),
wobei die Anregung durch den Schwingkreis unverdndert gelassen wird, so fliefit in dem
entstehenden Leiter weiterhin ein Wechselstrom. Man erhélt einen schwingenden, elek-
trischen Dipol, welcher auch als Hertzscher Dipol bezeichnet wird. In seiner Grund-
schwingung weist man die in Bild 5.3 gezeigte Strom — und Spannungsverteilung nach.

155
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fe———/t -
Abbildung 5.1: Strom— und Spannungs- Abbildung 5.2: Entstehung eines HERTZ-
verteilung auf einem einseitig geschlosse- schen linearen Oszillators aus der Paral-

nen LECHERSystem mit | = \/4 . (aus [3]) leldrahtleitung. (aus [3])

(a) (b) (c)

Abbildung 5.3: HERTZscher Dipol: (a) Strom— und Spannungsverteilung, (b) Nachweis
der Stromverteilung, (c) Nachweis der Spannungsverteilung. (aus [3])

Die negative Ladung fiihrt harmonische Schwingungen entlang des geraden Leiters aus.
Standiger Wechsel zwischen Ladungsiiberschuff an einem sowie Ladungsmangel am an-
deren Ende des Leiters und Ladungsausgleich fiihrt zu periodischer Ausbildung eines
Dipolmomentes, welches beim Ladungsausgleich verschwindet, um danach mit umgekehr-
tem Vorzeichen neu zu entstehen.

Da die einzelnen Vorgénge zeitlich sehr schnell aufeinanderfolgen, konnen die einen Dipol-
zustand begleitenden Feldlinien nicht unendlich weit in den Raum vordringen. Das Feld
im Abstand r riihrt von demjenigen Zustand her, in dem sich der Oszillator vor der Zeit
t = r/c befand. Ist w die Schwingungsfrequenz, so hat das zeitabhéngige Dipolmoment
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p(t) die skalare Form
p(t) = po coswt .

Zur Zeit t = 0 herrscht zwischen den Leiterenden maximale Ladungsdifferenz und es gilt

p(0) =po =ql ,

wobei [ die Leiterlinge bezeichnet. Zu diesem Zeitpunkt ist die Stéirke des elektrischen
Feldes, welches durch die Ladungsdifferenz hervorgerufen wird, am gréfiten. Anzahl und
Dichte der vom Ladungsmangel hin zum Ladungsiiberschufl verlaufenden elektrischen
Feldlinien sind maximal. Mit der Verschiebung der Ladungen verringert sich das Dipol-
moment, das elektrische Feld wird schwécher. Mit dem Verschwinden des Dipolmomentes
schliefen sich die elektrischen Feldlinien. Das erneute Anwachsen des Dipolmomentes
fiihrt zur Ausbildung entgegengesetzt orientierter Feldlinien und der Vorgang wiederholt
sich. Ausgehend vom Dipolsender breiten sich die geschlossenen Feldlinien im Raum aus.

Der im HERTZschen Dipol flieBende Wechselstrom erzeugt aulerdem ein Magnetfeld, des-
sen Feldlinien konzentrische Kreise um die Dipolachse bilden. Sie besitzen in abwech-
selnder Folge entgegengesetzten Richtungssinn und verlaufen in der Ebene senkrecht zur
Dipolachse. Die magnetische Feldstirke ist maximal, wenn der Strom im oszillierenden
Dipol sein Maximum annimmt.

Die Ausstrahlung elektromagnetischer Wellen von einem Sender in den freien Raum beruht
auf dieser Verkettung von elektrischen und magnetischen Feldlinien.

Im gesamten Raum stehen E —und B - Feld senkrecht aufeinander und sind transversal
zur Ausbreitungsrichtung.

Strahlungscharakteristik des Hertzschen Dipols

Im folgenden wird uns die Frage beschéftigen, wie grofl bei gegebener Feldstruktur die an
einen Raumpunkt P(r, 9, 0) ausgestrahlte Intensitét I ist.

Dazu denken wir uns eine konzentrische Kugel um den Dipol gelegt. Dann verlaufen die
elektrischen Feldlinien in den Meridianebenen, die Magnetfeldhmen in den zur Aquator-
ebene parallelen Ebenen. Der POYNTING—Vektor S=E x H welcher den Energieflufl
angibt, zeigt demnach {iberall radial nach auflen. Da E und H in jedem Punkt senkrecht
aufeinanderstehen, ergibt sich die radial abgestrahlte Intensitét zu

I=|S|=|E||H|
Genaue Berechnung fiihrt zu (siehe theoretische Physik)

wip(t)? sin?9

1(797 T, t) = (47T)2 €0 63 7.2

mit  p(t) = py coswt

Da cos?wt = 1/2 ist, betrdgt der zeitliche Mittelwert der Ausstrahlung

1 wip?  sin®d
2 (4m)ep® 12

19,r) =
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Abbildung 5.4: Wellenabstrahlung eines HERTZschen Dipols. (aus [13])

Es ergeben sich also die Abhéingigkeiten

I ~ 1/r? mit T Entfernung zur Dipolmitte
I ~ sin?¥ 9 : Winkel zur Dipolachse

Trégt man die Intensitéit in einem Polardiagramm von der Dipolmitte aus auf (Abb. 5.5),
so gelangt man zu der
Strahlungscharakteristik des Dipolstrahlers

Die rdumliche Verteilung der Strahlungsintensitit (siehe Abb. 5.6) erhilt man, wenn man
in Gedanken die ebene Strahlungscharakteristik in Rotation um die Dipolachse versetzt.
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Tndensiddt
Abbildung 5.5: Strahlungscharakteri- Abbildung 5.6: Torusformige Verteilung der
stik des Hertzschen Dipols Strahlungsintensitét (aus [13])

Die lineare Beschleunigung der Ladung im oszillierenden elektrischen Dipol erzeugt eine
elektromagnetische Strahlung, deren Intensitét torusférmig um die Dipolachse verteilt ist.

Die am HERTZschen Dipol durchgefiihrten Betrachtungen lassen auf folgenden allgemei-
nen Sachverhalt schlieflen:

Eine beschleunigte Ladung strahlt elektromagnetische Wellen ab. Dabei erfolgt die
Ausstrahlung wie beim Dipol senkrecht zur Beschleunigungsrichtung.

Wir wollen nun einige Anwendungen dieses sehr wichtigen Sachverhaltes behandeln.

I. Die Rontgenréhre

Abbildung 5.7: Rontgenréhre (aus [3])
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Der Aufbau einer Rontgenrohre ist in Abbildung 5.7 skizziert. Die aus der Gliihka-
thode austretenden Elektronen werden im Wehneltzylinder gebiindelt und durch
die anliegende Hochspannung U auf die Anode zu beschleunigt. Die Spannung liegt
dabei in der Gréenordung von mehreren zehntausend Volt.

F=QE=mad

In der Anode, welche meist aus schwerem Metall wie z.B. Wolfram besteht, werden
die Elektronen stark abgebremst. Diese negative Beschleunigung fiihrt zur Abstrah-
lung eines kleinen Teiles ihrer Energie in Form von sehr hochfrequenten elektroma-
gnetischen Wellen. Die kurzwellige Strahlung wird nach ihrem Entdecker W.C.RONT-
GEN (1845 — 1923), der 1901 mit dem Nobelpreis ausgezeichnet wurde, R6ntgen-
strahlung genannt. Der weitaus gréflere Teil der Elektronenenergie wird jedoch
beim Aufprall in Warme umgewandelt, weshalb die Anode ausreichend gekiihlt wer-
den mu$.

Synchrotronstrahlung

Fiir viele Experimente der Elementarteilchenphysik werden Teilchen sehr hoher E-
nergie bendétigt. Mit Hilfe von Teilchenbeschleunigern werden die Elementarteilchen
auf die erforderliche Geschwindigkeit gebracht. In den sogenannten ZIRKULARBE-
SCHLEUNIGERN geschieht dies, indem die geladenen Teilchen durch E —und B -
Felder auf einer Kreisbahn beschleunigt werden. Dabei ist die mit der Beschleuni-
gung verbundene kontinuierliche Abstrahlung von elektromagnetischer Energie, die
Synchrotronstrahlung, unerwiinscht.

Von welchen Groéfien hingt die abgestrahlte Intensitit ab?

Wir betrachten ein Ladungsteilchen, welches unter dem Einfluf} eines magnetischen
Feldes eine Kreisbahn durchliuft. Das Teilchen wird durch das Gleichgewicht von
Zentrifugal — und Lorentzkraft auf seiner Bahn gehalten.

2

Fz;=m v Fg=quvB
r
Gleichsetzen liefert den Bahnradius
mu P
r = -—= —
gB ¢B
Das Teilchen erfihrt die Beschleunigung
02 P2
a, = —=—5— .
r mor

Fiir die abgestrahlte Intensitit gilt

4
b
m47'2

I~al = I~
Die rdumliche Intensititsverteilung der Synchrotronstrahlung hat die Form zweier
tangential zur Kreisbahn gerichteter Keulen, einer Vorwirts — und einer Riickwérts-
keule. Nihert sich die Teilchengeschwindigkeit der Lichtgeschwindigkeit, so erfolgt
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die Abstrahlung der Energie verstirkt nach vorne in Richtung der Momentange-
schwindigkeit. Fiir v = ¢ bildet sich die Riickwirtskeule fast ganz zuriick und
die Vorwirtskeule ist in die Ebene senkrecht zur Kreisebene eingebettet (Abb. 5.8).
Um den durch die Strahlung bewirkten Energieverlust gering zu halten, baut man

Abbildung 5.8: Verteilung der Strahlungsintensitét eines kreisenden Elektrons (aus [13])

ITI.

IV.

Zirkularbeschleuniger mit moglichst groem Bahnradius.

Das Frequenzspektrum der Synchrotronstrahlung ist ein reines Kontinuum und
reicht je nach der Teilchenenergie vom Radiowellenbereich bis zur Réntgenstrah-
lung.

Ein Beispiel aus der Astrophysik ist die Synchrotronstrahlung des Krab-
ben—Nebels. Als Quelle dieser Lichterscheinung vermutet man Ladungsteilchen,
die sich in magnetischen (Induktions—) Feldern mit hoher Geschwindigkeit auf Kreis-
bahnen bewegen. Das Frequenzspektrum der Strahlung reicht von Radiofrequenzen
bis zum Ultraviolett.

Rayleigh — Streuung

Wir betrachten die Streuung von Licht an Atomen. Dabei stellen wir uns das Atom
aufgebaut aus positivem Atomkern und Elektronenhiille vor. Eine in das Atom ein-
dringende Lichtwelle, deren Frequenz ober— oder unterhalb der Resonanzfrequenz
des Atoms liegt, regt die Elektronen zu erzwungenen Schwingungen an. Die os-
zillierenden Elektronen im Feld des positiven Kerns konnen dann als HERTZsche
Dipole angesehen werden. Sie senden ihrerseits elektromagnetische Strahlung aus.
Primérstrahlung und Streustrahlung sind frequenzgleich und zwischen ihnen besteht
keine Phasenverschiebung. Man bezeichnet den beschriebenen Effekt als Rayleigh—
Streuung.

Da beim HeERrTZschen Dipol die Ausstrahlung rotationssymmetrisch um die Dipol-
achse erfolgt, ist die Richtung der Streustrahlung bevorzugt senkrecht zum einfal-
lenden Lichtstrahl (Abb. 5.9).
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Fiir die abgestrahlte Intensitit des oszillierenden Dipols gilt

1
4
INLL) NF

Kurzwelliges Licht (blau) wird stéirker gestreut als langwelliges Licht (rot).

Durch die RAYLEIGH-Streuung ist auch die blaue Farbe des Himmels zu erklaren.
Trifft das Sonnenlicht auf die Luftmolekiile der Atmosphére, so weicht der langwel-
lige, rote Anteil kaum von seiner Strahlungsrichtung ab, wihrend das kurzwellige,
blaue Licht stark gestreut wird. Die hochfrequente Streustrahlung erreicht den Be-
obachter auf der Erde aus allen Richtungen, so daf§ diesem der Himmel hell und blau
erscheint. Das unmittelbar von der Sonne kommende Licht (Primérstrahlung) sieht
der Beobachter aufgrund des durch die Streuung verlorengegangenen kurzwelligen
Anteils gelb und rot. Je langer der durch die Atmosphére zuriickgelegte Weg ist, de-
sto roter erscheint es. Dies ist beim Sonnenaufgang oder —untergang zu beobachten.

ré'f(('cla

> 2 4
__.’,\' “.

(cht
blaw

Abbildung 5.9: Streuung bevorzugt senk-
recht zur Einfallsrichtung des Lichtes (aus Abbildung 5.10: Erkldrung der blauen
[7]) Farbe des Himmels (aus [13])

V. Die Erkenntnis, daf} beschleunigte Ladungen Energie abstrahlen, war auch fiir die
Atomphysik von grofiler Wichtigkeit. Sie fiihrte 1913 zur Verbesserung des Ru-
therfordschen Atommodells durch Niels Bohr.

Das Atommodell von RUTHERFORD (1911) beschrieb das Atom als positiven Kern,
um den sich die Elektronen wie Planeten um die Sonne bewegen. Die kreisenden
Elektronen miifiten aber als beschleunigte Ladungen elektromagnetische Strahlung
ihrer Umlauffrequenz aussenden. Der dadurch bedingte Energieverlust wiirde dazu
fithren, dafl sie sich auf Spiralbahnen zum Kern hin bewegten. Aufgrund der In-
stabilitdt der Bahnen miifite die ausgesandte Strahlung einen kontinuierlichen Fre-
quenzbereich iiberdecken. Die Diskrepanz zwischen diesen Uberlegungen und den
Ergebnissen experimenteller Untersuchungen fiihrte zur Aufstellung der Bohrschen
Postulate und zur Entwicklung des Bohrschen Atommodells (NIELS BOHR 1885 —
1962).



Kapitel 6

Geometrische Optik

Dies ist das erste von fiinf Kapiteln, in denen wir uns mit der Optik befassen Werdgn. Bevor
wir uns speziell der geometrischen Optik zuwenden, soll an dieser Stelle eine Ubersicht
iiber die Struktur der gesamten physikalischen Optik gegeben werden.

6.1 Einfiihrung in die physikalische Optik

Als Licht bezeichnen wir die physikalischen Erscheinungen, die durch das menschliche Sin-
nesorgan Auge wahrgenommen werden. Die Optik ist die Lehre vom Licht, sie beschéftigt
sich mit den Eigenschaften und Gesetzméfigkeiten der Entstehung, Ausbreitung und der
physikalischen Wirkung des Lichtes. Sie behandelt jedoch nicht die subjektiven Empfin-
dungen, die vom Licht im Auge hervorgerufen werden.

Die Vorstellung vom Wesen des Lichtes hat sich im Laufe der Zeit mehrmals gesdndert.
NEWTON stellte 1669 eine Korpuskulartheorie auf, derzufolge eine Lichtquelle sehr klei-
ne Teilchen (Korpuskeln) aussendet, die sich mit sehr grofier Geschwindigkeit geradlinig
fortbewegen. Damit war er in der Lage, Reflexion und Brechung des Lichtes zu erkléren,
nicht aber Interferenz— und Beugungserscheinungen.

Dies wurde mit der 1677 von HUYGENS entwickelten Wellentheorie mdéglich, die das
Licht als elastische Welle in einem das Weltall erfiillenden “Lichtither” ansah. HUYGENS
sowie auch YOuNG (1807) gingen dabei von Longitudinalwellen aus, bis die Entdeckung
der Polarisierbarkeit des Lichtes durch MALUS (1808) und FRESNEL (1815) zur Annahme
von Transversalwellen fiihrte.

Nachdem der fiir die Wellentheorie grundlegende “Lichtdther” nicht nachgewiesen wer-
den konnte, deutete MAXWELL 1871 in seiner elektromagnetischen Lichttheorie das
Licht als einen elektromagnetischen Wellenvorgang. Seine Vorstellung wurde 1886 von
H.HERTZ experimentell bestéitigt. Demnach handelt es sich bei Licht um elektromag-
netische Transversalwellen eines bestimmten Wellenldngen— bzw. Frequenzbereiches des
elektromagnetischen Spektrums, welche Sinneseindriicke im Auge hervorrufen. Die Wel-
lenléingen dieses “sichtbaren Spektrums” liegen im Vakuum zwischen der roten Grenze
bei etwa A = 780nm und der violetten Grenze bei etwa A = 380 nm .

Die Giiltigkeit dieser Theorie wurde zu Beginn des 20. Jahrhunderts in Frage gestellt,

163
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als bei Experimenten zur Wechselwirkung von Licht und Materie Erscheinungen auftra-
ten, die anhand der Wellenvorstellung nicht erklirt werden konnten. Die Interpretati-
on dieser Wechselwirkungsvorgénge lieferte EINSTEIN 1905 mit der Formulierung seiner
Lichtquantenhypothese. Danach besitzt Licht korpuskularen Charakter; es besteht aus
bestimmten Energiequanten, den sogenannten Photonen, welche bei Wechselwirkung mit
Materie ausgetauscht werden.

Zur vollstdndigen Beschreibung der Lichterscheinungen bestanden Wellen- und Lichtquan-
tentheorie gleichberechtigt nebeneinander und wurden je nach Art eines Experimentes
zu dessen Interpretation eingesetzt. Man spricht vom Welle-Teilchen-Dualismus des
Lichtes.

Erst in der modernen Quantenoptik bzw. Quantenelektrodynamik wurden die ge-
gensitzlichen Vorstellungen durch die HEISENBERGsche Unschirferelation vereinigt.

Das Schema in Abb. 6.1 zeigt die Gliederung der Optik in ihre historisch gewachsenen
Teilgebiete.

Physikahische Optik

Quantenelektrodynamik

klassische Optik , Quantenoptik
Welleneigenschaften Korpuskulareigenschaften
gecmetnsche Optik | I ‘Wetlenoptik
Gegenstance » Wellen'ange Gegenstande  Wallenlanga
Lichtstrahl , N elektromagnetische { Duahsmus Lichtquanten
rentstranien | Jransversaiwetlen L Welle - Tedchen
1 [ | B |

Reflexion Brechnung interferenz Beugung

- Emrésmn Streuung
S Spektralhrmien
P()lausahon/l [ Absorption ‘Cumplon) s '

\ Raman

Abbildung 6.1: Strukturbild physikalische Optik (aus [14])

Wir beschiéiftigen uns im folgenden mit dem Teilgebiet der geometrischen Optik.

Die geometrische Optik beschreibt die Lichtausbreitung mit Hilfe von Lichtstrahlen, wel-
che bei der Auffassung von Licht als Wellenerscheinung den Wellennormalen entsprechen.
Diese sind orthogonal zu den Wellenflichen und geben daher die Ausbreitungsrichtung
der Welle an. Im besonderen sind diejenigen Lichterscheinungen Gegenstand der geome-
trischen Optik, die auftreten, falls die Wellenldnge des Lichtes sehr klein im Verhéltnis
zur Groflenordnung der verwendeten Versuchsgegenstinde (Blende, Spiegel, usw.) ist.

Dabei haben folgende GesetzmiBigkeiten Giiltigkeit:
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(a) Die Ausbreitung des Lichtes im homogenen, isotropen Medium ist geradlinig, d.h.
die Lichtstrahlen sind Geraden.
(b) Der Lichtweg ist grundsétzlich umkehrbar.

(c) Die Lichtstrahlen sind unabhéngig voneinander, ein Lichtstrahl verlduft so, als ob
keine anderen Strahlen vorhanden wiren.

(d) Reflexions — Brechungsgesetz

Me t{(.a_m 4

vc yf 4 , Co
!
: NeoZ(‘ocmz
Eg“/ 21, ,Ca

Abbildung 6.2: Reflexion und Brechung eines Lichtstrahls an der Grenzfliche zwischen
zwei Medien.

Fillt Licht schrig auf die ebene, glatte Grenzfliche zweier verschiedener Medien
(z.B. Luft/Glas oder Luft/Wasser), so wird i.allg. ein Teil des Lichtes in das erste
Medium zuriickgeworfen. Der iibrige Teil dringt unter Anderung seiner Richtung in
das zweite Medium ein. Ein schrig auf die Trennfliche auftreffender Lichtstrahl (e)
erfihrt also eine Aufteilung in einen reflektierten (r) und einen gebrochenen Strahl

(d).
Einfallender und reflektierter Strahl verhalten sich nach dem Reflexionsgesetz:
Sie bilden mit dem Einfallslot den gleichen Winkel. Es gilt

Einfallswinkel = Ausfallswinkel

Reflexionsgesetz

Dabei liegen einfallender Stahl, reflektierter Strahl und Einfallslot in einer Ebene,
der Einfallsebene.

Fiir den einfallenden und den gebrochenen Strahl gilt das 1618 von SNELLIUS ge-
fundene Brechungsgesetz:

sin ¢ o
——° = = = ny = const.| SNELLIUSsches Brechungsgesetz
sindy; m
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Dabei bezeichnet 1, den Brechungswinkel, den der durch die Grenzfliche hindurch-
gehende Strahl mit dem Einfallslot einschlieft. Auch der gebrochene Strahl liegt in
der Einfallsebene.

Das Brechungsgesetz 148t sich auch in der folgenden Form schreiben:

ny sind, = ng Sin Yy

Das Produkt n sin? heifit numerische Apertur eines Lichtstrahls gegen das
Einfallslot. Das Brechungsgesetz besagt also, dal bei der Brechung die numerische
Apertur des Lichtstrahls konstant bleibt.

Die Konstante no; heifit relativer Brechungsindex des Mediums 1 in Bezug auf
das Medium 2. Sie gibt das Verhiltnis der absoluten Brechungsindizes an und héngt
von der Art der beiden Medien sowie von der Wellenldnge (Frequenz) des Lichtes
ab.

Man nennt einen Stoff optisch dichter (diinner) im Vergleich zu einem anderen, wenn
sein absoluter Brechungsindex grofler (kleiner) ist als der des anderen.

Beim Ubergang eines Lichtstrahls von einem optisch diinneren in ein optisch dich-
teres Medium, wie z.B. von Luft in Glas oder Wasser, gilt mit ny > n;

sind, _ ngy

sindy — ™ > 1
& sint, > sindy
54 Yo > Uy

d.h., der Lichtstrahl wird zum Einfallslot hingebrochen. Im anderen Fall wird der
Strahl vom Lot weggebrochen, wie man aus der Umkehrbarkeit des Lichtweges fol-
gern kann.

Es gibt im wesentlichen drei allgemeine Prinzipien, aus denen sich die Gesetze der geo-
metrischen Optik ableiten lassen:

1. Das HuvGENSsche Prinzip sowie das damit eng verbundene Prinzip von MALUS,
welche zeitgleich entwickelt wurden

2. Das Prinzip von FERMAT

3. Die MAXwELLschen Gleichungen

Zu 1) Das Huygenssche Prinzip 1678

Was geschieht, wenn eine Welle auf ein Hindernis trifft?

Als Antwort auf diese Frage entwickelte der hollindische Physiker HUYGENS (1629
— 1695) eine Methode, mit der sich der weitere Wellenverlauf auf unkomplizierte
Weise angeben 148t.

Basis bildet die Definition der Wellenfliche als Gesamtheit derjenigen Punkte, die
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vom Erregungszentrum zur gleichen Zeit angeregt werden. Die Punkte einer Wellen-
fliche besitzen den gleichen Schwingungszustand und unterscheiden sich in ihren
Schwingungen grundsétzlich nicht vom Erregungszentrum. Sie kénnen daher selbst
als Wellenzentren angesehen werden.

Alle Punkte einer Wellenfront konnen als Ausgangspunkte von Elementar-
wellen aufgefafit werden. Die duflere Finhiillende dieser Elementarwellen
ergibt die fortlaufende Welle.

Das Prinzip ist in Abbildung 6.3 veranschaulicht.

I ot o ey -
. S e R S T e,
T S 4

Abbildung 6.3: Ausbreitung einer Wellenfront nach dem HUYGENSschen Prinzip. (aus

[13])

Die Elementarwellen sind

— Kugelwellen, falls eine dreidimensionale Ausgangswelle vorliegt,

— Kreiswellen, falls nur zwei Dimensionen betrachtet werden.

Das Prinzip von Malus

Nach dem Satz von MALUS (1807) sind Strahlen und Wellenfronten stets orthogo-
nal zueinander bei allen Prozessen der Wellenausbreitung in isotropen Medien. An
einer Grenzfliche erfahren die Strahlen durch Reflexion und Brechung eine Rich-
tungsénderung, wobei die Orthogonalitéitsbeziehung erhalten bleibt.

Herleitung des Brechungsgesetzes aus dem Prinzip von Malus

Wir erértern die Brechung einer ebenen Welle beim Ubergang von einem Medium 1
in ein Medium 2. Die Welle bewege sich im Medium ¢ mit der Geschwindigkeit
c; fort, wobei ¢; > ¢y gelte. Wir betrachten die zur Strahlrichtung senkrechten
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Wellenfronten der einfallenden Welle.

Abbildung 6.4: Brechung einer ebenen Welle

Wir werten Abbildung 6.4 aus: Zum Zeitpunkt Null trifft die Wellenfront AB im
Punkt A auf die Grenzfliche zwischen den beiden Medien. Zur Zeit ¢ erreicht die
Wellenfront im Medium 2 den Punkt A’, wihrend sie im Medium 1 im Punkt B’
die Trennflache beriihrt.

Fiir die Fortpflanzung der Wellenfront in den verschiedenen Medien gilt:

Division der beiden Gleichungen ergibt

sind, ny ¢

sindy mnm1 ¢

Dabei bezeichnen ny, ny die absoluten Brechungsindizes der Medien, und c ist die
Vakuumlichtgeschwindigkeit.

Zu 2) Das Fermatsche Prinzip (1679)

“Licht, das durch Spiegelung von einem Raumpunkt zum anderen gelangt,
wdhit immer denjenigen Weg, fiir den die Laufzeit ein Minimum ist!”

Die mathematisch exaktere Formulierung des Prinzips von FERMAT besagt, daf die
Laufzeit des Lichtes zwischen zwei Raumpunkten A und B ein Minimum fiir nahe
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benachbarte Wege annimmt:

B (s 1 B
tAB:/ — = - / nds = Minimum!
A Cyp Cc JA

Ein solches Laufzeitproblem ist mit Hilfe der Variationsrechnung zu l6sen, was sich
jedoch bei Medien mit kontinuierlich variierendem Brechungsindex als mathematisch
sehr schwierig erweist.

2cel

\ 223 (anoé

4/asser
Abbildung 6.5: Fortpflanzung eines
Lichtstrahls durch Materialschichten Abbildung 6.6: Anschauliches Beispiel
mit verschiedenen Brechungsindizes zum Prinzip von FERMAT

Wir wollen hier die formale Vorgehensweise am einfachen Beispiel iibereinanderge-
schichteter Lagen verschiedener Stoffe (Brechungsindizes n;, ny und n3) erliutern.
Wir betrachten dazu Abbildung 6.5.

Die Laufzeit t4p berechnet sich zu

S1 So S3
tAB:_+—+—=—(n131+n252+n353)
Cq Co C3 c

Die Laufzeit nimmt ein Minimum an, falls
1
thB = — (’17,1 d81 + o dSQ + njs d83) =0
c

In der Zeichnung gibt die durchgezogenen Linie den zeitlich kiirzeren Weg an. Die
gestrichelte Direktverbindung der beiden Punkte wiirde eine lingere Laufzeit erge-
ben.

Hier sei noch ein Beispiel zur Veranschaulichung des Fermatschen Prinzips angefiigt:
Wir betrachten einen Wettlauf von A nach B, wobei sich zwischen Start — und Ziel-
punkt ein Wasserkanal (ohne Strémung) befinde, welcher schwimmend durchquert
werden mufl. Wie verlduft der zeitlich kiirzeste Weg, den ein L&ufer einschlagen
sollte, um den Sieg zu erlangen?
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Die Geschwindigkeit eines Wettldufers ist beim Schwimmen wesentlich kleiner als
beim Laufen. Daher ist der zeitlich kiirzeste Weg nicht die geradlinige Verbindung
AB (gestrichelte Linie), sondern eine Route mit kiirzerer Wasserstrecke (durchge-
zogene Linie).

Herleitung des Brechungsgesetzes aus dem Fermatschen Prinzip

Abbildung 6.7: Herleitung des Brechungsgesetzes nach dem Prinzip von FERMAT

Die Lichtwege variieren mit dem Parameter x. Die Bedingung fiir den minimalen

Lichtweg lautet daher
dtap

dz =0

Mit tup = % ffnds = % (ny s1 + ng s9) folgt daraus

%(nl 1+ ng 82) =0
dSQ

d81

& mgy tnegy =0
Es ist
51 =/x% +9? o ds . x _x
dl’ /$2+y% S1
sp=yJd—z)2+98 = 92— —(d—1) _—(dSQ—fE)

T
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Einsetzen ergibt

x d—zx
ny— —"ng =0
S1 S9
Wie aus der Skizze ersichtlich ist, gilt
. T ) d—zx
sin, = — sindy =
S1 S9

Dies liefert
ny sind, — ng sinddy =0

und man erhélt das Brechungsgesetz

sind, 1o

sind; m

Zu 3) Die Ableitung der geometrischen Gesetze durch Losung der MAXWELLschen Glei-
chungen unter speziellen Randbedingungen wird in den Vorlesungen zur Theoreti-
schen Physik gelehrt, wir gehen hier nicht darauf ein.

6.2 Die Totalreflexion

Wir betrachten den Ubergang eines Lichtstrahls von einem optisch dichteren Medium 1
in ein optisch diinneres Medium 2. Aus dem Brechungsgesetz

sin 9 n
c=2 <1

sinty

folgt in diesem Fall fiir das Groflenverhéltnis von Einfallswinkel ¥, und Brechungswinkel
¥4 die Beziehung ¢, > 9. . Der Strahl wird vom Lot weggebrochen. Bei dieser Art der
Brechung kann offensichtlich der Fall auftreten, dafl der Brechungswinkel 90° iiberschrei-
tet. Dann existiert kein durchgehender Strahl mehr, sondern das Licht wird vollstdndig
reflektiert. Man spricht von Totalreflexion.

Bei welchen Einfallswinkeln 1, tritt Totalreflexion auf?

Zur Klarung dieser Frage untersuchen wir den Grenzfall 9J; = 90°, in dem der gebrochene
Strahl entlang der Trennfliche der beiden Medien verlauft.

Der Winkel 94 = 90° tritt auf bei einem bestimmten Einfallswinkel, dem Grenzwinkel
der Totalreflexion 1, welcher festgelegt ist durch

sindr  ny

sin90° my

Mit sin90° =1 folgt

- Grenzwinkel
sin ¥y = 21" der Totalreflexion
m (n1 > 712)
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Erfolgt der Ubergang des Lichtstrahls in Vakuum oder Luft, so kann ny = 1 und ny = n
gesetzt werden.

1 Grenzwinkel
sindr = —| der Totalreflexion
] gegen Vakuum /Luft

Erfiillt also der Einfallswinkel die Bedingung ¥, > 91, so wird das auf die Grenzfliche
treffende Licht vollstindig reflektiert.

Werte fiir die Brechzahlen einiger Stoffe fiir sichtbares Licht gibt die untenstehende Tabelle
an.

Abbildung 6.8: Ubergang eines Lichtstrahls von einem optisch dichteren in ein optisch
diinneres Medium

30° 72

Abbildung 6.9: Grenzwinkel der Totalreflexion
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Stoff Brechzahl n

Luft 1,0003
H,O 1,33
Glas 1,5

Diamant | 2,42

Damit lassen sich fiir verschiedene Ubergiinge die Grenzwinkel der Totalreflexion berech-
nen:

Wasser — Luft : sindy = 1133 = 0,7 = 9Yr=48,8°
Glas — Luft : sindr = 155 = 0,667 = o7 =41,8°
1,33

Glas — Wasser : sinty = 15 = 0,887 = ¥pr=062,5°

Die umgekehrte Vorgehensweise stellt eine wichtige Anwendung der Totalreflexion dar:

Der Grenzwinkel der Totalreflexion 148t sich sehr genau messen. Diese Tatsache wird
zur Bestimmung von Brechungsindizes unter Verwendung der Beziehung sind; =
ng/ny ausgenutzt!

Ein weiteres praktisches Anwendungsbeispiel ist das Glasfaserkabel. Licht, das an
einem FEnde einer diinnen Glasfaser eintritt, wird bis zum anderen Ende geleitet, da
die Totalreflexion ein seitliches Austreten verhindert. Dabei ist vorausgesetzt, da} der
Kriimmungsradius der Glasfaser grof§ gegen den Querschnitt ist.

Abbildung 6.10: Totalreflexion in

einem Glasstab (aus [12]) Abbildung 6.11: Lichtleitung in einer diinnen

Glasfaser (aus [7])

Versuche zur Totalreflexion

Versuch 1: Totalreflexion in Wasser

Gezeigt wird die Totalreflexion, die beim Ubergang eines Lichtstrahls von
Wasser in Luft auftritt (Versuchsaufbau siehe Abb. 6.12!).
In einem mit Wasser gefiillten Aquarium befindet sich ein Spiegel, der
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den auf ihn gerichteten Lichtstrahl einer Kohlebogenlampe nach oben
reflektiert. Dieser wird an der Wasseroberfliche zunichst teilweise re-
flektiert und gebrochen. Einfallender, rflektierter und gebrochener Strahl
sind durch im Hintergrund befindliche verschiedenfarbige Pappen deut-
lich sichtbar. Man &ndert nun den Neigungswinkel des Spiegels, bis der
durchgehende Strahl verschwindet. Dann liegt Totalreflexion vor.

getbe Pappe

59‘9351 brauae Pappe

- Blende

Kohlebogenlampe

Aquanium

Abbildung 6.12: Versuchsaufbau zur Totalreflexion in Wasser (aus [9])

Versuch 2: Totalreflexion im gebogenen Plexiglasstab

Gezeigt wird die Lichtleitung in einem gebogenen Plexiglasrohr.
Aufgrund der wiederholten Totalreflexion an der inneren Oberfliche des
Plexiglasrohres gelangt die Strahlung vollsténdig vom einen zum anderen
Ende, obwohl das Rohr gekriimmt ist.

Umfafit man die Biegestellen des Plexiglasrohres mit den Handen und
verdndert auf diese Weise den Brechungsindex, so wird das am Rohrende
austretende Licht schwicher. Dieser Effekt wird durch Einfettung der
Hénde noch verstérkt. Dafl an den mit Fettresten behafteten Biegestel-
len Licht aus dem Rohr austritt, zeigt das Leuchten dieser Stellen nach
Entfernen der Hénde.

Versuch 3: Gebogener Lichtstrahl in Kochsalzlésung

Schichtet man eine NaCl — Losung und Wasser iibereinander, so ent-
steht durch Diffusion der NaCl — Molekiile aus der gesdttigten Losung
in das Wasser eine Grenzschicht mit kontinuierlichem Brechungsindex-
gefélle. Ein in die Diffusionszone eintretender Lichtstrahl wird aufgrund
des Brechzahlgefilles nach dem FERMATschen Prinzip gekriimmt. Au-
Berdem erfahrt er am oberen Rand der Diffusionszone (Grenzfliche zum
reinen Wasser) eine Totalreflexion.

Der Strahl wird sichtbar aufgrund der Streuung an zugesetzten Schwe-
beteilchen.
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Abbildung 6.13: Gebogener Lichtstrahl in Kochsalzlosung (aus [7])

6.3 Einfache optische Instrumente

6.3.1 Die optische Abbildung

Ein Beobachter sieht einen Gegenstand unmittelbar, wenn die von dem Gegenstand aus-
gehenden Lichtstrahlen ohne Anderung ihrer Richtung in sein Auge gelangen. Der Sin-
neseindruck des Gegenstandes wird dadurch erzeugt, daf jeder Punkt des Gegenstandes
Ausgangspunkt eines Kegels divergierender Strahlen ist, welche geradlinig in die Pupille
einfallen.

Durch Einbringen eines geeigneten optischen Instrumentes in den Strahlengang erreicht
man, dafl die von den Objektpunkten ausgehenden divergenten Strahlenbiindel in das
Auge gelangen, nachdem sie eine Richtungsénderung erfahren haben.

Fiir den Sinneseindruck ist nur der Verlauf der Strahlen beim Eintritt in das Auge maf-
gebend. Der Beobachter sieht daher jeden Objektpunkt dort, von wo aus die Strahlen
divergieren oder zu divergieren scheinen. Diese Punkte heiflen Bildpunkte, ihre Gesamt-
heit formt das Bild des Gegenstandes.

Je nach Art der optischen Vorrichtung sind dabei zwei Fille zu unterscheiden:

Fiihrt das optische Instrument die von einem Gegenstandspunkt herkommenden Strahlen
tatsichlich in dem vom Beobachter wahrgenommenen Bildpunkt zusammen, von dem sie
wie vom wirklichen Objektpunkt aus divergieren, so liegt ein reelles Bild vor. Dieses kann
auf einer Mattscheibe oder Photoplatte aufgefangen werden.

Ist aber der Bildpunkt nur ein scheinbarer Divergenzpunkt, d.h. schneiden sich die in das
Auge fallenden Strahlen nicht wirklich in ihm, sondern nur ihre riickwartigen Verldngerun-
gen, so spricht man von einem virtuellen Bild. Dieses Bild ist photographierbar, es kann
aber nicht am Ort des Bildes mit einer Platte oder Mattscheibe aufgefangen werden.

Eine optische Abbildung erzeugt also ein vergrofiertes, verkleinertes oder originalgrofies
Bild eines Gegenstandes, indem die vom Gegenstandspunkt ausgehenden Lichtstrahlen
im Bildpunkt direkt oder durch Zuriickverldngern vereinigt werden.
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1
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Abbildung 6.14: Optische Abbildung: (a) unmittelbares Sehen des Gegenstandes, (b) re-
elles Bild, (c) virtuelles Bild. (aus [8])

In diesem Kapitel sollen die an verschiedenen Abbildungsvorrichtungen stattfindenden
optischen Abbildungen anschaulich erldutert und mathematisch beschrieben werden. Fiir
die auftretenden optischen Groflen werden dabei je nach Art der Abbildungseinrichtung
Vorzeichen festgelegt. Die Wahl der Vorzeichen ist willkiirlich unter der Bedingung, daf§
sie konsequent einbehalten wird. Da keine einheitliche Verzeichenkonvention vorgegeben
ist, arbeiten die verschiedenen Lehrbiicher zur Optik mit unterschiedlichen Festlegungen.
Wir werden uns in diesem Vorlesungsskript an die Vorzeichenkonvention halten, die auch
im Lehrbuch “Optics” von E.HECHT (Literaturverzeichnis [13]) verwendet wird.

6.3.2 Abbildung durch Spiegel
Der Planspiegel

Beispiele fiir ebene Spiegel sind polierte Metallflichen oder Glasplatten mit aufgedampf-
ter Metallschicht. Wichtig ist, dal Unebenheit und Rauhigkeit der Spiegelflichen klein
im Verhiltnis zur Wellenldnge des auftreffenden Lichtes sind. Anderenfalls findet diffuse

Reflexion statt, d.h., ein einfallendes Lichtbiindel wird nicht als Ganzes in eine Richtung
refektiert, sondern zerstreut durch Reflexion in alle Richtungen (siehe Abb. 6.15).

Bei regulirer Reflexion (Abb. 6.16) 148t sich zu einem beliebigen Gegenstandspunkt G
der zugehorige Bildpunkt B unter Verwendung des Reflexionsgesetzes konstruieren. Die
Konstruktion zeigt, dafl der Planspiegel nur virtuelle Bildpunkte, also von ausgedehnten
Gegenstdanden immer virtuelle Bilder erzeugt.

Frage: In einem Spiegelbild sind rechte und linke Seite vertauscht. Warum ver-
tauscht der Spiegel nicht oben und unten?
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6.3.3 Gekriimmte Spiegel

Spiegel, die die Form eines Teiles einer Kugelfliche besitzen, heilen sphirische Spiegel.
Bei Konkav — oder Hohlspiegeln ist die Innenseite, bei Konvex — oder Wolbspiegeln
ist die Auflenseite spiegelnd.

Das im Mittelpunkt der Spiegelfliche auf diese errichtete Lot wird als optische Achse
bezeichnet. Sie verlduft durch den Kriimmungsmittelpunkt C' der Kugel, aus deren Fléche
der Spiegel ausgeschnitten ist. Die dicht an der optischen Achse verlaufenden Strahlen
nennt man paraxiale Strahlen.

Wir wenden bei der mathematischen Behandlung der sphérischen Spiegel die in der fol-
genden Tabelle (aus [13]) angegebene Vorzeichenkonvention an:

Vorzeichen
Optische Grofle N B
. konvexer Spiegel konkaver Spiegel
R d ) )
adius T d.h. C rechts von H d.h. C links von H
Brennweite f konkaver Spiegel konvexer Spiegel
Gegenstandsweite g links von H rechts von H
Bildweite b links von H rechts von H
von der opt. Achse von der opt. Achse
Gegenstandsgrofle y = GG’ || nach oben, nach unten,
aufrechtes Objekt umgekehrtes Objekt
von der opt. Achse von der opt. Achse
Bildgrofle ' = BB’ nach oben, nach unten,
aufrechtes Bild umgekehrtes Bild

\\

\

\

G
_ —
| — -
M i

Abbildung 6.15: Diffuse Reflexion (aus
[7]) Abbildung 6.16: Regulire Reflexion
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Wir werden uns bei den folgenden Betrachtungen auf achsennahe Strahlen beschrénken.

a) Der Hohlspiegel

Wir konstruieren zunéchst zu einem auf der optischen Achse in der endlichen Gegen-
standsweite g gelegenen Objektpunkt G den zugehorigen Bildpunkt B (Abb. 6.17).
Dieser liegt ebenfalls auf der optischen Achse in der Bildweite b. Zur Konstrukti-
on benutzen wir den entlang der optischen Achse verlaufenden Mittelpunktsstrahl,
welcher in sich zuriickgeworfen wird sowie einen unter dem Einfallswinkel o auf die
Spiegelfliche fallenden Strahl. Letzterer wird an der im Einfallspunkt an den Spiegel
angelegten Tangentialebene reflektiert. Es gelten folgende Winkelbeziehungen:

Abbildung 6.17: Bildpunktkonstruktion am Hohlspiegel (aus [8])

B = a+ty

5 = 2a+7} = 0=2(-7)+y & 7+0=2§

Fiir paraxiale Strahlen sind die auftretenden Winkel sehr klein und es kann

s AH

562— b

i
=

v~
gesetzt werden. Aus v+ 0 =2 folgt damit

AH AH 9 AH 1 1 2| Abbildungsgleichung
g + b T or = g + b~ 7| beim Hohlspiegel

Fiir eine unendlich grofle Gegenstandsweite g — oo ergibt sich daraus die Bildweite
beo = /2, welche als Brennweite f des Spiegels bezeichnet wird.

f= % Brennweite des Hohlspiegels
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Alle von einem sehr weit entfernten Objektpunkt kommenden Strahlen verlaufen
durch den sogenannten Brennpunkt F' des Spiegels als den zugehorigen Bildpunkt.

Da die aus dem Unendlichen kommenden Strahlen praktisch als parallel angesehen
werden koénnen, 148t sich folgendes festhalten:

Der Hohlspiegel fokussiert ein paraxiales, paralleles Lichtbiindel im Brennpunkt. Be-
findet sich umgekehrt im Brennpunkt des Hohlspiegels eine punktférmige Lichtquel-
le, so verlaufen die davon ausgehenden paraxialen Strahlen nach der Reflexion am
Spiegel parallel zur optischen Achse. Dies folgt aus der Umkehrbarkeit des Lichtwe-

ges.
- C c L
: VA 7
Abbildung 6.18: g = o0 = b= f (aus Abbildung 6.19: g = f = b = oo (aus

[8])

[8])

Versuch: Der erste Versuchsteil zeigt den Strahlengang des Hohlspiegels: Wird
ein paralleles Lichtbiindel am Hohlspiegel reflektiert, so entstehen
mehrere dicht beieinanderliegende Schnittpunkte. Blendet man mit
Hilfe einer Schlitzblende mehr und mehr Randstrahlen aus, so dafl
nur noch achsennahe, parallele Strahlen einfallen, so vereinigen sich
die Schnittpunkte in einem einzigen Punkt. Im zweiten Versuchsteil
wird speziell die Fokussierung eines zur optischen Achse parallelen
Lichtbiindels demonstriert. Eine im Brennpunkt befindliche Wun-
derkerze entziindet sich durch die starke Intensitédtskonzentration.

Mit der Brennweite f = r/2 148t sich die Abbildungsgleichung umschreiben zu

Abbildungsgleichung
1 1 1 - :
-+ i beim Hohlspiegel
g f (Ndherung fiir Paraxialstrahlen)

Wir hatten die Abbildungsgleichung mittels einer Bildkonstruktion fiir den Fall
g > [ hergeleitet. Dabei ergab sich ein reeller Bildpunkt. Im Fall g < f ist die Ab-
bildungsgleichung ebenfalls giiltig. Hier ist der Bildpunkt jedoch virtuell. Die Bild-
weiten virtueller Bildpunkte erhalten per Konvention negatives Vorzeichen, wenn
sie vom Scheitelpunkt H aus nach rechts aufgetragen werden.

Geometrische Bildkonstruktion beim Hohlspiegel
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Fiir die Bildkonstruktion ausgedehnter Gegenstinde beim Hohlspiegel stehen vier
ausgezeichnete Strahlen zur Verfiigung, von denen jedoch zwei bereits ausreichend
sind:

(i) Ein achsenparalleler Strahl geht nach der Reflexion durch den Brennpunkt F.

(ii) Ein vom Brennpunkt F' her einfallender Strahl verlduft nach der Reflexion
achsenparallel.

(iii) Ein vom Kugelmittelpunkt C' her radial einfallender Strahl wird in sich selbst
zuriickgeworfen.

(iv) Fiir einen auf den Spiegelmittelpunkt H treffenden Strahl gilt beziiglich der
optischen Achse: Einfallswinkel = Ausfallswinkel.

Variiert man die Gegenstandsweite, dann dndern sich Grofle und Art des Bildes, wie
Abbildung 6.21 zeigt. Das Verhéltnis von Bildgréfle zu Gegenstandsgrofie

wird als Abbildungsmafistab oder transversale Vergréfierung bezeichnet.
Aus dem Verlauf des Strahles 4 in der ersten Konstruktionszeichnung liest man ab

G'G _ _ B'B
7= tanf = 7
BB _b
T GG
b "
= | Mrp = —| transversale Vergréflerung
g

Abbildung 6.20: Entstehung eines virtuellen Bildpunktes
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o | ¢ Ho
| 5 B
’ L
g - %

Abbildung 6.21: Geometrische Bildkonstruktion am Hohlspiegel: (a) reelles, umgekehrtes,
verkleinertes Bild, (b) reelles, umgekehrtes, vergroBertes Bild, (c) virtuelles, aufrechtes,
vergréBertes Bild. (aus [8])

Beachte: Die transversale Vergroflerung stimmt nicht unbedingt mit der
Vergroflerung iiberein, die der Beobachter wahrnimmt! (siehe dazu
Abschnitt 6.5.2 Die Lupe)

b) Der konvexe Spiegel

Die fiir den Hohlspiegel gefundenen Ergebnisse gelten im wesentlichen auch fiir
den konvexen Spiegel. Unterschiede resultieren aus der Tatsache, dafl Kugelmit-
telpunkt C' und Brennpunkt F' hinter der Spiegelfléiche liegen. Kriimmungsradius r
und Brennweite f sind hier negativ zu rechnen.

Zur Bildkonstruktion konnen wieder vier ausgezeichnete Strahlen verwendet werden:
(i) Ein achsenparallel einfallender Strahl wird so reflektiert, daf§ die riickwértige

Verldngerung des reflektierten Strahls durch den Brennpunkt F' verlduft, der
sich im Abstand HF =r/2 = —f hinter dem Spiegel befindet.

(ii) Ein in Richtung auf F' einfallender Lichtstrahl wird achsenparallel reflektiert.
(iii) Ein in Richtung auf C einfallender Strahl liuft in sich zuriick.

(iv) Einin H auftreffender Strahl wird um den gleichen Winkel zur optischen Achse
reflektiert.

Es entstehen nur virtuelle aufrechte, verkleinerte Bilder!

¢) Der Parabolspiegel

Die Spiegelfliche eines Parabolspiegels ist ein Rotationsparaboloid.
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Der Vorteil eines Parabolspiegels gegeniiber dem Hohlspiegel liegt darin, daf} er alle
Parallelstrahlen unabh#ngig von ihrem Achsenabstand in seinem Brennpunkt fokus-
siert (Abb. 6.23). Der umgekehrte Vorgang, die Parallelisierung der Brennpunkt-
strahlen durch den Parabolspiegel wird z.B. bei Autoscheinwerfern ausgenutzt.

d) Der Ellipsoid

Von einem Brennpunkt F} ausgehende Strahlen werden im zweiten Brennpunkt F5
vereinigt (siehe Abb. 6.24).

5 N/

G
|
|
Z
<
1

—)
g 4

Abbildung 6.23: Einfall eines parallelen
Strahlenbiindels in einen Parabolspiegel Abbildung 6.24: Elliptischer Spiegel (aus

(aus [4)) [13])
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6.4 Brechung an sphirischen Oberflichen

Wir betrachten als brechende Fliche eine Kugelschale mit Radius r, welche zwei licht-
durchlissige Medien mit den Brechungsindizes n; und ny trennt.

Das Vorliegen zweier Medien unterschiedlicher Brechzahl grenzt diese Art der Abbildung
deutlich von der Abbildung am sphérischen Spiegel ab.

Zur mathematischen Beschreibung der Brechung an sphérischen Oberflichen benutzen
wir die in der untenstehenden Tabelle aufgefiihrte Vorzeichenkonvention:

Vorzeichen

Optische Grofle N B
Radius r konvexe Fliche, konkave Fliche,

d.h. C rechts von H d.h. C links von H
Brennweite f links von H rechts von H
Brennweite f’ rechts von H links von H
Gegenstandsweite g links von H rechts von H
Bildweite b rechts von H links von H
Gegenstandsgrofie y = GG von der opt. Achse von der opt. Achse

nach oben nach unten
Bildgrége o = BB von der opt. Achse von der opt. Achse

nach oben nach unten

Ein von dem Gegenstandspunkt G' auf der optischen Achse unter dem Winkel o ausge-
hender Strahl schneidet nach der Brechung an der Kugeloberfliiche die optische Achse in
dem Bildpunkt B. Welcher Zusammenhang besteht hier zwischen der Gegenstandsweite
g und der Bildweite b?

Zur Beantwortung dieser Frage ermitteln wir die Abbildungsgleichung:

Dabei setzen wir Paraxialstrahlen voraus. Dann sind die auftretenden Winkel hinreichend
klein, so dafl wir jeweils den Sinus oder Tangens eines Winkels durch den Winkel selbst
ersetzen diirfen.

Es lassen sich folgende Winkelbeziehungen aufstellen:

sinfl, _ ng .. osinf, _ 0, . N
Aus dem Brechungsgesetz WZ = folgt mit smo. ~ 0, die Beziehung n, 6, =

ne B, bzw. ad:g—;ee.

Weiter ist aus Abbildung 6.25 ersichtlich:

Dreieck GAC : 6, = a+7y n
Dreieck CAB : v = 9d+5=%9e+5
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Abbildung 6.25: Abbildung eines Achsenpunktes G durch eine konvexe brechende Kugel-
fléiche (aus [4])

Umformung ergibt

1-7)r = Fa+p
& (ne—m)y = ma+nf
Weiter gilt
AH AH AH
S P -
g b r
Dies fiihrt zur Descartesschen Formel fiir die Brechung an einer sphérischen Fléche:
1
%+%—(n2—n1)—

Da die durch die sphérische Oberfliche getrennten Medien verschiedene Brechungsindizes
besitzen, treten bei dieser Abbildungsform zwei unterschiedliche Brennpunkte auf.

Von einem unendlich weit entfernten Gegenstandspunkt kommende, achsenparallele Strah-
len werden nach der Brechung im bildseitigen Brennpunkt F’ fokussiert.

Der objektseitige Brennpunkt F' ist dadurch gekennzeichnet, dal er ins Unendliche ab-
gebildet wird, von ihm ausgehende Strahlen verlaufen nach der Brechung parallel zur
optischen Achse.

Die Diskussion der DESCARTESschen Formel fiir die genannten Grenzfille ¢ — oo und
b — oo liefert die zugehorigen Brennweiten f’ und f:

No T
fl=—2 bildseitige Brennweite
o — N1
nr . ... .
f= ! objektseitige Brennweite
Ng — 1Ny
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Fiir die Brennweiten gelten die Beziehungen

f_mp | f F_,

fof=r ?_nz 9 b

Bildkonstruktion bei der Brechung an Kugelflichen

Bildkonstruktion fiir ¢ > f und g < f:

Lautet das Groflenverhéltnis der Brechzahlen ns > ny, so entsteht je nach Gegenstands-
weite ein reelles oder virtuelles Bild. Im Fall ny < n; ist das Bild stets virtuell, da die
Strahlen nach der Brechung divergieren. Die transversale Vergréflerung ergibt sich zu

Abbildung 6.26: Bildkonstruktion an der konvexen brechenden Kugelfliche fiir die beiden
Fille, daB ny < ng und ny > ny ist. (aus [4))

BB’ b—r_ﬂb

Mr = —— = — e
TTGE  g+r myg

Der DESCARTESschen Formel kommt fundamentale Bedeutung zu: Mit ihrer Hilfe 148t sich
die Abbildungsgleichung und damit der Strahlengang einer beliebigen Folge sphérischer
Oberflichen bestimmen, deren Kriimmungsmittelpunkte alle auf der optischen Achse ge-
legen sind. Diese Tatsache werden wir in den folgenden Abschnitten zu Herleitung der
Abbildungsformel fiir Linsen und Linsensysteme ausnutzen.
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6.5 Linsen

Wird ein lichtdurchlissiges, brechendes Material beidseitig begrenzt von zwei zentrierten
Kugelflichen bzw. von einer Kugelfliche und einer Ebene, so liegt eine sphérische Linse
VOr.

Je nach Anordnung der begrenzenden Flichen und der sich daraus ergebenden Form und
Wirkweise unterscheidet man folgende Arten von Linsen:

— Sammellinsen, welche in der Mitte eine groflere Dicke als am Rand besitzen, haben
i.allg. die Eigenschaft, achsenparallel auffallendes Licht zu fokussieren. Sie lassen
sich weiter unterteilen in (i) bikonvexe, (ii) plankonvexe und (iii) konkavkonvexe
Sammellinsen (Abb. 6.27).

— Die (i) bikonkaven, (ii) plankonkaven und (iii) konvexkonkaven Zerstreuungslin-
sen machen achsenparallel auffallendes Licht divergent. Sie sind am Rand dicker als
in der Mitte (Abb. 6.28).

Abbildung 6.27: Verschiedene Sammellin- Abbildung 6.28: Verschiedene Zerstreu-
senausfiihrungen (aus [4]) ungslinsenausfithrungen (aus [4])

6.5.1 Abbildung durch diinne sphirische Linsen

Man bezeichnet eine Linse als diinn, wenn ihre Dicke gegeniiber den auftretenden Gegen-
stands— und Bildweiten vernachléssigbar klein ist. Dies ist erfiillt, wenn die Dicke klein
gegen die Kriimmungsradien der Linsenflichen ist.

Die Vorzeichen der in die mathematische Beschreibung eingehenden Groflen werden wie
bei der Brechung an sphérischen Oberflichen festgelegt. Sie konnen aus der Tabelle in
Abschnitt 6.4 entnommen werden.

Zur Herleitung der Abbildungsgleichung betrachten wir zwei bikonvex im Abstand d an-
geordnete Kugelflichen mit den Kriimmungsradien r; und 75, die ein Medium mit Bre-
chungsindex n > 1 gegen Luft (np,; ~ 1) abgrenzen (Abb. 6.29). Die erste brechende
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Oberfiche mit Radius r; bildet den Objektpunkt G auf den Bildpunkt B’ in der Bildweite
b ab. Nach der DESCARTESschen Formel gilt fiir diese Abbildung

Shp=m-—

Beziiglich der zweiten Kugelfliche mit Radius 7o ist B’ als Gegenstandspunkt in der
Gegenstandsweite ¢’ anzusehen. Die Brechung, welche in der Bildweite b den Bildpunkt

B erzeugt, wird beschrieben durch
n 1 1 1
I —(1=n) == —-(n—-1)=
Sepslom=—-1— ()

Wegen ry < 0 ist die rechte Seite der Gleichung positiv. Addition der beiden Gleichungen

ergibt
1+1+ 1+1 By 1)(1 1)
gbng'b'_n T T
Mit ¢'=d— b folgt
1 1 1 1 1 1
4z - s Y =(n=1D (===
g+b+n<d—b’+b’) (n )(m m)
Fiir vernachléssigbare Dicke, d.h. im Grenzfall d — 0 erhilt man daraus die
Abbildungsgleichung fiir diinne Linsen:

1 1 1 1
—+-=(n-1) (— — —) Linsenschleiferformel
g b T To

Wie im Fall der Brechung an einer sphirischen Oberfléche ergibt sich daraus im Grenziiber-
gang g — oo die
T17T2

bildseitige Brennweite f' =
; P ===

Abbildung 6.29: Abbildung durch zwei bikonvex im Abstand d angeordnete, brechende
Kugelfléichen (aus [8])
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Analog liefert die Betrachtung des Grenzfalles unendlicher Bildweite b — oo die

(n—1)(rg —m1)

objektseitige Brennweite f =

Fiir diinne Linsen gilt also f = f’ ! Die Linsenschleiferformel 148t sich mit 1/f =
(n—1)(1/ry — 1/ry) umwandeln in die

Gauflsche Linsengleichung |—+ - = —

Die obenstehenden wichtigen Beziehungen, welche wir der Einfachheit halber fiir eine
bikonvexe Anordnung zweier Kugelflichen hergeleitet haben, gelten fiir beliebige diinne
Linsen. Dabei sind bei den verschiedenen Linsenformen die Vorzeichen der Kriimmungs-
radien r; und 75 zu beachten!

Welchen praktischen Nutzen haben die gefundenen Gleichungen? Sie geben Aufschlufi iiber
die Wirkung einer Linse und ermdglichen auf diese Weise, den bestméoglichen Einsatz in
einer optischen Anordnung zu ermitteln. Wir betrachten beispielsweise eine Glaslinse (n =
1,5), deren begrenzende Kugelflichen gleichen Radius besitzen. Im Fall einer bikonvexen
Sammellinse bedeutet dies, dal r; = —ry = r gilt. Abbildungs— und Linsengleichung
liefern dann

1 n 1 ( 1) 2 1 |y T
— —=(n — —_ = — = —
g b r f 2(n—1)
Einsetzen des Brechungsindexes von Glas fiihrt zu dem Ergebnis f = r . Die Sammellinse
hat also die Eigenschaft, achsenparallel auffallende Lichtstrahlen zum Kriimmungsmittel-
punkt hin zu brechen und dort zu vereinigen.

Zur Beschreibung einer Linse gibt man anstelle ihrer Brennweite oft ihre Brechkraft
oder Stidrke D = 1/f an. Als spezielle Einheit der Brechkraft fiihrt man die Dioptrie
ein.

[D] =1/m = 1D = 1 Dioptrie

Sammellinsen besitzen positive, Zerstreuungslinsen negative Brechkraft.

Bildkonstruktion

Als Hilfsmittel zur Bildkonstruktion bei diinnen Linsen dienen drei ausgezeichnete Strah-
len:

1. Der Parallelstrahl wird bei Sammellinsen zum Brennpunkt im Bildraum hingebro-
chen, bei Zerstreuungslinsen verlduft er nach der Brechung so, als ginge er vom
virtuellen Brennpunkt im Objektraum aus.

2. Der Brennpunktstrahl, der bei Sammellinsen vom Brennpunkt kommend auf die
Linse trifft, bei Zerstreuungslinsen auf den hinter der Linse befindlichen, virtuellen
Brennpunkt gerichtet ist, verlduft nach der Brechung achsenparallel.
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_.Ty 6:_____PA; N
y T~ |
B L] RN F
yl F C) T~

Abbildung 6.30: Bildkonstruktion bei einer diinnen, bikonvexen Linse: (a) g > [ =
reelles, aufrechtes Bild, (b) g < f = virtuelles aufrechtes Bild.

3. Der Mittelpunktsstrahl, der auf die Linsenmitte trifft, durchlduft die Linse anni-
hernd ohne Richtungsinderung. Die geringe Parallelverschiebung, die er erfihrt, ist
bei diinnen Linsen vernachldssigbar.

Aus den Konstruktionszeichnungen ergibt sich der Abbildungsmafstab zu

b_ b—f_ f
G'G g f g—f

Ist der Abbildungsmaf}stab positiv, so liegt ein aufrechtes Bild vor, eine negative trans-
versale Vergroflerung bedeutet ein umgekehrtes Bild.

Mogliche Abbildungen bei diinnen Linsen

Sammellinse
Gegenstand Bild
Gegenstandsweite Typ Bildweite | Orientierung | Relative Grofie
co>g>2f reell f<b<2f | umgekehrt verkleinert
g=2f reell b=2f umgekehrt unveréndert
f<g<2f reell | oco>b>2f | umgekehrt vergrofert
g=1f o0
g<f virtuell b| > g aufrecht vergroflert
Zerstreuungslinse
Gegenstand Bild
Gegenstandsweite Typ Bildweite Orientierung | Relative Grofle
beliebig virtuell | [b] < |f], |b| < g aufrecht verkleinert
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Die Sammellinse entwirft im Sonderfall g < f ein virtuelles Bild. Dieses ist aufrecht, ver-
groflert und befindet sich in gréflerem raumlichen Abstand vom Auge des Beobachters als
der Gegenstand selbst. Diese Tatsache nutzt man aus, um das Auge bei der Betrachtung
kleiner Objekte zu unterstiitzen. Die Sammellinse dient dann als Lupe.

6.5.2 Die Lupe

Um ein kleines Objekt genauer betrachten zu kénnen, mufl der Beobachter es nahe an
sein Auge heranfiihren. Er vergréflert auf diese Weise den Sehwinkel «, unter dem er
das Objekt sieht (siehe Abb. 6.31). Beim menschlichen Auge ist der Abstand von der

Abbildung 6.31: Das menschliche Auge betrachtet ein Objekt unter dem Sehwinkel .

(aus [13])

Augenlinse zur Netzhaut nahezu fest. Die Bildweite b4 ist daher festgelegt. Scharfe Ab-
bildungen entwirft das Auge durch Akkommodation, d.h., indem die Brennweite f4 der
Augenlinse variiert wird. Bei einem normalsichtigen, erwachsenen Menschen kann durch
die Akkommodation des Auges die Brennweite so weit verkiirzt werden, daf} ein bis zu
einer Entfernung von 6 = 25cm an das Auge herangebrachter Gegenstand noch scharf
gesehen wird. Diese Mindestentfernung § = 25 cm fiir das Scharfsehen des menschlichen
Auges heifit die deutliche Sehweite. Den zugehorigen Sehwinkel, welcher ohne Zuhilfe-
nahme eines optischen Instrumentes maximal erreicht werden kann, bezeichnen wir mit
.

Hilt der Beobachter eine Sammellinse dicht vor sein Auge und ordnet das Objekt in-
nerhalb der Brennweite der Linse an, so wird die Brechkraft des Auges und damit der
Sehwinkel erhoht. Das Auge sieht nun das von der Linse entworfene, vergréfierte Bild des
Gegenstandes in groflerem Abstand |b| > ¢ > § vom Auge.

Der Sehwinkel ' ist maximal, wenn der Beobachter die Gegenstandsweite so wihlt, daf
das virtuelle, vergroflerte Bild genau im Nahpunkt seines Auges entsteht, d.h. die Bild-
weite |b| = ¢ hat. Die VergroBerung, welche der Beobachter durch den Gebrauch eines
optischen Instrumentes erzielt, ist i.allg. nicht gleichzusetzen mit der bisher bekannten
transversalen Vergroflerung. Um die Wirkung eines optischen Instrumentes zu charak-
terisieren, fiihrt man die sogenannte angulare Vergréflerung ein. Diese ist definiert
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Abbildung 6.32: Vergrofierung des Sehwinkels durch eine Sammellinse (aus [4])

durch

Sehwinkel mit opt. Instrument o/
My = . =—
Sehwinkel ohne opt. Instrument  «

Um im Fall der Lupe die angulare Vergroflerung berechnen zu kénnen, verschieben wir
in der Konstruktionszeichnung (Abb. 6.32) den Gegenstand an den Ort des Bildes und
erhalten y = GG’ = BC . Dann liest man ab

ma — BB _ Y _ BC
ano = = tana =

(—b) b (—b)

In der paraxialen Optik kann tana/ ~ o, tana ~ a gesetzt werden. Bei dem weiter
oben erlduterten Gebrauch der Lupe wird die angulare Vergréfierung

! ! _b b
TP A ) |
& Yy g g

erzielt. In diesem Fall stimmen transversale und angulare Vergréflerung iiberein!

Yy
b

Maximale angulare Vergroflerung wird erreicht, wenn die Lupe den Gegenstand in den
Nahpunkt des menschlichen Auges abbildet.

5 maximale
Mylp=s = 7+1=Dd+1 | angulare VergréBerung
f der Lupe

Eine als Lupe gebrauchte Sammellinse sollte eine mdéglichst kurze Brennweite, d.h. hohe
Brechkraft besitzen.

Die gebrauchlichste Verwendung der Lupe ist die, bei der das Objekt genau in die Bren-
nebene der Linse gebracht wird. Das virtuelle Bild liegt dann im Unendlichen und kann
mit entspanntem, auf Unendlich akkommodiertem Auge betrachtet werden.

Die angulare VergroBerung wird in diesem Spezialfall unendlicher Brennweite als die Nor-
malvergréflerung der Lupe bezeichnet. Mit den Sehwinkeln

a== und aozg

[ 5
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ergibt sich

0 | Normalvergréflerung
f| der Lupe

M| pi=c0 =

6.6 Abbildung durch dicke Linsen

Ein Lichtstrahl, der eine Linse durchsetzt, wird an deren beiden Grenzflichen gebrochen,
erfihrt also eine zweimalige Richtungsinderung. Bei einer diinnen Linse konnten wir die
Strecke, die ein Lichtstrahl innerhalb der Linse zuriicklegt, vernachlissigen und die Bre-
chungen an der Vorder— und Riickseite zu einer einzigen Brechung zusammenfassen. In den
Konstruktionszeichnungen haben wir daher die gesamte Richtungsénderung des Strahls
an der Mittelebene der Linse angetragen.

Bei einer dicken Linse ist dies nicht mehr méglich. Zur Bildkonstruktion ordnet man einer
dicken Linse zusitzlich zur Mittelebene zwei Hauptebenen zu. Dann kann die Bild-
konstruktion mit Hilfe idealisierter Strahlen durchgefiihrt werden. Diese erfahren eben-
falls nur eine Richtungséinderung, welche jeweils an einer der beiden Hauptebenen erfolgt
(Abb. 6.33 und Abb. 6.34).

Voraussetzung fiir die Definition der Hauptebenen ist die Tatsache, dafl auch bei dicken
Linsen achsenparallel einfallende Paraxialstrahlen im Brennpunkt fokussiert werden. Bei
der folgenden Herleitung betrachten wir eine Sammellinse, an die beidseitig das gleiche
Medium, hier speziell Luft (n; ~ 1), angrenzt. Aus dem Objektraum einfallende, ach-
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Abbildung 6.33: Bildkonstruktion bei ei-
ner bikonvexen dicken Linse mit Hilfe der Abbildung 6.34: Bildkonstruktion bei ei-
Hauptebenen und Hauptpunkte (aus [4]) ner bikonkaven dicken Linse (aus [4])

senparallele Paraxialstrahlen durchlaufen hinter der Linse den Brennpunkt F'. Verldngert
man die Strahlabschnitte vor und hinter der Linse geradlinig bis zu ihrem Schnittpunkt, so
legt dieser eine zur optischen Achse senkrechte Ebene fest, die bildseitige Hauptebene #'.
Ganz analog wird die objektseitige Hauptebene H definiert, wenn man die vom Bildraum
her einfallenden, achsenparallelen Strahlen betrachtet, welche im objektseitigen Brenn-
punkt F' vereinigt werden. Man nennt die Schnittpunkte H und H' der Hauptebenen mit
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der optischen Achse die Hauptpunkte der Linse. Die Hauptebenen werden in der Praxis
empirisch ermittelt.

Die Brennweiten f und f’ einer dicken Linse ergeben sich als Abstéinde der Brennpunkte
von den zugehorigen Hauptebenen. Objekt — und bildseitige Brennweite stimmen {iberein,
wenn die Linse wie im vorliegenden Fall beidseitig von dem gleichen Medium umgeben
ist. Im allgemeinen liegen die Hauptebenen jedoch ganz unsymmetrisch zur Linse, hdufig
befinden sie sich auflerhalb von dieser.

6.7 Linsensysteme

Setzt man beliebig viele diinne Linsen mit gemeinsamer optischer Achse zusammen, so
erhilt man wieder ein abbildendes System. In Analogie zu den dicken Linsen lassen sich
fiir ein solches Linsensystem zwei Hauptebenen ermitteln, deren Angabe zusammen mit
den Brennpunkten das System vollstdndig charakterisiert.
Wie bei dicken Linsen 148t sich auch die Bildkonstruktion mit Hilfe von ausgezeichneten,
idealisierten Strahlen und den Hauptebenen durchfiihren.

Bei Kombination zweier diinner Linsen der Brennweiten f; und f, im Abstand d ist die
Gesamtbrennweite f gegeben durch

11,1 d
fh o fif

Fir d < f; oder fy gilt dann die Ndherung

11,1
f

Die Brechkraft des Linsensystems ist gleich der Summe der Brechkrifte der einzelnen
Linsen.

& |D=D, + D]

6.8 Zusammengesetzte optische Instrumente

6.8.1 Das Mikroskop

Eine hohere angulare Vergréflerung als mit der Lupe erzielt man mit dem Mikroskop,
bei dem ein nahes Objekt in zwei Stufen abgebildet wird. Die Erfindung geht zuriick auf
den hollindischen Brillenmacher ZACHARIAS JANSSEN OF MIDDLEBURG im Jahre 1590,
sowie auf GALILEO GALILEI, der seine Erfindung im Jahre 1610 bekanntgab.

Wir wollen im folgenden den grundlegenden Aufbau eines Mikroskops erldutern:
Es besteht im wesentlichen aus zwei Sammellinsen, dem Objektiv L; und dem Okular
Ly, die in grolem Abstand voneinander angeordnet sind. Die Entfernung zwischen den
einander zugekehrten Brennpunkten der Linsen wird als optische Tubusléinge ¢ bezeich-
net. Sie ist grofler als die Summe der beiden Brennweiten.
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Der zu examinierende Gegenstand y wird dicht vor den objektseitigen Brennpunkt des
Objektivs gebracht. Dieses entwirft ein umgekehrtes, vergrofiertes, reelles Zwischenbild
y' innerhalb der objektseitigen Brennweite des Okulars. Das Okular wirkt daher als Lu-
pe und erzeugt von dem Zwischenbild ein virtuelles, aufrechtes, nochmals vergréflertes
Bild y”, welches durch die Augenlinse auf die Netzhaut des Betrachters abgebildet wird
(Abb. 6.35). Damit bei lingerem Arbeiten mit dem Mikroskop das Auge nicht durch

Abbildung 6.35: Strahlengang beim Mikroskop (aus [8])

die erforderliche Akkommodation ermiidet, wihlt man die Gegenstandsweite so, dafl das
Zwischenbild in der Brennweite des Okulars entsteht (Abb. 6.36). Dann liegt das virtu-
elle Endbild im Unendlichen und kann mit entspanntem Auge betrachtet werden. Die
zugehorige angulare Vergroflerung wird als Normalvergréflerung des Mikroskops be-
zeichnet. Aufgrund der zweistufigen Abbildung ergibt sich die Gesamtvergréfierung als

Abbildung 6.36: Ublicher Gebrauch des Mikroskops: das Endbild liegt im Unendlichen.
(aus [8])

Produkt aus der transversalen Vergréflerung durch das Objektiv und der Normalver-
grofierung des Okulars (Lupe):

My = MTObj. ) MAOk.
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Dabei ist . /
_ oy _ b _ 1
Mioy, = 4y =g=7
My, = % mit § = 25cm

Also gilt fiir die Normalvergréflerung des Mikroskops

ot
hbk

My

Mit Hilfe einer Lupe kann maximal eine angulare Vergréflerung von My = 25 erzielt
werden. Je nach Beschaffenheit des Objektivs konnen transversale Vergroflerungen bis
zum Hundertfachen erreicht werden. Mit einem Mikroskop ist eine bis zu tausendfache
Vergrofierung moglich. (Linsensysteme!)

Bei der beschriebenen Anordnung begrenzt der Durchmesser des Okulars den beobachtba-
ren Ausschnitt des Objektes, das Gesichtsfeld, auf einen gewissen achsennahen Bereich.
Von achsenfernen Punkten ausgehende Strahlen gelangen nicht mehr in das Okular und
sind somit nicht beobachtbar.

Um das Gesichtsfeld zu vergrofiern, ordnet man vor dem Okular eine weitere Sammellin-
se an. Die Feldlinse bricht auch die unter groflerem Winkel vom Objektiv kommenden
Strahlen in das Okular hinein. Objektiv und Feldlinse erzeugen also zusammen das reelle
Zwischenbild, welches zwischen Feldlinse und Okular liegt. Die Feldlinse bewirkt keine
zusédtzliche Vergroferung.

Versuch: Gezeigt wird der sinnvolle Einsatz einer Feldlinse.

Ein Dia wird iiber eine Mikroskopanordnung ohne Feldlinse vergrofiert.
Man sieht nur einen Ausschnitt des Motivs. Nach Einfiigen der Feldlinse
wird das vollstindige Bild sichtbar, wobei die Vergrofierung unveréndert
bleibt.

6.8.2 Das Fernrohr

Zur VergroBerung weit entfernter Objekte dient das Fernrohr. Ahnlich wie beim Mikroskop
erfolgt hier die Vergréflerung des Sehwinkels durch eine zweistufige Abbildung. Auflerdem
wird das Fernrohr genutzt, um dem Auge ein helleres Bild eines Objektes zuzufiihren.

Das astronomische oder Keplersche Fernrohr (J.KEPLER 1611) hat eine Sammel-
linse grofler Brennweite f; als Objektiv und eine Sammellinse kurzer Brennweite fo als
Okular. Diese sind so angeordnet, dafi der bildseitige Brennpunkt des Objektivs mit dem
objektseitigen Brennpunkt des Okulars zusammenféllt. Von einem weit entfernten Gegen-
stand, der mit dem freien Auge unter dem Winkel o gesehen wird, erzeugt das Objektiv in
seiner bildseitigen Brennebene ein umgekehrtes, stark verkleinertes,reelles Bild. Dies wird
von dem als Lupe wirkenden Okular unter dem Sehwinkel o betrachtet und ins Unendliche
abgebildet. Das auf Unendlich akkommodierte Auge nimmt schlieflich ein umgekehrtes,
vergroBertes, virtuelles Bild des Gegenstandes wahr (Abb. 6.37). Die Vergroerung ist als
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Abbildung 6.37: Strahlengang des KEPLERschen Fernrohres (aus [4])

das Verhiltnis der Sehwinkel

o' Sehwinkel mit Fernrohr

M = — =
A « Sehwinkel ohne Fernrohr

!/

!
definiert. Es ist o = 4 und o = £~ . Damit folgt
fi —J2

_ —f1| angulare Vergréflerung
" f, | des Keplerschen Fernrohres

My

Da das KEPLERsche Fernrohr ein umgekehrtes Bild erzeugt, wird es vorwiegend fiir astro-
nomische Beobachtungen genutzt.

Beim Hollindischen oder Galileischen Fernrohr (vorgestellt von H.LIPPERHEY
im Jahr 1608 und G.GALILEI im Jahr 1609) ist das Okular eine kurzbrennweitige Zerstreu-
ungslinse. Objektiv und Okular sind so angeordnet, dafl der bildseitige Brennpunkt des
Objektivs mit dem objektseitigen Brennpunkt des Okulars zusammenfillt (Abb. 6.38).
Es entsteht ein aufrechtes, vergréflertes, virtuelles Bild im Unendlichen. Da das Bild
aufrecht ist, eignet sich diese Art des Fernrohres besonders fiir irdische Beobachtungen
(Feldstecher). So besteht z.B. ein Opernglas aus zwei parallel zueinander in Augenab-
stand angeordneten holldndischen Fernrohren. Fiir die Vergroferung des holldndischen
oder GALILEIschen Fernrohres gilt

_h

M =
AT R

Hier ist die Brennweite des Okulars negativ.

Versuch: Gezeigt wird die Wirkungsweise der beiden Fernrohrarten.
Beim KEPLERschen Fernrohr kann zur Vergréflerung des Gesichtsfeldes
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Abbildung 6.38: Strahlengang des Holldndischen Fernrohres (aus [4])

vor dem Okular eine Feldlinse angeordnet werden. Diese bricht dann auch
die unter groferem Winkel vom Objektiv einfallenden Strahlen in das
Okular hinein, so dafl der Durchmesser des Okulars klein gehalten werden
kann.

6.8.3 Der Projektionsapparat (Dia — und Overhead — Projektor)

Die Funktion eines Projektionsapparates besteht darin, von einem durchsichtigen Gegen-
stand, einem Lichtbild oder Diapositiv, ein vergroflertes Bild auf einem Schirm zu entwer-
fen. Dazu mufl der Gegenstand vollstédndig ausgeleuchtet werden. Wichtig ist, daf} alle zur
Beleuchtung dienenden Lichtstrahlen ins Objektiv gelangen, damit eine vollstindige Ab-
bildung des Gegenstandes erzeugt wird. Dies leistet eine dicht vor dem Dia angeordnete
Beleuchtungslinse, der sogenannte Kondensor (Abb. 6.39).

Versuch: Am Beispiel eines Diaprojektors wird die wichtige Funktion einer Kon-
densorlinse herausgestellt:
Ein Dia wird zunéchst ohne Kondensor an die Wand projeziert. Es ent-
steht ein durch die Linsenfassung des Objektivs beschrinktes Bild. Nach
Einklappen einer Kondensorlinse wird das Dia besser ausgeleuchtet und
vollstindig auf der Wand abgebildet.

6.8.4 Abbildungsfehler

Bei den bisherigen Erlduterungen zu optischen Abbildungen an den verschiedenen Ab-
bildungsvorrichtungen sind wir stets von paraxialen Strahlen und, was noch nicht aus-
driicklich erwdhnt wurde, monochromatischem Licht ausgegangen. Diese Einschrinkungen
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Kondensor Objektiv

Abbildung 6.39: Strahlengang eines Diaprojektors

bilden die Voraussetzung fiir eine ideale Abbildung, bei der das Bild eines Gegenstands-
punktes wieder genau ein Punkt ist.

In der Praxis werden jedoch ausgedehnte Gegensténde i.allg. mit nicht monochroma-
tischem Licht und unter gréBeren Offnungswinkeln zur optischen Achse abgebildet. Der
Verlauf der Lichtstrahlen weicht dann vom idealen Strahlengang ab; es treten Abbildungs-
fehler auf, welche Verzerrungen und Unschérfe der Bilder zur Folge haben.

Man unterscheidet monochromatische Abbildungsfehler, die auch bei der Verwen-
dung monochromatischer Lichtbiindel auftreten, und chromatische Abbildungsfehler,
welche durch die Dispersion hervorgerufen werden. Die Abweichung vom idealen Strah-
lengang wird auch als Aberration bezeichnet.

Monochromatische Abbildungsfehler

a) Sphéirische Aberration

AuBlere Strahlen, die auf die Randzonen der Linse treffen, werden stéirker gebrochen
als Strahlen, die dicht an der optischen Achse verlaufen (Abb. 6.40). Achsenfernen
Parallelstrahlen entspricht eine kiirzere Brennweite als achsennahen Strahlen. Wird
daher ein Gegenstandspunkt durch ein weit gedffnetes Strahlenbiindel abgebildet,
so entsteht als Bild kein einzelner Punkt, sondern ein Lichtfleck oder Zerstreuungs-
scheibchen.

Zur Beseitigung dieses Offnungsfehlers kombiniert man geeignete Sammel — und
Zerstreuungslinsen, da bei den beiden Linsenarten das Gefille der Brechkraft vom
Rand hin zur optischen Achse gerade entgegengesetzt ist. Eine solche Korrektur ist
aber immer auf eine bestimmte Gegenstands — und Bildweite begrenzt. Zur Abhilfe

\\\\\\\\\ D N W W N N N
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Abbildung 6.40: Sphérische Abberation bei der Sammel— und der Zerstreuungslinse (aus

[8])

kann auch eine Offnungsblende zur Ausblendung der Randstrahlen eingesetzt wer-
den, was jedoch die Bildhelligkeit negativ beeinflufit. Ein korrigiertes System heif3t
Aplanat.

Versuch: Mit Hilfe verschiedener Blenden wird die Linsenzone, an der die
Strahlen gebrochen werden, variiert. Je stérker der Rand ausgeleuch-
tet ist, desto unterschiedlicher erfolgt die Ablenkung der Strahlen.

Astigmatismus

Bei der Abbildung eines Punktes, der seitlich von der optischen Achse gelegen
ist, entsteht auch bei Verwendung schmaler Lichtbiindel kein einzelner Bildpunkt.
Stattdessen erzeugt das schief auf die Linse auftreffende Strahlenbiindel zwei in ge-
wissem Abstand liegende, zueinander senkrecht verlaufende Bildlinien (Abb. 6.41).
Astigmatismus tritt auch bei einem symmetrisch auf eine Linse auffallenden Strah-
lenbiindel auf, falls deren Begrenzungsflichen nicht exakt kugelférmig, d.h. in allen
Richtungen gleich stark gekriimmt sind. Dann stellen die Hauptebenen die Ebenen
maximaler bzw. minimaler Kriimmung dar. Letzteren entsprechen eine linsenna-
he und eine linsenferne “Brennlinie”, in denen die auf die Hauptebenen treffenden
Strahlen vereinigt werden. Wird ein zur Linsenachse senkrechter Gegenstand abge-
bildet, so duflert sich der Astigmatismus durch eine Unschérfe am Bildrand.

Abhilfe schafft hier ein Linsensystem aus geeigneten Glassorten sowie die Veréinde-
rung der Blendenlage. Ein korrigiertes System wird als Astigmat bezeichnet.

Versuch: Am Beispiel der Projektion eines Kreuzgitterdias wird der durch die
Linsenwo6lbung hervorgerufene Astigmatismus vorgefiihrt:
Lampe, Diahalter, Linse und Mattscheibe werden zunichst so ju-
stiert, dafl das Kreuzgitter scharf auf der Mattscheibe entworfen
wird. Bei nachfolgender, leichter Drehung der Linse werden die senk-
rechten Linien unscharf, die Schirfe der waagerechten Striche hin-
gegen bleibt erhalten.
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Abbildung 6.41: Astigmatische Abbildung eines seitlich von der Systemachse gelegenen
Punktes P durch eine bikonvexe Linse. (aus [4])

c)

Bildfeldwélbung

Ein flaichenhafter Gegenstand, der in einer Ebene senkrecht zur optischen Achse
angeordnet ist, wird nicht in einer ebenen, sondern in einer gewdlbten Bildflache
abgebildet (Abb. 6.42).

Kissen — und tonnenférmige Verzeichnung

Im Gegensatz zu den bisher genannten Abbildungsfehlern beintréchtigt die Verzeich-
nung, fiir sich allein genommen, nicht die Bildschérfe, sondern bewirkt lediglich eine
Verzerrung des gesamten Bildes.

Der Fehler kommt dadurch zustande, daf} die transversale Vergroflerung in der nicht
— paraxialen Optik nicht mehr als konstant angesehen werden kann. Sie héngt bei
aufleraxialen Punkten von dem Abstand zur optischen Achse ab.

Werden insbesondere zur Beseitigung von Schérfefehlern Blenden eingesetzt, dann
tritt bei falscher Blendenlage oder Beleuchtung Verzeichnung auf. Wird die Blende
vor der Linse angeordnet, so fiihrt dies zu tonnenférmiger Verzeichnung, bei wel-
cher der Abbildungsmafistab in Achsenferne kleiner ist als in Achsenndhe. Liegt
die Blende hinter der Linse, so ist die Verzeichnung kissenférmig. Hier nimmt die
transversale Vergroflerung mit wachsender axialer Entfernung zu.

Versuch: An der Projektion eines Kreuzgitterdias sind die Verzeichnungen, die
durch falsche Plazierung einer Blende entstehen, deutlich erkennbar
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Abbildung 6.42: Entstehung sogenannter Bildschalen bei der Abbildung durch eine bikon-
vexe Linse. (aus [4])

(Abb. 6.43).

' ——— —— —

Abbildung 6.43: Projektion des Kreuzgitterdias: (a) tonnenformige, (b) kissenformige Ver-
zeichnung. (aus [7])

Um Verzeichnungen zu vermeiden, muf} eine Blende in die Linsenebene eingesetzt
werden. Dies ist bei den sogenannten orthoskopischen Objektiven verwirklicht.

e) Koma

Dieser Fehler tritt auf, wenn bei der Abbildung weit gedffnete Lichtbiindel verwendet
werden, deren Strahlen die Linse auch in achsenfernen Bereichen durchsetzen. Dann
entsteht als Bild eines stark seitlich der optischen Achse liegenden Punktes kein
Punkt, sondern eine ovale Figur mit kometenartigem Schweif. Diese Erscheinung,
die auf der einseitigen Lichtanhdufung in der Bildebene beruht, 148t sich durch
hinreichendes Abblenden der Linse unterdriicken.
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Chromatische Abbildungsfehler

Chromatische Aberration

Wird zur Abbildung kein monochromatisches Licht verwendet, dann entsteht aufgrund
der Dispersion des Linsenmaterials ein Farbfehler. Genauer:

Der Brechungsindex des Linsenmaterials héingt von der Frequenz bzw. Wellenlénge des
einfallenden Lichtes ab:

c
n=——=n(A
) ()
Damit ist auch die Brennweite der Linse wellenldingenabhiingig:
r1T2

f= =f()

(n[A] = 1) (rg —11)
Da der Brechungsindex mit zunehmender Wellenlinge abnimmt, hat eine diinne Linse fiir
blaues Licht eine kiirzere Brennweite als fiir rotes Licht (Abb. 6.44). Bei der Abbildung ei-
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Abbildung 6.44: Chromatische Aberration Abbildung 6.45: Achromatische Linse (aus
bei einer Konvexlinse (aus [4]) [4])

nes Gegenstandes mit weiflem Licht entsteht fiir jede Farbe ein anderes Bild. Aufgrund der
unterschiedlichen Brennweiten haben die farbigen Bilder verschiedene Absténde zur Lin-
se (chromatische Lingsabweichung). Zusétzlich unterscheiden sie sich in ihrer Grofle
(chromatische Vergrofierungsdifferenz). Insgesamt erhélt man in jeder Auffangebene
ein unscharfes Bild mit farbigen Réndern.

Der Farbfehler 148t sich teilweise beheben, indem man eine Sammellinse starker Dispersion
(z.B. Kronglas) kombiniert mit einer Zerstreuungslinse schwacher Dispersion (z.B. Flint-
glas). Auf diese Weise kann man erreichen, daf die Brennweite des Linsensystems zumin-
dest fiir zwei verschiedene Farben den gleichen Wert besitzt. Farbkorrigierte Linsensyste-
me heifen achromatische Linsen oder Achromate (Abb. 6.45).

6.8.5 Einsatz und Wirkung der Blenden

In den vorangehenden Abschnitten wurde bereits auf den Gebrauch von Blenden im
Rahmen der Verringerung von Linsenfehlern eingegangen. Hier dient die Blende zur Be-
grenzung des abbildenden Strahlenbiindels auf annihernd paraxiale Strahlen. Dabei wur-
de darauf hingewiesen, dafl auch die Wahl des Blendenortes die Abbildung beeinflufit.
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Falsche Plazierung verursacht kissen— oder tonnenférmige Verzeichnung oder fiihrt zu
ungleichméfBiger Ausleuchtung des Bildes (Koma).

Beim Einfiigen einer Blende in ein optisches System ist zu beachten, dafi diese selbst durch
das System abgebildet wird. Zu jeder materiell vorhandenen Blende gehoren daher ein
oder, falls sich die Blende zwischen den abbildenden Linsen befindet, zwei Blendenbilder.
Optisch wirksam ist nicht der Blendenkorper, sondern die Blendenbilder!

Nach ihrer Funktion unterscheidet man die Apertur— oder Offnungsblende und die
Gesichtsfeldblende.

Die Aperturblende wird eingesetzt zur Steuerung der Bildhelligkeit. Das objektseitige
Bild der Aperturblende heifit Eintrittspupille, das bildseitige nennt man Austrittspupille.
Sinnvoll angewendet ist die Aperturblende bei Plazierung am Bildort der Lichtquelle,
da sich die Eintrittspupille dann am Ort der Lichtquelle selbst befindet. Bei der Benut-
zung optischer Instrumente kommt der Austrittspupille besondere Bedeutung zu. Um
die Helligkeit eines solchen Instrumentes vollstdndig ausnutzen zu kénnen, mufl man die
Augenpupille vollstindig mit der Austrittspupille zur Deckung bringen.

Die Gesichtsfeldblende begrenzt das Gesichtsfeld, welches ein im Mittelpunkt der Ein-
trittspupille situiertes Auge sieht. Die zugehorigen Blendenbilder werden, je nachdem, ob
sie im Gegenstands— oder Bildraum entstehen, als Eintritts— oder Austrittsluke bezeich-
net.

Eine Anwendung der Aperturblende zeigt das Problem der Tiefenschirfe.

Tiefenschirfe

Ein optisches System kann jeweils nur von einer Ebene des Gegenstandsraumes ein scharfes
Bild im Bildraum entwerfen.

Haben zwei auf der optischen Achse gelegene Punkte P, und P, einen gewissen Abstand
voneinander (Abb. 6.46), so werden die Strahlen, die von dem weiter entfernt von der Linse
befindlichen Punkt P; ausgehen, schwicher gebrochen als die vom Punkt P, kommenden
Strahlen. Ein in Richtung der optischen Achse ausgedehnter Gegenstand wird daher nur
in einer gewissen Tiefe scharf abgebildet. Durch Einfiigen einer Apertur wird das Bild in
allen Tiefen schirfer, zugleich aber die Bildhelligkeit erniedrigt.

Versuch: Ein Gliihwendel mit mehreren Wicklungen wird durch eine Linse zunéchst
ohne Blende abgebildet. Das Bild ist insgesamt unscharf. Bei Verschieben
der Linse sind jeweils einzelne Teilbereiche des Wendels scharf zu sehen,
wahrend die iibrigen Bereiche verschwommen erscheinen. Nach Einsatz
einer Aperturblende zeigt die Mattscheibe simtliche Wicklungen in guter
Schéarfe, das Bild ist aber insgesamt dunkler.

Wir wollen an dieser Stelle unsere Betrachtungen zur geometrischen Optik abschlieflen
und zur Wellenoptik, insbesondere zur elektromagnetischen Lichttheorie von MAXWELL
iibergehen.
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Abbildung 6.46: Eine Aperturblende erhoht die Tiefenschérfe. (aus [4])
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Maxwellsche Lichttheorie

Reflexions — und Brechungsgesetz sollen nun aus den Maxwellschen Gleichungen heraus
interpretiert werden. Dabei lassen sich zusétzlich zu den im Rahmen der geometrischen
Optik gefundenen Ergebnissen Aussagen iiber die Intensitét des reflektierten und gebro-
chenen Lichtes gewinnen.

7.1 Elektromagnetische Wellen an Grenzflichen

Wie verhalten sich das elektrische und magnetische Feld einer Welle an der Grenzfliche
zwischen zwei optisch verschiedenen Medien?

Zur Klarung dieser Frage suchen wir zunéchst Randbedingungen, welche die Beziehungen
zwischen den Feldern diesseits und jenseits der Trennfliche angeben.

Randbedingungen

Bei den nachfolgenden Erdrterungen setzen wir der Einfachheit halber voraus, daf fiir die
betrachtete Materie

— — — —

D=cey & und B=puH
gilt. Es seien also z.B. ferromagnetische Stoffe aus unseren Betrachtungen ausgeschlossen.

Eine elektromagnetische Welle falle auf die Grenzfliche zweier Dielektrika mit den Di-
elektrizitatskonstanten £; und &5 . Die beiden Medien enthalten keine freien elektrischen
Ladungen, es tritt lediglich nach

5250E+13=550E

Polarisation auf. Nach der MAXWELLschen Fassung des GAUSSschen Satzes gilt dann

ﬂﬁdﬁ:@hei —0
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Abbildung 7.1:

Wir legen nun in Gedanken eine Dose um die Grenzfliche, wie in Abb. 7.1 skizziert
ist. Diese habe die infinitesimale Dicke d (d — 0), sowie die endliche, aber beliebige
Grundfliche A. Anwendung der ersten MAXWELL — Gleichung auf dieses Gebiet ergibt

ﬂﬁdA'://DndAz//AandA+ /AQDndA://A(Dm—Dnz)dA

Dabei sind D,; und D, die nach auflen gerichteten Normalkomponenten der dielektri-
schen Verschiebung. Der Beitrag der Seitenflichen zum Integral verschwindet im Grenzfall
d— 0.
Wir wihlen die Dosenabmessungen so klein, dafi D,, auf der Grundfliche A nicht variiert.
Dann folgt

Dnl = Dn2 )

d.h. die Normalkomponenten von D sind an der Grenzfliiche stetig. Andererseits gilt wegen
D = c¢y E fiir die Feldstarke

Enl_g_Q

- )
Ens &1

d.h. die Normalkomponenten der elektrischen Feldstérke E erfahren an der Trennfliiche
einen Sprung.

Welche Aussagen lassen sich iiber die tangentialen Komponenten von D und E machen?

Wir stellen uns nun die Grenzfliche von einer geschlossenen Kurve umgeben vor (Abb. 7.2).
Die Kurve schlie3t eine streifenformige Fliche ein, deren Breite d infinitesimal klein ist.
Die Linge [ ist endlich, aber beliebig wahlbar, so dal der Flicheninhalt des Streifens im
Grenzfall d — 0 vernachlissigt werden kann. Wenden wir daher die dritte MAXWELL —

Gleichung
$Ear=- || 95 i1
ot
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Abbildung 7.2:

auf die betrachtete Kurve an, so wird die rechte Seite Null und es gilt
]{E'df': Etdl—i-/ E,dl = /(Eﬂ —Ep)dl=0
l la l
Wir wihlen [ so kurz, dal} E; lings des Streifens als konstant angesehen werden kann,

dann folgt
,

d.h. die Tangentialkomponenten des elektrischen Feldes sind beim Ubergang von einem
in ein anderes Dielektrikum stetig. Im Gegensatz dazu erleiden die tangentialen Kompo-
nenten der dielektrischen Verschiebung einen Sprung.

Dy _ &
Dy, €2

Eine elektromagnetischen Welle an der Grenzfliche zwischen zwei Dielektrika erfiillt also
folgende Randbedingungen (Abb. 7.3):

die Tangentialkomponenten des E — Feldes

Stetig sind ~,
chig st { die Normalkomponenten des D — Feldes

Analog lassen sich die Randbedingungen fiir das B — Feld aufstellen. Aus der zweiten
MAXWELL — Gleichung § BdA =0 folgt, dafl die Normalkomponente B,, stetig ist.
Bni = Byo

Die vierte MAXWELL — Gleichung

ﬂ%dﬁ:lﬁeﬁ//%dﬁ
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Abbildung 7.3: Randbedingungen fiir das E— und das D—Feld an der Grenzfliche zwischen
zwei Medien. (aus [7])

liefert die Beziehung

Ba _m
By M2

Da fiir Isolatoren meist g ~ 1 gesetzt werden kann, nehmen wir fiir unsere weiteren

Betrachtungen an, dafl der Durchgang des B — Feldes durch eine Grenzfliche insgesamt
stetig erfolgt.

Berechnung des Reflexions — und Transmissionsgrades

Unser besonderes Interesse gilt nun der Frage, wie sich bei Reflexion und Brechung die
Intensitit der einfallenden Lichtwelle aufteilt in die Intensitéiten des reflektierten und des

durchgehenden Lichtes. Die gesuchten Groflen, welche die Intensitétsverhiltnisse angeben,
sind

Reflexionsgrad R Transmissionsgrad T
I, Iy
R=— T=—
I, I

Es ist uns an dieser Stelle nicht moglich, R und 7 fiir den allgemeinen Fall zu berech-
nen. Wir konnen fiir einen beliebigen Einfallswinkel der Lichtwelle keine genaue Angabe
tiber die Richtung des elektrischen Feldes machen, da der elektrische Feldvektor senkrecht
zur Ausbreitungsrichtung £ eine beliebige Lage einnehmen kann. Aus diesem Grund be-

schranken wir uns auf den Fall, daf} die Lichtwelle senkrecht auf die Grenzfliche auftrifft.
Dann ist F parallel zur Grenzschicht.

Nach dem Energieerhaltungssatz muf fiir die Intensitéten

I.=1+1, (1)
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gelten. Dabei ist der Zusammenhang von Intensitdt und elektrischer Feldstirke gegeben
durch

I=wc=ceegy E? (2)

Bei senkrechtem Einfall sind die elektrischen Feldvektoren sowohl der einfallenden und
der reflektierten, als auch der transmittierten Welle parallel zur Grenzfléche.

E. || E, || E4 || Grenzflsiche
Die Stetigkeit der Tangentialkomponenten liefert die Beziehung
E.+FE. =E, (3)

Aus (1) und (2) folgt
015160E3 = 0151€0E3 +0282€0E3

Mit (3) ergibt sich daraus

crereg (B2 — E?) = cyeg60 (Eo + E,)?
Division durch (E, + E,) fiihrt zu

cr1e169(Ee — E;) = o606 (Ee + E)

Auflésen nach E, ergibt

C1&1 — Ca€2
E,=E, 122 (%)
C1E€1+ C2é9

In dem Ausdruck fiir die Lichtgeschwindigkeit in den Dielektrika
1
VEi€o M o

setzen wir naherungsweise p = 1. Aus ¢; = ¢//&; folgt dann mit n; = ¢/¢; fiir den
Brechungsindex der beiden Medien n; = ,/g;. Damit 188t sich die Umformung

C;, =

6Z~cz-=n?c,-=nicz-ni=cni

vornehmen, welche, eingesetzt in (), zu der Beziehung

E —E. <n1 — n2>
1 + No

fithrt. Daraus resultiert

I, E? — 2
R= T L= (m n2) Reflexionsgrad R
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Aus der Energieerhaltung bzw. aus Gleichung (1) ergibt sich

T=1-R = T = -5

als Zusammenhang zwischen Reflexions — und Transmissionsgrad. Der Transmissions-

grad T berechnet sich also zu

47?,1 N9

T=— "2
(TL1 + 712)2

. Q . CQEQEC% Eg n
Beachte T = T, = ce, B2 # B
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Polarisation

8.1 Skalare Wellen und Vektorwellen

Zur mathematischen Beschreibung einer ebenen Welle denken wir uns von nun an ein
euklidisches Koordinatensystem so angelegt, daf} sich die Welle entlang der z — Richtung
ausbreite.

Dann wird eine skalare ebene Welle in ihrer allgemeinen Form beschrieben durch

u(z,t) = u(z F ct)
und der Ausdruck fiir eine skalare harmonische Welle lautet
u(z,t) = ug e’ i (wt — kz)

Ebene Wellen, die der obigen Bedingung geniigen, kénnen wir weiter wie folgt klassifizie-
ren:

1.Klassifizierung: Longitudinalwellen < Transversalwellen
u(z,t) = u,(2, 1) u, =0
Uy = Uy = 0 Ug, Uy # 0
2.Klassifizierung: Skalare Wellen < Vektorwellen

Skalare Wellen haben die mathematische Form

Y

u(z,t) = uo ol (Wt — k2)

wobei ug eine skalare Grofe ist. Longitudinalwellen sind skalar.
Vektorwellen werden beschrieben durch

(z t) (wt — kz)

Dabei legt der Vektor uy die Schwingungsebene der Welle fest. Diese liegt bei
Transversalwellen senkrecht zur Ausbreltungsrlchtung, welche durch den Wellen-
vektor k bestimmt wird. Es gilt also: up L k.

211
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Die Lage von g in der zu k senkrechten Ebene ist beliebig. Andert sich die Lage
von 1 und damit die Schwingungsrichtung der Welle zeitlich willkiirlich und vo6llig
regellos, so heiflt die Transversalwelle unpolarisiert. Ist jedoch im zeitlichen Mittel
eine Schwingungsrichtung ausgezeichnet, oder erfolgt die zeitliche Anderung nach
einer bestimmten Gesetzméfigkeit, so spricht man von der Polarisation der Welle.
Nach der Polarisationsrichtung, die der Vektor uy festlegt, unterscheidet man
verschiedene Arten der Polarisation.

Transversale Wellen konnen also untereinander noch zuséatzlich dadurch klassifiziert wer-
den, ob und wie sie polarisiert sind. Wir wollen nun die verschiedenen Arten der Polari-
sation am Beispiel der Lichtwellen besprechen.

8.2 Polarisiertes Licht

Da es sich bei Licht um eine elektromagnetische Wellenerscheinung handelt, sind Licht-
wellen transversal. In ihnen schwingen elektrische und magnetische Feldstérke senkrecht
zueinander und senkrecht zur Fortpflanzungsrichtung.

ELBLFk baw. €

Licht ist also polarisierbar. Dabei wird die Polarisationsrichtung einer Lichtwelle als die
Richtung des elektrischen Feldvektors E definiert. Eine Lichtwelle wird daher i.allg. be-
schrieben durch

E(F, t) = E’O ei (k7 — wt)
Wir beschrianken uns hier auf Lichtwellen der Form

E(z,t) = Ey cos(wt — kz) ,

welche sich in z — Richtung ausbreiten.

Man kénnte ebenso das B — Feld zur Definition der Polarisation benutzen, dann ist ledig-
lich die Polarisationsrichtung um 90° gedreht.

8.2.1 Linear polarisiertes Licht

Es gilt

B (B - (B2 Joccis

Ey sinp

Bei linear polarisiertem Licht schwingt die elektrische Feldstirke Ein jedem Punkt in
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dieselbe Richtung, in die Polarisationsrichtung. Die Vektoren k und E spannen daher
eine Ebene auf, die als Schwingungsebene bezeichnet wird. Senkrecht dazu schwingt
die magnetische Flufidichte B in der Polarisationsebene.

Linear polarisiertes Licht ist als Uberlagerung von zwei gleich- oder gegenphasig in « —
und y — Richtung schwingenden Wellen zu beschreiben. In dem Wellenausdruck

~ ([ E; )\ _ Eo, cos(wt — kz)
Ez1) = ( E, ) N ( Ey, cos(wt — kz +6) )
ist demnach bei linearer Polarisation
60=0 oder 6=

Zu setzen.

8.2.2 Zirkular polarisiertes Licht

Fir Eyp, = Eyy = Ep und 0 = +=7/2 erhélt man zikular polarisiertes Licht.

Flot) = By < Coscos(wt—kz) ) _ B, ( cos(wt — kz) )

(wt — kz £ 7/2) Fsin(wt — k2)

Hier ist der Betrag des elektrischen Feldvektors konstant.

|E| = \/E2 + E2 = \/ E} cos?(wt — kz) + E} sin®(wt — k2) = Ey

Dagegen variiert die Richtung von E mit der Zeit. Nach welcher GesetzmaBigkeit erfolgt
die zeitliche Richtungsdnderung von E?

Sei § + /2. Wir untersuchen die Richtungséinderung von E an einem festen Punkt zo auf
der z — Achse.

o =wt—kz
Zum Zeitpunkt ty = 0 liegt E im Winkel ¢ = —kzy zur x — Achse.

Bn (50 )= (k) )

Nach einer Zeit ¢t = kzq/w gilt

d.h. E weist in z — Richtung. Ein Beobachter, auf den sich die Welle zubewegt, d.h., der
zur Lichtquelle hinschaut, sieht eine Rotation des elektrischen Feldvektors im Uhrzeiger-
sinn um die z — Achse (Abb. 8.1).

Fiir zirkular polarisiertes Licht 148t sich also festhalten:
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wt = nj4

() (b)

Abbildung 8.1: Rotation des elektrischen
Feldvektors einer rechtszirkular polarisier- Abbildung 8.2: Rechtszirkulares Licht
ten Welle. (aus [13]) (aus [13])

An jedem festen Ort zy rotiert der elektrische Feldvektor E in einer zur z,y — Ebene
parallelen Ebene. Er lduft mit der Frequenz w auf einem Kreis mit dem Radius Ey um.
Beim Fortschreiten der Welle in z — Richtung beschreibt die Spitze des E — Vektors eine
Schraubenlinie, die nach einem Umlauf um eine Wellenldnge A in z verschoben ist.

Im Fall 6 = +7/2 sieht ein dem Licht entgegen blickender Beobachter eine Drehung im
Uhrzeigersinn. Von der Quelle aus gesehen, erfolgt die Rotation rechtshindig. Man spricht
daher von rechtszirkular polarisiertem Licht.

Bei einer Phase § = —7/2 liegt eine linkshéindige Rotation von E um die Ausbreitungsrich-
tung vor. Der Beobachter registriert eine Drehung entgegen dem Uhrzeigersinn, das Licht
heifit linkszirkular polarisiert (Achtung, das Vorzeichen von ¢ ist definitionsabhéngig

.

Zusammenhang zwischen linearer und zirkularer Polarisation

Uberlagert man eine rechtszirkular und eine linkszirkular polarisierte Lichtwelle, welche
in Frequenz und Amplitude iibereinstimmen

ER+EL:E )

so ist die Richtung des resultierenden elektrischen Feldvektors fest. Es entsteht eine linear
polarisierte Welle (Abb. 8.3).

8.2.3 Elliptisch polarisiertes Licht

Lineare sowie zirkulare Polarisation stellen Spezialfiille elliptisch polarisierten Lichtes dar.
Bei elliptisch polarisiertem Licht rotiert der elektrische Feldvektor um die Ausbrei-
tungsrichtung und &ndert wahrenddessen zusétzlich seinen Betrag.
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Abbildung 8.3: Uberlagerung von rechts— und linkszirkularem Licht zu einer linear pola-
risierten Lichtwelle

Betrachtet man also den allgemeineren Fall Ey, # Ey, und/oder § # nm/2, dann be-

schreibt die Spitze von E senkrecht zur Ausbreitungsrichtung eine Ellipse, wihrend die
Welle fortschreitet (Abb. 8.4).

= _ Eqy, cos(wt — kz)
E(zt) = ( Ey, cos(wt — kz +6) )

Die durchlaufene Ellipse 148t sich jeweils in ein Rechteck mit den Maflen 2 Fy, auf 2 E,

Abbildung 8.4: Elliptisches Licht (aus [13])

einbeschreiben. Dabei bestimmt die relative Phasendifferenz § die Exzentrizitéit der Ellip-
se. Diese ist minimal fiir 6 = +7/2 und erreicht ihr Maximum fiir § = 0, 7 (Abb. 8.5).
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Abbildung 8.5: (aus [13])
8.3 Erzeugung polarisierten Lichtes

8.3.1 Gitter und Polarisationsfilter

Wir haben bereits eine Analogie zur Polarisation von Lichtwellen kennengelernt, die Po-
larisation von Mikrowellen mit Hilfe eines metallischen Drahtgitters.

Fillt eine elektromagnetische Welle (Mikrowelle) auf ein Drahtgitter, so wird nur derjenige
Wellenanteil durchgelassen, bei dem der elektrische Feldvektor E senkrecht zu den Gitter-
drihten schwingt. Der restliche Anteil wird aufgrund der guten Leitfihigkeit der Dréihte
absorbiert (Abb. 8.6). Das Drahtgitter erzeugt also linear polarisierte Mikrowellen.

Abbildung 8.6: Polarisation von Mikrowellen am Drahtgitter

Lichtwellen auf analoge Weise zu polarisieren, ist aufgrund der kiirzeren Wellenldnge we-
sentlich schwieriger!

Es gelang jedoch G.R.BIRD und M.PARRISH im Jahr 1960, ein Drahtgitter zu konstruie-
ren, welches 2160 Drahte pro Millimeter enthielt und damit zumindest fiir die Polarisation
von langwelligem Licht geeignet war.

Heute benutzt man in der Praxis sogenannte Polaroidfilter, welche im Prinzip wie Git-
ter funktionieren. Sie wurden ihrer einfachsten Form erstmals 1928 von dem 19jihrigen
Studenten E.H.LLAND erfunden.
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Es gibt zwei verschiedene Arten der Herstellung von Polaroidfiltern. Zum einen verwendet
man dichroitische Kristalle, d.h. Kristalle, die eine optische Vorzugsrichtung besitzen. Sie
haben die Eigenschaft, bei Einfall einer Lichtwelle diejenige Komponente des elektrischen
Feldes, welche senkrecht zu ihrer optischen Achse gerichtet ist, stark zu absorbieren. Bei
geniigender Kristalldichte ist daher die austretende Lichtwelle parallel zur optischen Vor-
zugsrichtung linear polarisiert (Abb. 8.7). Dies macht man sich zunutze, indem man die

Abbildung 8.7: Dichroitischer Kristall (aus [13])

Kristalle mit fester Vorzugsrichtung in Plastikfolien einbettet.

Finanziell giinstiger und daher h&ufiger ist folgendes Herstellungsverfahren: Man bet-
tet anstelle der Kristalle lange, fadenformige, organische Molekiile (Polyvinyle) in Kunst-
stoffolien ein. Diese zeigen ldngs der Molekiilketten eine gute, quer dazu eine schlechte
Leitfahigkeit. Bei einer einfallenden Lichtwelle wird daher die zu den Ketten parallele
elektrische Feldkomponente stark absorbiert.

Polaroidfolien sind die gebrduchlichsten Mittel zur Erzeugung, aber auch zum Nach-
weis von polarisiertem Licht. Dies soll nun anhand einer geeigneten Versuchsapparatur
(Abb. 8.8) demonstriert werden. Ein als Polarisator eingesetzter Polaroidfilter erzeugt
linear polarisiertes Licht, bei der Verwendung als Analysator weist er linear polarisiertes
Licht nach.

Versuch 1: Als Detektor verwenden wir eine einfache Mattscheibe. Zun#chst wird
nur der Polarisator zwischen Strahl und Mattscheibe eingefiigt. Das Dre-
hen der Polarisationsrichtung verursacht keine Helligkeitsénderung.

Versuch 2: Ordnet man Polarisator und Analysator hintereinander so an, daf} ihre
Polarisationsrichtungen gerade um a = 90° gegeneinander verdreht sind,
dann wird kein Licht durchgelassen. Die Mattscheibe bleibt dunkel. Das
vom Polarisator erzeugte linear polarisierte Licht wird vom Analysator
vollstéandig absorbiert.
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®

Detector

Abbildung 8.8: Linearer Polarisator und Analysator. (aus [13])

Durch Drehen des Polarisators wird nun der Winkel o zwischen Polarisa-
tor und Analysator verkleinert. Diejenige Feldkomponente des vom Pola-
risator kommenden Lichtes, welche der Analysator durchgelafit, wichst.
Man beobachtet zunehmende Helligkeit. Maximale Helligkeit wird bei
a = 0 erreicht, d.h. wenn Polarisator und Analyator gleiche Durchlaf-
richtung besitzen.

Welche Gesetzmifligkeit beschreibt die Intensitidt des transmittierten Lichtes fiir den
Fall, dafl Analysator und Polarisator um einen Winkel o gegeneinander verdreht sind?

’
«

v
i,

Das vom Polarisator kommende Licht 148t sich zerlegen in einen Anteil, dessen Schwin-
gungsebene parallel zur Polarisationrichtung des Analysators liegt, sowie in einen Anteil
mit dazu senkrechter Schwmgungsebene Es gilt E=E,+ E’

E(’1 wird von A absorbiert, nur E, kann A passieren. Mit E, = F cosa gilt fiir die vom
Detektor gemessene Intensitit

I(a) = Iy cos’ | Gesetz von Malus

Dieses erstmals 1809 von E.MALUS veroffentlichte Gesetz wurde lange vor der Entdeckung
der elektromagnetischen Wellen aufgestellt!
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Versuch 3: Zwischen zwei gekreuzte Polarisationsfilter wird ein dritter Filter ge-
bracht. Man beobachtet Aufhellung, da der eingefiigte Filter die Polari-
sationsrichtung des vom Polarisator kommenden Lichtes dreht.

8.4 Polarisation durch Streuung

Wir haben die Streuung von Licht an Atomen (Molekiilen), die Rayleigh—Streuung,
bereits ausfiihrlich besprochen. Hier noch einmal kurz zur Wiederholung:
Die Elektronen eines Atoms werden von einfallendem Licht zu Dipolschwingungen ange-

S

/L

N

E

regt.

Die notige Schwingungsenergie wird aus der einfallenden Lichtwelle absorbiert. Die ent-
stehenden HERTZschen Dipole senden ihrerseits elektromagnetische Strahlung aus. Die
Abstrahlung ist senkrecht zur Dipolachse maximal. Sie erfolgt mit der Intensitét

I~ W,
Ist nun die anregende Lichtwelle linear polarisiert, so wird in die Polarisationsrichtung

der Welle keine Energie abgestrahlt, da diese mit der Schwingungsrichtung der Dipole
iibereinstimmt (Abb. 8.9). Eine unpolarisierte Welle 148t sich darstellen als Uberlagerung

Abbildung 8.9: Streuung einer linear polarisierten Welle an einem Atom (Molekiil). (aus

[13])
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zweier inkohérenter, linear polarisierter Teilwellen, welche orthogonal zueinander schwin-
gen. Wird eine unpolarisierte Welle an einem Atom gestreut (Abb. 8.10), so ist die Streu-
strahlung, die senkrecht zu den Schwingungsebenen ausgesendet wird, linear polarisiert.

Abbildung 8.10: Streuung einer unpolarisierten Welle an einem Atom (Molekiil). (aus [13])

Versuch: Uber einem mit einer Losung gefiillten, glisernen Bassin, dessen Hinter-
seite mit schwarzer Pappe abgedeckt ist, wird unter einem Winkel von 45°
ein Spiegel angebracht. Ein von einer Kohlebogenlampe erzeugter Licht-
strahl lduft durch einen Polarisator und dringt dann in die Losung ein
(Abb. 8.11). Die Molekiile der Lésung werden zum Leuchten angeregt.
Ist die Durchlafirichtung des Polarisators horizontal, so verschwindet der
leuchtende Strahl im Becken. Bei vertikaler Polarisationsrichtung sind am
Spiegel keine Leuchterscheinungen mehr zu beobachten. Die angeregten
Ladungsteilchen strahlen also nicht in ihre Schwingungsrichtung ab.

8.5 Polarisation durch Reflexion und Brechung

Wir haben bereits hergeleitet, daf§ fiir die Reflexion von Licht an Materie bei senkrechtem

Einfall
E, N1 =Ny

Ee ni + neo
gilt. Der Reflexionsgrad R, der das Verhéltnis von reflektierter zu einfallender Intensitét
beschreibt, ist dann gegeben durch

Rl _ (5)2 _ (”1 _”2)2
1. E, n + ng
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| if/ﬁ;e,aﬁ 4:1’ V4

Abbildung 8.11: Streuung von Licht an den Molekiilen einer Losung

Beispielsweise betrigt der Reflexionsgrad fiir den senkrechten Ubergang einer Lichtwelle
von Luft (n; ~ 1) in Glas (ny =1,5)

2
1-1,5
R: ’ = 4:4

<1+1,5> 0,0 %

Bei anderen Einfallswinkeln gestaltet sich die Herleitung der reflektierten bzw. transmit-
tierten Intensititen wesentlich komplizierter. Insbesondere miissen dann die Polarisati-
onsrichtungen der Lichtwellen beriicksichtigt werden (Abb. 8.12). Wir unterscheiden fiir

|
|
’ | \\
| A

Abbildung 8.12: Zur Betrachtung der Polarisationsrichtungen der Wellen an einer Grenz-
fldche

die einfallende, die reflektierte und die durchgehende Welle

parallel zur Einfallsebene: E!l

lineare Polarisation < senkrecht zur Einfallsebene: E+

und untersuchen die folgenden Félle:
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Eﬂ = 0: Der einfallende Lichtstrahl ist senkrecht zur Einfallsebene polarisiert. Die
sich in der Materie ausbildenden HERTZschen Dipole schwingen ebenfalls
orthogonal zur Einfallsebene. Sie erzeugen daher einen reflektierten und
einen gebrochenen Strahl, deren Polarisationsrichtung mit der des einfal-
lenden Strahls iibereinstimmt (Abb. 8.13).

Abbildung 8.14: Reflexion und Bre-

Abbildung 8.13: Reflexion und Brechung ei- chung einer parallel zur Finfallsebe-
ner senkrecht zur Einfallsebene linear polari- ne linear polarisierten Welle, BREW-
sierten Welle.(aus [13]) STERsches Gesetz. (aus [13])

E} =0: Das einfallende Licht ist parallel zur Einfallsebene polarisiert. Die im Me-
dium angeregten elektrischen Dipole strahlen nur sehr geringe Intensitét in
Richtung des reflektierten Strahles ab, da dieser einen sehr kleinen Winkel 6
mit der Dipolachse einschliefit (Abb. 8.14). Im Grenzfall § = 0° verschwin-
det der reflektierte Strahl vollig. Der Einfallswinkel, bei dem dieser Grenzfall
eintritt, heifit Polarisationswinkel oder Brewsterwinkel. Mit 6 = 0°
folgt aus 6, + 6 4+ 90° + 6; = 180°

fe =0, =|90° — 6, =0, Brewsterwinkel

Setzt man dies in das Brechungsgesetz von SNELLIUS sinf,./sinfl; = n
ein, so gelangt man zu dem Gesetz von Brewster (D.BREWSTER 1781
—1868):

sin 6, _ sinf,
sin(90° — 6,)  cosf,

tanf, =n

Das Verhalten eines unpolarisierten Strahls an der Grenzfliche kann nun durch die Zu-
sammenfassung beider Fille erkliart werden.

Trifft unpolarisiertes Licht unter dem Winkel 6, = 6,(n) auf die Grenzfliche eines Medi-
ums, so wird nur die senkrecht zur Einfallsebene polarisierte Komponente El reflektiert.
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Durch Reflexion unter dem BREWSTERwinkel 148t sich also wollstdndig linear polarisiertes
Licht erzeugen, wobei die Polarisationsrichtung senkrecht zur Einfallsebene ist. Zusétzlich
ist der gebrochene Strahl teilweise polarisiert.

Nach dem BREWSTERschen Gesetz kann durch experimentelle Bestimmung des Brewster-
winkels der Brechungsindex eines Stoffes ermittelt werden.

Versuch 1: Polarisation durch Reflexion an einer Glasplatte

(a) Uberpriifung des BREWSTERschen Gesetzes:
Die Glasplatte wird mit senkrecht zur Einfallsebene polarisiertem
Licht bestrahlt, wobei der Einfallswinkel solange variiert wird, bis
der reflektierte Strahl verschwindet. Der aus dem BREWSTERwinkel
berechnete Wert des Brechungsindexes wird mit dem Literaturwert
verglichen.

(b) Untersuchung der Polarisation von reflektiertem und gebrochenem
Strahl:
Reflektierter und gebrochener Strahl werden bei Einbringen und
Drehen eines Polfilters auf Intensitétsverdnderungen hin beobachtet

(Abb. 8.16).

§/§7Unpolanzed light
\

Polarized

] TP
i b,
i Pantially
~ potarized

Abbildung 8.16: Polarisation durch Refle-
Abbildung 8.15: Plattenstapelpolarisator ~ xion an einer Glasplatte. (aus [13])

Ein grofler Nachteil des erlduterten Effektes ist die Tatsache, dal der vollstéindig polari-
sierte reflektierte Strahl nur sehr geringe Intensitéit besitzt. Der intensitétsstarke durch-
gehende Strahl ist nur unmerklich polarisiert.
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Versuch 2: Der Plattenstapelpolarisator (D.F.J.ARAGO 1812)

Ersetzt man im vorangehenden Versuch die einzelne Glasplatte durch
einen Glasplattenstapel (hier aus Diagldsern), so verstérkt sich der Po-
larisationseffekt. Man erzielt eine merkliche Polarisation auch des gebro-
chenen Strahls (Abb. 8.15).

Den allgemeinen Zusammenhang zwischen Absorption, Reflexion, Brechung und Polari-
sation fiir beliebige Einfallswinkel erhdlt man auf rechnerischem Wege aus den MAX-
WELLschen Gleichungen. Das Ergebnis bilden die Fresnelschen Formeln.

Fresnelsche Formeln fiir dielektrische Medien

Reflektierter Strahl: Gebrochener Strahl:

El _ sin(f. —6q) E;  2sinfy, cosd,
Ej ~ sin(f, + 6y) Ej — sin(f, + 6,)
tan(f. — 04) E_(u B 2 sinf, cos 0,
tan (0, + 0,) El "~ sin(f + 04) cos(f. — 04)

Eine graphische Auswertung der Formeln fiir drei verschiedene Medieniibergéinge zeigt die
Abbildung.

Fiir die Ubergiinge
1. Luft — Kronglas
2. Kronglas — Luft

3. Luft — Stahl (Spiegel)

sind folgende Gréflen aufgetragen:

a) das Verhéiltnis % fir £+ und Ell in Abhingigkeit vom Einfallswinkel

e

b) die Schwingungsform des reflektierten Strahles fiir Einfallswinkel unter 135°

c) die durch Reflexion entstehende Phasenverschiebung zwischen E!l und E*
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8.6 Doppelbrechung

Viele Kristalle sind elektrisch und damit auch optisch anisotrop. Die Elektronen der Kri-
stallatome sind in verschiedenen Raumrichtungen unterschiedlich stark gebunden, so daf§
sie in den verschiedenen Raumrichtungen unterschiedliche Resonanzfrequenzen besitzen.
Je stérker die Bindungskraft ist, desto hoher ist die Schwingungsfrequenz eines Elektrons.
Wie wir bei der Behandlung der Dispersion gesehen haben, wird der Brechungsindex eines
Mediums bestimmt durch die Differenz zwischen der Frequenz der einfallenden Welle und
der Eigenfrequenz der Elektronen. Die optische Anisotropie eines Kristalls beruht also
darauf, dal der Brechungsindex von der Raumrichtung abhéingt.

Die Elektronenbindung im anisotropen Kristall wird veranschaulicht durch das in Abb. 8.17
dargestellte mechanische Modell. In Abb. 8.18 ist der mogliche Verlauf der zugehérigen

Abbildung 8.17: Mechanisches Modell fiir
die Elektronenbindung im anisotropen Abbildung 8.18: Dispersionskurven eines
Kristall. (aus [13]) doppelbrechenden Materials. (aus [13])

Dispersionskurven eines in der x — und y — Richtung anisotropen Materials aufgetragen.
Es gilt n;(w) # ny(w) . Ein solches Material, welches zwei verschiedene Brechungsindizes
aufweist, heifit doppelbrechend.

Aus dem Kurvenverlauf erkennt man, dafl die dichroitischen Kristalle eine spezielle Unter-
gruppe der doppelbrechenden Kristalle darstellen. Ein so beschaffenes Material wird bei
Lichteinfall mit einer Frequenz nahe wy die in y — Richtung polarisierte Feldkomponente
stark absorbieren, wiahrend es fiir die in z — Richtung polarisierte Komponente nahezu
durchléssig ist.

Wird der Kristall mit Licht bestrahlt, dessen Frequenz im Bereich von wj liegt, so sind die
Brechungsindizes fiir die beiden Raumrichtungen merklich verschieden und die Absorpti-
on ist vernachldssigbar.

Der eindringende, gewohnliche Lichtstrahl spaltet im Kristall in zwei linearpolarisierte
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Strahlen mit senkrecht aufeinanderstehenden Schwingungsebenen auf, welche sich mit un-
terschiedlichen Geschwindigkeiten in verschiedene Richtungen ausbreiten. Dieses optische
Phénomen der Doppelbrechung wurde erstmals im Jahre 1669 von E.BARTHOLINUS
(1625 — 1692) am isléindischen Kalkspat entdeckt. Da diese Kristallart auch heute am
héufigsten fiir Polarisationsversuche verwendet wird, werden wir die Erscheinung der Dop-
pelbrechung am Kalkspat (CaCOj3) erldutern.

Aus natiirlichen Kalkspatkristallen lassen sich leicht Einkristalle abtrennen, die die Form
eines Rhomboeders (siche Abb. 8.19) haben, das von sechs Rhomboederflichen gleicher
Seitenldnge begrenzt wird. Die optische Achse eines solchen Kalkspatrhomboeders fillt mit
der kristallographischen Hauptachse der dreizdhligen Symmetrie zusammen. Die optische
Achse ist hier nicht eine einzelne Linie, sondern definiert vielmehr eine Vorzugsrichtung
im Kristall.

Fillt ein Lichtstrahl auf den Kristall, so wird durch die Einfallsrichtung und die opti-
sche Achse eine Ebene aufgespannt, welche man als Hauptschnitt bezeichnet. Wie die
optische Achse ist auch der Hauptschnitt beliebig parallel verschiebbar.

Abbildung 8.19: Rhomboeder (aus [4])

Versuch: Ein farbiger Punkt auf der Klarsichtfolie eines Overheadprojektors wird
mit einem groflen Kalkspat abgedeckt. Es erscheint ein zweiter Punkt,
welcher bei Drehung des Kalkspates um den ersten wandert. Dreht man
einen Polarisiationsfilter iiber dem Kalkspat, so verschwindet bei zwei um
90° gegeneinander gedrehten Polarisatorstellungen je ein Punkt. Schaut
man entlang der optischen Achse auf den Punkt, so ist kein zweiter Punkt
zu sehen.

Wir wollen die experimentellen Beobachtungen unter Beriicksichtigung der Kristallstruk-
tur genauer formulieren:

Dringt der vom Punkt ausgehende Lichtstrahl schrig zur optischen Achse in den Kalkspat
ein, so spaltet er in einen ordentlichen Strahl (o—Strahl) und einen auflerordentli-
chen Strahl (e—Strahl) auf. Ordentlicher und auferordentlicher Strahl sind senkrecht
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zueinander linear polarisiert. Dabei schwingt der E — Vektor des o-Strahls orthogonal
zum Hauptschnitt, der E — Vektor des e-Strahls im Hauptschnitt. Das Phéinomen ist
rotationssymmetrisch bei Drehung um die Einfallsrichtung. Der o-Strahl gehorcht dem
Snelliuschen Brechungsgesetz, der e-Strahl dagegen nicht. Stimmt die Einfallsrichtung des
Lichtstrahls mit der optischen Achse iiberein, so erfolgt keine Auftrennung. Wie lassen

Optic

axis

N Optic axis

Abbildung 8.20: Aufspaltung eines Lichtstrahls mit zwei orthogonalen Feldkomponeneten
beim Durchqueren eines doppelbrechenden Materials. (aus [13])

sich die Beobachtungen erkldren?

Ausbreitungsgeschwindigkeit und —richtung einer Lichtwelle im Kristall sind aufgrund der
Richtungsabhingigkeit des Brechungsindexes je nach Polarisiation unterschiedlich. Fiir
eine Welle, deren E — Vektor senkrecht zur optischen Achse oszilliert, besitzt das Medium
den Hauptbrechungsindex n, , sie pflanzt sich mit der Geschwindigkeit ¢, fort. Ist der
E - Vektor parallel zur optischen Achse gerichtet, so ist der Hauptbrechungsindex n, die
Ausbreitung erfolgt mit der Geschwindigkeit ;.

Wir fassen wieder eine natiirliche Lichtwelle als Uberlagerung zweier linear polarisierter,
orthogonaler Teilwellen auf. Damit konnen wir einen schrig zur optischen Achse einfallen-
den natiirlichen Lichtstrahl beziiglich des Hauptschnittes in einen o— und einen e-Strahl
zerlegen. Das Verhalten der beiden Teilstrahlen 148t sich nun folgendermaflen erléutern:
Im ordentlichen Strahl ist der E — Vektor stets senkrecht zur optischen Achse gerich-
tet. Nur der Brechungsindex n, ist mafigebend, die Ausbreitung erfolgt normal mit der
Geschwindigkeit ¢, (siehe Abb. 8.21).

Im auBerordentlichen Strahl schlieft der E — Vektor bei schragem Lichteinfall einen
Winkel ungleich 90° mit der optischen Achse ein. Er kann in eine dazu parallele und eine
senkrechte Komponente zerlegt werden.

—

= F + EH
~~~ ~—~
ni,cL n, ¢

Fiir die beiden Komponenten sind jeweils verschiedene Brechungsindizes, n, und n), wirk-
sam, so daf} die Wellenfortpflanzung in den zugehérigen Richtungen mit unterschiedlichen
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Abbildung 8.21: Finfallende Welle
senkrecht zum Hauptschnitt polari-
siert. (aus [7])

Abbildung 8.22: FEinfallende Welle parallel
zum Hauptschnitt polarisiert.(aus [7])

Geschwindigkeiten erfolgt. Der Strahl erfahrt daher beim Durchqueren des doppelbrechen-
den Mediums eine seitliche Ablenkung (Abb. 8.22).

Man unterscheidet zwei Arten doppelbrechender Substanzen:

A Optisch negative | Optisch positive
rt
Substanz Substanz
Brechungsindex ny <ny n|>ng
Lichtgeschwindigkeit ¢ >cyL o <cL
. Kalkspat Quarz
B 1
CISpeie Turmalin Rutil

Wir wollen die Ausbreitung der o— und der e-Welle noch auf vereinfachte Weise nach
dem HuyvGENSschen Prinzip diskutieren. Die zugehorigen Wellenfronten bilden Ausgangs-
punkte von Elementarwellen, welche sich unterschiedlich im doppelbrechenden Medi-
um fortpflanzen. Thre Wellenflichen formen rotationssymmetrische Figuren mit der op-
tischen Achse als Symmetrieachse. Die Wellenfliichen der sich isotrop ausbreitenden o—
Elementarwellen sind Kugelflichen, die Wellenflichen der e-Elementarwellen formen auf-
grund der anisotropen Ausbreitung Rotationsellipsoide. Die ebene Darstellung der Ele-
mentarwellen ist rotationssymmetrisch zu ergénzen!

Die HuvyGENSschen Wellenfronten lassen sich nun konstruieren als Einhiillende der Ele-
mentarwellen. Die Fronten der o— und der e~ Welle verlaufen parallel. Die Einhiillende
der e- Elementarwellen ist jedoch gegeniiber der o~ Wellenfront seitlich verschoben, so
dal o— und e~ Strahl rdumlich gtrennt werden.
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Abbildung 8.23: Optisch negative Sub- Abbildung 8.24: Optisch positive Sub-

stanz. (aus [13]) stanz. (aus [13])
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Abbildung 8.25: Konstruktion der o— und e— Wellenfronten nach Huygens. (aus [4])

8.7 Anwendungen der Doppelbrechung

8.7.1 Das Nicolsche Prisma

Die Doppelbrechung am Kalkspat wird zur Herstellung von linearen Polarisatoren aus-
genutzt. Der beriihmteste Vorginger heutiger Polarisatoren dieser Art ist das Nicolsche
Prisma, das bereits 1828 von dem schottischen Physiker W.NI1COL vorgestellt wurde.

Ein an den Enden geeignet geschliffenes, lingliches CaCO3 — Kristallstiick wird diagonal
in zwei Prismen zerschnitten und anschlieBend mit einer diinnen Schicht Kanadabalsam
wieder zusammengekittet (Abb. 8.26).
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Der Wert des Brechungsindexes von Kanadabalsam liegt zwischen n, und n| des Kalk-
spates, d.h. beziiglich des o—Strahls stellt die Kittschicht das optisch diinnere Medium
dar. Bei geeigneter Einstellung der Winkel 148t sich daher der o-Strahl aus dem Strah-
lengang eliminieren: Er wird an der Kittschicht totalreflektiert und anschlieffend an den
geschwirzten Seitenflichen des Kalkspatstiickes absorbiert. Aus dem NicoOLschen Prisma
tritt nur der vollsténdig linear polarisierte e-Strahl aus. Das NicOLsche Prisma wird heu-

Abbildung 8.26: Nicolsches Prisma (aus [13])

te in der Praxis ersetzt durch das dhnlich aufgebaute Glan — Foucault — Prisma. Dieses
ermoglicht durch spezielle Kristallorientierung senkrechten Lichteinfall und —austritt.

8.7.2 Retardierungsplatten (\/4 — Plittchen)

Eine Quarzplatte der geringen Dicke d sei so geschnitten, dafl die optische Achse parallel
zu der vorderen und der riickwértigen Fliche verlaufe. Senkrecht auf die Platte falle
eine monochromatische, ebene Welle. Dann besitzt der elektrische Feldvektor dieser Welle
eine zur optischen Achse parallele, sowie eine dazu senkrechte Komponente. Es erfolgt
eine Aufspaltung in o—Welle mit E | und e-Welle mit E||, die mit den Geschwindigkeiten
c1 = ¢/ny und ¢ = ¢/n fortschreiten. Die Strahlen erfahren keine rdumliche Trennung,
sondern die unterschiedlichen Geschwindigkeiten fiihren zu einem Laufzeitunterschied

At:i—i:g (nL—nH)

C| CH
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Dieser ruft eine Phasenverschiebung hervor.

%_?TQ At Atl/—d% (nl—nH):/\% <7’u_”ll)

Phasenverschiebung
(senkrecht zur opt. Achse)

AgpzA—:d(nL—m)

Ao : Wellenldnge im Vakuum

Durch Variation der Plattendicke d lassen sich also beliebige Phasendifferenzen zwischen
der o— und der e-Komponente der Welle einstellen. Im allgemeinen setzen sich daher die
beiden Teilwellen beim Austritt aus der Platte zu elliptisch polarisiertem Licht zusammen.

Von besonderer Bedeutung sind die Plittchen, die eine relative Phasenverschiebung
Ay =+t 7/2(+m?2m) zwischen den beiden Strahlen erzeugen. Die Dicke dieser Plidttchen
muf} der Beziehung

2
(4m:i:1)%:/\—7gd‘nL—n||‘

A dm+1

M I

geniigen.
Mit diesen sogenannnten \/4 — Plattchen kann man zirkular polarisiertes Licht erzeugen.

Verwendet man ein Quarzpléttchen, so folgt wegen n > ng

@ = +m/2 fiir 4m + 1 = linkszirkulares Licht
¢ = —n/2 fiir 4m — 1 = rechtszirkulares Licht

LBt man linear polarisiertes Licht, dessen Polarisationsrichtung um 45° gegen die optische
Achse geneigt ist, auf ein A/4 — Plittchen fallen, so wird £, gegen E|| um 7/2 = 90°
phasenverschoben. Zusétzlich besitzen die beiden Komponenten dann gleiche Amplitude.
Bei Drehen des Analysators ist keine Ausléschung beobachtbar, es treten nur Farbeffekte
auf. Das Retardierungsplittchen bewirkt also eine Umwandlung von linear polarisiertem
in zirkular polarisiertes Licht. Zirkular polarisiertes Licht kann aber mit Hilfe von \/4 —
Plattchen nicht nur erzeugt, sondern auch nachgewiesen werden (siche Abb. 8.28). Ergéinzt
man die oben dargelegte Versuchsanordnung so, dafi das entstehende zirkulare Licht auf
ein weiteres Retardierungspléttchen fillt, dann tritt wieder linear polarisiertes Licht aus.
Mit dem linearen Analysator weist man auflerdem nach, dafl die Polarisationsrichtung des
wiederhergestellten gegeniiber der des urspriinglichen linearen Lichtes um 90° gedreht ist.

Versuch: “Surfer”

Auf ein Diaglas werden mehrere Tesafilmlagen treppenférmig iibereinan-
dergeklebt. Legt man den Tesafilmstreifen zwischen zwei Polfilter und ver-
dreht diese gegeneinander, so erscheinen farbige Effekte. Diese kommen
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90° retarder

Abbildung 8.27: Erzeugung von zirkular polarisiertem Licht. (aus [13])
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Abbildung 8.28: Nachweis von zirkular polarisiertem Licht. (aus [13])

dadurch zustande, dafl die unterschiedlichen Dicken der Tesafilmschich-
ten verschiedene Phasenverschiebungen zwischen o — und e — Strahl des
austretenden Lichtes hervorrufen.

Wir haben unsere Betrachtungen auf Kristalle beschrénkt, die nur eine optische Achse be-
sitzen. Die Mehrzahl der Kristalle hat jedoch eine geringere Symmetrie und besitzt daher
zwei optische Achsen. Die optischen Vorgéinge stimmen prinzipiell mit den vorangehend
erlduterten iiberein, sie sind aber entsprechend komplizierter.
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8.7.3 Spannungsdoppelbrechung

Ein isotroper, fester Korper, z.B. Glas oder Kunststoff, wird doppelbrechend, wenn durch
mechanische Beanspruchung die Gleichwertigkeit der verschiedenen Raumrichtungen auf-
gehoben wird. So erzeugt z.B. eine uniaxiale Krafteinwirkung im Material optische Vor-
zugsrichtungen #hnlich derer in einachsigen Kristallen. Man nennt diese Erscheinung
Spannungsdoppelbrechung.

Eine wichtige technische Anwendung ist die Sichtbarmachung mechanischer Spannung in
Modellen von Maschinen und Werkstiicken.

Versuch: Plexiglas — Modelle von verschiedenen Werkstiicken (Haken, Winkel, etc.)
werden nacheinander zwischen zwei lineare Polarisatoren unterschiedli-
chen Drehsinns gebracht und durch Kraftwirkung unter Spannung gesetzt.
Es kommt zu Farbeffekten, Linien gleicher Spannung werden durch gleiche
Farben erkennbar (Abb. 8.29). Ohne Krafteinwirkung herrscht am Analy-
sator Dunkelheit.

Abbildung 8.29: Spannungsdoppelbrechung bei Werkstiickmodellen aus Plexiglas. (aus

[1])

Wie lassen sich die Versuchsergebnisse deuten?

Die Plexiglasteile werden unter Spannung doppelbrechend. Dabei ist der Phasenunter-
schied Ay zwischen ordentlichem und auBerordentlichem Strahl abhéngig von der Ple-
xiglasdicke d, der Differenz (n, — n)) sowie von der Wellenldnge A des Lichtes. Je nach

Dicke und Spannungszustand treten daher an den verschiedenen Stellen der Plexiglasteile
farbige Effekte auf.
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8.8 Anschauliches Bild zum Verstindnis der Doppel-

brechung

Man stelle sich die in die doppelbrechende Substanz eindringenden Wellen als Fahrzeu-
ge vor, die je nach Polarisationsrichtung beziiglich der optischen Achse mit £, und E)
gekennzeichnet sind. Die Wagen gelangen an eine Verzweigung, an der sich die Strafle in
zwei aneinandergrenzende Fahrbahnen mit unterschiedlichem Stralenbelag aufspalte. Der
Lichtausbreitung im Kristall entspricht nun weiter die Vorstellung, da} £, — Fahrzeuge
ausschlieilich die langsame, FE) — Fahrzeuge die schnelle Spur benutzen diirfen. Wagen,
die zugleich beide Kennzeichen besitzen, fahren auf dem Mittelstreifen.

In diesem Bild lassen sich nun folgende Fille erkldren:

(a)

Der Wellenvektor k der einfallenden Welle ist parallel zur optischen Achse gerichtet,
so daB E nur E, - Komponenten besitzt. Dem o — und e — Strahl entsprechen
also F, — Fahrzeuge, die sich mit derselben Geschwindigkeit auf der schnellen Spur
bewegen.

A/4 — Plittchen: Hier steht k senkrecht, E unter einem 45° — Winkel zur optischen
Achse. E setzt sich also aus einer E|, — sowie einer E; — Komponente zusammen,
deren Betrége gleich grofl sind. Es tritt eine Phasenverschiebung, jedoch keine Auf-
spaltung der Strahlen auf.

Dies entspricht dem Bild zweier verschieden gekennzeichneter Wagen, die gleichzei-
tig auf die parallelen Fahrbahnen auffahren. Das F, — Fahrzeug wird durch den
schlechten Belag der langsamen Spur gegeniiber dem anderen Fahrzeug verzogert.

Dringt die Welle schrig zur optischen Achse in den Kristall ein, dann hat der e —
Strahl sowohl eine parallele, als auch eine senkrechte Feldkomponente. Er wird also
veranschaulicht durch einen auf dem Mittelstreifen fahrenden Wagen. Dabei sind die
Réder auf der schlechten Spur einer hoheren Rollreibung ausgesetzt, was zu einem
seitlichen Ausbrechen des Wagens fiihrt.
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8.9 Weitere Effekte zur Doppelbrechung

8.9.1 Optische Aktivitit

Es gibt Substanzen, die die Schwingungsebene von linear polarisiertem Licht, welches
durch sie hindurchtritt, drehen. Diese physikalische Erscheinung wird als optische Akti-
vitdt bezeichnet. Ihre Bedeutung erstreckt sich jedoch nicht nur auf die Physik, sondern
auch auf andere naturwissenschaftliche Gebiete, wie z.B. Chemie und Biologie, da sie
Riickschliisse auf die molekulare Struktur der betreffenden Substanzen zuléfit.

Beobachtet wurde das Phidnomen der optischen Aktivitdt erstmals im Jahre 1811 von
dem franzosischen Physiker J.F.ARAGO. Er entdeckte die Drehung des elektrischen Feld-
vektors von linear polarisiertem Licht, das eine Quarzplatte entlang der optischen Achse
durchstrahlte (Abb. 8.30).

Spétere Versuche mit geschmolzenem oder fliissigem Quarz ergaben keine optische Akti-

Dextro

Quartz

Abbildung 8.30: Optische Aktivitéit eines Quarzkristalls. (aus [13])

vitdt, was einen Zusammenhang mit der Anordnung der Molekiile in der Kristallstruktur
vermuten liel. Wie Quarz, zeigen auch viele andere Substanzen, organische wie anorgani-
sche, optische Aktivitdt nur im kristallinen Zustand.

J.B.B1oT (1774 — 1862) wies nach, daf§ viele natiirlich vorkommende organische Stoffe in
fliissigem oder gasférmigem Zustand oder in Losung optisch aktiv sind. Bei diesen Sub-
stanzen ist die optische Aktivitit eine Eigenschaft der einzelnen Molekiile.

Zusatzlich stieff man auf die Existenz komplizierterer Substanzen, deren optische Aktivitdt
sowohl von den einzelnen Molekiilen selbst, als auch von deren Anordnung im Kristall
herriihrt.

Versuch: Optische Aktivitdt einer Zuckerlgsung

Eine mit Wasser gefiillte Wanne wird mit monochromatischem, linear po-
larisiertem Licht durchstrahlt. Der hinter der Wanne befindliche Analy-
sator zeigt Helligkeit, falls die Schwingungsebenen von Polarisator und
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Analysator parallel zueinander eingestellt sind. Kreuzt man die beiden
Polarisatoren, so findet Ausloschung statt. Riihrt man nun Dextropur in
das Wasser ein, so hellt sich das Gesichtsfeld des Analysators auf, da die
optisch aktive Zuckerlésung die Polarisationsrichtung des Lichtes dreht.
Der Analysator wird nachgeregelt, bis erneut Ausloschung auftritt. Mit
zunehmender Zuckerkonzentration erhoht sich der Winkel «, um den die
Schwingungsebene des Lichtes gedreht wird.

gruo Filter
Polfilter

17 :
(H//
77

Lazmge ,
; Lllﬂéf:l]Omm Polfilter

Liase
N Blelnde

Abbildung 8.31: Drehung der Schwingungsebene von Licht durch eine optisch aktive
Zuckerlosung. (aus [9))

Weitere Untersuchungen fiihrten zu folgender Unterscheidung optisch aktiver Stoffe:

Erfolgt, bei Blickrichtung hin zur Lichtquelle, die Drehung der Schwingungsebene im
Uhrzeigersinn, so spricht man von rechtsdrehenden oder d—drehenden Substanzen.
Rotiert der Feldvektor entgegen dem Uhrzeigersinn, so liegen linksdrehende oder 1-
Substanzen vor.

Der englisch Astronom SIR JOHN F.W. HERSCHEL (1792 — 1871) erkannte 1822, dafl
die 1- und d-Formen des Quarz zwar die gleiche chemische Zusammensetzung (SiOs)
haben, aber spiegelverkehrte kristallographische Strukturen besitzen. Die Tatsache, dafl
Losungen von Molekiilen gleicher chemischer Zusammensetzung sowohl rechts—, als auch
linksdrehend sein konnen, 148t analog auf die Existenz spiegelverkehrter Molekiile schlie-
Ben. Solche Molekiile heilen Stereoisomere.

Allgemein 148t sich festhalten:

Optisch aktive Substanzen haben einen schraubenférmigen Aufbau und kommen in zwei
isomeren Formen vor:

— Die linkshéndige oder 1-Form ist linksdrehend.

— Die rechtshiindige oder d-Form ist rechtsdrehend.
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Rechtsquarz Linksquarz
Spiegelebene

Abbildung 8.32: Kristallform eines rechts— und eines links—drehenden Quarzes. (aus [4])

Anhand von diesen Erkenntnissen lieferte FRESNEL schon 1825 eine

Erkldrung fiir das Drehverhalten optisch aktiver Substanzen:

Er betrachtete dabei eine linear polarisierte Lichtwelle als Uberlagerung zweier zirkular
polarisierter Wellen mit entgegengesetztem Drehsinn, welche die gleiche Frequenz, aber
nur eine halbsogrofle Amplitude wie die Resultierende besitzen. FRESNEL nahm nun fiir
die beiden Arten zirkularpolarisierten Lichtes unterschiedliche Fortpflanzungsgeschwin-
digkeiten im optisch aktiven Medium an. Als Konsequenz bildet sich zwischen der rechts-
zirkularen (R— ) Welle und der linkszirkularen (L— ) Welle eine Phasenverschiebung Ag
aus, welche proportional zu der im Medium zuriickgelegten Strecke d ansteigt. Die Zu-
sammensetzung der Teilwellen nach Verlassen des Mediums ergibt eine linearpolarisierte
Welle mit einer um « = Ag/2 gedrehten Schwingungsebene. FRESNEL fiihrt die optische
Aktivitit zuriick auf eine zirkulare Doppelbrechung. Die - und d-Formen der optisch
aktiven Substanzen besitzen fiir L— und R-Licht unterschiedliche Brechungsindizes ny,
und ng . Es gilt

AgngoL—ng:%r/\%(nL—nR)

A Drehwinkel
a=5f T
2 | der Polarisationsrichtung

Danach ist bei den d-drehenden Substanzen ng < ny, bei den I-Formen gilt ng > np, .
Im Laufe der Zeit wurden im Zusammenhang mit der optischen Aktivitét
weitere interessante Phinomene entdeckt:

Louis PASTEUR (1822 — 1895) zeigte 1848 am Beispiel der Weinsiure, daf eine racemi-
sche Mischung, die sich zu gleichen Teilen aus - und d-Molekiilen zusammensetzt, kein
Drehverhalten aufweist.
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Abbildung 8.33: Drehung der Schwingungsebene als Folge zirkularer Doppelbrechung. Die
rechtszirkulare Welle hat die hohere Geschwindigkeit, da ng > ny, gilt. (aus [4])

Von groflen Interesse fiir die Biologie ist der Vergleich natiirlich vorkommender optisch
aktiver Stoffe mit den entsprechenden im Labor synthetisierten Substanzen. Wéhrend bei
der Synthese im Labor stets optisch inaktive, racemische Mischungen entstehen, sind die
biologisch erzeugten Substanzen optisch aktiv und kommen in der Natur ausschliellich in
einer der stereoisomeren Formen vor: Natiirlicher Zucker ist stets d-drehend (“Dextrose”).
Natiirliche Weinsdure ist immer l-drehend. Biologische Aminosduren kommen mit Aus-
nahme der Gruppe der Antibiotika nur in der 1-Form vor. Die Ribonukleinsdure (RNS)
ist nur rechtshindig.

Dieses Phinomen stellt eine Brechung der Spiegelsymmetrie dar, iiber deren Ursa-
chen vielfiltige Spekulationen angestellt werden. Haufig wird eine Parallele zur schwachen
Wechselwirkung gezogen, bei der ein analoges Phinomen zu beobachten ist:

Obwohl sowohl links—, als auch rechtshindige Elektronen (Drehimpuls + h) existieren,
treten in der schwachen Wechselwirkung nur linkshéindige Elektronen auf. Hierin liegt
eine mogliche Erkldrung fiir die natiirliche Symmentriebrechung, welche aber auch auf
zufillige Fluktuation zuriickgefiihrt werden konnte.

8.9.2 Magneto — optische Effekte

M.FARADAY entdeckte 1845, dafl das Verhalten von Licht beim Durchgang durch ein
materielles Medium durch Anlegen eines starken longitudinalen Magnetfeldes beeinflufit
wird. Dieser nach ihm benannte Faraday — Effekt lieferte einen ersten Hinweis auf die
elektromagnetische Natur des Lichtes.

Versuch: Ein Bleisilikatglas wird von einem Laserstrahl durchsetzt. Ein hinter dem
Glas befindlicher Polarisationsfilter wird so eingestellt, dafl er das linear
polarisierte Licht des Lasers ausloscht. Bringt man nun das Glas in das
starke longitudinale Magnetfeld einer Spule, wobei die Lichtfortpflanzung
langs der Feldrichung erfolgt, so ist am Polarisator Helligkeit zu beobach-
ten. Die Polarisationsrichtung des Laserlichtes wird gedreht.
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Die magnetische Einwirkung ruft im isotropen Medium eine kiinstliche zirkulare Dop-
pelbrechung hervor. Man spricht von induzierter optische Aktivitidt. Der Winkel,
um den die Schwingungsebene des Lichtes gedreht wird, ist der durchstrahlten Material-
dicke d sowie der magnetischen FluBdichte B proportional.

a=YVBd V: Verdet — Konstante

Durch mehrfache Umkehr des Lichtweges im Material 148t sich der Faraday — Effekt
verstirken, d.h. die GroBe der Drehung vervielfachen. Dies ist bei der natiirlichen zirkula-
ren Doppelbrechung nicht der Fall und stellt somit einen wichtigen Unterschied zwischen
induzierter und natiirlicher optischer Aktivitit dar.

Einen besonders starken Faraday — Effekt zeigen durchsichtige (extrem diinne) Eisen— |
Nickel- , und Kobaldschichten, die man durch Kathodenzerstidubung auf Glas herstellen
kann.

Eine vollstdndige theoretische Erkldarung ist nur im Rahmen der Quantenmechanik moglich.
Uns geniigt an dieser Stelle eine vereinfachte klassische Darstellung, die nur fiir nichtma-
gnetische Stoffe Giiltigkeit besitzt:

Wir gehen von zirkularem Licht aus. Die Elektronen des durchstrahlten Materials wer-
den aufgrund des rotierenden E — Feldes zu Kreisbewegungen gezwungen. Die Flufidichte
des dufleren Magnetfeldes, welche orthogonal zur Bahnebene der Elektronen gerichtet ist,
bewirkt, abhingig von der B — Feld — Orientierung sowie dem Drehsinn des Lichtes,
eine nach innen oder auflen gerichtete radiale Kraft auf das Elektron, welche sich der
elastischen Bindungskraft iiberlagert. Die resultierende Radialkraft nimmt also zwei ver-
schiedene Werte an. Dementsprechend sind zwei Werte fiir das elektrische Dipolmoment
moglich, so dafl das Medium fiir verschieden zirkulares Licht unterschiedliche Brechungs-
indizes ng und ny, besitzt. Nach den Erkenntnissen von FRESNEL (siehe S. ) wird dann
optische Aktivitit induziert.

Eine wichtige Anwendung findet der Faraday — Effekt bei der Informationsiibertragung
durch Laserlicht in der modernen Kommunikationstechnik. Die Abbildung 8.34 zeigt den
Aufbau eines Faraday — Effekt — Modulators. Das weiterzuleitende Signal wird in
Form einer modulierten Spannung iiber die Spule auf den Laserstrahl iibertragen, wo es
als Polarisationsmodulation gespeichert wird. Nach Austritt des Laserstrahls aus dem in-
duziert optisch aktiven Medium erfolgt dann mit Hilfe eines Analysators die Umwandlung
dieser Polarisations— in eine Amplitudenmodulation, die der Laserstrahl weitertragt.

Versuch: Gezeigt wird die Informationsiibertragung mit Hilfe des Faraday — Ef-
fektes. Die Informationen, hier Radiomusik, gelangen als Spannungspul-
se vom Lautsprecherausgang des Radios zum Faraday — Modulator. Dort
werden sie wie oben beschrieben auf einen Laserstrahl iibertragen, welcher
sie zu einer Photozelle mit vorgeschaltetem Polarisationsfilter weiterleitet.
Durch Ubertragung der Signale auf die Photozelle wird ein Lautsprecher
aktiviert, aus dem Radiomusik ertént. Die Ubertragung wird gestort, so-
bald man den Laserstrahl unterbricht.
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Abbildung 8.34: FARADAY-Effekt—Modulator (aus [13))
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Weitere magneto — optische Effekte sind der in Gasen auftretende Voigt— sowie der
in Fliissigkeiten zu beobachtende Cotton — Mouton — Effekt. Sie werden hervorgeru-
fen durch die Einwirkung eines transversalen Magnetfeldes auf ein transparentes Medium.
Die isotrope Substanz zeigt dann eine Doppelbrechung dhnlich der eines einachsigen Kri-
stalls, wobei die optische Vorzugsrichtung parallel zur Magnetfeldrichtung verlauft. Die
Doppelbrechung ist proportional zum Quadrat der magnetischen Flufidichte. Es gilt

n, —ny| ~ B?
Il

8.9.3 Elektro — optische Effekte
Der Kerr — Effekt

Isotrope, transparente Stoffe werden, insbesondere wenn sie aus polaren Molekiilen auf-
gebaut sind, unter dem Einfluf} eines elektrischen Feldes doppelbrechend.
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Diese Entdeckung machte erstmals 1875 der schottische Physiker J.KERR (1824 — 1907),
nach dem der im folgenden Versuch gezeigte Effekt benannt ist.

Versuch: Eine Kiivette, die zwei plattenférmige Elektroden im Format ihrer Lings-
seiten enthélt, wird mit optisch isotropem Nitrobenzol gefiillt. Diese “Kerr-
zelle” wird zwischen zwei gekreuzte Polarisatoren gebracht (siehe Abb. 8.35),
deren Durchlafirichtungen einen Winkel von F45° mit der elektrischen
Feldrichtung einschliefen. Bei Lichteinstrahlung senkrecht zur Feldrich-
tung hellt sich das Gesichtsfeld des Analysators auf. Das Nitrobenzol wird
unter dem EinfluB eines transversalen E — Feldes doppelbrechend.

Plate clectrodes

Modulating
Polarizer voltage

Abbildung 8.35: KERR—Zelle (aus [13])

Der Kerr — Effekt, der Modulationen bis zu 200 MHz ermoéglicht, wird unter anderem
beim Bau von triagheitslosen, sehr schnellen Schaltern fiir Licht ausgenutzt, wie sie zum
Beispiel fiir Kameras (in der Hochgeschwindigkeitsphotographie) benétigt werden. Elektro
— optische Zellen werden zur Modulation von Licht beim Tonfilm und Bildfunk sowie zur
Lichtgeschwindigkeitsmessung eingesetzt.

Der Pockels — Effekt

Der Pockels — Effekt, der 1893 von dem deutschen Physiker F.C.A.POCKELS (1865-
1913) erforscht wurde, tritt bei piezoelektrischen Kristallen ohne Symmetriezentrum auf.
Im meist longitudinalen E - Feld, wird Doppelbrechung induziert, welche linear von E
und damit von der angelegten Spannung abhingt.

|TLJ_—77,||| ~ F

Die “Pockels — Zelle”, deren Aufbau in der Abbildung 8.36 gezeigt ist, dient als Modu-
lator von Licht bis zu Frequenzen von 30 GHz (Anwendungen: siche KERR — Effekt).
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Abbildung 8.36: POCKELS—Zelle (aus [13])

Die Fliissigkristall — Anzeige (LCD)

Fliissigkristalle besitzen einen Aggregatzustand zwischen Festkorper und Fliissigkeit. Die
lénglichen, organischen, stark polaren Molekiile flielen, ohne dabei ihre feste Anordnung
zu verlieren (nematische Phase).

An geeignet priparierten Elektroden lagern sich die Molekiile in einer bestimmten Vor-
zugsrichtung an. Bringt man einen nematischen Fliissigkristall zwischen zwei mit einer
transparenten Elektrodenschicht iiberzogene Glasplatten, deren Vorzugsrichtungen um
90° gegeneinander verdreht sind, so erzielt man eine schraubenférmige Anordnung der
Molekiile (verdrillte nematische Phase). In dieser Phase ist der Fliissigkristall optisch ak-
tiv, er dreht die Polarisationsrichtung von linear polarisiertem Licht entsprechend der
Verdrillung um 90° (Fliissigkristall-Drehzelle siehe Abb. 8.37). Ein solcher Fliissigkristall
befindet sich zwischen den beiden Glasplatten G einer Reflexionsdrehzelle, wie sie in
Abbildung 8.38 gezeigt ist. Das vorne rechts in die Zelle eindringende Umgebungslicht wird
waagerecht polarisiert und kann nach Durchlaufen des Fliissigkristalls den Polarisator Py
mit senkrechter Durchlaflrichtung passieren. Durch Reflexion an R wird der Lichtweg um-
gekehrt, an P; tritt linear polarisiertes Licht aus. Legt man eine Spannung an einzelne
Elektroden der Siebensegmentanzeige an, so wird in diesen Bereichen die verdrillte Phase
aufgehoben, da sich die Molekiile nach dem elektrischen Feld ausrichten. Die entsprechen-
den Segmente bleiben dunkel, die Reflexionsanzeige zeigt eine dunkle Ziffer auf hellem
Grund.

Ahnlich 148t sich auch eine Transmissionsanzeige aufbauen.

Versuch: Dreht man iiber einer LCD — Anzeige eine Polarisationsfolie, so verschwin-
den die Zahlen und tauchen anschlielend wieder auf. Eine Fliissigkristall-
anzeige arbeitet also mit polarisiertem Licht.
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Abbildung 8.37: Prinzip einer Fliissig-
kristalldrehzelle. Der Fliissigkristall ist (a)
in nematischer, (b) bei angelegter Span-
nung in verdrillter nematischer Phase. Abbildung 8.38: Aufbau einer Reflexions—
(aus [14]) Drehzelle (aus [14])

8.10 Die Natur des Lichtes

Nach der Wellentheorie ist Licht i.allg. eine Uberlagerung vieler, kurzer Wellenziige (10~%s),
welche von der Lichtquelle in schneller Folge ausgesandt werden und mehr oder weniger
zufillige Phasen — und Polarisationsbeziehungen besitzen.

AVAVaAVaVaS

ALV UV
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Resultierende Phasenlage und Polarisationszustand wechseln daher i.allg. sehr schnell und
sind nicht vorhersagbar. Dabei lassen sich zwei Extremfille herausstellen:

Bei “natiirlichem Licht” variieren Polarisation und Phasenlage rein zufillig und mit so
hoher Geschwindigkeit, dafi die einzelnen Zustéinde nicht mehr wahrnehmbar sind.

Eine Modellvorstellung von natiirlichem Licht, von der wir in den vorangehenden Ab-
schnitten Gebrauch gemacht haben, ist die Superposition zweier willkiirlicher, inkohé&ren-
ter, orthogonal zueinander linear polarisierter Wellen gleicher Amplitude, deren relative
Phasenverschiebung schnell und zufillig wechselt.

Mathematisch 148t sich natiirliches Licht beschreiben durch einen skalaren Wellenausdruck
mit rdumlich und zeitlich variierender Phase.

E = B, ¢ Wt — k7 + o(7,1)]
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Ideales “monochromatisches Licht” muf} als unendlich langer Wellenzug angesehen
werden. Eine vollstdndig monochromatische ebene Welle

Ezﬁoez’[wt—kf+go]

ist immer polarisiert.

Beide Extremfille sind mathematische Fiktionen, welche die Lichterscheinungen der Na-
tur nur angenihert beschreiben. Das von der Sonne ausgestrahlte Tageslicht kommt dem
Extremfall “natiirlichen Lichtes” nahe. Laserlicht kann annihernd als “monochromati-
sches Licht” angenommen werden. Sehr hiufig tritt in der Natur teilweise polarisiertes
Licht auf. Der elektrische Feldvektor variiert dann weder total regelméfig, noch véllig
unregelmifig.

Die im Rahmen der Wellentheorie genannten Wellenziige entsprechen in der quantenopti-
schen Vorstellung des Lichtes den Photonen. Ein Lichtstrahl stellt dann einen Strom von
Energiequanten dar und besitzt somit korpuskulare Eigenschaften. Wir haben in Kapitel
7 bereits gesehen, dafl Licht Energie und linearen Impuls triagt. Diese Gréflen werden bei
Wechselwirkung von Licht mit Materie auf das Medium iibertragen.

Wie lassen sich im Photonenbild die verschiedenen Polarisationszustéinde des
Lichtes erkliren?

Beim Eintritt rein zirkular polarisierten Lichtes in ein Medium werden die im Materi-
al gebundenen Elektronen zu Kreisbewegungen gezwungen, angetrieben durch die vom
rotierenden E — Feld ausgehende Kraft. Das vom B — Feld auf ein Elektron ausgeiibte
Drehmoment ist im Mittel iiber eine Kreisbahn Null. Wir beschrinken deshalb unsere
Ausfiihrungen auf das E — Feld. Die Winkelgeschwindigkeit w der Elektronen stimmt
mit der Kreisfrequenz der Lichtwelle iiberein. Die an das System abgegebene Leistung ist
gleich der pro Zeiteinheit zugefiihrten Energie

aw

P="—
dt

Fiir die Leistung bei Rotation gilt

d
P = —W =Muw
dt
(analog zur Leistung bei Translation P = F'v). Dabei ist M das Drehmoment des mit
w rotierenden Ko6rpers. Das Drehmoment M entspricht aber der zeitlichen Anderung des

Drehimpulses L.

dL aw dL
M= = &~ Ya

Dies bedeutet, dal die Ladungsteilchen, die eine zirkulare Welle absorbieren, mit der
Energie W gleichzeitig auch einen Drehimpuls L aufnehmen, der gegeben ist durch

="
w

Zusétzlich zu Energie und linearem Impuls trigt Licht also auch einen Drehimpuls!
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Ist die einfallende Welle rechtszirkular, so liuft (bei Blickrichtung zur Quelle) der E —
Vektor im Uhrzeigersinn um. In diese Richtung rotiert dann auch eine positive Ladung
des absorbierenden Mediums, so da8 der Drehimpulsvektor L entgegen der Fortpflan-
zungsrichtung der Welle orientiert ist. Bei linkszirkularem Licht haben Wellenvektor und
Drehimpuls die gleiche Orientierung. Ubertréigt man die gefundenen Ergebnisse auf die

Abbildung 8.39: Drehimpulsvektor eines Photons. (aus [13])

quantenoptische Anschauung des Lichtes, so bedeutet dies, daf} jedes Photon einen Dre-
himpuls besitzt (Abb. 8.39). Nach Einstein gilt fiir Photonen

W=hv=hw .

Aus L =W/w erhilt man damit

— . . linkshéindigen
Drehimpuls eines rechtshindigen Photons

Licht ist demnach ein Strom von Lichtquanten, die den Drehimpuls L = + A tragen und
bei Wechselwirkung mit Materie an diese abgeben.

Bei rein linkszirkularem Licht besitzen die Photonen positiven

. ) Drehi 1
rechtszirkularem negativen renumpuls,

so dafl die Drehimpulsvektoren sidmtlicher Photonen, die den Lichtstrahl formen,

in Strahlrichtung

gegen die Strahlrichtung ausgerichtet sind.



Kapitel 9

Interferenz von Lichtwellen

Bei der Uberlagerung zweier oder mehrerer Schwingungen bzw. Wellen tritt — unter
bestimmten Bedingungen — Interferenz auf. Dabei gilt, solange keine nichtlinearen Effekte
auftreten, das Prinzip der ungestérten Uberlagerung:

In jedem Punkt zu jeder Zeit addieren sich bei skalaren Wellen die Wellenfel-
der, bei Vektorwellen die Vektoren der Wellenfelder.

Wir haben bereits Interferenzerscheinungen behandelt, wie sie von Wasser— und Schall-
wellen, sowie von elektromagnetischen Wellen hervorgerufen werden. Dabei haben wir
nichtlineare Effekte ausgeschlossen, wie z.B. bei den elastischen Wellen das Verlassen des
HookEschen Bereiches, bei elektromagnetischen Wellen Ubersteuerung.

Gleiche Interferenzerscheinungen lassen sich auch mit Licht erzeugen. Lichtinterferenzen
bildeten als Beweis der Welleneigenschaft des Lichtes die Grundlage fiir die Aufstellung
der Wellentheorie durch HUYGENS, welche von MAXWELL zur elektromagnetischen Licht-
theorie weiterentwickelt wurde.

Fiir das Auftreten von Interferenz miissen bei allen Wellenarten Bedingungen erfiillt sein.
Die Gewihrleistung dieser Voraussetzungen ist beim Licht besonders wichtig.

9.1 Koharenz

Bringt man Lichtbiindel zweier getrennter Lichtquellen zur Uberlagerung, so beobachtet
man keine Interferenzerscheinungen. Im Uberlagerungsgebiet der beiden Biindel herrscht
iiberall die gleiche Lichtintensitét. (Anderenfalls wiirden z.B. bei der kiinstlichen Beleuch-
tung eines Raumes durch mehrere Lampen Interferenzerscheinungen auftreten.)

Der Grund hierfiir liegt in dem Mechanismus, mit dem die Lichtemission bei einer gew6hn-
lichen Lichtquelle erfolgt. Eine (temperaturstrahlende) normale Lichtquelle sendet Pho-
tonen aus, die dadurch entstehen, dafl einzelne Atome unabhdingig voneinander durch
Quantenspriinge elektromagnetische Energie abstrahlen. Wie bereits im letzten Teil des

246
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vorigen Kapitels dargelegt wurde, besteht Licht daher i.allg. aus vielen Wellenziigen end-
licher Linge, deren relative Phase statistisch verteilt ist.

N
VoV Ve Ve W M
< L —
NN

Die Lénge eines Wellenzuges L 148t sich aus der Dauer des Emissionsvorganges 7 be-
rechnen. Die Zeitdauer der Lichtaussendung eines Atoms ist von der Gréflenordnung
7 =10"%s — 107 8s. Damit liegt die Liinge eines emittierten Wellenzuges in der Grofien-
ordnung L = ¢/7 = 0,3m — 3m. Genauere Angaben enthilt die untenstehende Tabelle.

Bei der Uberlagerung von Lichtbiindeln aus gleichen, aber getrennten Lichtquellen tref-
fen also stidndig in zeitlich unregelméfBiger Folge sehr viele Wellenziige zusammen, die
insgesamt keinen konstanten Phasenunterschied besitzen. Dabei treten kurzzeitig, sowie
rdaumlich und zeitlich unregelméfig nur einzelne Interferenzfiguren fiir verschiedene Paare
von Wellenziigen auf. Insgesamt ergibt sich jedoch kein stationires Interferenzbild.

Lichtbiindel, welche unterschiedliche Frequenzen besitzen oder deren relative Phasendiffe-
renz sich wiahrend der Beobachtungszeit beliebig dndert, sind nicht interferenzfihig. Man
spricht von inkohérentem Licht. Bei interferenzfihigem, kohdrentem Licht sind die

interferienden Wellenziige frequenzgleich und weisen am Uberlagerungsort einen konstan-
ten Phasenunterschied auf.

Nach dieser Definition sind monochromatische Lichtwellen E = EO el (wt — k7) kohé&rent
und wéren damit ideal fiir die Erzeugung von Lichtinterferenz geeignet. Solche mathe-
matisch fiktiven Wellen sind, wenn auch nur ndherungsweise, physikalisch verwirklicht in
Form des Laserlichtes.

Die Liange L der Wellenziige, die von einem Laser ausgesandt werden, ist wesentlich grofier
als bei gewohnlichem Licht. Sie liegt in einer Groflenordnung von mehreren Kilometern.
Dies ist darin begriindet, daf} sich die Atome eines Lasers gegenseitig zu Energieabstrah-
lung (“im Gleichschritt”) anregen. Die Emissionsvorgéinge verlaufen also nicht unabhéngig
voneinander, sondern die einzelnen Atome kooperieren bei der Lichtaussendung mitein-
ander. Laserlicht ist daher kohérent.

. Lange L
Lichtquelle eines Wellenzuges
weifles Licht ~ 1,5 um
Cd — Spektrallampe | =~ 20cm
Kr — Spektrallampe | ~ 80cm
HeNe — Laser ~ 2km

Hat man nun kohirentes Licht gegeben, so kann es vorkommen, daB bei der Uberlagerung
dennoch keine Interferenzerscheinungen zustandekommen. Die Erkldrung ist aus der Ab-
bildung 9.1 ersichtlich. Zwei Wellenziige konnen nur dann interferieren, wenn der optische
Wegunterschied ein bestimmtes Maf} nicht iiberschreitet.
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Abbildung 9.1: Erzeugung kohérenter Wellenziige durch Reflexion: a) konstruktive In-
terferenz, b) keine Interferenz aufgrund zu grofier geometrischer Wegdifferenz, c) keine
Interferenz aufgrund zu grofler optischer Wegdifferenz. (aus [14])

Definition: Man bezeichnet die maximale optische Wegdifferenz als Kohérenzléinge /.
Diese muf} stets kleiner als die Lénge L der interferierenden Wellenziige sein:

Az =1 < L.

Daraus erhélt man eine zusétzliche Interferenzbedingung;:

Zeitliche Kohirenzbedingung;:
Der optische Wegunterschied zweier Wellenziige muf} kleiner als die Kohérenzldnge sein.

Es existiert noch eine weitere Interferenzbedingung geometischer Art, welche ihre Ursache
darin hat, daf die realen Lichtquellen nicht — wie bisher vorausgesetzt — punktférmig
sind, sondern eine endliche Ausdehnung besitzen. Dies hat zur Folge, dafl zwischen den von
den einzelnen Punkten einer Lichtquelle ausgesandten Wellenziigen optische Wegdifferen-
zen entstehen, da sie aus unterschiedlichen Richtungen zum Interferenzpunkt gelangen.

Ortliche Kohirenzbedingung:
Der optische Wegunterschied fiir Licht von verschiedenen Punkten einer Lichtquelle muf}

klein gegen die Wellenldnge sein: a -sin?v < A. Genauer muf} gelten:

a K

2 -sindd

Ein Wellenzug 1a8t sich nach FOURIER beschreiben als Integral iiber Sinuswellen verschie-
dener Frequenzen und Wellenldngen. Zur Demonstration eines deutlichen Interferenzbildes
bendétigt man Wellenziige mit geringer Frequenzbandbreite, d.h. méglichst monochromati-
sches Licht. Anderenfalls wird das Bild durch Uberlagerung der Interferenzerscheinungen
verschiedener Wellenldngen unscharf und farbig.
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9.2 Erzeugung von kohirentem Licht

Kohérentes Licht 148t sich durch Teilen des Lichtes derselben Quelle erzeugen. Bei der Auf-
spaltung eines Lichtbiindels in zwei Teilbiindel wird jeder Wellenzug des Primérbiindels
in zwei Teilwellenziige zerlegt. Diese haben am Uberlagerungsort stets den gleichen Pha-
senunterschied, welcher nur noch vom Gangunterschied der beiden Teilbiindel bestimmt
wird.

Die Zerlegung eines Wellenzuges kann auf verschiedene Weise erfolgen:

1. Teilen der Wellenfront
Beipiel: Doppelspalt

Quellz @)

2. Teilen der Amplitude

Dies ist moglich durch Aufstrahlen von Licht auf zwei Grenzflichen zwischen Medien
mit unterschiedlichen Brechungsindizes ny < no.

Beachte: Bei der Reflexion der Lichtwelle an der Grenzfliche vom optisch diinneren
zum dichteren Medium tritt ein Phasensprung um 7 (180°) auf. Dies steht
in Analogie zur Reflexion der elast. und elm. Wellen am “festen Ende”.
Der Phasensprung muf bei der zeitlichen Kohérenzbedingung beriicksich-
tigt werden!

Reflexion am dichteren Medium

__"‘_‘Z/L Al 70y < 7Uq
=\
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Reflexion am diinneren Medium
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Sind bei der Uberlagerung von Lichtwellen alle Kohirenzbedingungen erfiillt, so kommt
es zu Interferenz. Bei der formalen Betrachtung werden die Wellenfunktionen addiert (Su-
perpositionsprinzip).

Inkohérentes Licht ermoglicht keine Interferenz. Bei der mathematischen Behandlung
addieren sich in diesem Fall die Intensitéten.

9.3 Interferenzversuche

9.3.1 Lichtinterferenz durch Aufspalten von Wellenfronten

a) FRESNELscher Spiegelversuch
Im Jahr 1821 demonstrierte A.J. FRESNEL die Interferenz von Lichtwellen. Den
Aufbau seines Spiegelversuches zeigt Abbildung 9.2.

Das Licht einer punktférmigen Lichtquelle L wird durch Reflexion an einem Win-
kelspiegel in zwei kohédrente Teilbiindel aufgespalten, welche von den beiden virtu-
ellen Spiegelbildern L; und Ly der Quelle L herzukommen scheinen. Die virtuellen
Lichtquellen L; und L, senden also kohiirente Lichtwellen aus, welche im Uberlap-
pungsgebiet ein stationéres Interferenzbild erzeugen.

b) FRESNELsches Biprisma
Ein von einer punktférmigen Lichtquelle L herkommendes Lichtbiindel wird durch
ein Biprisma in zwei gebrochene Biindel zerlegt. Die virtuellen Bilder L; und Lo

der Lichtquelle L wirken als scheinbare Emissionszentren der kohirenten Wellen
(Abb. 9.3).

¢) YouNascher Doppelspalt
Das Licht einer Quelle L fallt auf einen Schirm mit zwei Spalten, deren Breite d sehr
klein im Vergleich zur Wellenlédnge ist: d < A. Nach dem HUYGENSschen Prinzip
werden an den Spalten zwei kohirente Kugelwellen erzeugt, deren Uberlagerung zu
Interferenzerscheinungen fiithrt (Abb. 9.4).
Bei endlicher Spaltbreite sind die Vorgéinge am Doppelspalt komplizierter, es tritt
Beugung auf (siehe unter 10.3 Fraunhofersche Beugung am Doppelspalt).

In allen drei Féllen treten im wesentlichen dieselben Interferenzerscheinungen auf, wie wir
sie bereits bei den Wasserwellen formal behandelt haben. Daher seien hier die Bedingungen
fiir das Auftreten von Interferenzminima und — maxima nur kurz angefiihrt.
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m=+1 m=0 m=-)

Abbildung 9.2: Fresnelscher Spiegel-
versuch (aus [14]) Abbildung 9.3: Fresnelsches Biprisma (aus [13])

Abbildung 9.5: Interferenzkurven sind Hy-
Abbildung 9.4: Interferenz am Doppelspalt.perbeln mit den Brennpunkten L, und L.

(aus [13]) (aus [4])

Wellen mit
n-A

einem Gangunterschied A =7, —ry = { (2n+1) - %

. ) konstruktiv
interferieren

destruktiv

Orte mit gleichem Gangunterschied, d.h. fiir die r; — ro = const. erfiillt ist, bilden Hy-
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Abbildung 9.6: P in grolen Abstidnden ry, ro von L; und L,

perbeln (Abb. 9.5) mit den Brennpunkten L; und Ly!

Ist die Entfernung des Interferenzpunktes P von der Ebene der virtuellen Lichtquellen
sehr grof§ gegeniiber dem Abstand d der Quellen (Abb. 9.6), r; —ry > d, so gilt die
Néherung

r—1ry & d-sino

Damit lautet in diesem Fall die Bedingung fiir konstruktive Interferenz

d-sina =n-\

Dies wird anhand der Abbildung 9.2 zum FRESNELschen Spiegelversuch noch deutlicher:
Die Hyperbeln, Orte gleichen Gangunterschiedes, schmiegen sich in grofler Entfernung von
den Lichtquellen an Geraden an, welche mit der y — Achse die Winkel o, einschlieflen.

Fiir den m — ten konstruktiven Interferenzstreifen ergibt sich daraus die Bedingung

. A .
sina,, = m-—| Interferenzmaxima

d

9.3.2 Lichtinterferenz durch Aufspalten der Amplitude
Interferenzen gleicher Neigung

Darunter falit man Interferenzerscheinungen zusammen, die durch den Neigungswinkel be-
stimmt werden. Anders ausgedriickt: Bei der Interferenz durch Reflexion oder Brechung
rufen diejenigen Strahlen, die unter gleichem Neigungswinkel auf das Medium (planpar-
allele Platte, diinne Schicht) auffallen, die gleichen Interferenzerscheinungen hervor.
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a) Planparallele Platte (PPP)
Von der Lichtquelle L herkommend falle ein Lichtstrahl aus Luft (ny = 1) auf eine
diinne planparallele Platte mit der Dicke d und dem Brechungsindex n (Abb. 9.7).
Der Einfallswinkel sei €.

Der Strahl wird durch Reflexion und Brechung an der Vorder— und Riickseite der
Platte wiederholt aufgespalten. Aus beiden Seitenflichen der Platte treten kohéren-
te parallele Strahlen aus. Wir betrachten im folgenden die Uberlagerung der beiden

Abbildung 9.7: Interferenzen an einer planparalleler Platte. (aus [14])

Strahlen 1’ und 2’. Die weiteren Strahlen 3', 4’,... usw. besitzen aufgrund der mehr-
maligen Reflexion verschwindend kleine Intensitédten. Daher kann ihr Anteil an der
Interferenz vernachléssigt werden.

Die Parallelstrahlen interferieren im Unendlichen. Vereinigt man sie aber mit Hil-
fe einer Linse in deren Brennweite (dies geschieht z.B. bei der Betrachtung mit
entspanntem Auge), so lassen sich die Interferenzen im Endlichen beobachten. Im
Brennpunkt F' liegt Helligkeit oder Dunkelheit vor in Abhingigkeit vom Gangun-
terschied A der interferierenden Strahlen, welchen wir nun berechnen wollen:

Strahl 2’ pflanzt sich innerhalb der Platte entlang der Strecken AB+BC fort, wiahrend
Strahl 1’ von A nach P fortschreitet. Die optische Wegdifferenz betrigt also

optische Wegdifferenz = n- (AB + BC) — AP

Strahl 1" erfahrt bei der Reflexion am dichteren Medium einen Phasensprung um 7.
Dies entspricht einem Gangunterschied von \/2. Insgesamt gilt also
A

Gangunterschied Ay = n-(AB + BC) — AP + 3
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= 2-n-AB — AP + %
Nach dem Brechungsgesetz sine = n-sine’ gilt
AB — d - d _ n-d
cose \/ 1 —sin®¢’ \/ n? —sin’e
AC = 2-AB-sing' = 2-AB-Si%€
Daraus folgt
2-AB 9 2.d-sin’¢

AP = AC-sine =

-sin“e =

n \/n?— sine

Insgesamt ergibt sich

_2.n%2.d—2-d-sin’e A
Ar = it — sin? )
n? —sin‘ e

Gangunterschied b\
= bei AR:2-d-\/n2—sin2s+§
Reflexion

Wir erhalten also

Ausloschung fiir Ap = 2m+1)- % =m-A+ %

Bedingung
= [2-d-yn?2—sin’e =m-A (m = 0,1,2,..)]| fiir
Dunkelheit
Verstérkung fiir Ap = m - A
Bedingung
1
= |2-d-\/n?—sin’c = (m+ 5)/\ (m = 0,1,2,...)| fiir
Helligkeit

Die in der Brennebene der Linse entstehenden Interferenzmaxima und — minima
bilden Kurven, die jeweils zum gleichen Winkel € gehoren, die Interferenzen glei-
cher Neigung. Aufgrund der Symmetrie sind die Interferenzlinien kreisformig (sie-
he PonLscher Interferenzversuch).

Fiir die durchgelassenen Lichtwellen 1” und 2" erhilt man

Gangunterschied
Ap = 2-d-y\/n?2 —sin’e| bei
Transmission

Die Bedingungen fiir Verstirkung und Ausléschung sind hier gegeniiber der Reflexi-
on genau vertauscht. Die Interferenzerscheinungen des transmittierten Lichtes sind
jedoch wesentlich schwicher als die in Reflexion, da die Intensitéiten der Strahlen 1”
und 2" sehr unterschiedlich sind.

Interferenzkurven gleicher Neigung lassen sich besonders eindrucksvoll nach einem
von R.W. PoOHL entwickelten Verfahren beobachten.
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Versuch: PoHLscher Interferenzversuch

Eine diinne Glimmerplatte (d =~ 0,04 mm) wird mit dem Licht ei-
ner Hg— oder Na—Lampe beleuchtet (Abb. 9.8). Je nach Versuchsan-
ordnung erhélt man ein Interferenzbild grofler konzentrischer Kreise
sowohl des reflektierten, als auch des transmittierten Lichtes.
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Abbildung 9.8: a) Versuchsanordnung zur Projektion von Interferenzen gleicher Neigung
nach R.W.Pohl, b) Interferenzkurven gleicher Neigung. (aus [4])

b) Spezielle Effekte und Anwendungen

(a) Farben diinner Bléttchen
Diinne Schichten, z.B. Lamellen von Seifenwasser, Olschichten auf Wasser oder
Oxydschichten auf Metallen, die mit weilem Licht bestrahlt werden, erscheinen
im reflektierten und durchgehenden Licht in schillernden Interferenzfarben.

Je nach Dicke und Brechungsindex der Schicht sowie nach Beobachtungswin-
kel ¢ interferieren die reflektierten Wellen so miteinander, dafl bestimmte Wel-
lenléingen (Farben) sich auslschen, andere sich verstirken. Unter dem Beob-
achtungswinkel ¢ wird daher die Komplementérfarbe des ausgel6schten Anteils
des weiflen Lichtes sichtbar. Da die verschiedenen Orte einer Oberfliche unter
unterschiedlichen Winkeln gesehen werden, erscheint die Oberfliche von Ort
zu Ort (je nach Blickwinkel) andersfarbig.

Beispielsweise werden bei senkrechtem Lichteinfall (¢ = 0, m = 1) die Wel-
lenlingen A\ = 2nd ausgelscht.

Versuch: Seifenblasen

Ein interessanter Spezialfall liegt vor, wenn die Schichtdicke d sehr viel kleiner
als die Wellenldnge des weiflen Lichtes ist. Dann gilt ndherungsweise fiir den
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Gangunterschied

A
d.h. alle Wellenldngen l6schen sich aus. Das Bléttchen erscheint schwarz, da
kein Licht reflektiert wird.

Bei den durchgelassenen Lichtwellen findet dagegen maximale Verstirkung
statt, das Blattchen erscheint weif.

(b) Antireflex — Belag (Vergiitung)
Zur Reflexverminderung werden Glasoberflachen (z.B. Linsen fiir optische Gerite)
mit einer diinnen sogenannten Vergiitungsschicht iiberzogen, deren Wirkungs-
weise auf der destruktiven Interferenz des reflektierten Lichtes beruht. Eine

Abbildung 9.9: Reflexvermindernde Schicht

Glasoberflidche (Brechungsindex ng3) sei mit einer diinnen Schicht der Dicke d
mit dem Brechungsindex ns iiberzogen (siehe Abb. 9.9). Dariiber befinde sich
Luft (7’LL = 1)

Ein einfallender Lichtstrahl e wird an beiden Grenzflichen sowohl gebrochen,
als auch reflektiert, wobei beide reflektierten Strahlen r; und r, einen Pha-
sensprung erfahren. Bei senkrechter Lichteinstrahlung betrégt daher die Gang-
differenz Ar = 2nyd. Die Schichtdicke d und der Brechungsindex ns sind so
zu wihlen, dal Agp = 2nyd = (2m + 1) - A/2 gilt. Dann kommt es zu
Ausléschung.

Fiir m = 0 erhélt man die kleinste Dicke der Vergiitungsschicht

Die Reflexionsunterdriickung ist optimal, wenn die Amplituden der reflektier-
ten Wellen gleich sind.

2 2
ny — N9 Tl — T3
Rnl—)n2 = an—)ng = ( ) = (
n1 + Ng No + N3

Dies ist erfiillt, wenn der Brechungsindex ny des Vergiitungsmaterials der Be-
dingung

Tlo = /71 * N3
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geniigt. Fiir n; =ny =1 muf gelten |ny = \/n3| .

Beispiel: Als Vergiitungssubstanzen fiir optisches Glas (ng = 1,7) haben
sich Magnesiumfluorid mit n, = 1,38 und Kryolith (NazAlFg) mit
ny = 1.33 bewihrt. Die optimale Reflexionsunterdriickung wiirde
hier durch ein Vergiitungsmaterial mit dem Brechungsindex n, =
V1,7 = 1,3 erreicht.

9.3.3 Interferenzen gleicher Dicke

Spaltet man Licht nicht an einer Platte mit parallelen Flichen auf, sondern an einem Keil,
dessen Flichen einen sehr kleinen Winkel o miteinander einschliefen, so treten ebenfalls
Interferenzerscheinungen auf.

Wir betrachten den Fall, daf§ der Keil mit parallelem Licht bestrahlt wird ( Abb. 9.10).
Im Punkt P (bei zp) iiberlagern sich die kohdrenten Teilstrahlen 1’ und 2', welche mit

Abbildung 9.10: Interferenzen an einem Keil. (aus [14])

Hilfe einer Linse auf einem Schirm oder bei akkomodiertem Auge auf der Netzhaut ver-
einigt werden konnen. Da die Keildicke ortsabhéingig ist, d = d(z), betrachten wir bei
der Bestimmung der Interferenzbedingungen kleine Teilgebiete des Keils. Fiir sehr kleine
Keilwinkel o kénnen wir dann die entsprechenden Ergebnisse der planparallelen Platte

iibernehmen. \
Ar=2-d(z)-\/n2 —sin’e + )

Fiir nahezu senkrechten Lichteinfall gilt Agr ~ 2nd(z) +
gungen lauten:

% und die Interferenzbedin-

d= """ | Dunkelheit
2.n
2m—1 A Co
d= 5. . 5 Helligkeit
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Die hellen und dunklen Interferenzstreifen sind den Stellen gleicher Dicke des Keils zuge-
ordnet und heiflen deshalb Interferenzstreifen gleicher Dicke. Sie verlaufen in regelméfligen
Absténden parallel zur Keilkante. An der Keilkante selbst herrscht stets Dunkelheit, da
hier d =0 und damit Ap = \/2 ist.

Versuch: Gezeigt wird das Interferenzbild eines Luftkeils mit variablem Keilwinkel.

Fiir sehr kleine Winkel « gilt
d(z) = z-tana = z - «

Man erhilt also Ausléschung fiir z -« = (m-A)/2-n, d.h. dunkle Inter-
ferenzstreifen werden sichtbar an den dquidistanten Orten

A
2-n-a

r=m

Je grofler der Keilwinkel ist, desto dichter liegen die Interferenzmaxima
und — minima.

Newtonsche Ringe

Im Jahr 1676 beobachtete NEWTON mit der im folgenden Versuch nachgestellten Anord-
nung Interferenzkurven, die ebenfalls den Interferenzen gleicher Dicke zuzuordnen sind.
Aufgrund der Symmetrie der Versuchsanordnung erhielt er ein Bild konzentrischer Inter-
ferenzkreise, welche heute als NEwWTONsche Ringe bekannt sind.

we

L

Glasplatte

&’m j

Abbildung 9.11: Versuchsanordnung zur Abbildung 9.12: Newtonsche Interferenz-
Erzeugung Newtonscher Interferenzringe. ringe im reflektierten monochromatischen

(aus [14])

Licht. (aus [4])
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Versuch: Auf eine ebene Glasplatte wird eine nur gering gekriimmte plankonve-
xe Linse gelegt. Wird die Anordnung (Abb. 9.11) senkrecht von oben mit
parallelem Licht beleuchtet, so entstehen in Reflexion und Durchsicht kon-
zentrische Interferenzringe. Je nach Art der Beleuchtung, ob ann&hernd
monochromatisches oder weifles Licht, erscheinen helle und dunkle oder
farbige Kreise. Das Zentrum des Interferenzbildes, der Beriihrpunkt von
Linse und Platte, erscheint schwarz (Abb. 9.12).

Die Aufspaltung des Lichtes geschieht in der keilférmigen Luftschicht zwischen Linse und
Platte. Die allgemeine Gangdifferenz interferierender Wellen am Keil (in Reflexion)

A
ARZZ-d-\/nQ—sin28+§

vereinfacht sich hier wegen n =1 und ¢ =0 zu
A
AR == 2 . d -l- - .
2
Der m — te dunkle Interferenzring tritt bei einer Keildicke d,, auf, fiir die gilt
A A A
2-dm+§:(2-m+1)-§ bzw. dm:m-§ (m=0,1,2,...) (1)

Die Dicke d,, ist mit dem Radius 7, des m — ten Kreises und dem Kriimmungsradius R
der Linsenfliche verkniipft iiber die Beziehung

2
dn = R—\JR2—7r2, = R—R-‘/l—%

2
= R—R-(l—%-%ﬂg-l—...)

Fiir r,,, < R gilt die Ndherung
4~ L. m (2)
2 R
Gleichsetzen von (1) und (2) ergibt fiir die Radien der dunklen Kreise

rm=vVm-A-R (m=1,2..))

Man erhilt konzentrische Interferenzringe, deren Radien mit \/m zunehmen. Die Abstén-
de der einzelnen Interferenzringe werden also vom Zentrum nach auflen hin kleiner. Dies
ist dadurch zu erklidren, daf§ aufgrund der Kriimmung der Linsenfliche der Keilwinkel des
Luftkeils nicht konstant ist, sondern nach auflen hin anwéchst.

Am Beriihrpunkt, bei m = 0, gilt dy = 0. Wegen A = A/2 herrscht hier stets Dunkelheit.

Anwendungen

Interferenzen gleicher Dicke werden bei Planaritdts — und Dickenmessungen ausgenutzt.
Zum Beispiel werden die Oberflichen von Optikbauteilen anhand ihrer Interferenzmu-
ster gepriift. Kleinste Rauhigkeiten und Unebenheiten konnen aus Verschiebungen der
Interferenzstreifen vermessen werden.



260 KAPITEL 9. INTERFERENZ VON LICHTWELLEN

9.4 Interferometer

Interferometer sind optische Geriite, die mit Hilfe von Lichtinterferenz die prézise Messung
physikalischer Gréflen, wie z.B. Linge (Eichung), Brechzahl, Winkel und Wellenléinge,
erlauben. Thre Anwendung ist daher besonders in der physikalischen Mefitechnik von Be-
deutung.

Ihre Funktionsweise beruht auf der Aufspaltung einer Lichtwelle in kohérente Teilwellen,
die nach Durchlaufen getrennter Wege wieder zusammengefiihrt werden. Die resultieren-
den Interferenzerscheinungen lassen Riickschliisse auf im Strahlengang befindliche Objekte
zu. Die genaue Messung der optischen Wegdifferenz ermoglicht es, z.B. die geometrische
Dicke oder den Brechungsindex eines durchstrahlten Objektes zu bestimmen.

9.4.1 Zweistrahl — Interferometer

Als wichtigsten Typ eines Zweistrahl — Interferometers betrachten wir hier das

Michelson — Interferometer

Abbildung 9.13: Aufbau des MICHELSON-Interferometers. (aus [4])

Als Strahlteiler dient hier die halbdurchléssige Platte P, welche den von der Lichtquelle
L herkommenden Strahl in die Teilstrahlen 1 und 2 aufspaltet. Diese werden nach der
Reflexion an den Spiegeln S; und S, in sich selbst zuriickgeworfen und beim Auftreffen auf
die Platte P erneut in zwei Teile zerlegt. Man beobachtet die Interferenz der Strahlanteile
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1" und 2", die in das Fernrohr F gelangen. Die gleich dicke, aber unverspiegelte Glasplatte
P’, die Kompensationsplatte, sorgt dafiir, da8 die interferierenden Teilstrahlen gleiche
Wegliangen in Glas zuriicklegen.

Wenn die beiden Spiegel gleich weit vom Punkt A entfernt sind, treffen die Strahlen 1”
und 2" ohne Gangunterschied am Beobachtungsort ein und verstérken sich. Verschiebt
man den Spiegel S; um eine Viertelwellenldnge, so dndert sich der Gangunterschied um
A/2. Es findet Ausloschung statt. Der helle Interferenzstreifen wechselt in einen dunklen.
Bei erneuter Verschiebung um \A/4, insgesamt also um A/2, tritt wieder Verstirkung ein.
Durch Auszihlen der Interferenzstreifen, die den Beobachtungsort durchlaufen, kann also
die Verschiebung des Spiegels in Vielfachen von A/2 gemessen werden.

Dies ermdglicht eine sehr genaue Lingenmessung. So wurde 1960 die Linge des Urmeters
in Vielfachen der Vakuumwellenlinge der orangen Krypton— Spektrallinie (Isotop ®¢Kr)
ausgemessen. Dies wurde als neue Meterdefinition eingefiihrt, welche bis 1983 Giiltigkeit
besaf.

Versuch: Die Wellenlinge eines HeNe — Lasers wird interferometrisch ausgemessen.
Der Versuchsaufbau unterscheidet sich von dem weiter oben beschriebe-
nen nur dadurch, daf} hier wegen der groflen Kohérenzlinge des Laserlich-
tes auf die Kompensationsplatte verzichtet werden kann. Der Spiegel S,
wird iiber eine Mikrometerschraube bewegt, so dafl m Interferenzminima
durchlaufen werden. Die Verschiebung Al des Spiegels wird an der Mi-
krometerschraube abgelesen. Uber die Beziehung Al = m - A\/2 wird die
Wellenlidnge des Laserlichtes bestimmt.

Beispiel:
m = 50 2-Al 2-1,6-107°
Al = 16um = A= = =0 m = 640nm

(Herstellerangabe: A\ = 632nm)

Auf die bedeutende Anwendung des MICHELSON — Interferometers im Rahmen des
MICHELSON — MORLEY — Experimentes (1881 —1887) werden wir im Kapitel Relativitits-
theorie genauer eingehen. An dieser Stelle seien jedoch bereits einige wichtige Punkte
zusammengefaft:

Motivation:

Im vergangenen Jahrhundert herrschte unter vielen Wissenschaftlern die Vorstellung von
einem den gesamten Raum ausfiillenden, ruhenden “Ather”. Dieser Ather wurde als Triger
der Lichtwellen angesehen, von denen man zunichst annahm, daf} sie wie die Schallwellen
zur Ausbreitung ein besonderes Medium benétigten. Als Konsequenz nahm man weiter
an, daf die Erdbewegung einen Einflufl auf die Beobachtung der Lichtgeschwindigkeit von
der Erde aus habe. Man vermutete eine anisotrope Lichtausbreitung parallel und senk-
recht zur Bewegungsrichtung der Erde. Der amerikanische Physiker MICHELSON, dem sich
spater auch E.W. MORLEY anschlof}; glaubte, die anisotrope Ausbreitungsgeschwindig-
keit nachweisen zu konnen.

Ergebnis:

Das Versuchsergebnis fiel negativ aus
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= Konstanz der Lichtgeschwindigkeit

= Nichtexistenz des Lichtithers.

Mefigenauigkeit:
Die mit dem damaligen Interferometer meBbare relative Anderung des Lichtweges betrug

Al A/10  60nm

~ ~ ~ 6-107°
l l 10m

In der Astronomie stellt die “aktive Optik” ein bedeutendes Anwendungsgebiet des
MICHELSON — Interferometers dar.

Mit Wellenfront — Sensoren, die nach dem Prinzip des MICHELSON — Interferometers
aufgebaut sind, wird z.B. Sternenlicht auf Storungen in der Atmossphére hin untersucht.
Durch Interferenz mit einer ebenen Referenzwelle (Laser) kénnen die Stérungen einer
Wellenfront exakt analysiert werden.

Das Prinzip eines Wellenfront — Sensors ist aus Abbildung 9.14 erkenntlich. Zusétzlich zur

tuhtv e vem
Tele ,nnp

Hf
LA

delormart s er gesiorte

Soeegel L5 Wellenteomt Righ-
Lopplung
m’
\ - Siran
PR ! SN teder
Stever. Sorrigerte
Compyter N Wellenfrond
» ¢ P & o
? \)
3 ’
~ s
Ve

hochaulgeléstes
Wetlentrsnt- Bd¢
Sentror

Abbildung 9.14: a) Aufbau eines
Wellenfront—Sensors, b) Interferenzbilder
einer ungestorten und gestorten Wellen- Abbildung 9.15: Anordnung zum Aus-
front. gleich der Stérungen in einer Wellenfront.

Analyse ermdoglichen weiterentwickelte Anordnungen (siehe Abb. 9.15), die Stérungen in
einer Wellenfront auszugleichen.

Die ankommende Lichtwelle wird iiber einen deformierbaren Spiegel zu einem Strahlteiler
gelenkt. Der Reflexionsanteil des Lichtes wird {iber einen Wellenfront — Sensor analysiert,
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welcher iiber einen Computer die Deformation des Spiegels so steuert, dafl die Stérungen
in der Wellenfront korrigiert werden.

Andere Ausfithrungsformen eines Zweistrahl — Interferometers sind das JAMINsche (siehe
Abb. 9.16) sowie das MACH — ZEHNDER — Interferometer (Abb. 9.17). Aufgrund ihrer
hohen Genauigkeit eignen sie sich insbesondere zur Bestimmung minimaler Anderungen
des Brechungsindexes eines Stoffes.

Abbildung 9.16: Jaminsches Interferome- Abbildung 9.17: Mach — Zehnder — Inter-
ter (aus [18)) ferometer (aus [4])

9.5 Vielstrahl — Interferenzen

Eine besonders interessante und wichtige Interferenzerscheinung 1a8t sich erzeugen, indem
man eine grofere Zahl kohdrenter Lichtwellen zur Uberlagerung bringt.

Zur Bestimmung der giiltigen Gesetzmafigkeiten betrachten wir die Anordnung in Abbil-
dung 9.18 (aus [14]).

N kohirente Lichtquellen senden ebene Wellen von gleicher Amplitude Ay in x — Rich-
tung aus. Aufgrund der Parallelitiit besitzen im Ubergang z — oo jeweils zwei Licht-
strahlen den Gangunterschied A(z — o00) = asina. Die N — Wellen besitzen also
relativ zu einander die Phasendifferenz

A 2
6:27T—:Tﬁasina

A
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Abbildung 9.18: Zur theoretischen Herleitung der Bedingungen der Vielstrahlinterferenz.
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Die mathematische Darstellung der Wellen lautet:

LWelle B, = AgétWt—Fkz)
2.Welle E, = Ele“S—AOe( t—kx) i
3.Welle E3 = E2615 Ag e (wt—ka:) 126

NWelle Exy = Ey_1¢'0 = Agel Wt —kz) i (N—-1)6
Jede n — te Welle eilt der (n-1) — ten um § voraus. Lafit man die Parallelstrahlen inter-

ferieren (z.B. mit Hilfe einer Sammellinse in deren Brennebene), dann berechnet sich die
resultierende Feldstirke E zu

N o
E— ZE _Aewt—kac Zez 1)¢
m=1

Die Summe S stellt eine geometrische Reihe mit dem Quotienten ¢?9 dar. Der Summen-
wert lautet

. ino (—ido_ i%o
1—etNO Z'N2—15sin%6
° 1—¢f9 - ; 0 —; 0 ; 0 —° sind
2 (e '2-¢'2 2

Damit erhalt man fiir die Interferenzwelle

. N
5 . N —1
E = A, Sm%ez(wt—kx) 61—2—5
Sin?

Wie sieht die Intensititsverteilung des Interferenzbildes aus?

Aus der Amplitude der Gesamtwelle

smN5

= A
sin %

ergibt sich die Intensitét zu

27

wobel § = D sin o ist.
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Der Bruch wird minimal, wenn der Z&hler seine Minimalwerte annimmt. Dieser Fall liegt
vor, wenn 6 = 27w k/N und der Nenner ungleich Null ist. Es miissen also diejenigen &
ausgeschlossen werden, fiir die k/N = m eine ganze Zahl ist.

Fir 6 = 27am mit m = k/N € Z ist der Bruch unbestimmt (0 : 0) und hat, wie
weitere mathematische Diskussionen zeigen, den Wert N. Die Nullstellen des Nenners
liefern Intensitdtsmaxima der Interferenzwelle

I = A2N?

?

welche als Hauptmaxima bezeichnet werden. Zwischen diesen entstehen an den Ex-
tremstellen des Zihlers (N — 2) sogenannte Nebenmaxima. Die Abbildung 9.19 zeigt

N=2
| | ! | |
-2 -1 0 1 2 asin §/\
N=4
I ! ! | |
-2 -1 0 1 2 a sin 8/
N=§8
| | | 1 |
-2 -1 0 1 2 a sin 6/

Abbildung 9.19: Interferenzfunktion bei N=2, 4 und 8 Strahlen. (aus [14])

die Interferenzfunktionen von (a) N = 2, (b) N =4 und (¢) N = 8 Strahlen. Die
Hauptmaxima liegen bei § = 0, 27, 47 .... Dazwischen befinden sich N —2 = 0/2/6
Nebenmaxima an den Extremstellen und N —1 =1/3/7 Minima an den Nullstellen des
Zahlers.

Mit zunehmender Zahl N der interferierender Strahlen wachsen die Hauptmaxima stark
an, so dafl diese fiir sehr grofle NV das Interferenzbild dominieren. Sie sind dann besonders
scharf ausgepragt!

Aus diesem Grund ist die Vielstrahlinterferenz auf dem Gebiet der Spektroskopie,
d.h. der Wellenlédngenausmessung eines Spektrums, von grofler Bedeutung.

Da die Lage der Interferenzstrukturen von der Wellenlinge des verwendeten Lichtes
abhéngt, erhilt man fiir polychromatisches Licht farbige Interferenzerscheinungen, die
voneinander getrennt liegen oder sich iiberlappen. Fiir jede Interferenzordnung bilden die
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Hauptmaxima ein (Linien—) Spektrum des verwendeten Lichtes. Diese Tatsache nutzt man
bei den Interferenzspektrometern aus, um die spektrale Struktur von Licht zu analysieren.
Mit zunehmender Schirfe der Hauptmaxima wird es moglich, selbst feinere Details der
Struktur der Spektrallinien (Feinstruktur) zu erkennen.

Das Fabry — Perot — Interferometer

Das erste Vielstrahlinterferometer wurde gegen Ende des 18. Jahrhunderts von CH. FA-
BRY und A. PEROT konstruiert (Abb. 9.20). Es besteht aus zwei ganz schwach keilférmi-
gen Glasplatten, die parallel zueinander angeordnet sind. Zur Erhohung des Reflexions-
vermogens sind die einander zugewandten Fléchen teildurchlissig versilbert. Die Platte
P, ist fest angebracht, durch Parallelverschieben von Py kann der Abstand d (Gréfenord-
nung cm) beider Platten verindert werden.

Ein Lichtstrahl, der durch P; in die Luftschicht zwischen den Platten eingedrungen ist,
wird dort mehrfach hin — und herreflektiert, wobei jeweils ein Bruchteil des Lichtes aus P,
austritt. Die transmittierten, parallelen Teilstrahlen sind kohérent und werden durch eine
Linse in deren Brennebene zur Interferenz gebracht. Bei Beleuchtung mit divergentem
Licht bilden die Maxima aller unter gleichem Winkel « einfallenden Strahlen konzentri-
sche Kreise um die Plattennormale. Die Kreisradien variieren mit der Wellenlédnge, so dafl
aus den Radien benachbarter Ringe bzw. aus den zugehorigen Einfallswinkeln die Wel-
lenléngen der Spektrallinien ermittelt werden konnen.

Oft arbeitet man mit senkrecht einfallendem parallelen Licht und bestimmt die Wel-
lenlénge durch Veridnderung der Dicke der Luftschicht. Dabei mifit man den Wechsel der
transmittierten Intensitit als Funktion des Plattenabstandes.

USW. ‘I‘ihd;g . 8
Cy

R
ot

Abbildung 9.20:
FABRY — PEROT — Interfe- Abbildung 9.21: Interferometer (a) nach LUMMER und
rometer (aus [4]) (b) nach LUMMER u. GEHRKE. (aus [4])
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Die Lummer — Gehrke — Platte

Bei dem Interferometer von LUMMER und GEHRKE (Abb. 9.21) fillt ein Lichtstrahl durch
ein Glasprisma derart in eine planparallele Glasplatte ein, daf} er fast unter dem Grenzwin-
kel der Totalreflexion auf deren Auflenflichen trifft. Der Strahl wird fast vollstindig nach
innen reflektiert. Er 1duft daher mehrfach zwischen den Plattenflichen hin und her. Die
seitlich austretenden kohirenten Teilstrahlen interferieren in der Brennebene einer Lin-
se. Bei Beleuchtung mit einem divergenten Lichtbiindel ergeben sich Interferenzkurven
gleicher Neigung, die fiir verschiedene Wellenléngen voneinander getrennt sind.

Weitere Anwendung findet die Vielstrahlinterferenz bei Interferenz — Filtern und — Mi-
kroskopen.

9.6 Das Auflésungsvermogen eines Interferometers

Wir kommen noch einmal auf die Bedeutung von Interferometern in der Spektroskopie
zuriick. Fiir die Giite eines Spektralapparates ist das Auflésungsvermdgen entschei-
dend, welches Aufschlufl iiber die Fahigkeiten eines optischen Geriites gibt, zwei unter-
schiedliche Wellenléngen A und A + d\ noch getrennt zu registrieren, d.h., deutlich als
unterschiedliche Spektrallinien darzustellen. Das Auflésungsvermogen ist gegeben durch
den Ausdruck A/d\. Dabei bezeichnet d\ den spektralen Abstand zweier gerade noch
getrennt wahrnehmbarer Wellenléingen.

Bei einem Interferenzspektrometer werden zwei Wellenldngen umso besser unterschieden,
je schirfer die einzelnen Hauptmaxima sind. Die Schérfe ist wiederum abhéngig von der
Anzahl N der interferierenden Teilstrahlen.

Bei Erhéhung von N

— werden die Hauptmaxima mit I ~ N? hoher.

— nimmt die Zahl der dazwischen befindlichen Minima mit N — 1 zu.
= Die Hauptmaxima werden mit ﬁ R~ % schmaéler (schérfer).

Nach dem Rayleigh—Kriterium gilt:

Zwet Liniten I und Iy gy werden in der m.ten Ordnung gerade noch unter-
schieden, wenn das Hauptmaximum von Iy, 4\ auf das erste Minimum von Iy

fallt.

Das Kriterium ist gleichbedeutend mit der Forderung, dafl sich die Halbwertsbreiten H
nicht iiberlappen diirfen, da sich sonst nur noch ein einziges Maximum ausbildet. Die
Bedingung fiir Hauptmaxima m.ter Ordnung lautet

27 4 si 0 =2mm

& Tasina = 2mm
& asina = mA
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Abbildung 9.22: Rayleigh—Kriterium fiir das Auflésungsvermdégen. (aus [13))

d.h. der Abstand zweier Hauptmaxima ist A\. Der Abstand zwischen dem Hauptmaximum
und dem ersten Nebenmaximum m.ter Ordnung betrigt dann

A A

-~

N-1 N

Damit lassen sich nun die Bedingungen fiir das Hauptmaximum der Linie 7,4, und das
erste Minimum der Linie /) in der m.ten Ordnung aufstellen:

Hauptmaximum von Iy,gy : Sin Qe = m(A + dA)

Minimum von I} : Sin Qi = M A + %

Das Rayleigh — Kriterium ist fiir oy, = Qs erfiillt. Daraus folgt

m(A+d\) =mA+ A

Auflésungsvermogen eines
Interferenzspektrometers

A —Nm mit N : Anzahl der interferierenden Strahlen
d\ m : Ordnung der Interferenz
Beispiele:
Interferometer von N m Auflésungsvermogen ﬁ
FABRY — PEROT 60 | 7-10% 4-108
LUMMMER — GEHRKE | 10 | 4 -10* 4-10°

Interferenzspektrometer haben den Nachteil, dafl die Spektroskopie bei ihnen auf einen
kleinen Wellenldngenbereich beschrinkt ist, da sich sonst Linien verschiedener Ordnun-
gen und Wellenlidngen iiberlagern. Die zugehorige kennzeichnende Gréfe ist der nutzbare
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Abbildung 9.23: Die Hauptmaxima zweier Interferenzfunktionen verschiedener Wel-
lenldngen A1 und A9 riicken mit zunehmender Ordnung der Interferenz auseinander.

Wellenléingenbereich A), d.h. der Bereich, in dem die Wellenldingenbestimmung ein-

deutig ist.

Wir betrachten zwei Intensitéitsverteilungen I; und I, mit A\; = A und Ay = A+ AX. Da
die Trennung der Hauptmaxima linear mit der Ordnung zunimmt (Abb. 9.23), werden die
Linien von I; und I, immer weiter auseinanderlaufen, bis schliellich das m.te Maximum

von I das (m + 1).te Maximum von von [; iiberdeckt. Dann gilt

>

(m+DA=m A+ AN)

nutzbarer Wellenldngenbereich

3>

= |Al=

Bei Vielstahlinterferenzen treten Ordnungen m = 40000 — 70000 auf. Fiir eine Wel-
lenlinge A = 500nm (im sichtbaren Bereich ) ist der nutzbare Wellenléingenbereich
AX ~ 1072nm sehr gering. Man wendet Interferenzspektrometer daher meist erst an,
nachdem eine Vorzerlegung des Lichtes z.B. mit Hilfe eines Prismenspektralapparates

stattgefunden hat (Abb. 9.24).
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Abbildung 9.24: Zerlegung des Lichtes mit Hilfe eines Prismenpektralapparates. (aus [4])



Kapitel 10

Beugung

Wir haben bisher Optik betrieben unter der Voraussetzung, dafl die charakteristischen Ab-
messungen sehr groff im Vergleich zur Wellenlénge des verwendeten Lichtes sind (d > )).
Die grundlegende Gesetzmifligkeit der geometrischen Optik, die geradlinige Ausbreitung
der Lichtstrahlen, war erfiillt.

Wie verhalten sich nun Lichtwellen an Hindernissen im Strahlengang bzw. an
optischen Vorrichtungen, deren Dimensionen ungefihr gleich der Gréflenord-
nung der Wellenléinge sind?

Abbildung 10.1: (a) Fresnelsche Beugung an einer Kante, (b) Beugung an einem Einzel-
spalt. (aus [1])

272
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(a) Wird die freie Ausbreitung einer Welle durch ein Hindernis gestort, so stellt man
wider Erwarten auch im geometrischen Schattenbereich des Hindernisses eine Wel-
lenerregung fest.

(b) Trifft eine ebene Welle auf einen Spalt mit d < A, so tritt aus dem Spalt eine
Kugel- bzw. Kreiswelle aus.

In beiden Fillen erfolgt eine Abweichung von der geradlinigen Ausbreitung des Lichtes, die
zugehodrigen Lichtstrahlen erfahren eine Richtungséinderung. Diese Erscheinung bezeich-
net man als Beugung. Das Licht wird an Hindernissen und freien Durchléssen (Spalt,
Blendenéffnung) gebeugt.

Die Erklarung geschieht mit dem Huygensschen Prinzip: Trifft eine ausgedehnte Wellen-
front auf ein Hindernis, welches nur einen Teil der Wellenfront hindurch - bzw. an den
Réindern vorbeilaufen 148t, dann wird jeder Punkt der ungestorten Partien der Wellen-
front Ausgangspunkt einer Elementarwelle. Letzere breiten sich kugel- bzw. kreisférmig
aus, so daf} sie auch in den Schattenraum des Hindernisses gelangen, wo sie interferieren.
Das zugehorige Interferenzbild heiit Beugungsfigur.

Man unterscheidet zwei experimentelle Vorgehensweisen, Beugungserscheinungen zu er-
zeugen und zu beobachten.

Abbildung 10.2: Beugung an einer Offnung: a) FRESNELsche Betrachtungsweise, b) und
c) FRAUNHOFERsche Betrachtung. (aus [14])

Bild a) zeigt die Beugung nach Fresnel. Sie zeichnet sich dadurch aus, da§ Lichtquelle
L und/oder Beobachtungspunkt P der Beugungserscheinung einen endlichen Abstand zur
DurchlaBB6ffnung besitzen. Die experimentelle Untersuchung der Beugungserscheinung ge-
schieht mit divergenten und konvergenten Lichtbiindeln.

Im Gegensatz dazu befinden sich bei der Fraunhoferschen Beugung (J.FRAUNHOFER
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1787 — 1826) sowohl L, als auch P im Unendlichen. Dies erreicht man, indem man zu
beiden Seiten der Durchlafi6ffnung eine Linse derart einfiigt, dal Lichtquelle und Beob-
achtungsschirm in den Brennebenen liegen. Man arbeitet hier mit ebenen Wellen.

10.1 Fraunhofersche Beugung am Spalt

Versuch: (a) Ein Laserstrahl wird an einem Einzelspalt gebeugt. Das Beugungsbild
zeigt in der Mitte einen breiten, hellen Streifen, der symmetrisch von
dunklen und hellen Beugungsstreifen umgeben ist (Abb. 10.3).
Bei Verbreiterung des Spaltes riicken die Intensitdtsmaxima immer
dichter zusammen, bis sie schliellich verschwinden.

(b) Die Intensitétsverteilung der Beugungsfigur wird mit Hilfe einer Pho-
todiode ausgemessen, um die Beugungsbedingungen zu ermitteln.

Ergebnis: Man beobachtet Beugungsminima bei

. mA Spaltbreite
sin ay,, = ——

d =
d | m e z\{0}

Theoretische Herleitung der Beugungsbedingung

Abbildung 10.3: Intensitétsverteilung
bei Fraunhoferscher Beugung am Ein-Abbildung 10.4: Zur theoretischen Herleitung der
zelspalt. (aus [1)) Beugungsbedingungen am Einzelspalt. (aus [14])

Fillt eine ebene Welle senkrecht auf einen Spalt (d > ), dann begrenzt dieser eine
Wellenfliche, deren Punkte gleichphasig schwingende Erregungszentren darstellen. Wir
unterteilen den Spalt in N Teilstiicke mit N — oco. Von jedem Teilstiick geht unter dem
Winkel a zur Spaltnormale eine Elementarwelle Ejy aus. Das Koordinatensystem sei so
gewihlt, dafl die Wellen in z — Richtung fortschreiten. In Analogie zur Vielstrahlinterfe-
renz besitzen jeweils zwei Strahlen den Gangunterschied A = sinad/N . Zwischen den
Elementarwellenstrahlen besteht also die relative Phasendifferenz

A d sin o
(5—27TX—27T 3
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Die Elementarwellen _ _
E, :Akez(wt—kx) JAk—1)6

sind kohirent und von gleicher Amplitude, ihre Uberlagerung ergibt im Unendlichen die
Fraunhofersche Beugungsfigur. Die resultierende elektrische Feldstdrke berechnet sich zu

N sinﬂé N —1
E(a)zZEszg‘ R 25 el T2 g
k=1 sin 5

Dabei ist E§ die elektrische Feldstérke der ebenen Welle in Richtung o. darstellt. Bezeich-
net man mit ¢ die Phasenverschiebung zwischen den beiden dufleren Strahlen, d.h. ¢ =
N 6, so 148t sich im Grenziibergang N — oo folgende Umformung vornehmen:

sm%zé_ sm% Noroo sin%: sin%
smg sm%% %% %

Wir betrachten nun die Feldstirke E(0), welche die Uberlagerung der Wellen in der Rich-
tung o = 0, d.h. ohne Phasenverschiebung ergeben wiirde. Die Amplitude Af von Ef
ergibt sich aus dem Zusammenhang

|E(0) = AZ N = Ay

u Ag = A % . Fiir die resultierende Amplitude A(«) von E(«) und die Intensitét I(«),
die in Richtung des Winkels @ zur Spaltnormalen auftritt, gilt also

Amplitude  A(a) = Ao

Intensitét I(a) = A(a)? = A2 Wz
2

Beugungsminima liegen vor, falls sin% =0, also ¢/2 = mm gilt, wobei ¢/2 nicht
gleich Null sein darf.

sin o, = mT m € Z\ {0}| Beugungsminima

sin /2
. . /2 . .
liegt also ein Beugungsmaximum mit der Intensitit

Fiir m = 0 ist der Bruch unbestimmt und nimmt den Wert 1 an. In 0.ter Ordnung

I(a) = Iy = A]  zentrales Hauptmaximum
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vor. Diese Intensitiit wire auch bei der Uberlagerung der Strahlen in Richtung a = 0, also
ohne Phasenverschiebung zu beobachten. Aufler dem zentralen Beugungsmaximum nullter
Ordnung existieren noch Nebenmaxima héherer Ordnungen, deren Lage ndherungsweise
durch

sina,, ~ + <m+%> g m € Z\ {0}
angegeben werden kann. Die Superposition der Teilwellen unter Beriicksichtigung ihrer

E, = pE

T J
5 10

10 _ 0
10 5 o

Abbildung 10.6: Zur anschaulichen Herlei-
Abbildung 10.5: Intensitétsverteilung bei tung der Beugungsbedingungen am Fin-
der Beugung am Spalt. (aus [14]) zelspalt. (aus [14])

Phasenlage kann als Vektoraddition in der Gaufischen Zahlenebene veranschaulicht wer-
den (Abb. 10.6).
Die Elementarwellen ) _

B, :Akez(wt—kx) Jk—1)0

sind Zeiger gleicher Linge, die gegeneinander um ¢ gedreht sind. In der Ndiherung sehr
kleiner Verschiebungen ¢ liest man aus der Zeichnung fiir A(a) = |E(«)| ab

~ A
(r :k/(s) 2% sinN—é

ab. Daraus folgt mit Ay = Ag/N und ¢ = N§ fiir die Linge (Amplitude) des resultie-
renden Vektors

Ala) =27

sin 32[2
Beugungsminima ergeben sich fiir > Ey = 0. Im Grenzfall N — oo liegt dann ein
geschlossener Kreis vor und es gilt

2md si A
@zN&z%SHIa:QmW = sinam = 0
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10.2 Beugung am Draht

Versuch: Ein Laserstrahl wird zunéichst an einem Spalt, anschlieflend an einem
Draht gebeugt, wobei Spaltbreite und Drahtdicke iibereinstimmen.
Es bildet sich in beiden Fillen die gleiche Beugungsfigur aus.

Die beiden Hindernisse, bei denen durchlissige und undurchlissige Stellen genau ver-
tauscht sind, heiflen komplementire Blenden. Allgemein gilt fiir beliebige komple-
mentére Blenden (Spalt — Draht, Lochblende — Kreisblende, usw.) das Prinzip von Ba-
binet:

Komplementdre Blenden liefern auferhalb des direkten Strahls identische Beu-
gungserscheinungen.

7,0

Abbildung 10.7: Zum BABINETschen Theorem: FRAUNHOFERsche Beugung (a) an einem
Spalt und (b) an einem gleichdicken Draht. (aus [8])

Das Theorem 14t sich in der FRAUNHOFERschen Betrachtungsweise wie folgt erkléren:
Eine ebene Lichtwelle falle senkrecht auf einen Schirm. Wir betrachten (Abb. 10.7) auf
dem Schirm auflerhalb des direkten Strahls einen Punkt P. Bringt man jeweils nur eines
der komplementiren Hindernisse, Spalt oder Draht in den Strahl ein, so erzeugt dieses
Hindernis in P eine Amplitude Ag oder Ap der elektrischen Feldstirke. Beide Hinder-
nisse zusammen miissen, da sie komplementir sind, sich gegenseitig in ihrer Wirkung
aufheben. Bei Kombination der komplementiren Blenden muf} also in P Dunkelheit herr-
schen,d.h. Ausléschung stattfinden.

As+ A =0 = Ag=-Ap
Fiir die in P auftretenden Intensitéiten folgt mit I ~ A?
IS = CA%- = C(—AD)2 = ID

Die Intensitatsverteilung ist fiir alle Punkte P auflerhalb der direkten optischen Abbildung
gleich, es entstehen identische Beugungsfiguren.
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10.3 Fraunhofersche Beugung am ebenen Strichgit-
ter

Uns interessiert nun das Beugungsbild vieler Spalte der Breite d, die in konstantem Ab-
stand ¢g voneinander angeordnet sind. Zur Herstellung solcher Strichgitter mit der Git-
terkonstante g benutzt man meist durchsichtige Glasplatten, in welche lichtundurchléssi-
ge Striche eingeritzt werden, so dafl die unbehandelten Stellen als Spalte wirken.

d d d d4 d d

Trifft eine ebene Welle auf ein Gitter mit N Spalten, so iiberlagern sich die von den
einzelnen Spalten entworfenen Beugungsfiguren. Es entsteht im wesentlichen das Bild eines

Einzelspaltes, welches jedoch aufgrund von Interferenzen des von den einzelnen Spalten
unter gleichem Winkel gebeugten Lichtes moduliert ist.

Zur genaueren Erlduterung greifen wir aus dem Gitter zwei Spalte heraus und betrachten
zwei Lichtbiindel, die unter dem Winkel a gebeugt werden. Die Interferenz der von einem

C T
N ~ ST

AN .

Abbildung 10.8: Lichtbeugung an zwei benachbarten Spalten eines Strichgitters. (aus [4])

Spalt ausgehenden Elementarwellenstrahlen ergibt das Beugungsbild des Einzelspaltes.
Die Randstrahlen eines solchen Strahlenbiindels besitzen, wie in Abschnitt 9.1 gezeigt

wurde, die Phasendifferenz

27d i
= 1n .
¥1 )\ o

Dies gilt fiir alle N Spalte des Gitters. Die Intensititsverteilung der Beugungsfigur eines
einzelnen Spaltes lautet (siche Abschnitt 9.1)

sin %)2
]S(Oé) :]0 ( 1
9
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Zusétzlich interferieren nun aber auch Strahlen aus verschiedenen Spalten miteinander.
Daher muf} auch die Phasenverschiebung korrespondierender oder homologer Strah-
len beachtet werden. Dabei handelt es sich um sich entsprechende Strahlen zweier be-
nachbarter Spalte.

2wy

P2 = h

Wir nehmen zunéchst eine so kleine Spaltbreite d < A, d < ¢ an, dafl von jedem Spalt
nur eine einzige Elementarwelle ausgehe. Dann erzeugt das Gitter eine Vielstrahlinterfe-
renz, deren Intensitéitsverteilung nach Abschnitt 8. durch

sin % V2
Ig(a) = N2
Sin 2

Lassen wir nun eine endliche Spaltbreite zu, dann iiberlagern sich die bisher getrennt dar-
gestellten Intensitétsverteilungen von Spalt und Gitter zu einer Gesamtintensitit I(a) =
I(] Is(O{) Ig(a/) :

sin «

2

gegeben ist.

Wir haben hier auf die exakte theoretische Herleitung der Gesamtintensitéit, d.h. die Ad-

Interferenz

Abbildung 10.9: Intensitétsverteilung (qualitativ) bei der Beugung an einem Strichgitter
mit N = 8 Spalten. (aus [1])

dition der Elemenatarwellenausdriicke unter Beriicksichtigung der Phasenlage verzichtet,
da dies im Rahmen dieser Vorlesung zu aufwendig wire.

Wie bei der Vielstrahlinterferenz werden auch bei der Beugung am Gitter die Beugungs-
maxima umso schirfer, je mehr Strahlen an der Uberlagerung beteiligt sind. Groflere
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Schirfe erzielt man daher mit Gittern héherer Strichzahl N. Die Schérfe sowie auch die
Tatsache, dafl die Maxima mit zunehmender Ordnung der Beugung auseinandergezogen
werden, macht man sich bei der Konstruktion von Spektralapparaten zunutze, bei de-
nen Gitter das Kernstiick bilden. Die in Abschnitt 9.6 fiir das Auflésungsvermogen und
den nutzbaren Wellenldngenbereich eines Interferenzspektrometers gefundenen Ergebnisse
lassen sich auf den Gitterspektralapparat iibertragen.

Aufls N nutzbarer
1 OSURESVETmogen Wellenléngenbereich
A _ D)

Bei einer anderen Ausfiihrung eines Spektralapparates wird die rdumliche Trennung der
Lichtwellenléingen von einem Prisma geleistet. Wir wollen an dieser Stelle der Vollsténdig-
keit halber das Auflésungsvermogen eines Prismenspektralapparates (ohne Be-
weis!) angeben.

Das Prisma bildet den Beleuchtungsspalt aufgrund seiner endlichen Abmessungen nicht

Abbildung 10.10: Zum Auflssungsvermdégen eines Prismenspektralapparates. (aus [4])

scharf, sondern als Beugungserscheinung ab (siehe Abb. 10.10). Die Beugungsbilder Q
und Q' nur wenig verschiedener Wellenléingen werden durch die Dispersion des Prismen-
materials rdumlich auseinandergezogen. Fiir das Auflosungsvermogen des Prismas gilt

A _b dn b : Basisbreite des Prismas
dA dA g—t\L : Dispersion

Mit b=5cm und dn/d\ = 10~*nm™" erhilt man \/d\ = 5000 als typischen Wert fiir
das Auflésungsvermogen eines Prismas.
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10.4 Fraunhofersche Beugung am Youngschen Dop-
pelspalt

Reduziert man beim Beugungsgitter die Anzahl der Spalte auf N = 2, so erhilt man einen
Doppelspalt. Die Intensitétsverteilung entnimmt man dem vorangehenden Abschnitt. Die
Abbildung 10.11 zeigt die Intensitéitsverteilung der von einem Doppelspalt entworfenen
Beugungsfigur.

Abbildung 10.11: Intensitétsverteilung bei der Beugung an einem Doppelspalt. (aus [13])

Darin gibt die Einhiillende die Interferenzstruktur des Einzelspaltes an, die grau gefdrbte
Kurve beschreibt die Uberlagerung der homologen Strahlen und damit die Interferenz-
struktur des Gitters.

10.5 Beugung an mehrdimensionalen Strukturen

10.5.1 Fraunhofersche Beugung an der Loch — bzw. Kreisblende

Eine Lochblende mit Radius r, die senkrecht mit parallelem Licht bestrahlt wird, entwirft
eine Beugungsfigur, die aus Symmetriegriinden rotationssymmetrisch um die Blendenach-
se ist. Das Beugungsbild weist in der Mitte ein kreisférmiges Hauptmaximum auf, welches
von konzentrischen dunklen und hellen Ringen umgeben ist. Dabei ist die Intensitdt der
Nebenmaxima wesentlich geringer als die Intensitéit des Hauptmaximums.

Da die Berechnung der Intensitétsverteilung sehr kompliziert ist, seien hier nur die Ergebnisse
angegeben:

Die Minima liegen bei |sina = K, —
r
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Abbildung 10.12: Fraunhofersche Beugungsfigur (a) am Einzelspalt und (b) am Doppel-
spalt. (aus [13])

Abbildung 10.13: FRAUNHOFERsche Beugung an einer Kreisblende. (aus [1])

Der Abstand der Ringe wird nach auflen hin, d.h. mit steigender Ordnungszahl kleiner:

K1 = 0,610
Ko = 1,116
K3 = 1,619

Die Intensitétsverteilung ist gegeben durch

2 _ 2mrsina
[(Oé) =1 [2 J;(Q)] mit e= A

Ji : BEssELfunktion 1.Art 1.0rdnung

Die Kenntnisse iiber die Loch — bzw. die dazu komplementire Kreisblende sind von grofer
Wichtigkeit, da die Beugung an einer Lochblende das Auflésungsvermdégen vieler opti-
scher Abbildungsvorrichtungen (Auge, Kamera, Teleskop usw.) begrenzt, wie wir in den
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néchsten Abschnitten sehen werden. Daher sei noch gesondert die Lage des 1.Minimums
angegeben:

A

sina; = 0,61 —
r

10.5.2 Fraunhofersche Beugung an Flichen — und Raumgittern

Bringt man in den Strahlengang eines parallelen Lichtbiindels ein Hindernis, bei dem licht-
durchléssige und — undurchlissige Stellen flichenhaft oder rdumlich periodisch angeordnet
sind, so treten Interferenzen auf, fiir die die Bedingungen der Form

: mA . :
sin o, = v fiir Maxima

in zwei oder drei Dimensionen gelten.

Beugung am Flichengitter

Ein Beispiel eines zweidimensionalen Beugungsgitters ist das Kreuzgitter, welches man
einfach konstruieren kann, indem man zwei Strichgitter um 90° gegeneinander verdreht
iibereinanderlegt.

Versuch: Das Beugungsbild eines Kreuzgitters wird vorgefiihrt.

Abbildung 10.14: An einem Kreuzgitter mit monochromatischem Licht aufgenommenes
FRAUNHOFERsches Beugungsspektrum. (aus [4])

Bei Beleuchtung mit monochromatischem Licht bilden die Beugungsmaxi-
ma ein System heller Punkte (Abb. 10.14), welche an den Kreuzungsstellen
eines rechtwinkligen Netzes liegen.



284 KAPITEL 10. BEUGUNG

Streuung von Rontgenlicht an Kristallen

Die Kristallgitter der Festkorper stellen ideale dreidimensionale Gitter dar. der Physiker
W.H.BRAGG (1862 — 1942) untersuchte gemeinsam mit seinem Sohn W.L.BRAGG die
Beugung von Rontgenlicht an Kristallen. Diese kommt dadurch zustande, daf§ das Licht
an den Atomen (Molekiilen) des Kristalls gestreut wird und anschliefflend aufgrund der
regelméfligen Gitterstruktur interferiert. Eine erste Voraussetzung ist, dafl die Wellenlénge
des verwendeten Lichtes die Groflenordnung der Gitterkonstanten besitzt. Daher sind im
sichtbaren Bereich keine Beugungserscheinungen zu beobachten.

Die in den Kristall einfallenden Lichtstrahlen werden an Atomen verschiedener Ebenen
des Kristalls gestreut. Konstruktive Interferenz der an den verschiedenen Netzebenen
reflektierten Strahlung liegt vor, wenn der Gangunterschied benachbarter Strahlen ein
ganzes Vielfaches der Wellenlénge betréigt, d.h., wenn die Braggsche Bedingung

2A=[2dsind=mA| (m=0,1,2,..)

erfiillt ist.

7o

| [0

I S K

Abbildung 10.15: Réntgenstrahlreflexion Abbildung 10.16: Schema eines Drehkri-
an zwei Netzebenen. (aus [4]) stall — Spektrometers. (aus [14])

Auch diese Beugungserscheinung nutzt man zur Wellenldngenbestimmung aus. Registriert
der Detektor eines Drehkristall — Spektrometers (Abb. 10.16) unter einem Winkel
konstruktive Interferenz, so 148t sich bei bekanntem Netzebenenabstand die Wellenldnge
ermitteln.

10.6 Auflésungsvermogen optischer Instrumente

Optische Instrumente sind aus Linsen und Blenden aufgebaut. Wir haben bei ihrer Be-
handlung aufler Acht gelassen, daf} an den Blendenbildern sowie an den Linsenfassungen,
die wie Lochblenden wirken, Beugung auftritt, welche die Leistungsfihigkeit der opti-
schen Vorrichtungen beeintrichtigt. Die Gegenstandspunkte werden nicht als Bildpunkte,
sondern als Beugungsfiguren abgebildet. Die Qualitdt eines Abbildungssytems wird also
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entscheidend durch das endliche Auflésungsvermégen bestimmt. Dieses wurde im Rahmen
der geometrischen Optik als unendlich angenommen, so dafl die geometrisch — optischen
Groflen (transversale und angulare Vergréfierung) dariiber keine Aussage machen.

Das Auflésungsvermogen einer Lochblende

Beugungsmuster [/ y
von S, &%
Von der Quelle

2

[} 8 |
Von der Quelle 6=1.22 A
S, D
Beugungsmuster
von S,

Abbildung 10.17: RAYLEIGHsche Regel fiir das Auflosungsvermdgen an einer kreisférmigen
Offnung. (aus [1))

Wir betrachten zwei aus dem Unendlichen, von zwei Punkten (z.B. Fixsternen) P und P’
kommende Strahlen, die in eine Offnung mit dem Durchmesser D = 2r wie abgebildet
eintreten (Abb. 10.17).

Wie weit miissen P und P’ auseinanderliegen bzw. wie grofi mufi der Winkel
o mindestens sein, damit die Punkte noch aufgelést werden?

Die von P und P’ erzeugten Beugungsfiguren auf dem Schirm miissen das RAYLEIGH —
Kriterium erfiillen, damit die Gegenstandspunkte noch getrennt wahrgenommen werden.
Das Maximum von P’ muf} in das erste Minimum von P fallen. Mit

sina = 0,61 é
r

ergibt sich fiir den Grenzwinkel

A

min — O = i :0,61—:1,22—
Qlnin = O = sin o . D

Damit definiert man

1 D | Auflosungsvermogen
einer Lochblende
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Das Auflésungsvermdégen bei einer optischen Abbildung

Wir betrachten nun Abbildungssysteme (Auge, Fernrohr, usw.). Hier wirkt die Linsenfas-
sung als Lochblende. Wir untersuchen zwei aus dem Unendlichen kommende Lichtbiindel

Abbildung 10.18: Zur Ermittlung des Auflosungsvermdégens bei einer optischen Abbildung.

(Abb. 10.18), deren Beugungsbilder in der Brennebene der Linse auf einem Schirm aufge-
fangen werden. Die Mittelpunktstrahlen schliefen wie im vorangehenden Abschnitt den
Winkel o miteinander ein. Das senkrecht auf die Pupille fallende Lichtbiindel entwer-
fe ein Hauptmaximum mit Radius a;. Damit beide Beugungsfiguren dem RAYLEIGH —
Kriterium geniigen, muf}

AS

a1 = fsina; =0,61 —
r

gelten. Befindet sich zwischen Linse und Schirm ein Medium mit Brechungsindex n, dann
findet Dispersion statt und die Wellenlénge dndert sich zu X' = \/n.
N A
/ =0,61 Af
r nr
Die kleinste auflésbare Struktur ist @ = 2a; (Durchmesser), so daf

a; = f sina; = 0,61

1 nr 0.89 A| Auflésungsvermogen bei
a 1,22)f "7 x| der optischen Abbildung
folgt. Die Grofle
nr
A= —
f

heifit Apertur der optischen Abbildung.
Wir geben ein quantitatives Beispiel am Abbildungssystem ‘Auge’:

Brechungsindex des Glaskorpers n =1, 33 Pupillenradius » = 2mm
Brennweite der Augenlinse f = 1,7cm Wellenldnge A = 550 nm

~

=>a=v4,3um

Die kleinste durch das Auge auflosbare Struktur a entspricht ungefihr der Griofle eines
Stébchens (ca. 5 pm). Der Durchmesser der Augenpupille ist daher der Struktur der Netz-
haut gut angepaflt.
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Das Auflésungsvermdogen eines Mikroskopes

Die Uberlegungen sind hier analog zu den bei den Abbildungssystemen ‘Auge’ und ‘Fern-
rohr’ gemachten Ableitungen mit dem Unterschied, dal der umgekehrte Strahlengang
betrachtet wird ( Abb. 10.19), Objekt und Beobachter sind zu vertauschen.

Z
PR SR
P ’ >
a : 2r
P v
7
7

Abbildung 10.19: Zur Ermittlung des Auflosungsvermogens eines Mikroskopes

Die begrenzende Eintrittsoffnung ist das Objektiv des Mikroskopes, in dessen Brennebene
die zu observierenden Objektpunkte angeordnet sind.
Die Linse erzeugt vom Punkt P eine Beugungsfigur, deren erstes Minimum (erster dunkler
Ring) unter dem Winkel «; zur optischen Achse erscheint. Wird der Punkt P’ unter diesem
Winkel abgebildet, dann fallen das Hauptmaximum von P’ und das erste Minimum von
P zusammen. Analog zum Fernrohr gilt fiir die kleinste auflésbare Struktur

a=2a =1,22 Af

nr

Unter Verwendung der Beziehung r/f = tan®) ~ sin® fiir den Offnungswinkel des Ob-
jektivs kann man dies umformen und man erh&lt

A 089 A | Auflésungsvermégen
%% 4| des Mikroskops

1
- =0,82—
a n sind

Man nennt die numerische Apertur.

Theorie der Abbildung von Abbe

Wir haben in den vorangehenden Uberlegungen zur Leistungsfihigkeit optischer Instru-
mente stets das RAYLEIGH — Kriterium benutzt und die Minderung des Auflosungs-
vermogens auf die Beugung an einer Blende (Apertur) zuriickgefiihrt. Dies war fiir Ab-
bildungen, wie sie mit Auge, Fernrohr, Kamera und anderen optischen Systemen durch-
gefiihrt werden, angebracht. Dabei handelt es sich um Abbildungen selbstleuchtender
Objekte (natiirliche und kiinstliche Lichtquellen, Bsp.: Sonnen, Sterne), die inkohérentes
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Licht ausstrahlen. Die meisten Gegenstéinde leuchten, da sie das Umgebungslicht streuen.
Auch fiir die Abbildung solcher lichtstreuender Objekte besitzt das RAYLEIGH — Kriteri-
um Giiltigkeit.

Bei der Abbildung sehr kleiner Objekte, die aufgrund ihres Formats nicht iiber ein ausrei-
chend grofles Streuvermogen verfiigen, ist oft kohédrente Beleuchtung erforderlich, so dafl
ein Beugungsbild der Struktur selbst entsteht.

Dies ist z.B. beim Mikroskop der Fall. Die Strukturen der feinen Objekte, die beim Mikro-
skopieren von unten mit kohdrentem Licht durchstrahlt werden, wirken wie ein Beugungs-
gitter (Abb. 10.20). Auf das Objektiv treffen daher Beugungserscheinungen verschiedener
Ordnungen des Gitters, die in der Brennebene der Objektivlinse zu einem Beugungs-
bild des Objektes vereinigt werden. Diejenigen Strahlen aus den verschiedenen Maxima,
die jeweils von demselben Gegenstandspunkt ausgehen, interferieren miteinander in der
Zwischenbildebene. Das Interferenzbild stellt das reelle Bild des Objektes dar.

Objective

Transform

SNy,

(b)

« v s o 7 frtnl\

Abbildung 10.20: Bildentstehung im Mikroskop nach E.ABBE. (aus [13))

Versuch: Blendet man bei der Abbildung durch ein Mikroskop die héheren Ord-
nungen des Beugungsbildes in der Brennebene aus, so verschlechtert sich
die Qualitét des reellen Bildes. Dieses wird vollig unkenntlich, wenn man
auch die 1.0rdnung ausblendet!

Dieser Versuch untermauert die Theorie von E.ABBE (1873), nach der die Beugung zwar
einerseits zu einer Beeintrichtigung der Abbildung fiihrt, andererseits aber die Abbildung
erst durch das Zusammenwirken von Beugung und Interferenz moglich wird. Er stellte
das Abbesche Theorem auf, welches allgemein giiltig ist:

Zur Erzeugung eines getreuen (scharfen) Bildes sind alle Ordnungen der Beu-
gung erforderlich. Damit iiberhaupt noch ein Bild zustande kommt, mufl min-
destens die 1.0rdnung zum Bildaufbau beitragen.
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Wie 1af3t sich dies formal ausdriicken?

Die Bedingung fiir die Maxima 1.0Ordnung lautet

sinoy = —  mit a: Gitterabstand
na

Damit diese noch erfafit werden, muff zwischen dem zugehdrigen Beugungswinkel und dem
Offnungswinkel des Objektivs die Beziehung

sin oy = sin ¥

bestehen. Dann folgt fiir das Auflésungsvermégen des Mikroskops

1 é it A = n sin? numerische Apertur
a A a: Gitterkonstante

Das aus dem ABBEschen Theorem abgeleitete Auflosungsvermogen stimmt bis auf den
konstanten Faktor ¢ = 0,82 mit der iiber das Rayleigh — Kriterium gefundenen Formel
iiberein.

Je nachdem, ob bei einem Mikroskop der Zwischenraum zwischen Objekt und Objektiv
mit Luft oder sogenannten Immersionsfliissigkeiten gefiillt ist, besitzt das Mikroskop eine
andere Apertur und damit ein anderes Auflésungsvermégen. Die Tabelle 10.1 gibt Werte
fiir das Auflésungsvermégen und die Vergroflerung verschiedener Mikroskopausfiihrungen
an.

Benutztes Objektiv- Objektiv- Reziprokes Objektiv- Okular- Gcsar{u-
Objektiv Apertur  brenn- Auflosungs-  VergréBerung VergroBerung VergréBerung

A weite f vermogen 750 A

in mm (in 2-Einheit) Vo, on = o Von,  Fou
d=06!42A obj

Trocken- 0.05 19 1222 24 15 36
svsiteme 0.1 32 6.1 35 20 70
' 0.25 16 25 10 20 200

0.65 6 0.95 30 16 480

0.85 3 0.7 62 10 620
Wasser- 1.0 36 0.6 =0 3 750
Immersion 1.2 21 0.5 90 10 900
0l
Immersion 1.3 1.8 0.45 100 10 1000

Tabelle 10.1: Auflésungsvermégen und VergréBerung verschiedener Mikroskopausfiihrun-
gen.(aus [4])

10.7 Fresnelsche Beugung

In der Natur treten wesentlich hiufiger FRESNELsche als FRAUNHOFERsche Beugungser-
scheinungen auf. Zur Berechnung der Intensitétsverteilungen miissen auch hier die Wel-
lenfunktionen unter Beriicksichtigung der Phasendifferenzen aufaddiert und das Quadrat
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der Amplitude gebildet werden. Da keine ebenen Wellen Voraussetzung sind, ist die ma-
thematische Behandlung der Fresnelschen Beugung sehr kompliziert.

Wir wollen uns daher hier mit dem noch relativ einfachen Fall FRESNELscher Beugung
an einer Lochblende beschiftigen, bei dem die Lichtquelle wie bei der FRAUNHOFERschen
Betrachtungsweise im Unendlichen liegt, der Beobachter sich aber auf der Blendenachse
in endlicher Entfernung ro zur Beugungsebene befinde. Fiir diesen Spezialfall 148t sich ein
Niaherungsverfahren angeben, die Fresnelsche Zonenkonstruktion, die eine Analyse
des Beugungsbildes ermoglicht.

Abbildung 10.21: Zur FRESNELschen Beugung an einer Kreisblende

Um die Interferenzerscheinungen bei Py von der Lochblende in der Beugungsebene zu
beschreiben, verfolgen wir den Lichtweg von Py zuriick zur Blende. Die Blendentffnung
wird so in konzentrische Ringe, sogenannte Fresnelsche Zonen aufgeteilt, daf fiir die
Abstdnde der Zonenrandpunkte von Py gilt

A
rk:r0+k§ (k=1,2,3,...) .
Fiir die zugehorigen Ringradien Ry 148t sich dann folgende Beziehung aufstellen:
2 2 2 A ’ 2 1 212
Ry=r,—1; = r0+k§ —rO:k/\ro-l-Zk A

Wir nehmen an, da} o > A ist, dann konnen wir den letzten Term vernachléssigen und
erhalten

Ry =+/kAry| FRESNELsche Zonen
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Die Zonenradien wachsen proportional zu vk an, dies hat zur Folge, da8 alle Zonen die
gleiche Fliche besitzen:

A= (R2—R} ) =mnAro (k= (k—1))

Wir untersuchen nun die Interferenz von Elementarwellen zweier benachbarter Zonen in
PO:

Die von verschiedenen Flichenelementen derselben Zone ausgehenden Elementarwellen
haben maximal einen Gangunterschied von \/2. Ihre Interferenz erzeugt in Py eine Ampli-
tude Ej. Vernachlissigt man die geringfiigigen Differenzen des Abstandes, den benachbar-
te Zonen vom Beobachtungspunkt Py haben, dann haben die Amplituden der zugehérigen
Interferenzwellen den gleichen Betrag | ES| = |E¥*!|, da die Zonen flichengleich sind. Die
von homologen Flichenelementen verschiedener Zonen kommenden Strahlen besitzen je-
weils einen Wegléngenunterschied von A\/2. Vereinfacht 148t sich sagen, daf§ die Strahlen
benachbarter Zonen den Punkt Py mit einer Phasendifferenz 7 erreichen. Dann folgt fiir
die in Py von aufeinanderfolgenden Zonen erzeugte Amplitude der elektrischen Feldstérke

k __ k+1
EO - _EO

Die Gesamtamplitude in Py ergibt sich durch Addition der Einzelamplituden aller Zonen
bei Beachtung der gegenseitigen Phasenunterschiede:

Ey(Py) = Ej+EZ+E3+---+Ef
= Ey—Ey+Ey—---+E;

k Sum%anden

Fiir die Interferenzerscheinung im Beobachtungspunkt 148t sich also festhalten:

(i) Ist die Anzahl k£ der Zonen gerade, so 16schen sich in Py die Elementarwellen gegen-
seitig aus, es liegt ein Beugungsminimum vor.

(ii) Ist die Gesamtzahl k£ der Zonen ungerade, dann existiert eine Zone, deren Strah-
len nicht durch ihnen entsprechende ausgeléscht werden. In Py herrscht Helligkeit
(Beugungsmaximum).

(iii) Variiert man 74, indem man den Beobachtungspunkt senkrecht zur Beugungsebene
verschiebt, so dndert sich die Anzahl der Zonen, was einen Wechsel von Minima und
Maxima in Py bedeutet. Die Intensitit der Maxima ist proportional zur Zonenfliche
Ak =7TA To-

Fiir jeden Punkt P; in der zur Beugungsebene parallelen Beobachtungsebene 148t sich
eine solche Zonenkonstruktion angeben (siehe Abb. 10.22). Die Fresnelzonen umgeben
dann allerdings nicht mehr konzentrisch die Blendenmitte, sondern denjenigen Punkt
O;, der durch Projektion von P in die Beugungsebene entsteht. Insgesamt wird in der
Beobachtungsebene ein Beugungsbild entworfen, welches aus konzentrischen hellen und
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Abbildung 10.22: FRESNELsche Zonen in einer Kreisblende fiir beliebige Punkte P; in der
Beobachtungsebene. (aus [13])

dunklen Ringen um die Blendenachse besteht, welche (siehe oben) ein Maximum oder
Minimum als Zentrum haben.

Was geschieht, wenn man die Fresnelschen Zonen abwechselnd durchsichtig
und undurchsichtig macht?

Zu jedem Biindel von Elementarwellen, welches von einer Zone ausgesendet wird, fehlt
dann das entsprechende benachbarte, das mit ihm destruktiv interferieren wiirde. An
den durchsichtigen Zonen der Blende wird also nur solches Licht gebeugt, das sich in Py
verstirkt. Die homologen Lichtanteile, die Ausléschung bewirken wiirden, werden in den
undurchlissigen Zonen absorbiert.

Ey(Po)=E,+E}+---= gEé
Eine derartige Blende nennt man Fresnelsche Zonenplatte (Abb. 10.23). Sie ist z.B. in
Form einer Glasplatte verwirklicht, in die entsprechende Ringe eingearbeitet sind. Ist die
Platte so beschaffen, dafl die Zonenradien die Bedingung R, = vk Ary erfiillen, dann
ist bei Bestrahlung mit parallelem Licht die in P{ vorliegende Lichtintensitéit besonders
hoch. Die Zonenplatte fokussiert also paralleles Licht in einem Punkt &hnlich wie eine
Sammellinse. Man spricht daher auch von der Zonenlinse mit

R, R}| “Brennweite”

fo=r0= EX ) der Zonenlinse

Im Unterschied zur Sammellinse besitzt die Zonenplatte aber mehrere Brennpunkte! Wie
aus Punkt (iii) hervorgeht, tritt aufler in Py noch an den Stellen konstruktive Interferenz
auf, die durch
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{a) (b)

Abbildung 10.23: FRESNELsche Zonenplatten. (aus [13])

gegeben sind. In den Brennpunkten P,, herrscht mit steigendem n eine zunehmend gerin-
gere Lichtintensitét als in Py.

Versuch: Abbildung durch eine Zonenlinse



Kapitel 11
Holographie

Eine der interessantesten Abbildungstechniken der modernen Optik ist die Holographie
(grch.: holos = vollstéindig, graphein = schreiben). Dabei handelt es sich um ein zweistu-
figes Verfahren zur Speicherung und getreuen dreidimensionalen Wiedergabe von Bildern
beliebiger Gegenstéinde, welches ganz ohne Linsen auskommt. Entwickelt wurde die Holo-
graphie 1948 von dem ungarischen Physiker D.(GABOR, der dafiir im Jahre 1971 mit dem
NoOBELpreis ausgezeichnet wurde. Da das Verfahren beste Ergebnisse bei Verwendung sehr
intensitétsreichen, kohdrenten und monochromatischen Lichtes erzielt, gewannen die For-
schungen auf dem Gebiet der Holographie erst 1960 mit Erfindung des Lasers Bedeutung
fiir die Praxis.

Bei der konventionellen Photographie wird von einem dreidimensionalen Gegenstand auf
einer Photoplatte ein zweidimensionales Bild entworfen, das die objektgetreue Intensitéts-
verteilung wiedergibt. In der Schwérzungsverteilung der Platte ist nur die Amplitude
des vom Objekt kommenden Lichtwellenfeldes aufgezeichnet, so dafi das Wellenfeld nicht
vollstindig wiedererzeugt werden kann. Bei der Holographie dagegen wird das Interfe-
renzbild der Gegenstandswelle mit einer sogenannten Referenzwelle gleicher Wel-
lenléinge aufgezeichnet, so dafl auch die Phase des Lichtwellenfeldes gespeichert wird. Die
photographische Aufnahme des Interferenzmusters, das Hologramm, enthélt also die
vollstdndige Information iiber den rdumlichen Gegenstand, weist aber im Gegensatz zu
einem gewdhnlichen Photo keinerlei Ahnlichkeit mit ihm auf. Das originalgetreue, dreidi-
mensionale Bild entsteht in der zweiten Stufe des Abbildungsverfahrens. Hier wird durch
geeignete Beleuchtung des Hologramms, genauer durch Beugung einer Wiedergabewelle
am Hologramm, das urspriingliche, vom Gegenstand abgestrahlte Lichtwellenfeld wieder
rekonstruiert.

Die Grundidee der Holographie ist, dafl nach dem Huygensschen Prinzip aus der in einer
Fliche enthaltenen Verteilung der elektrischen Feldstirke durch Uberlagerung der von je-
dem Punkt der Fliche ausgehenden Elementarwellen das entsprechende Lichtwellenfeld im
Raum konstruiert werden kann. Danach reicht auch ein Ausschnitt aus dem Hologramm
aus, um das gesamte Bild des Objektes wiederzugeben.

294
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Hologramm eines einzelnen Objektpunktes

Wir erldutern das Prinzip der Holographie am Beispiel der Abbildung eines einzelnen
Lichtpunktes, der sich in endlicher Entfernung zur Photoplatte befindet (Abb. 11.1). Da-
bei fiigen wir auch Bemerkungen zum einfacheren Fall eines unendlich weit entfernten
Objektpunktes ein.

Abbildung 11.1: Prinzip der Holographie, Hologramm eines einzelnen Objektpunktes. (aus

[14])

(a)

(c)

Aufnahme eines Hologramms

Der vom Objektpunkt P abgestrahlten kugelférmigen Objektwelle wird eine ebe-
ne Referenzwelle gleicher Wellenléinge iiberlagert, so dafl als Interferenzbild ein
System konzentrischer Ringe maximaler und minimaler Intensitét entsteht. Bei un-
endlicher Entfernung von P ist die Objektwelle eben, die Interferenz ergibt dann ein
System von Interferenzstreifen.

Die Ringe, in denen Verstirkung stattfindet, rufen auf einem photoempfindlichen
Material eine Schwirzung hervor. Das entstehende Hologramm stellt eine Fresnel-
sche Zonenplatte dar. Aus den Abstdnden der Interferenzringe 148t sich die Pha-
sendifferenz zwischen Objekt — und Referenzwelle ermitteln. Allgemein wird eine
Phasenéinderung in der Gegenstandswelle als Verschiebung der Interferenzstreifen
im Hologramm gespeichert. Eine Amplitudeninderung der Objektwelle fiihrt zu
Schwirzungsinderungen auf der Photoplatte. Das vom Objektpunkt ausgehende
Lichtwellenfeld legt die Gitterstruktur fest, die das Hologramm darstellt.

Wiedergabe des Bildes




296

KAPITEL 11. HOLOGRAPHIE

Zur Rekonstruktion des urspriinglichen Wellenfeldes wird das Hologramm mit ei-
ner ebenen Wiedergabewelle bestrahlt. Wir betrachten den Spezialfall, dafi die-
se mit der Referenzwelle iibereinstimmt. Die Wiedergabewelle wird an dem In-
terferenzmuster gebeugt. Dabei wirkt ein Streifensystem wie ein Strichgitter, das
vorliegende Ringsystem wie eine Zerstreuungs — bzw. Sammellinse der Brennwei-
te = f, wobei f gleich dem Abstand des Gegenstandspunktes von der Photoplatte
(Beugungsebene) ist. In Abschnitt 10.7 haben wir unsere Untersuchungen auf die
+1.Beugungsordnung der Zonenplatte beschréinkt und daher nur deren Wirkung als
Sammellinse herausgestellt. Zuséatzlich ergibt sich eine Zerstreuungslinsenwirkung
als Konsequenz der —1.Beugungsordnung.

Neben der ungebeugt durch das Hologramm durchtretenden ebenen Welle liefern
die HuvyGENsschen Elementarwellen als Einhiillende zwei Kugelwellen. Die diver-
gierende Beugungswelle, die vom hinteren Brennpunkt zu kommen scheint, stellt
die direkte Fortsetzung der vom Lichtpunkt P ausgegangenen Objektkugelwelle
dar. Blickt ein Beobachter entgegen der Ausbreitungsrichtung dieser Welle durch
das Hologramm hindurch, so sieht er ein virtuelles Bild P! des Objektpunktes. Die
konvergierende Beugungswelle entwirft am Ort des positiven Brennpunktes der Zo-
nenlinse ein reelles Bild P!, welches mit einem Schirm aufgefangen werden kann. Die
Erzeugung von zwei konjugierten Bildern (Spiegelbildern), meist einem reellem und
einem virtuellem Bild, ist charakteristisch fiir die holographische Bildkonstruktion!

Versuch: Die Anfertigung und Rekonstruktion eines Hologramms wird mit Hilfe von

Moiré — Modell — Folien veranschaulicht.

Auf den Folien sind verschiedenformige Wellenfelder aufgezeichnet. Auf
dem Overheadprojektor werden die Folien geeignet iibereinandergelegt,
um die Interferenzerscheinungen der Wellen zu veranschaulichen. Durch
Verschieben der Folien gegeneinander konnen die Auswirkungen einer Pha-
sendnderung auf die Hologrammstrukter sichtbar gemacht werden.

c) d)
—
AN
] \H/
PHOTOPLATTE HOLOGRAMM

Abbildung 11.2: Moiré-Modellversuch: Hologrammaufnahme mit ebener Referenzwelle A
und ebener Objektwelle B. (aus [16])
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Hologramm eines ausgedehnten Gegenstandes

Die abzubildenden Gegensténde bestehen im Normalfall nicht aus einem, sondern aus vie-
len lichtstreuenden Gegenstandspunkten, die nach dem Huygensschen Prinzip jeweils eine
Kugelwelle aussenden. Bei der Hologramm — Aufnahme interferiert jede dieser Elementar-
wellen mit der Referenzwelle, so daff das Hologramm eine Uberlagerung vieler Interferenz
— Gitterstrukturen darstellt. (Wir kénnen bei dieser Betrachtung die Interferenz der Ele-
mentarwellen untereinander vernachlissigen, da diese die Bildrekonstruktion nicht stort.)
Bei endlicher Entfernung zur Photoschicht erzeugt jeder Objektpunkt eine Fresnelsche
Zonenplatte oder einen Ausschnitt daraus. Es ergibt sich eine Uberlagerung vieler seitlich
versetzter Zonenringsysteme, in der die vollstindige Information iiber die Objektpunkte
enthalten ist. Die rdumlich ndher an der Photoplatte befindlichen Objektpunkte liefern
kleinere Zonensysteme mit kiirzerer “Brennweite”.

Bei der Bildwiedergabe setzen sich die in der +1.Beugungsordnung rekonstruierten Bild-
punkte zu einem rdumlichen reellen Bild zusammen. Schaut man den in der —1.Ordnung
gebeugten Lichtwellen entgegen, so scheinen diese von Punkten hinter dem Hologramm
herzukommen, sie konstruieren ein dreidimensionales virtuelles Bild an dem Ort, an dem
bei der Hologrammaufnahme das Objekt stand. Das Bild ist stereoskopisch. Derjenige
Teilbereich des Hologramms, durch den der Beobachter mit beiden Augen blickt, ist fiir
die Rekonstruktion des gesamten virtuellen Bildes mafigebend. Bewegt sich der Betrach-
ter seitlich, so éndert sich mit dem mafigeblichen Hologrammausschnitt die Perspektive
der abgebildeten Gegenstinde und der Beobachter kann z.B. vorher verdeckte Objektteile
wahrnehmen.

Versuch: Verschiedene Transmissionshologramme werden mit einem HeNe — Laser
belichtet und die virtuellen Bilder mit Hilfe einer Kamera in Grofibildpro-
jektion gezeigt.

(a) Beim Schwenken der Kamera veriindert sich die Perspektive und es
entsteht ein dreidimensionaler Eindruck des abgebildeten Objektes.

(b) Die Kamera wird auf verschiedene Tiefen fokussiert, so dafi ein be-
grenzter Ausschnitt des Bildes wie durch eine Lupe betrachtet werden
kann.

In — Line — Holographie

Bei den ersten Experimenten, die D.GABOR zur Holographie durchfiihrte, benutzte er ei-
ne sehr einfache Anordnung (Abb. 11.3). Er durchstrahlte ein transparentes Objekt (stark
verkleinerte Schriftprobe auf einem Mikrofilm) mit dem monochromatischen, fast paralle-
len, aber nur begrenzt kohérenten Licht einer Quecksilberdampfentladungslampe. Das am
Objekt gebeugte Licht iiberlagerte sich mit dem ungebeugt durchtretenden Lichtbiindel,
welches als Referenzwelle diente. Zur Bildrekonstruktion verwendete er wieder das Refe-
renzbiindel. Bei diesem “Geradeaus” — Aufbau, bei dem sich das Objekt im Referenzstrahl
befindet, liegen virtuelles und reelles Bild auf einer Linie. Die zugehorigen Beugungsbiindel
sowie das ungebeugt durch das Hologramm tretende Biindel iiberlappen und stéren sich
daher gegenseitig. Der Beobachter sieht ein unvollkommenes, doppeltes Bild.
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q] Aufnahme b) Rekonstruktion
_2Ref. ZRet. -1,
S =777 o, reeil.
f Obj.\ virt ~-‘\\\ : 3 BILD
"y ‘ BILD > .
‘ HOL HOL. ,5

Abbildung 11.3: In — Line — Holographie nach Gabor (1949). (aus [16])

Off — Axis — Holographie

N.LEITH und J.UPATNIEKS haben 1962 eine Anordnung vorgeschlagen, in der die stéren-
de Uberlagerung der Beugungswellen +1. und —1.0Ordnung vermieden wird, indem Re-
ferenz — und Objektwelle rdumlich getrennt gefiihrt werden. Diese sieht die Verwendung
kohérenten Laserlichtes vor.

Je nachdem, ob das Objekt durchsichtig oder undurchsichtig ist, wird die Anordnung der
Hologramm — Aufnahme etwas variiert. Bei der Aufnahme eines undurchsichtigen Ob-

Photo plate

RECONSTRUCTION Real image

Abbildung 11.4: Holographische Aufnahme und Wiedergabe eines undurchsichtigen Ob-
jektes. (aus [13])

jektes (Abb. 11.4) wird ein Teil des Laserbiindels am Objekt reflektiert (Objektbiindel),
der restliche Teil wird {iber einen Spiegel unter groflem Einfallswinkel auf die Photoplatte
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gelenkt (Referenzbiindel). Bei der Aufnahme eines transparenten Objektes (Abb. 11.5)

Mirrors

- T——
- =
"
o;Jea\‘ Photo plate

Abbildung 11.5: Aufnahme eines durchsichtigen Objektes. (aus [13))

durchstrahlt ein Teil des Laserlichtes dieses, der andere Teil wird iiber eine Spiegelkom-
bination oder ein Prisma abgelenkt.

(b)

il
o

Abbildung 11.6: Entstehung eines Transmissions— (a) und eines Reflexionshologramms

(b). (aus [13])

Wir haben bisher nur den Fall in Betracht gezogen, da} Referenz — und Objektwelle von
der gleichen Seite auf ein photoempfindliches Material fallen. Man spricht von Transmis-
sionshologrammen (Abb. 11.6a).

Wir nehmen nun an, das lichtempfindliche Material besitze eine gewisse Tiefe und wer-
de von den beiden Wellen aus entgegengesetzten Richtungen durchsetzt (Abb. 11.6b).
Dann entsteht als Hologramm ein dreidimensionales Gitter, welches man als Reflekti-
onshologramm bezeichnet. Bei der Bildrekonstruktion wird das Wiedergabelicht an den
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Gitterebenen zuriickgestreut. Der in das reflektierte Licht blickende Beobachter sieht ein
virtuelles Bild hinter dem Hologramm. Solche Reflexionshologramme haben den Vorteil,
daf} sie auch mit Weiflicht betrachtet werden kénnen (Wiedergabelicht = Weifilicht).

11.1 Weilllichtholographie

Volumen — Weifllicht — Hologramme

HOLOGRAMM - AUFNAHME HOLOGRAMM -WIEDERGABE
(in monochr. kohar. Licht) (in weiBem Licht)
a)
E::J?;?on b) Photoplatte
—-Sum - {entwickelt) VI rex
13, lllill ' Ao \‘(wesm
| | !
| Wi — \
— N i \
i HRE n \
, [ ! I ! lI l /z biid
s NN Iz, ,
oo <l bea, 20 - p— Bragg - Effekt:
° =
Objekt- Stehwetlenteid Referenz- e=Ae/2n ::SP?UF:Q:\‘:UO"
welle (Schwar zung Nur welle (Farbhiter - Effext)

in Bauchen )

Abbildung 11.7: Aufnahme und Rekonstuktion eines Volumen — WeiBlichthologramms.

(aus [16])

Die Aufnahme von Weifilichthologrammen geschieht wie bei allen Hologrammen mit La-
serlicht. Bei einem Volumenhologramm iiberlagern sich Objekt— und Referenzwelle, welche
eine viele Wellenldngen dicke Photoschicht gegenldufig durchsetzen, zu einem stehenden
Wellenfeld (Abb. 11.7). Schwérzung findet nur in den Schwingungsbiuchen statt, d.h. es
entstehen dquidistante Gitterebenen im Abstand d = \g/2n, wobei n die Brechzahl der
Photoschicht ist. Beleuchtet man das Hologramm auf der dem Beobachter zugewandten
Seite, dann treten dhnliche Verhéltnisse wie bei der Reflexion von Rontgenstrahlen an den
regelmifligen Gitternetzebenen im Kristall auf. Nur diejenige Wellenlénge wird reflektiert,
welche die Braggsche Reflexionsbedingung

2dsind=mA (m=0,1,2,...)

erfiillt (siche Abschnitt 10.5.2). Bei senkrechtem Einfall des rekonstruierenden Biindels ist
dies genau die bei der Hologrammaufnahme verwendete Wellenléinge. Mit abnehmendem
Einfallswinkel 1) verschiebt sich das reflektierte Licht zu kiirzeren Wellenlénge hin. Je nach
Beleuchtungswinkel sieht der Beobachter also ein andersfarbiges Bild.

Versuch: Ein mit rotem HeNe — Laserlicht erstelltes Weiilichthologramm wird zur
Bildwiedergabe mit einem Weifilichtbiindel beleuchtet. Die Bestrahlung



11.1. WEISSLICHTHOLOGRAPHIE 301

erfolgt zundchst senkrecht, dann wird der Einfallswinkel kontinuierlich
verringert. = Die Farbe des rekonstruierten Bildes verschiebt sich von
rot iiber gelb nach griin.

Regenbogenhologramme

Bei einem Regenbogenhologramm handelt es sich um ein Transmissionshologramm, bei
dem die Bildwiedergabe mit weiflem Licht erfolgt. Dabei werden die rekonstruierten Ob-
jektwellen verschiedener Wellenléingen am Hologramm unterschiedlich stark gebeugt, sie
laufen in unterschiedliche Richtungen. Ist die Objektwelle geniigend schmal und parallel,
dann storen sich die Beugungswellen gegenseitig nicht wesentlich. Ein Betrachter sieht in
einer Blickrichtung ein scharfes, sehr helles, im wesentlichen einfarbiges rdumliches Bild.
Bewegt er den Kopf etwas auf- oder abwérts, so dndert sich die Farbe des Bildes und
durchléuft alle Regenbogenfarben. Bei der vertikalen Kopfbewegung bleibt allerdings die
Perspektive des Bildes konstant, diese dndert sich nur bei seitlicher Verschiebung des
Blickwinkels.

Die Herstellung geschieht in einem zweistufigen Verfahren nach S.A.BENTON (1976).
Zuerst wird von dem Gegenstand (z.B. einem Wiirfel) ein Transmissionshologramm auf-

Ref. Bundet /

Objekt fir 2 Hol. 477 _
=
=0
)
a) 1. Aufnahme X b) 2.Aufnahme .
~N
~. N
\:K, \\\§§ ’
,/ Ref. //>:§
Bundel P
1.Hologr. P Re!{onstr.
2.Hologr. L.Hologr. Bundel
——————— Rekonstr. {Regenbog.Hot.] m!éliggl:-
¢) Rekonstr, L7/ Lichtquelle
» e ,’ {weif} )
Sl '
TN / "
. Jrot s s,
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Spalt- Spalt -
bilder Bild

Abbildung 11.8: Herstellung (a,b) und Rekonstruktion (c) eines Regenbogenhologramms.

(aus [16])

genommen. Durch Beleuchtung eines einzelnen horizontalen Streifens aus diesem Holo-
gramm wird ein reelles Bild des Wiirfels erzeugt, welches allerdings keine vertikale Tiefen-
wirkung besitzt. Dieses Bild dient dann als Objekt fiir die Aufzeichnung des eigentlichen
Regenbogenhologramms, bei der von oben eine zur Objektwelle kohéirente Referenzwelle
eingestrahlt wird.

Wird das so belichtete Regenbogenhologramm zur Bildrekonstruktion erneut von oben
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aus der Richtung des Referenzbiindels mit einfarbigem Licht beleuchtet, so entsteht ein
virtuelles Bild des Objektes. Gleichzeitig werden aber sowohl ein virtuelles, als auch ein
reelles Bild des Beleuchtungsspaltes aus der 1. Aufnahme erzeugt. Die rekonstruierten Ob-
jektwellen laufen durch diese Spaltbilder, so dafl ein Beobachter das virtuelle Bild des
Wiirfels nur erkennt, wenn er durch das reelle Spaltbild hindurchschaut.

Wird nun zur Bildwiedergabe weifles Licht verwendet, dann liegen aufgrund der unter-
schiedlich starken Beugung der verschiedenen Wellenldngen die zugehdrigen Spaltbilder
vertikal getrennt. Da der Durchmesser der Augenpupille beschrinkt ist, kann der Betrach-
ter bei einer Augenstellung das Bild des Wiirfels nur in einer Spektralfarbe sehen.

Gedruckte Hologramme

Hologramm — Aufzeichnungen, die dhnliche Effekte wie die Regenbogenhologramme zei-
gen, lassen sich auch auf Kunststoffolie herstellen. In die erwidrmte Plastikfolie wird das
Phasenhologramm als Oberflichenrelief eingeprégt und durch Aufdampfen einer metalli-
schen Schicht verspiegelt. Bei Beleuchtung mit weiflem Licht entstehen dann in Reflexion
dreidimensionale Bilder, deren Farbe mit dem Beobachtungswinkel wechselt. Mit diesem
Verfahren 148t sich ein geeignetes Hologramm finanziell relativ giinstig vervielféltigen.
Dies nutzen z.B. Banken aus, um Kredit— und Scheckkarten abzusichern.

11.2 Anwendungen der Holographie

Interferenzholographie

Die Interferenzholographie wird zur zerstérungsfreien Werkstoffpriifung eingesetzt. Auf-
grund von Temperatur— oder Druckschwankungen hervorgerufene Verdnderungen in der
Form eines Werkstiickes konnen durch Interferenzlinien kenntlich gemacht werden. Auch
Materialschwingungen konnen auf diese Weise analysiert werden.

Fertigt man von einem Gegenstand ein Hologramm an, verformt ihn dann leicht und
nimmt anschlielend auf derselben Photoplatte erneut ein Hologramm auf, so erhélt man
bei der Wiedergabe ein Bild, welches von Interferenzstreifen durchsetzt ist, ein sogenann-
tes holographisches Interferogramm. Die Interferenzstreifen riihren daher, dafl die
Rekonstruktionswellen der beiden Objektzustinde miteinander interferieren, so, als ob
der Gegenstand gleichzeitig beide Zusténde einnehmen wiirde. Verschiebt sich ein Punkt
der Objektoberfliche aufgrund der Deformation um ein ganzzahliges Vielfaches der halb-
en Wellenldnge des verwendeten Lichtes, so erscheint im Interferogramm an dieser Stelle
ein heller Punkt. Dabei wird jeweils nur die Verschiebung in der Richtung, in der das Ob-
jekt aufgenommen und beobachtet wird, registriert. Benachbarte helle Streifen geben also
an, daf} die auf ihnen liegenden Objektpunkte eine Abstandsdifferenz von einer halben
Wellenldnge besitzen. Durch Auswertung des Interferogramms kann die Verformung des
Objekts ermittelt werden.
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Abbildung 11.9: Holographisches Interferogramm einer schwingenden Bratschendecke.

(aus [4])

Datenspeicherung

Digitale Daten, die in Form von ebenen Punktmustern gegeben sind, kénnen auf ein
Hologramm aufgenommen werden. Dabei wird das Hologramm fiir jede neue Aufzeichnung
um einem festgelegten Winkel gedreht. Angestrebt wird eine Speicherkapazitiit von 10!
bis 10'2 bit auf einem Hologramm. Der Vorteil gegeniiber anderen Speichermethoden liegt
in der besonderen Sicherheit, bei Zerstérung des Hologramms kann aus einem einzigen
Bruchstiick die gesamte Information wiedergewonnen werden!

Anwendungen in der Optik
Optische Bauteile wie z.B. Beugungsgitter und Zonenlinsen kénnen holographisch her-

gestellt werden. Andere optische Elemente wie Spiegel, Linsen, Prismen usw. lassen sich
durch Hologramme ersetzen.



Kapitel 12

Relativitatstheorie

12.1 Relativitit in der Newtonschen Mechanik

12.1.1 Grundhypothesen der Newtonschen Mechanik beziiglich
Raum und Zeit

Wir haben uns im ersten Semester mit der NEWTONschen Mechanik beschéftigt, deren
gesamter physikalischer Inhalt aus drei von ISAAC NEWTON (1642 — 1727) im Jahre 1687
publizierten Gesetzen abgeleitet werden kann. Die beiden ersten NEWTONschen Gesetze
sollen hier noch einmal formuliert werden:

1.NEWTONsches Gesetz:

Jeder Korper beharrt in seinem Zustand der Ruhe oder gleichférmigen, gerad-
linigen Bewegung, wenn er nicht durch einwirkende Krifte gezwungen wird,
seinen Bewegungszustand zu dndern.

2.NEWTONsches Gesetz:

Die Anderung pro Zeiteinheit der Bewegungsgrife ist der einwirkenden Kraft
proportional und geschieht nach der Richtung derjenigen geraden Linie, nach
der die Kraft wirkt. J

Mathematische Formulierung: allgemein F' ~ %(m ), speziell fir m = const.

gilt F ~ma.

Die NEwTONschen Gesetze basieren auf einer Reihe von Hypothesen, die in der NEw-
TONschen Mechanik als selbstverstéindlich angenommen werden, von denen aber einige
im Rahmen der speziellen Relativitdtstheorie wesentlich abgeéndert werden miissen. Die
Hypothesen sollen daher an dieser Stelle kurz erldutert werden:

Die erste Annahme bezieht sich auf die Struktur des Raumes. Die zeitliche Bewegung ei-
nes Massepunktes im Raum wird immer relativ zu einem anderen Punkt (Bezugspunkt)
beschrieben, besser eignet sich zur Beschreibung ein Bezugssystem. Der Raum wird als
euklidisch angenommen, die Lage eines Punktes im Raum relativ zum Bezugssystem wird

304
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durch drei Koordinaten z, y, z angegeben, welche sich auf ein kartesisches Koordinatensy-
stem beziehen. Der Koordinatenursprung O eines solchen Bezugssystems kann willkiirlich
festgelegt werden.

Das oben formulierte erste NEWTONsche Gesetz impliziert insbesondere die Existenz eines
Bezugssystems, in dem ein kriftefreier Kérper ruht oder sich geradlinig und gleichférmig
bewegt. Ein solches Bezugssystem nennt man Inertialsystem. Ein Inertialsystem wére
z.B. verwirklicht in einem Raumschiff in schwerelosem Zustand, dessen Triebwerke ab-
geschaltet sind und das sich nicht dreht. In Inertialsystemen nehmen die Gesetze der
NEwWTONschen Mechanik ihre einfachste Form an.

Zur vollstindigen Beschreibung der Lage eines Massepunktes ist es noch wichtig anzuge-
ben, zu welcher Zeit ¢ dieser sich am Ort (z,y, z) befindet. Die zweite Hypothese betrifft
daher die Zeit. Sie besagt, daf} eine einheitliche Zeitskala festgelegt werden kann, welche
unabhingig von einem speziellen Koordinatensystem ist und universell fiir alle relativ zu-
einander bewegten Beobachter gilt. Dabei wird der Zeitnullpunkt willkiirlich festgesetzt.

Weiter wird in der dritten Hypothese angenommen, dafl die Masse eines Korpers beim
Ubergang von einem Bezugssystem in ein anderes unverdndert bleibt. Die Masse soll also
gegeniiber Koordinatentransformationen invariant sein.

Wie lassen sich Lingen und Zeiten messen?

Vorginge, welche ein Zeitmafl definieren, heiflen Uhren. Sie dienen zur Zeitmessung. Die
Zeiteinheit Sekunde wird heute festgelegt als das 9192631770 fache der Schwingungs-
dauer der Lichtwellen, welche die '**Ciisium—Atome unter bestimmten Voraussetzungen
abstrahlen.

Es gibt keine absoluten Langen, nur Lingenvergleiche z.B. mit einem Metermafstab sind
moglich. Der Einheitsmafistab Meter wird seit 1983 definiert als die Strecke, die das Licht
in 299792458 s zuriicklegt.

12.1.2 Die Galilei — Transformation

Wie im vorangehenden Abschnitt erldutert, beschreiben wir die értliche und zeitliche La-
ge eines Massepunktes durch Angabe von vier Koordinaten z,y, z,¢. Am einfachsten 148t
sich seine Bewegung in einem Inertialsystem angeben. Es gibt beliebig viele Inertialsy-
steme. Jedes System S’, welches sich relativ zu einem Inertialsystem S mit konstanter
Geschwindigkeit ) geradlinig bewegt, ist wieder ein Inertialsystem. Die verschiedenen In-
ertialsysteme lassen sich durch die GALILEI — Transformation ineinander iiberfithren. Wir
betrachten ein Inertialsystem S(O, z,y, z), relativ zu dem sich ein System S'(O’, ', y', ")
gleichférmig mit der Geschwindigkeit V lings der  — Achse bewegt (Abb. 12.1). Die Be-
obachter B und B’ in den verschiedenen Systemen beziehen die Kinematik eines Korpers
auf das jeweilige System. B und B’ sollen gleiche Maflstabe und Uhren besitzen.

Zum Zeitpunkt ¢ = ¢’ = 0 fallen die Systeme zusammen, so dafl zur Zeit ¢ die Urspriinge O
und O’ um die Strecke V't in z — Richtung gegeneinander verschoben sind. Wenn nun ein
Beobachter B im System S die Koordinaten eines Massepunktes zu (z, v, z,t) bestimmt,
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Abbildung 12.1: Zur GALILEI — Transformation.

so ermittelt B’ in S’ die Koordinaten (z',', 2/, t). Den Zusammenhang dieser Angaben
findet man durch die GALILEI — Transformation:

Galilei — Transformation Umkehrung
S— 95 S'— S
=7 — Gt 7=+ vt
¥ = z—wot z = o' +ovt
y =y y =
Z = z z = 2
t =t t =t

Das System S’ ist ebenfalls ein Inertialsystem, denn ein Massepunkt, der in S die konstante
Geschwindigkeit
Vg
T=1| vy
UZ

besitzt, bewegt sich auch in S’ geradlinig und gleichférmig, wie sich leicht zeigen 1a8t:

de' _ do _dz=V1t) dg V—u

=z-Vt = U;:W_W_T_ﬁ_ — YV = const.!
Yy =y = U;:?j—%:%:vy:const.!

2=z = (analog zu v,) v, = v, = const.!

) V' = const.] ’

Es resultiert das Galileische Relativitatsprinzip der klassischen Mechanik:

Die Newtonschen Gesetze sind invariant gegentiber der Galiler — Transformati-
on, sie bleiben unverdndert beim Ubergang von einem in ein anderes Inertialsy-
stem. Alle Inertialsysteme sind demnach gleichwertig hinsichtlich der Darstel-
lung der Gesetze der Mechanik. Es ist nicht maoglich, durch rein mechanische
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Versuche ein “absolut ruhendes” System auszuzeichnen. Die Geschwindigkeit
kann nicht absolut gemessen werden.

Die Galilei — Invarianz wollen wir hier am Beispiel des zweiten NEWTONschen Gesetzes
illustrieren:

Im System S wirke auf die reibungslos verschiebbare Masse m in x — Richtung die Kraft
F. Ein Beobachter B registiert die Beschleunigung a = d?z/dt?. Es gelte das zweite
NEwWTONsche Gesetz.

d*x

dt?

Durch welches Gesetz 1i8t sich die Bewegung im System S’ beschreiben? B’ beobachtet
eine Beschleunigung o' = d?z'/dt".

F=ma=m

,_d%' = Vt) _ dPx dV &z

I T R T TR T
-0

a =a

Der zweite Bruchterm verschwindet, da V konstant ist. Da nach der dritten Hypothese
die Masse invariant ist, wirkt im System S’ die Kraft

Fl'=md =ma=F ,

d.h. beide Beobachter finden dasselbe Bewegungsgesetz! Gesetze, die wie das Bewegungs-
gesetz unter der GALILEI — Transformation die gleiche Form beibehalten, heiflen for-
minvariant oder kovariant. Das GALILEIsche Relativitétsprinzip, auch Invarianzprinzip
genannt, kann mit dieser Bezeichnung noch préziser formuliert werden: Die Gesetze der
NEwTONschen Mechanik sind unter der GALILEI — Transformation kovariant.
Als Beispiel sei noch einmal das Bewegungsgesetz angefiihrt, diesmal in der allgemeinen
Form. .

= dp = dp'

F=a & "=w
Betrachtet man nun den Impuls, so stellt man fest, dal dieser nicht invariant unter der
GALILEI — Transformation ist.

d
p =F—mV| Impuls nicht GALILEI - invariant

Wird die Kraft F iiber die Gleichung F=ma definiert, so gilt mit @ =adund m'=m

' = F'| Kraft ist GALILEI — invariant
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12.1.3 Die Konstanz der Lichtgeschwindigkeit im Vakuum

Bei der historischen Entwicklung der Relativitéitstheorie spielte die Tatsache, dafl die
Lichtgeschwindigkeit ¢ im Vakuum einen absoluten und konstanten Wert besitzt eine sehr
wichtige Rolle

Die Ergebnisse, die wir in den vorangehenden Kapiteln die Lichtgeschwindigkeit betref-
fend erarbeitet haben, erhalten nun in der Relativititstheorie besondere Bedeutung.
Wir haben in Abschnitt 3.4 verschiedene Methoden der Lichtgeschwindigkeitsmessung
besprochen und den bisher genauesten, mit Hilfe modernster Interferenzmessungen er-
mittelten Wert -

c = 299792458 "

als den Wert der Lichtgeschwindigkeit in Vakuum definiert. Anhand des MICHELSON —
MORLEY — Experimentes haben wir in Abschnitt 9.4.1 herausgestellt, daf} dieser Wert
absolut und konstant ist, d.h. sich nicht mit der Wahl des Bezugssystems dndert. Diese
Tatsache spielte in der geschichtlichen Entwicklung der Relativitéitstheorie eine grofie Rol-
le. Sie zeigte die Grenzen des GALILEIschen Relativitatsprinzips auf, wie wir im folgenden
darlegen werden.

12.1.4 Das Michelson — Morley — Experiment (1887)

Wir haben in Abschnitt 6.1 die historische Entwicklung der Theorien iiber das “ Licht”
aufgezeigt, unter anderem die Vorstellung, das Licht benétige in Analogie zu den Schall-
wellen zur Ausbreitung ein tragendes Medium, den “Ather”. Bei Existenz eines solchen
ruhenden Athers kénnte dieser als absolutes Inertialsystem gewihlt werden. Dann wire
nach der GALILEI — Transformation die Lichtgeschwindigkeit abhingig vom Bezugssy-
stem: Fiir jede Geschwindigkeit gilt nach der GALILEI — Transformation beim Ubergang

zwischen Inertialsystemen

dr' dif

dt'  dt
In einem Inertialsystem, welches sich mit V relativ zum absoluten Ather bewegt, wiirde
also fiir die Lichtgeschwindigkeit folgen

d=c-V.

Der amerikanische Physiker MICHELSON, dem sich spéter auch E.W. MORLEY anschlof,
wollte die Existenz des Athers, an den nach der vorherrschenden Theorie die Ausbreitung
des Lichtes gebunden war, experimentell nachweisen. Ausgangspunkt seiner Uberlegungen
war, dafl sich die Erde mit einer Geschwindigkeit v = 30 kTm um die Sonne bewegt. Die
Lichtgeschwindigkeit relativ zum Ather sei ¢. Vernachlissigt man die Kriimmung der Bahn
und die Erddrehung, so miifite die Lichtgeschwindigkeit unterschiedlich sein, je nachdem,
ob sich das Licht gegen (¢’ = ¢+ v) oder in Richtung (¢’ = ¢ — v) der Erdbewegung
fortpflanzt.

Zur technischen Durchfiihrung des Experimentes diente das MICHELSON — Interferome-
ter (Abb. 12.2). Wenn die Spiegel S; und Sy nicht exakt senkrecht aufeinander stehen,
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Abbildung 12.2: Versuchsanordnung des MICHELSON — MORLEY — Experimentes. (aus

[15])

dann sind die ins Fernrohr einlaufenden Wellen nicht parallel und man beobachtet Interfe-
renzstreifen. Wenn die Lichtgeschwindigkeit in verschiedenen Richtungen unterschiedlich
wire, dann miifite sich bei Drehung des Interferometers der Gangunterschied der beiden
Strahlen o und S dndern und dadurch eine Verschiebung des Interferenzmusters eintreten.
Wir berechnen zunéchst fiir Stellung 1 die Laufzeiten, die das Licht ben&tigt, um von der
halbdurchlissigen Platte zum Spiegel S; bzw S, und zuriick zu gelangen. Dabei bezeich-
nen wir mit ¢ die Geschwindigkeit, mit der sich das Licht relativ zum Ather bewegt. Der
Ather stromt seinerseits relativ zu einem Beobachter auf der Erde mit der Geschwindig-
keit v, man spricht vom Atherwind.

Fiir die Reflexion am Spiegel S, gilt

toro =tos +tso= —— + L =2 1
OA0 ZROAT O™ i T c—v ¢ 1—v2/c?
—— ———
gegen it
Ather  Ather

Wir entwickeln das Ergebnis nach v?/c?.

AL
& o

Zur Berechnung der Laufzeit tppo zum Spiegel S; und zuriick miissen wir die Geschwin-
digkeiten vektoriell addieren. Zum besseren Verstindnis wollen wir den Vorgang bildlich
veranschaulichen. Wir stellen uns das Licht als ein Boot vor, welches sich auf einem Fluf}
mit der Geschwindigkeit ¢ quer zur Stromungsrichtung bewegt. Das Wasser des Flusses
(Ather) strémt seinerseits mit der Geschwindigkeit v relativ zu einem am Ufer ruhenden
Beobachter. Damit das Boot am Uferort B ankommt, muf} es in Richtung auf B’ starten,
da es aufgrund der Strémung (Atherwind) abgetrieben wird. Es gilt BB’ = vtop. Die
Riickfahrt zum Punkt O muf} unter demselben Winkel wie die Hinfahrt (in Richtung auf

21
toao = —
c

21 v? v
C C C

~ ___
~
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Abbildung 12.3: Veranschaulichung des MICHELSON — MORLEY — Versuches (aus [15])

O’) erfolgen. Dann gilt BB' = O0' = ty = tpo -
Aus der Abbildung 12.3 sind nun folgende Beziehungen ersichtlich:

2 2
1
P+ 0’ thp = thp = 1%3:02[_”2 :(l:_Ql_UQ/CQ
1 1 ~ L 1v?
tOB_C,/l—vg/cg_c (1+?CQ+”'>
2
t030:2t03’:%l (1-}-%2—24-)

Die Differenz der Laufzeiten fiir die Wege OAO und OBO betrigt also in Stellung 1

1 v?
toao —toBo =~ - —
cec

Fiir die Stellung 2 erhélt man analog eine Zeitdifferenz

[ v?

toao —topo ~ —— —
cc

Damit dndert sich die Zeitdifferenz der beiden Strahlen bei Drehung der Anordnung um
90° um

Welcher Gangunterschied wire zu erwarten, wenn der Ather existierte?

2
cAt:2lv—2
c

Um eine mefibare Verschiebung des Interferenzmusters zu erzielen, mufl der Lichtweg
I moglichst grofl gewihlt werden. MICHELSON und MORLEY gelang dies durch die in
Abbildung 12.4 skizzierte Verbesserung der Versuchsanordnung. Beispielsweise tréite bei
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Abbildung 12.4: VergroBerung des Lichtweges (aus [15])

einem Abstand Platte <> Spiegel /| = 10m mit ¢ = 3-10®m/s und v = 3 -10*m/s
eine Gangdifferenz cAt =2-10m-10 8 =2-10 "m = 0,2 um auf. Verwendet man die
griine Spektrallinie einer Hg — Lampe (A = 5,46 - 107" m), dann wiirde die Verschiebung
ungefihr 40% der Lichtwellenlédnge betragen und wire damit mefibar!

c At 2:-107"m 2
= =-=4 9 mefbar!
A 5-107"m 5 0% erbar

Ax5-107"m =

MIiICHELSON und MORLEY konnten trotz ausreichender Mefigenauigkeit keinen Effekt
feststellen! Wie in Abschnitt 9.4.1 bereits dargelegt wurde, wurden ihre Messungen spéter
mit weitaus verbesserten Versuchsaufbauten iiberpriift. Heute wird das negative Ergebnis
mit einer Priizision ¢ At = 1071\ bestiitigt.

Das Resultat ist also, dal der angenommene Lichtéther nicht existiert.
Es gibt kein absolutes Bezugssystem:
Die Lichtgeschwindigkeit ist unabhéingig vom Bezugssystem!

Dies steht im Widerspruch zur GALILEI — Transformation. Es muf} also ein allgemeineres
als das GALILEIsche Relativitdtsprinzip gelten, dessen Koordinatentransformationen noch
gefunden werden miissen.

12.2 Spezielle Relativitédtstheorie

Wir beschrinken unsere Betrachtungen auf die spezielle Relativitéitstheorie EIN-
STEINS im Gegensatz zur allgemeinen Relativitdtstheorie, welche auch beschleunigte
Bezugssysteme sowie die Gravitation einbezieht.
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12.2.1 Einsteins Postulate

A EINSTEIN (1879 —1955) lieferte im Jahre 1905 ein Relativitéitsprinzip, welches mit dem
Ergebnis des MICHELSON — MORLEY — Experimentes in Einklang steht:

Alle Gesetze der Physik sind in Inertialsystemen,d.h. in gleichformig zueinan-
der bewegten Bezugssystemen gleichwertiq.

Die Lichtgeschunndigkeit im Vakuum ist absolut und konstant,d.h. unabhdngig
von der Bewegung der Lichtquelle oder des Empfingers.

Auf diesen Postulaten basiert der umfangreiche Gehalt der speziellen Relativitéitstheorie.
Wir werden in der genannten Reihenfolge folgende Punkte behandeln:

LORENTZ — Transformation
Transformation der Geschwindigkeit
Transformation der Beschleunigung
Langenkontraktion

Zeitdilatation

Relativistische Dynamik

12.2.2 Die Lorentztransformation

Die LORENTZ — Transformation wurde bereits 1899 von H.A.LORENTZ (1853 —1928)
aufgestellt. Er bezog allerdings seine Gleichungen nur auf elektrodynamlsche Vorgiinge
und ging von der falschen Hypothese eines im Raum ruhenden Athers mit E- und B-
Feldern aus. Erst EINSTEIN forderte, dafl die LORENTZ — Transformation alle mit Materie
verbundenen physikalischen Vorgéinge betreffen solle.

Wie mufl die Galilei — Transformation abgewandelt werden, damit die Glei-
chungen Einsteins Postulate erfiillen?

X In zwei Dimensionen gezerdamed: p
Y Y /
=
(/L
\ /\
\
\
N n
/ ’
/ \ &//) "
Tlugeliwelle =)
£ o 2 /

Abbildung 12.5: Lichtblitz breitet sich in Form einer Kugelwelle aus. (aus [7])
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Im Ursprung des Systems S(O, z,y, z) ruhe eine Lichtquelle, von der zur Zeit ¢ = 0 ein
Lichtblitz emittiert werde. Die Gleichung der sich ausbreitenden Kugelwelle lautet dann
im System S

i+ 2= (1)

Wie [é8t sich die Fortpflanzung des Lichtblitzes im System S’ beschreiben, welches sich
relativ zu S mit der Geschwindigkeit V bewegt?

Die beiden Systeme sollen im Moment der Lichtaussendung zusammenfallen. Nach dem
zweiten Postulat ist die Lichtgeschwindigkeit unabhingig vom Bezugssystem. Daher wird
in S’ die Wellenfront formal dargestellt durch

.13’2 + ylZ + 212 — C2 t’2 (2)

Die beiden Gleichungen (1) und (2) lassen sich durch die GALILEI — Transformation nicht
ineinander iiberfiihren:

=z-Vt

[

Z, :Z eingesetzt in (2) = 2% —2xVt+ V¥ +y? +2° =2 (3)
=t

Der Widerspruch zwischen den Gleichungen (1) und (2) liegt in den Gliedern —2z V¢ +
V?t. Er kann nur durch Aufgabe der Hypothese der absoluten Zeit ¢ = ¢ beseitigt wer-
den! Da die Wellenfronten in beiden Systemen mit konstanter Geschwindigkeit fort-
schreiten, muf} die gesuchte Transformation linear sein. Wir machen daher den Ansatz
t' =t + ax bei Beibehaltung der iibrigen Gleichungen. Einsetzen in (2) liefert

22 =2z Vt+ VP + P+ 22 =P (P +2axt + o’ 2?) (5)
Die gemischten Terme auf beiden Seiten der Gleichung sind identisch, wenn man

V

v
a=—-—— =>t'=t—-=z
c? c?

setzt. Dann stimmen die Gleichungen (1) und (5) bis auf den Faktor /1 — V?/¢? iiberein.
Dieser Faktor verschwindet fiir den Fall, dal man

setzt. Wir fiilhren folgende Abkiirzungen ein:

2 1 2 1

P c 7= 1 —Vv2/e
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Aus unseren Uberlegungen resultiert die Lorentz — Transformation:
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Lorentztransformation Umkehrung
' =y (x—-Vt) r=7 (@ +Vt)
Y=y y=y
2=z z=2
v=7(t- %) t=7(t+ %)

Hier sind im Vergleich zur GALILEI — Transformation die Ortskoordinaten durch den re-
lativistischen Faktor v korrigiert. Fiir den Fall ¢ — co wird v =1, und die LORENTZ —
Transformation geht beziiglich der Ortskoordinaten in die GALILEI — Transformation iiber.
Fiir diesen Ubergang ist das Argument V/c — 0 nicht ausreichend: Die relativistischen
Effekte rithren daher, daf sich Lichtsignale aufgrund der endlichen Lichtgeschwindigkeit
nicht unendlich schnell ausbreiten kénnen. W#hlt man im Fall V/c &~ 0 sehr grofle Ent-
fernungen, so treten immer noch relativistische Effekte auf.

Auf der Erde besitzen aber bei kleinen Geschwindigkeiten V < ¢ die Gesetze der klassi-
schen Mechanik sowie die GALILEI — Transformation stets Giiltigkeit.

Die Erfiillung der EINsTEINschen Postulate ist gleichbedeutend mit der Forderung, daf} al-
le physikalischen Gesetze forminvariant unter der LORENTZ — Transformation sein miissen.

12.2.3 Relativitit der Gleichzeitigkeit

Wir haben bei der Herleitung der LORENTZ — Transformation die Vorstellung von der
absoluten Zeit aufgeben miissen. Dies bedeutet, dafl zwei Ereignisse, die in einem System
S gleichzeitig stattfinden, in einem anderen System S’ nicht mehr unbedingt gleichzeitig
sind.

Unter welchen Bedingungen bleibt die Gleichzeitigkeit unter der Lorentztrans-
formation erhalten?

Wir nehmen an, dafl in S zur Zeit t; = t5 = t zwei Ereignisse stattfinden. In einem relativ
mit V dazu bewegten Inertialsystem S’ gilt dann

zy =7 (21— Vi) zy =7 (22 — Vi)

t'1=7(t1—l}—2$1) t'2=7(t2—c£2$2)

~ >
~~

A =t —th =7 Y (22 — 31)

Die Ereignisse sind in S’ nur dann gleichzeitig, wenn sie in S gleichzeitig und am selben Ort
stattfinden.

Wir gehen nun auf einige Konsequenzen der LORENTZ — Transformation ein.
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Abbildung 12.6: Zur Transformation der Geschwindigkeit. (aus [15])

12.2.4 Die Transformation der Geschwindigkeit

Wir betrachten wieder zwei Inertialsysteme, die sich lings der x — Richtung relativ zu-
einander mit der Geschwindigkeit V bewegen. In S’ bewege sich ein Teilchen mit der
Geschwindigkeit

Die Geschwindigkeit ¢ des Teilchens, die ein Beobachter feststellt, der in S ruht, ergibt
sich aus der LORENTZ — Transformation. Es ist

dx = ydx' +yVdt
dy = dy'

dz = d7'
dt=7dt'+7%dw' i

Wir betrachten zunichst die Geschwindigkeitskomponente in z — Richtung.

!
_dx  ydx' +yVdl'  da'+Vdt' %"‘V

_%_ ' YV g0 gu i Vo0 V dx'
v dt +762dx dt +02dx 1+62 P

Vg

Mit v}, = dz'/dt' erhélt man



316 KAPITEL 12. RELATIVITATSTHEORIE

Auf analoge Weise transformiert man die y — und z — Komponente der Geschwindigkeit.
Insgesamt lauten die Transformationsformeln

v = v +V o = Uy — V

’ 1-|—£2UI 1—22'%

v, = Cvz,; o = va

vy T 7 vy N\ vy = T 7 v\
’y(l#—l}—QU:’c) 7(1—%%)

v, = —U;V v, = —Uzv
(1) (1)

Zur Probe untersuchen wir den Spezialfall, dafl sich das Teilchen in S’ lings = mit der
Lichtgeschwindigkeit ¢ bewegt. Es gelte also v, = c. Dann liefert die entsprechende
Transformationsformel fiir die Geschwindigkeit in S

c+V
Vgp =

= =c !
1+ %5e¢
I

Das zweite EINSTEINsche Postulat ist also — wie gefordert — erfiillt. Zusétzlich 148t dieses
Ergebnis auf eine weitere Bedeutung des relativistischen Faktors schliefen: Der relativi-
stische Faktor der LORENTZ — Transformation stellt sicher, daf} die Lichtgeschwindigkeit
die hochste Teilchengeschwindigkeit darstellt.

Ein weiterer wichtiger Unterschied der LORENTZ — Transformation zur GALILEI — Trans-
formation ist, dafl die Geschwindigkeiten nicht mehr additiv sind! Dazu sei folgendes
Beispiel angegeben:

Eine Rakete fliege mit V = 0.5¢ in = — Richtung und schiefle Geschosse (z.B. einen Elek-
tronenstrahl) mit v = 0,9¢ in Flugrichtung ab. Ein ruhender Beobachter, an dem die
Rakete mit V = 0.5 ¢ vorbei fliegt, mifit fiir die Geschosse die Geschwindigkeit

v+ V . 0,9+40,5
_1+li_2v/z_1+0,9-0,5

c=0,966c

Vg

12.2.5 Die Transformation der Beschleunigung

Aus den Transformationsformeln fiir die Zeit und die Geschwindigkeit 148t sich nun durch
Differentiation die Transformation der Beschleungigung berechnen. Im System S bzw. S’
gilt

dv!

! 2z

i @ dat'
=% gl g =W
dt’ v Cciitj

al, v
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Wir werden hier die Rechnung nicht durchfiihren, sondern lediglich das Resultat angeben:

Uy = am 3
(=)
alm C r V ,
. o 1 Y 2
! — a, mit a/y — N V 2 a/y + aw V
y #(w) | ()
!
a, / 1 U, 2)—2
a, = v 5 |Gy + Qg Y,
2 _. Y
Y (1 — Vg C_2> i (1 Vg C2>_

Wir betrachten noch einen Spezialfall, in dem sich die Formeln wesentlich vereinfachen:
Ein Teilchen habe in dem Moment, in dem es im System S beobachtet wird, die Geschwin-
digkeit @ = 0, aber dennoch eine Beschleunigung @ (Beispiel: Schwingendes Teilchen im
Umkehrpunkt). Das Inertialsystem S wird in diesem Fall als das momentane Ruhesy-
stem des Teilchens bezeichnet. Mit v, = vy = v, = 0 vereinfachen sich dann die Formeln
zZu

. 1 , 1 , 1

—az73 ay—ayry az—a272

!

Ay

12.2.6 Léangenkontraktion

a.) Transformation einer Linge senkrecht zur Relativgeschwindigkeit V der
Systeme

Wir betrachten einen im System S ruhenden Stab, der parallel zur y — bzw. zur z —
Achse ausgerichtet ist, wobei sich S und S’ lings x bewegen. Aus den Transforma-
tionsformeln fiir die Ortskoordinaten 4’ = y und 2’ = z 148t sich der Schluf} ziehen,
dafl die Lange des Stabes in beiden Systemen gleich ist.

b.) Transformation einer Linge parallel zur Relativgeschwindigkeit V der
Systeme

Wir untersuchen nun die Linge eines Stabes, der parallel zur x — Achse liegt. Im
Bezugsystem S befinde sich der Stab in Ruhe, so dafl die Koordinaten der Stabenden
21 und x5 unabhingig von der Zeit sind. Die sogenannte Ruheléinge des Stabes ist
also gegeben durch

LO = T2 —T1 .

Beziiglich des Systems S’, welches mit V relativ zu S fortschreitet, ist der Stab in
Bewegung. Wir erhalten die Lénge des Stabes, indem wir zu einem Zeitpunkt t’
die mit den Stabenden zusammenfallenden Koordinaten z (') und z5(#') ermitteln.
Dabei ist es wichtig, dafl die Endkoordinaten gleichzeitig gemessen werden! Dann
kann die Strecke zwischen den gemessenen Punkten als Linge L des Stabes im
bewegten System S’ definiert werden.

1 I
L=z,—1x
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Die LORENTZ — Transformation liefert nun
Lo=x9—z1 =7 (zh + V) — v (z}) + V1))

Die Messungen im bewegten Sytem miissen gleichzeitig erfolgen, d.h. es muf} ¢, =
t) = t' gelten. Damit ergibt sich

Ly=7(z5 ~af) = 7L

L= %LO Langenkontraktion

Der in seiner Liangsrichtung bewegte Stab erscheint gegeniiber seiner Ruheldnge
verkiirzt.

Beachte Die Rechnung
L=gzy—17=7(z2 = Vt) — v (11 = V1) =7 Lo

ist falsch, da sie die Gleichzeitigkeit der Lingenmessung im Ruhesystem
voraussetzt. Da fiir die LORENTZ — Transformation keine absolute Zeit
gilt, finden dann die Meflvorgéinge im bewegten System nicht gleichzeitig
statt! Dadurch wird die Messung verfilscht.

12.2.7 Die Zeitdilatation

Wir untersuchen nun ein Zeitintervall in den verschiedenen Bezugssystemen, z.B. die
Lebensdauer eines Elementarteilchens.

Das Teilchen sei im System S in Ruhe, es befinde sich stets am Ort z = z(. Es zerfalle
nach der Zeit 7.
T=At= t2 — tl

Wir transformieren nun vom Ruhesystem zum bewegten System S’.
T=At'=ty,—ti =~ (tg— Z—on) - (tl— 2)—25E0>

=7ty —t) =vyAt =71

7' =~7| Zeitdilatation

In bewegten Systemen laufen die Uhren langsamer! Ein Beobachter, relativ zu dem sich das
Elementarteilchen bewegt, registriert eine lingere Lebensdauer als ein anderer Beobachter,
der das Teilchen in Ruhe sieht (gleiche Uhren vorausgesetzt).

Die Zeitdilatation kommt in der Elementarteilchenphysik zum Tragen. Es lassen sich
hochenergetische Teilchenstrahlen erzeugen, in denen die Teilchen bezogen auf das “La-
borsystem” anniihernd mit Lichtgeschwindigkeit fliegen. Fiir 7+ — Mesonen z.B. tritt in
einem solchen Strahl (V/c =1—5-107%) der Zerfall wesentlich spéter ein, als aufgrund ih-
rer Lebensdauer im Ruhezustand zu erwarten wire. Der Faktor der Zeitdilatation betragt
hier etwa 10%.
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12.3 Relativistische Dynamik

Wir wollen nun sehen, welche Form die Gréflen und Gesetze der Dynamik relativistisch
annehmen. Folgende Grundsétze miissen erfiillt sein:

1. Die relativistischen Grélen und Gesetze sollen bei kleinen Geschwindigkeiten (v/c <
1) in die klassischen Grofien und Gesetze iibergehen.

2. Wir setzen voraus, dafl die Erhaltungssitze wie Energie—, Impuls— und Drehimpul-
serhaltung auch bei hohen Geschwindigkeiten gelten. (Experimenteller Nachweis!)

3. Die Gesetze sollen forminvariant unter der LORENTZtransformation sein.

Zuerst befassen wir uns mit dem Impuls.

12.3.1 Der relativistische Impuls

In der klassischen Mechanik lautet der Impuls eines Systems p'= >, m; v; . Wie sieht der
relativistische Impuls aus?

Zur Klarung dieser Frage untersuchen wir den Stofl zweier Korper in einem abgeschlos-
senen System. Klassisch betrachtet verlauft dieser unter Erhaltung des Gesamtimpulses,
wenn keine dufleren Krifte wirken. Die Impulserhaltung ist also GALILEI — invariant. Ist
sie auch invariant unter der LORENTZ — Transformation?

Der Stofl der beiden Korper, welche gleiche Masse my besitzen, sei elastisch und nicht—
zentral. Als Bezugssystem dient zunéchst das Schwerpunktsystem (Abb. 12.7). Die beiden
Korper ndhern sich mit entgegengesetzt gleichen Geschwindigkeiten. Nach den Gesetzen
der klassischen Mechanik sind die Geschwindigkeiten, mit denen sie sich vom nach dem
Stol vom Schwerpunkt entfernen, wieder entgegengesetzt gleich. Der Gesamtimpuls p'=
>?m; v; hat vor und nach dem Sto den Wert Null. Wie sieht der Stof in einem System

., M Stoss , vor Stoss f"a’ v
h L& ~ :
~ |

vor Stoss

1 N
+ |
&7 J ~N + U |
+ Uy vor . i

|
x ,;‘ .i':‘é_n“h
rockh Stoss - ", 7

Abbildung 12.7: Elastischer, nicht — zen- Abbildung 12.8: Stoff im mit V lings z
traler Stofl zweier Massen im Schwer- bewegten System S' (aus [5])
punktsystem. (aus [5])
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S" aus, welches sich mit V in x — Richtung bewegt? Wir setzen ¥V = +wv,, d.h. die
Systemgeschwindigkeit soll gleich der x — Geschwindigkeitkomponente von Teilchen 2 vor
dem Stof} sein (Abb. 12.8). Die y' — Komponente des Impulses ist vor und nach dem Stof}
Null, die x — Komponente ist vor und nach dem Stol —2 mgv,. Der Impuls bleibt also
erhalten.

Wir betrachten nun den Stofivorgang unter der LORENTZ — Transformation. Diese liefert
fiir die y —Geschwindigkeitskomponente der Teilchen im gestrichenen System folgende
Ausdriicke:

Teilchen 1
vor dem Stof3 nach dem Stof}
2 2
v v v v
Vy = — yUQ 1—6—55 v, = y?)2 1—0—5
1+-% 1+ %
c c
Teilchen 2
vor dem Stof nach dem Stof}
2 2
, Uy A by v
v, = o2 1 Cg vy, = 2 1 6‘2”
1- % 1- %
c c

Welche Impulséinderung erfahren die Teilchen beim Sto3? Wir nehmen nun an, wir kénn-
ten den Impuls in S" als p’ = mgv’ definieren. Dann wiirden die Teilchen beim Stof§
folgende Impulsdnderung erfahren:

Teilchen 1 Teilchen 2
2 2
Ay =20ty 1~ 5 Ay =20 f1- Y
y ) C y ) c
1+ % 1--%
c c

Die Impulsdnderungen wiren nicht entgegengesetzt gleich, was eine Verletzung der Im-
pulserhaltung bedeutet. Diese haben wir aber in Grundsatz 2 vorausgesetzt. Damit die
Impulserhaltung unter der LORENTZ — Transformation gewihrleistet ist, mufl also die
Definition des Impulses abgewandelt werden. Der relativistische Ausdruck fiir den Impuls
lautet (ohne Herleitung):

P= =vmgv| relativistischer Impuls

Dabei ist v die Geschwindigkeit des Teilchens, my wird als Ruhemasse bezeichnet. Der
Verlauf des relativistischen und nicht relativistischen Impulses in Abhéngigkeit von v/c
ist in Abbildung 12.9 aufgezeigt. Der relativistische Impuls eines Teilchens steigt drastisch
an, wenn die Teilchengeschwindigkeit in die Ndhe der Lichtgeschwindigkeit anwéchst. Fiir
v/c < 1 geht er in die klassische Form p'= mg ¥ iiber.
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Abbildung 12.9: Verlauf des relativischen Abbildung 12.10: Relativistische Massen-

und nicht relativistischen Impulses. (aus zunahme in Abhéngigkeit von der Teil-
[5]) chengeschwindigkeit. (aus [5])

Der Ausdruck fiir den Impuls kann auch in der Form
p=m(v) T

geschrieben werden. Dann wird die Masse als geschwindigkeitsabhéngig interpretiert! Man
spricht von der relativistischen Masse m(v).

m
m(v) = ——— = ymyg| relativistische Masse

Ein Teilchen, welches sich mit der Geschwindigkeit v relativ zu einem Inertialsystem be-
wegt, erfihrt einen relativistischen Massenzuwachs. Dies erklirt, warum die Teilchen-
geschwindigkeit niemals bis zur Lichtgeschwindigkeit anwachsen kann: Die Teilchenmasse
wire dann unendlich gr6ff und es miifite eine unendlich hohe Beschleunigungsarbeit ge-
leistet werden.

12.3.2 Die relativistische Energie

In der klassischen Mechanik ist der Zusammenhang zwischen kinetischer Energie und
Impuls gegeben durch
2
p
Eyin = —
kin 2m0

Welche Form nimmt die kinetische Energie in der Relativitéitstheorie an?
Wir gehen aus von der klassischen Definition der kinetischen Energie: Ej;, ist diejenige

Energie, die ein anfinglich ruhender Korper erhélt, wenn an ihm die Beschleunigungsar-
beit W geleistet wird.
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Ein Teilchen im System S werde von v = 0 auf v beschleunigt. Die angreifende Kraft wird
allgemein beschrieben durch

dp d muv

F = R
dt — dt f1_ v2/c?
Damit erhalten wir als Arbeit
W = [Fdo=[4 0" g4,

i

_ fi MoV dx dt
dt 1 — ,02/02 dt

_  mev mov c?
/1 —v2/¢? dt — 02/c2)? dt

movdv/dt :f_ mOC
\/1—1)2/023 at —v?/c?

Durch Einsetzen der Integrationsgrenzen v = 0 und v folgt

2
Y 2 _
W = —myc” = Egip

V1 —v2%/c? "

Elcin =My 02 ("}’ - 1)

relativistische
kinetische Energie

Der relativistische Ausdruck der kinetischen Energie besitzt auf den ersten Blick keine
Ahnlichkeit mit der klassischen Form. Fiir kleine Werte v/c < 1 geht aber Ej;, =
moc?(y —1) in Egy, = mov?/2 iiber, wie wir nun zeigen werden. Wir entwickeln -y

B 1 _q 1 v?
Y=oy = e
und koénnen die Ndherung
. 1 v?
TTrTo e
vornehmen. Dann gilt
v/e<k 1 10 1
Epin = moc? (v — 1) /—> Ein :m002§v—2 = §m0v2
c

Wie lautet die relativistische Gesamtenergie? Wir betrachten dazu noch einmal
den Ausdruck fiir die relativistische kinetische Energie

Eiin :7m002—m002 =mct — mgyc?

Die einzelnen Glieder der Gleichung haben folgende Bedeutung: Der zweite Term be-
schreibt die Ruheenergie, die ein Teilchen mit der Ruhemasse my besitzt.

Ey = myc®’| Ruheenergie
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Den ersten Term konnen wir als Gesamtenergie des Teilchens definieren.

E =mc?| relativistische Gesamtenergie

Es gilt also
Ekin = E - E() .

Aus diesen Ergebnissen leitete EINSTEIN das Prinzip der Aquivalenz von Masse und
Energie ab. Danach ist Materie eine Form von Energie. Energie und Materie kénnen
ineinander umgewandelt werden.

AFE = Amc?

Die experimentelle Bestétigung dieser Vorgénge (z.B. Paarerzeugung) werden wir in der
Vorlesung Physik IV behandeln.

Wir wollen nun noch die relativistische Gesamtenergie durch den Impuls ausdriicken:
Das Quadrat des relativistischen Impulses lautet

p _ m() 2ﬁ2 2 .
Wir betrachten die Identitat
7 -8 =1

und formen diese Gleichung zu v? = 1 + ?+? um. Wir bilden das Quadrat der relativi-
stischen Energie und ersetzen 2.

E*=v"mic' = (1+ ) mict = 2> mg ' + mj ¢*

Der erste Summand enthélt das Quadrat des relativistischen Impulses, so daf

E* =p*c +mict

folgt.

12.3.3 Die Transformation von Energie und Impuls

Man kann zeigen, daf} sich die relativistische Gesamtenergie und der Impuls wie die Orts-
koordinaten z, ¥, z und die Zeit transformieren.

Wir wollen hier die Transformationsbeziehungen ohne Herleitung angeben. Dabei sei wie-
der ein System S’ betrachtet, welches sich mit V lings x relativ zu dem Inertialsystem S

bewegt.
=7 (px— B %)

Py = Dy

mit

= ™
Il

|
= ool
(-
=

plz:pz
EIZ’V(E_Bpr)
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